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Optimal Linear Control over Channels with
Signal-to-Noise Ratio Constraints
Erik Johannesson, Anders Rantzer, Fellow, IEEE, and Bo Bernhardsson

Abstract—We consider a networked control system
where a linear time-invariant (LTI) plant, subject to a
stochastic disturbance, is controlled over a communi-
cation channel with colored noise and a signal-to-noise
ratio (SNR) constraint. The controller is based on out-
put feedback and consists of an encoder that measures
the plant output and transmits over the channel, and
a decoder that receives the channel output and issues
the control signal. The objective is to stabilize the plant
and minimize a quadratic cost function, subject to the
SNR constraint.
It is shown that optimal LTI controllers can be

obtained by solving a convex optimization problem
in the Youla parameter and performing a spectral
factorization. The functional to minimize is a sum of
two terms: the first is the cost in the classical linear
quadratic control problem and the second is a new term
that is induced by the channel noise.
A necessary and sufficient condition on the SNR

for stabilization by an LTI controller follows directly
from a constraint of the optimization problem. It is
shown how the minimization can be approximated by a
semidefinite program. The solution is finally illustrated
by a numerical example.

Index Terms—ACGN channel, control over
noisy channels, linear-quadratic-Gaussian control,
networked control systems, signal-to-noise ratio (SNR)

I. INTRODUCTION

C
OMMUNICATION limitations are a fundamen-

tal characteristic of networked control. The re-

cent trend of decentralized and large-scale systems has

therefore driven an interest in research on how con-

trol systems are affected by communication phenomena

such as random time delays, packet losses, quantization

and noise. A popular approach used for research on the

fundamental aspects of communication limitations in

control systems is to consider a plant that is controlled
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Fig. 1. Feedback control of a plant, with disturbance, over a
communication channel. The control system consists of an encoder,
which also does measurement filtering, and a decoder, which also
determines the control signal.

over a communication channel, as depicted in Fig. 1.

Due to the lack of a theory that can handle all limita-

tions at once, the channel model is typically chosen to

highlight a specific issue.

One example is given by data-rate constraints, whose

study has led to one of the most well-known results in

the area, known as the data-rate theorem. In discrete

time, it says that an unstable linear plant G can be

stabilized over a digital error-free channel if and only if

R >
∑

i

max {0, log2 pλ i(G)p}
def= H G , (1)

where R is the rate of the channel and λ i(G) is the ith
pole of G [1], [2], [3].
The situation is more complicated for noisy channels.

A necessary and sufficient condition for almost sure

asymptotic stabilizability is that the channel capacity

C satisfies C > H G [4]. But since this condition is
not generally sufficient for mean-square stability, the

concept of any-time capacity has been proposed for

characterization of moment stabilizability [5].
Stability is, however, easier to characterize for control

of a linear time-invariant (LTI) plant over an addi-
tive white Gaussian noise (AWGN) channel or, more
generally, an additive colored Gaussian noise (ACGN)
channel. Since the communication aspect highlighted

by this channel model is a Signal-to-Noise Ratio (SNR)
constraint, this setting will be referred to as the SNR

framework.

The SNR framework is mainly attractive due to its

simplicity. However, it has been argued that the usage

of linear controllers admits application of established

performance and robustness tools [6]. The obtained
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results can sometimes also be used to draw conclusions

about and design controllers for other communication

limitations such as packet drops [7] or rate limitations
[8], [9]. Moreover, the SNR framework can be useful for
applications such as power control in mobile communi-

cation systems [10].

A. Main Result and Outline

This paper considers the problem of control design

in the SNR framework. The system has the structure

illustrated in Fig. 1. The plant is LTI, possibly unstable

and subject to a Gaussian disturbance. The controller

is based on output feedback and consists of an en-

coder and a decoder. The encoder measures the plant

output, filters the measurements and encodes them

for transmission over an ACGN channel. The decoder

receives the channel output, decodes it and determines

the control signal. The objective of the controller is

to stabilize the system and minimize a quadratic cost

function, while satisfying the SNR constraint.

The main result is that an optimal LTI output feed-

back controller can be obtained by minimizing a convex

functional and performing a spectral factorization. The

minimization is performed over the Youla parametriza-

tion of the product of the encoder and the decoder,

and the functional is the sum of the classical LQG

cost and a new term that is induced by the channel

noise. A condition for stabilizability, which coincides

with the previously known condition in the AWGN case,

is obtained as a constraint of the minimization problem.

It is shown how to formulate the minimization as a

semidefinite program. As a by-product of the main

result, it is also shown how the encoder and decoder

should be chosen in order to minimize the impact of the

channel noise while preserving the closed loop transfer

function given by a nominal LTI controller that has been

designed for a classical feedback system.

The rest of this section will present the previous

research in the SNR framework. Section II presents the

mathematical notation used in this paper. The exact

problem formulation is given in Section III. Section IV

is devoted to the solution of the problem. Section V

presents a procedure for numerical solution and a nu-

merical example. Finally, Section VI presents the con-

clusions and discusses further research. Some technical

lemmas have been put in the appendix.

B. Previous Research

Necessary and sufficient conditions for stabilizability,

similar to the data-rate theorem, have been found for

the SNR framework. They do, however, vary depending

on some of the assumptions. Generally, the condition

for the AWGN channel is that the SNR σ 2 satisfies the
inequality

σ 2 >
(

∏

i

pmax{1,λ i(G)}p2
)

− 1+η + δ , (2)

where η and δ depend on the specific assumptions, as
will be explained. Assuming no plant disturbance and

static state feedback, the condition is that (2) holds
with η = δ = 0. By writing (1) and (2) in terms of
the respective channel capacities, it can be shown that

the capacity requirements for stabilization in the two

settings are equal [6].
For LTI output feedback, the condition is again (2) but

now the terms η and δ are non-negative and depend on
the non-minimum phase zeros and the relative degree

of the plant, respectively [6]. If there is a plant distur-
bance, the same condition holds if the controller has two

degrees of freedom (DOF) [11] but not if it only has one
DOF, in which case the required SNR is larger [12]. The
condition with η = δ = 0 can be recovered for the output
feedback case, either by introducing channel feedback,

meaning that the encoder knows the channel output

[11], or by allowing a time-varying controller, although
the latter leads to poor robustness and sensitivity [6].
Further, it has been shown that the condition (2) with
η = δ = 0 is necessary for stabilizability even if

nonlinear and time varying state feedback controllers

are allowed [13].
Similar conditions have been found for LTI control of

a plant with no disturbance over an ACGN channel [12].
The case with first order moving average channel noise

was further analyzed in [14].
An early formulation of a feedback control problem

over an AWGN channel with feedback was made in [15].
It was shown how to find the optimal linear controller

and that it is globally optimal for first-order plants.

A counterexample was provided, showing that non-

linear solutions may outperform linear ones for higher

order plants [15]. It should, however, be noted that the
provided counterexample requires the plant to be time-

varying and that the encoder has a memory structure

where it does not remember past plant output.

Since then, many authors have considered similar

control design problems that have been simplified by as-

sumption of a certain controller structure, see [16], [17],
[18], [19], [20]. A quite general approach was proposed
in [11], but it was also noted that it leads to a difficult
optimization problem with sparsity constraints when it

is applied to controllers with two degrees of freedom.

The problem of optimizing the control performance

at a given terminal time was considered in [21] and
[22]. The solutions may however yield poor transient
performance and can therefore be unsuitable for closed-

loop control.

A lower bound on the variance of the plant state was

obtained for feedback control over AWGN channels, us-

ing general controllers with two degrees of freedom, in

[13]. This bound tends to infinity as the SNR approaches
the limit for when stabilization is possible.

An important contribution was recently made in [9].
Although the paper mainly considers control over a

rate-limited channel, this is done through design of an

LTI output feedback controller in the SNR framework,
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assuming an AWGN channel with feedback. The optimal

performance is shown to be obtained by solving a convex

optimization problem with the same structure as the

one obtained in this paper. An optimal controller is

then acquired by finding rational transfer functions

that approximate certain frequency responses. Related

results, for when the controller is pre-designed and the

coding system should have unity transfer function, are

given in [8] and [23].
Comparing with the results presented here, the case

without channel feedback is not mentioned in [9]. The
presented convex functional that gives the optimal cost

for the case with channel feedback can, however, be

modified to give the optimal cost for this case as well.

The expressions for the optimal transfer functions that

are given can, with additional work, also be modified to

give solutions to the case without channel feedback.

We claim that the solution presented in this paper

has a clearer structure than the one given in [9]. For
example, we do not require an over-parametrization of

the controller. Moreover, while the plant is assumed to

be single-input single-output (SISO) in [9], it is here al-
lowed to be slightly more general, making it possible to

include any number of noise and reference signals and

to penalize the control signal variance. Also, we allow

the channel noise to be colored. A final contribution of

this paper relative to [9] is that it is shown how to pose
the optimization problem as a semidefinite program.

The approach used in this paper is based on the

solution of a communication-theoretic problem involv-

ing design of encoders and decoders for a Gaussian

source and a Gaussian channel when there is a delay

constraint [24]. Some instances of that problem can

be viewed as special cases (open loop versions) of the
problem considered here, which therefore may be viewed

as a partial generalization.

II. NOTATION

The proofs in this paper make extensive use of con-

cepts from functional analysis, such as Lp (Lebesgue),
H p (Hardy) and N + (Smirnov) function classes and
inner-outer factorizations. To conserve space, only some

of the most important facts will be given here. The

interested reader is referred either to [25] or to [26],
[27] and [28] for the remaining relevant definitions and
theorems.

The natural logarithm is denoted log. The complex

unit circle is denoted by T. For matrix-valued functions

X (z),Y(z) defined on T, define

〈X ,Y〉 = 1

2π

∫ π

−π

tr
(

X (eiω )∗Y(eiω )
)

dω

C D

G

v

y

rt

n

u

w

z

H

Fig. 2. Feedback system with ACGN communication channel. The
objective is to design the controller components C and D so that the
plant G is stabilized and the variance of z is minimized under the SNR
constraint E(t2) ≤ σ 2. H is a spectral factor of the channel noise n.

and the norms

qX q1 =
1

2π

∫ π

−π

tr

√

X (eiω )∗X (eiω ) dω

qX q2 =
(

1

2π

∫ π

−π

∥

∥X (eiω )
∥

∥

2

F
dω

)1/2

qX q∞ = ess sup
ω

σ 1
(

X (eiω )
)

,

where q⋅qF is the Frobenius norm and σ 1 the largest
singular value.

A transfer matrix X (z) is said to be proper if the
mapping z ]→ X (1/z) is analytic at 0. It is strictly
proper if also limz→∞ X (z) = 0. The space of all rational
and proper transfer matrices with real coefficients is

denoted by R.
Lp, for p = 1, 2,∞, is the space of matrix-valued

functions X (z), defined on T, that satisfy qX qp < ∞.
The subspaces RLp consists of all real, rational and
proper transfer matrices with no poles on T.

H p, for p = 1, 2,∞, is the space of matrix-valued
functions X (z) such that z ]→ X (1/z) is analytic on the
open unit disk and

sup
r>1

qXrqp < ∞,

where Xr(z) = X (rz). The subspaces RH p consists of
all real, rational, stable and proper transfer matrices.

When a function in H p is evaluated on T, it is to be

understood as the radial limit limr→1+ X (rz).
The arguments of transfer matrices will often be

omitted when they are clear from the context. Equalities

and inequalities involving functions evaluated on T are

to be interpreted as holding almost everywhere on T.

III. PROBLEM FORMULATION

A detailed block diagram representation of the system

is shown in Fig. 2. The plant G is a multi-input multi-

output (MIMO) LTI system with state space realization

G(z) =
[

Gzv(z) Gzu(z)
Gyv(z) Gyu(z)

]

=





A B1 B2
C1
C2

D11 D12
D21 0



 ,
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where (A, B2) is stabilizable and (C2, A) is detectable.
The signals v and z are vector-valued with nv and

nz elements, respectively. All other signals are scalar-

valued. Accordingly, Gzv is nz$ nv, Gyv is 1$ nv, Gzu is
nz$1 and Gyu is scalar and strictly proper. It is assumed
that G∗

zuGzu and GyvG
∗
yv have no zeros or poles on T.

The input v is used to model exogenous signals such

as load disturbances, measurement noise and reference

signals. It is assumed that v and w are mutually in-

dependent white noise sequences with zero mean and

identity variance. The other signals in Fig. 2 are the

channel noise n, the control signal u, the measurement

y and the control error or performance index z.

The feedback system is said to be internally stable

if no additive injection of a finite-variance stochastic

signal at any point in the block diagram leads to another

signal having unbounded variance. This is true if and

only if all closed loop transfer functions are in H 2.
The communication channel is an ACGN1 channel

with SNR σ 2 > 0. The channel noise has the spectral
factor H ∈ RH∞, which is assumed to have no zeros
on T. Since the channel input and output can be scaled

by C and D, it can be assumed that n has unit variance

and thus qHq22 = 1 without loss of generality. The SNR
constraint is then equivalent to the power constraint

E(t2) ≤ σ 2. (3)

The objective is to find causal LTI systems C and

D that make the system internally stable, satisfy the

constraint (3) and minimize E(zT z) in stationarity.
By expressing z and t in terms of the transfer func-

tions in Fig. 2, the objective and the SNR constraint can

be written as

J(C, D) =
∥

∥

∥

∥

Gzv +
DCGzuGyv

1− DCGyu

∥

∥

∥

∥

2

2

+
∥

∥

∥

∥

DHGzu

1− DCGyu

∥

∥

∥

∥

2

2

and
∥

∥

∥

∥

CGyv

1− DCGyu

∥

∥

∥

∥

2

2

+
∥

∥

∥

∥

DCHGyu

1− DCGyu

∥

∥

∥

∥

2

2

≤ σ 2, (4)

respectively. The main problem of this paper is thus

to minimize J(C, D) over C and D subject to (4) and
internal stability of the feedback system.

For technical reasons, only solutions where the prod-

uct DC is a rational transfer function will be considered.

This may exclude the possibility of achieving the min-

imum value, but the infimum can still be arbitrarily

well approximated by such functions. Since D and C

are required to be proper, DC has to be proper as well.

That is, DC ∈ R. Though the latter will be enforced,
it is not explicitly required that C and D are proper. It

will, however, be seen that the solution is constructed

so that C ∈ H 2 is outer. Then C,C−1 are proper, and
D = (DC)C−1 is also proper.

1Since only linear controllers are considered, it does not matter if
n or v are Gaussian or not. Linear solutions may, of course, be more
or less suboptimal depending on their distributions.

C D

Gyu
w1 y

rt

n

u

w2

Fig. 3. Block diagram for internal stability analysis.

IV. OPTIMAL LINEAR CONTROL

The solution of the problem presented in the previous

section is divided into three subsections. The first char-

acterizes internal stability of the system. The second

introduces the optimal factorization of a given nominal

controller. The third section shows that the optimal

factorization result can be used to find an equivalence

between the main problem and the minimization of a

convex functional in the Youla parameter.

A. Internal Stability

The product DC will play an important role in the

solution. Therefore, introduce

K = DC.

Following the same reasoning as in [29], it is con-
cluded that internal stability of the systems in Fig. 2

and Fig. 3 are equivalent (H does not have to be

included since it is open-loop stable and not part of

the feedback loop). The latter can be represented by the
closed loop map T , defined by





y

t

u



 = T





w1
w2
n



 .

Hence, the system in Fig. 2 is internally stable if and

only if

T =

















KGyu

1− KGyu
Gyu

1− KGyu
DGyu

1− KGyu
C

1− KGyu
CGyu

1− KGyu
KGyu

1− KGyu
K

1− KGyu
KGyu

1− KGyu
D

1− KGyu

















∈ H 2. (5)

The following two lemmas will give necessary and

sufficient conditions for internal stability, respectively.

Lemma 1: Suppose that T ∈ H 2, Gyu = NM−1 is a
coprime factorization over RH∞ and that U ,V ∈ RH∞
satisfy the Bezout identity VM + UN = 1. Then

K = MQ − U
NQ + V , Q ∈ RH∞. (6)

Proof: It follows directly from (5) that
Gyu

1− KGyu
∈ H 2,

K

1− KGyu
∈ H 2,

1

1− KGyu
∈ H 2.
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These transfer functions are rational and have no poles

on or outside the unit circle, so it follows that

[

1 −K
−Gyu 1

]−1
=









1

1− KGyu
K

1− KGyu
Gyu

1− KGyu
1

1− KGyu









∈RH∞,

(7)
The set of K satisfying (7) can be parametrized using
the Youla parametrization of all stabilizing controllers

[29]. That is, K can be written as in (6).
Lemma 2: Suppose that

K = DC = MQ − U
NQ + V , Q ∈ RH∞, (8)

where Gyu = NM−1 is a coprime factorization over
RH∞ and U ,V ∈ RH∞ satisfy the Bezout identity
VM + UN = 1. Suppose also that C ∈ H 2 is outer
and that D ∈ L2. Then T ∈ H 2.

Proof: It follows from (8) that
Gyu

1− KGyu
∈ RH∞,

K

1− KGyu
∈RH∞,

KGyu

1− KGyu
= 1

1− KGyu
− 1 ∈ RH∞.

Moreover,

DGyu

1− KGyu
= KGyu

1− KGyu
C−1,

where the left hand side is in L2 since it is the product
of an L2 function and a RH∞ function. Since C is outer,
application of Lemma 7 (in the appendix) gives that the
right hand side is in H 2. A similar argument shows that

D

1− KGyu
∈ H 2.

Finally,

C

1− KGyu
∈ H 2,

CGyu

1− KGyu
∈ H 2,

since these functions are products of anH 2 function and
an RH∞ function. Since RH∞ ⊆ H 2 it has been proved
that all elements of T are in H 2 and so T ∈ H 2.

B. Optimal Factorization

Suppose for now that K ∈ R is a given stabilizing
controller for the classical feedback system in Fig. 4.

Thus, K satisfies (6). Nothing else is assumed about
the design of K . It could for example be the H 2 optimal
controller or have some other desirable properties in

terms of step responses or closed loop sensitivity.

In either case, it is a natural question to ask what

the best way is to implement this controller in the

architecture of Fig. 2. If the nominal design is to be

preserved then C and D should satisfy K = DC

since the transfer matrix from v to z would then be

the same. Given this relationship, choosing C and D

can be thought of as factorizing K . The factorization

K

G

v

y u

z

Fig. 4. Classical feedback system without communication channel.

should be chosen to minimize the negative effect of the

communication channel. That is, they should keep the

system stable, satisfy the SNR constraint and minimize

the impact of the channel noise. That is, to minimize

the contribution of n to E(zT z).
Rewriting J(C, D) and the SNR constraint (4) with
DC replaced by K gives

J(C, D) =
∥

∥

∥

∥

Gzv +
KGzuGyv

1− KGyu

∥

∥

∥

∥

2

2

+
∥

∥

∥

∥

DHGzu

1− KGyu

∥

∥

∥

∥

2

2

(9)

and
∥

∥

∥

∥

CGyv

1− KGyu

∥

∥

∥

∥

2

2

+
∥

∥

∥

∥

KHGyu

1− KGyu

∥

∥

∥

∥

2

2

≤ σ 2. (10)

The objective of the optimal factorization problem is

to find C and D such that (9) is minimized subject to
(10) and K = DC. Stability is not considered now but
it will be seen that the obtained solution is stabilizing

anyway. The optimal factorization will later be used to

solve the main problem of this paper. Alternatively, it

could also be used to factorize a nominal K that was

designed for the classical feedback architecture.
Note that, for given K , the first term in (9) is constant

and that the second term is a weighted norm of D. In

the left hand side of (10), the first term is a weighted
norm of C and the second is constant. Thus, the optimal

factorization problem is a minimization of a weighted

norm of D, subject to an upper bound on a weighted

norm of C and the constraint K = DC.
Before the solution to this problem is given, it is noted

that the SNR constraint will be impossible to satisfy

unless K satisfies

α
def= σ 2 −

∥

∥

∥

∥

KHGyu

1− KGyu

∥

∥

∥

∥

2

2

≥ 0.

Actually, if α = 0 then, since GyvG∗
yv has no poles or

zeros on T,
∥

∥

∥

∥

CGyv

1− DCGyu

∥

∥

∥

∥

2

2

= 0[ C

1− DCGyu
= 0[ KHGyu

1− KGyu
= 0,

which is a contradiction. Thus, it will be assumed that

K is such that α > 0. Introducing

S = 1

1− KGyu
∈RH∞

for notational convenience, the set of feasible pairs

(C, D), parametrized by K , is defined as

ΘC,D(K ) =
{

(C, D) : qCSGyvq22 ≤ α , DC = K
}

.
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The solution to the optimal factorization problem is now

given by the following lemma.

Lemma 3 (Optimal Factorization): Suppose α > 0,

S ∈ RH∞, K ∈ R and that H ∈ RH∞, G∗
zuGzu ∈ RL∞

and GyvG∗
yv ∈RL∞ have no zeros on T. Then

inf
(C,D)∈ΘC,D(K )

qDSHGzuq22 ≥
1

α

∥

∥KS2HGzuGyv
∥

∥

2

1
. (11)

Suppose furthermore that K ∈ RL1 satisfies (6).
Then there exists (C, D) ∈ ΘC,D(K ) with C ∈ H 2 outer
and D ∈ L2, such that the minimum is attained and
(11) holds with equality.
If K is not identically zero, then (C, D) is optimal if

and only if DC = K and

pCp2 = α

qKS2HGzuGyvq1

√

G∗
zuGzu

GyvG∗
yv

pKHp on T. (12)

If K = 0, then the minimum is achieved by D = 0 and
any C that satisfies qCSGyvq22 ≤ α .

Proof: If K = 0 then the right hand side of (11) is 0.
Letting D = 0 gives qDSHGzuq22 = 0 and it is clear that
(C, D) ∈ ΘC,D if C is as stated.

Thus, it can now be assumed that K is not identically

zero. Then C is not identically zero and D = KC−1.
By assumption both G∗

zuGzu and GyvG
∗
yv are positive

on the unit circle. Since these functions are rational this

implies that

∃ε > 0 such that G∗
zuGzu ≥ ε and GyvG∗

yv ≥ ε , on T.

(13)
Thus by the factorization theorem in [30] there exist
scalar minimum phase transfer functions Ĝzu, Ĝyv ∈ H 2
such that

G∗
zuGzu = Ĝ∗

zuĜzu, GyvG
∗
yv = ĜyvĜ∗

yv.

Now, qCSGyvq22 ≤ α and Cauchy-Schwarz’s inequality
gives

qDSHGzuq22 =
∥

∥

∥
KC−1SHĜzu

∥

∥

∥

2

2

≥

∥

∥

∥
CSĜyv

∥

∥

∥

2

2

α

∥

∥

∥
KC−1SHĜzu

∥

∥

∥

2

2

≥ 1
α

〈∣

∣

∣
CSĜyv

∣

∣

∣
,
∣

∣

∣
KC−1SHĜzu

∣

∣

∣

〉2

= 1
α

∥

∥

∥
KS2HĜzuĜyv

∥

∥

∥

2

1

= 1
α

∥

∥KS2HGzuGyv
∥

∥

2

1
.

This proves the lower bound (11).
Equality holds if and only if pKC−1SHĜzup and

pCSĜyvp are proportional on the unit circle and

qCSGyvq22 = α . It is easily verified that this is equiv-
alent to (12). Thus, (C, D) achieves the lower bound
if and only if D = KC−1 and (12) holds, since these
conditions imply that (C, D) ∈ ΘC,D(K ).
Under the additional assumptions that K ∈ RL1

satisfies (6), it will now be shown that there exists such

(C, D) ∈ H 2 $ L2 with C outer. Since K satisfies (6)
with M ,N,Q,U ,V ∈RH∞ it holds that

log pK p = log pMQ − U p − log pNQ + V p

By Theorem 17.17 in [27], log pMQ − U p ∈ L1 and
log pNQ + V p ∈ L1 and thus log pK p ∈ L1. It follows
from (13) and the boundedness of H, Ĝyv and Ĝzu on T

that
∫ π

−π

log

∣

∣

∣

∣

∣

Ĝzu

Ĝyv
KH

∣

∣

∣

∣

∣

dω > −∞

and
∣

∣

∣

∣

∣

Ĝzu

Ĝyv
KH

∣

∣

∣

∣

∣

∈ L1.

Then by the factorization theorem in [30] there exists
an outer function C ∈ H 2 such that (12) holds. Also,
D = KC−1 ∈ L2 since

∥

∥KC−1
∥

∥

2

2
= 1

α

∥

∥KS2HGzuGyv
∥

∥

1

∥

∥

∥

∥

∥

K Ĝyv

HĜzu

∥

∥

∥

∥

∥

1

< ∞.

Remark 1: The spectral factorization gives some free-

dom in the choice of (C, D) that attains the bound. For
example, D instead of C could be chosen to be H 2 and
outer. That would result in having C ∈ L2. Considering
more solutions than the one selected would require a

slightly more complicated stability characterization, so

this is not done.

Remark 2: Optimal D will satisfy

pDp2 =
∥

∥KS2HGzuGyv
∥

∥

1

α

√

GyvG∗
yv

G∗
zuGzu

∣

∣

∣

∣

K

H

∣

∣

∣

∣

on T.

It is interesting that the magnitudes of both C and

D are directly proportional, on the unit circle, to the

square root of the magnitude of K . In other words,

the dynamics of a nominal controller K is "evenly"

distributed on both sides of the communication channel.

The static gain of C (and D) is tuned so that the
SNR constraint is active. In the case when Gyv = Gzu,
finding an optimal factorization amounts to performing

a spectral factorization of pKHp and tuning the static
gain. If also H = 1 then the magnitudes of the frequency
responses of C and D will then be proportional.

C. Equivalent Convex Problem

It will now be shown that a solution to the main

problem can be obtained, with arbitrary accuracy, by

solving a convex minimization problem in the Youla

parameter.

As discussed in the problem formulation, (C, D)
should satisfy the SNR constraint (4) and stabilize the
system. The latter corresponds to T ∈ H 2 or (5). Also,
it was assumed that DC ∈ R. Thus, the set of feasible
(C, D) is given by

ΘC,D =
{

(C, D) : DC ∈R , (4),T ∈ H 2
}

.
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Let M ,N,U ,V be determined by a coprime factoriza-

tion of Gyu and introduce

A = M2GzuGyv (14)
B = M2N−1VGzuGyv (15)
E = MNH (16)
F = (MV − 1)H (17)
L = Gzv − MN−1GzuGyv. (18)

It will now be shown that minimization of J(C, D)
over ΘC,D can be performed by minimizing the convex
functional

ϕ(Q) = qL+ AQ + Bq22 +
q(AQ + B) (EQ + F)q21

σ 2 − qEQ + Fq22
,

over the convex set

ΘQ =
{

Q : Q ∈ RH∞, qEQ + Fq22 < σ 2
}

.

The Q ∈ ΘQ obtained from minimizing ϕ(Q) will be
used to construct (C, D) ∈ ΘC,D. However, this will not
be possible for Q for which the corresponding K has

poles on T. For such Q a small perturbation can then

be applied first. This will result in an increased cost,

but this increase can be made arbitrarily small. That

this is possible is established by the following lemma.

Lemma 4: Suppose Q ∈ ΘQ and ε > 0. Then there
exists Q̂ ∈ ΘQ such that

K = MQ̂ − U
NQ̂ + V

∈RL1, (19)

and

ϕ(Q̂) < ϕ(Q) + ε .

The proof of Lemma 4 is based on a perturbation

argument and can be found in the Appendix.

The main theorem of the paper can now be stated.

Theorem 1: Suppose σ 2 > 0, that Gyu = NM−1 is
a coprime factorization over RH∞, that U ,V ∈ RH∞
satisfy the Bezout identity VM + UN = 1 and that
H ∈ RH∞, G∗

zuGzu ∈RL∞ and GyvG∗
yv ∈ RL∞ have no

zeros on T. Then

inf
(C,D)∈ΘC,D

J(C, D) = inf
Q∈ΘQ

ϕ(Q). (20)

Furthermore, suppose Q ∈ ΘQ, ε > 0 and let Q̂ ∈ ΘQ
be as in Lemma 4. Then there exists (C, D) such that
the following conditions hold:

• If MQ̂−U is not identically zero: (C, D) ∈ H 2$L2,
where C is outer and

K = MQ̂ − U
NQ̂ + V

(21)

pCp2 =
σ 2 −

∥

∥

∥

∥

KHGyu

1− KGyu

∥

∥

∥

∥

2

2
∥

∥

∥

∥

KHGzuGyv

(1− KGyu)2
∥

∥

∥

∥

1

√

G∗
zuGzu

GyvG∗
yv

pKHp on T

(22)
D = KC−1 (23)

• If MQ̂ − U = 0: C = D = 0.
If (C, D) satisfy these conditions, then (C, D) ∈ ΘC,D
and

J(C, D) < ϕ(Q) + ε .

Proof: Consider (C, D) ∈ ΘC,D and define K = DC.
Then (C, D) ∈ ΘC,D(K ) for this choice of K . Moreover,
because T ∈ H 2 it follows from Lemma 1 that K can be
written using the Youla parametrization (6). Since the
SNR constraint (4) is satisfied by (C, D) it follows that
K ∈ ΘK , where ΘK is defined by

ΘK =
{

K : (6),
∥

∥

∥

∥

KHGyu

1− KGyu

∥

∥

∥

∥

2

2

< σ 2

}

.

The inequality in this definition is strict because it was

shown earlier that equality cannot hold. It has thus

been proved that

(C, D) ∈ ΘC,D [ (C, D) ∈ ΘC,D(K ) for some K ∈ ΘK .

(24)
A lower bound will now be determined for J(C, D).

This will be accomplished through a series of inequal-

ities and equalities, where each step will be explained

afterwards.

inf
(C,D)∈ΘC,D

J(C, D)

≥ inf
K∈ΘK

inf
(C,D)∈ΘC,D(K )

∥

∥

∥

∥

Gzv +
KGzuGyv

1− KGyu

∥

∥

∥

∥

2

2

+
∥

∥

∥

∥

DHGzu

1− KGzu

∥

∥

∥

∥

2

2

= inf
K∈ΘK

[

∥

∥

∥

∥

Gzv+
KGzuGyv

1− KGyu

∥

∥

∥

∥

2

2

+ inf
(C,D)∈ΘC,D(K )

∥

∥

∥

∥

DHGzu

1− KGzu

∥

∥

∥

∥

2

2

]

≥ inf
K∈ΘK

∥

∥

∥

∥

Gzv +
KGzuGyv

1− KGyu

∥

∥

∥

∥

2

2

+

∥

∥

∥

∥

KHGzuGyv

(1− KGyu)2
∥

∥

∥

∥

2

1

σ 2 −
∥

∥

∥

∥

KHGyu

1− KGyu

∥

∥

∥

∥

2

2

= inf
Q∈ΘQ

ϕ(Q)

The first step follows from (24) and rewriting J(C, D)
in terms of K . In the second step, the first term

has been moved out since it is constant in the inner

minimization. The third step follows from application

of Lemma 3 with

α = σ 2 −
∥

∥

∥

∥

KGyu

1− KGyu

∥

∥

∥

∥

2

2

> 0, S = 1

1− KGyu
∈ RH∞.

Let A, B, E, F, L be given by (14)–(18). Application of
the Youla parametrization and the Bezout identity then

gives

Gzv+
KGzuGyv

1− KGyu
= Gzv+

(

1

1− KGyu
− 1
)

GzuGyvG
−1
yu

= Gzv + (MNQ + MV − 1)GzuGyvMN−1

= AQ + B + Gzv − MN−1GzuGyv
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and

KHGzuGyv

(1− KGyu)2
=
GzuGyvG

−1
yu KHGyu

(1− KGyu)2
= GzuGyvM2

(

Q + N−1V
)

(MNQ + MV − 1) H
= (AQ + B)(EQ + F).

The fourth step now follows from the definition of ϕ(Q).
Now a suboptimal solution will be constructed. Sup-

pose that Q ∈ ΘQ and ε > 0 and let Q̂ ∈ ΘQ be as
given by Lemma 4 and define K ∈ RL1 by (21). Then
K ∈ ΘK and

ϕ(Q̂) =
∥

∥

∥

∥

Gzv +
KGzuGyv

1− KGyu

∥

∥

∥

∥

2

2

+

∥

∥

∥

∥

KHGzuGyv

(1− KGyu)2
∥

∥

∥

∥

2

1

σ 2 −
∥

∥

∥

∥

KHGyu

1− KGyu

∥

∥

∥

∥

2

2

If MQ̂ − U = 0 then K = 0,
J(0, 0) = qGzvq22 = ϕ(Q̂) < ϕ(Q) + ε ,

and we are done.

If, on the other hand, MQ̂−U is not identically zero
then K is not identically zero. By Lemma 3 there then

exists an outer C ∈ H 2 and D ∈ L2 such that (22) and
(23) are satisfied. The lemma also says that such (C, D)
satisfy

∥

∥

∥

∥

DHGzu

1− KGyu

∥

∥

∥

∥

2

2

=

∥

∥

∥

∥

KHGzuGyv

(1− KGyu)2
∥

∥

∥

∥

2

1

σ 2 −
∥

∥

∥

∥

KHGyu

1− KGyu

∥

∥

∥

∥

2

2

and
∥

∥

∥

∥

CGyv

1− KGyu

∥

∥

∥

∥

2

2

≤ σ 2 −
∥

∥

∥

∥

KHGyu

1− KGyu

∥

∥

∥

∥

2

2

.

D,C and K satisfy the conditions of Lemma 2, so

T ∈ H 2, which implies that (C, D) ∈ ΘC,D. Moreover,

J(C, D) =
∥

∥

∥

∥

Gzv +
KGzuGyv

1− KGyu

∥

∥

∥

∥

2

2

+
∥

∥

∥

∥

DHGzu

1− KGyu

∥

∥

∥

∥

2

2

= ϕ(Q̂) = ϕ(Q) + ε .

Since ε can be made arbitrarily small this shows that
(20) holds and hence the proof is complete.
Remark 3: Theorem 1 shows that an ε -suboptimal so-

lution to the main problem can be found by minimizing

ϕ(Q) over ΘQ . The obtained Q may have to be perturbed

so that the resulting K has no poles on the unit circle.

Then C is given by a spectral factorization and D is

then obtained from C.

A by-product of Theorem 1 is a necessary and suf-

ficient criterion for the existence of a stabilizing LTI

controller that satisfies the SNR constraint.

Corollary 1: There exists (C, D) that stabilize the
closed loop system of Fig. 2 subject to the SNR con-

straint (4) if and only if there exists Q ∈ RH∞ such
that

q(MNQ +MV − 1) Hq22 < σ 2. (25)

For the AWGN channel, we have that H = 1 and the
condition can be written

qMNQ + MVq22 < σ 2 + 1 (26)

since MNQ + MV − 1 is strictly proper and thus
orthogonal to 1.

Remark 4: Corollary 1 implies that the minimum

SNR compatible with stabilization of a stochastically

disturbed plant by an output feedback LTI controller

with two degrees of freedom over an ACGN channel can

be found by minimizing the left hand side of (25) over
Q ∈ RH∞.
For the AWGN case, the analytical condition (2),

presented in [6], is actually derived from a minimiza-
tion of the left hand side of (26). This means that
the same condition is necessary and sufficient in the

present problem setting as well, when the channel noise

is white. This fact has been noted before in [11]. To
elaborate, there is no plant disturbance in the setup

of [6]. In that case, the SNR required for stabilizability
will be the same regardless if the controller has one

or two degrees of freedom. However, [31] considered the
case when there is a plant disturbance and showed that

the SNR required for stabilizability may then be larger

than prescribed by (2). However, the controller in [31]
was assumed to only have one DOF (the encoder part
was fixed to be a unity gain). Theorem 17 in [11] and
this corollary shows that if the controller has two DOF,

then (2) is again a necessary and sufficient criterion for
stabilizability.

For the ACGN case, however, this result is not identi-

cal to those in [12] and [14] since they assumed no plant
disturbance and (effectively) controllers with one DOF.
It will now be shown that the minimization of ϕ(Q)

over ΘQ is actually a convex problem. To this end, define

the functional

ρ(a, e) = 1

2π

∫ π

−π

a(ω )2dω +
(

1
2π

∫ π
−π a(ω )e(ω )dω

)2

σ 2 + 1− 1
2π

∫ π

−π e(ω )2dω
with domain Θρ consisting of functions a and e that are

continuous on [−π ,π ] and satisfy
1

2π

∫ π

−π

e(ω )2 dω < σ 2 + 1.

Lemma 5: The functional ρ(a, e) is convex.
Proof: Take n ≥ 2. The function

f (x, y,v) = (x + yv)T(x + yv) − v2,
= xT x + 2vxT y+ v2(yT y− 1)

with domain
{

(x, y,v) : x, y ∈ R
n, v ∈ R, yT y < 1

}

, is

convex in (x, y) for any v ∈ R. Thus,

�(x, y) = max
v∈R

f (x, y,v) = xT x +
(

xT y
)2

1− yT y,

with domain
{

(x, y) : x, y ∈ R
n, yT y< 1

}

, is convex in

(x, y) since it is the pointwise maximum of a set of
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convex functions [32]. Now, suppose (a, e) ∈ Θρ . Let

ω 1 = 0, ω k+1 −ω k = 2π/n, k = 1, . . . ,n− 1
â =

[

a(ω 1) a(ω 2) . . . a(ω n)
]T

ê =
[

e(ω 1) e(ω 2) . . . e(ω n)
]T
.

By definition of the integral, it holds that

lim
n→∞

êT ê

(σ 2 + 1)n =
1

(σ 2 + 1)
1

2π

∫ π

−π

e(ω )2dω < 1.

So for large n,
(

â, (σ 2 + 1)−1/2 ê
)

/√n belongs to the
domain of � and

ρ(a, e) = lim
n→∞

�
(

â√
n
,

ê
√

(σ 2 + 1)n

)

.

Since the right hand side is convex in (â, ê), and thus
in (a, e), it follows that ρ(a, e) is convex.
Remark 5: Convexity of ρ(a, e) has been shown pre-

viously in [33]. This proof is, however, substantially
shorter.

The convex functional ρ will be used in a relaxation
of the minimization of ϕ(Q). A slight modification has
to be done to ϕ(Q) in order to be able to compare the
two functionals. For this purpose, define

∆(Q) = qLq22 + 2Re 〈L, AQ + B〉 .

Since ∆(Q) is affine in Q it doesn’t affect the convexity
of ϕ(Q). Define the functional

ϕ0(Q) = ϕ(Q) − ∆(Q)

= qAQ + Bq22 +
q(AQ + B) (EQ + F)q21

σ 2 − qEQ + Fq22
.

Lemma 6: Suppose Q ∈ ΘQ . Then ϕ0(Q) ≤ γ if and
only if there exists (a, e) ∈ Θρ such that ρ(a, e) ≤ γ and

a(ω ) ≥
√

G∗
zuGzuGyvG

∗
yv

∣

∣

∣

∣

M2Q + M
2V

N

∣

∣

∣

∣

, ω ∈ [−π ,π ]
(27)

e(ω ) ≥ pEQ + Fp, ω ∈ [−π ,π ]. (28)

Proof: Suppose first that ϕ0(Q) ≤ γ . Let

a(ω ) =
√

G∗
zuGzuGyvG

∗
yv

∣

∣

∣

∣

M2Q + M
2V

N

∣

∣

∣

∣

e(ω ) = pEQ + Fp

and it follows that (a, e) ∈ Θρ and ρ(a, e) = ϕ0(B, K ).
Conversely, suppose that (a, e) ∈ Θρ satisfy (27) and
(28) and that ρ(a, e) ≤ γ . Then it follows from inspec-
tion of ϕ0(Q) and ρ(a, e) that ϕ0(Q) ≤ ρ(a, e) ≤ γ .

Convexity can now be proved.

Theorem 2: The problem of minimizing ϕ(Q) over ΘQ
is convex.

Proof: Suppose Q1,Q2 ∈ ΘQ . Then by Lemma 6
there exists (a1, e1) ∈ Θρ and (a2, e2) ∈ Θρ such that

ρ(a1, e1) ≤ ϕ0(Q1) and ρ(a2, e2) ≤ ϕ0(Q2). It thus holds
for 0 ≤ θ ≤ 1 that

θϕ0(Q1)+(1−θ)ϕ0(Q2) ≥ θ ρ(a1, e1)+(1−θ)ρ(a2, e2)
≥ ρ (θa1 + (1− θ)a2,θ e1 + (1− θ)e2)

≥ ϕ0(θQ1 + (1− θ)Q2).

The second inequality follows from Lemma 5. The third

inequality follows from Lemma 6 and that the con-

straints (27) and (28) are convex. It is thus proved that
ϕ0(Q) is convex in Q. Then ϕ(Q) is convex since ∆(Q)
is convex. It is finally noted that ΘQ is a convex set.

V. NUMERICAL SOLUTION

By Lemma 6, minimizing ϕ(Q) over ΘQ is equivalent
to minimizing ρ(a, e) + ∆(Q) over Θρ $ ΘQ subject to

(27) and (28). This problem is infinite-dimensional, so
the integrals are discretized for numerical solution. It

will now be shown how the discretized problem can be

posed as a semidefinite program.

Let n ≥ 2 and define {ω k}n−1k=0, â and ê as in the proof
of Lemma 5. Approximations of ρ(a, e) and ∆(Q) with
n grid points are then given by

ρn(â, ê) =
1

n
âT â+

(

1
n
âT ê

)2

σ 2 + 1− 1
n
êT ê

∆n(Q) = qLq22 +
2

n
Re

n
∑

k=1
tr (L∗(AQ + B))pz=eiωk .

The accuracy of this approximation clearly depends on

the number of grid points n. When implementing the

minimization program, Q is parametrized using a finite

basis representation. The accuracy of the approximation

obviously depends on this representation as well.

The denominator of ρn(â, ê) is positive for sufficiently
large n and ρn(â, ê) + ∆n(Q) can be written as a Schur
complement. It follows that ρn(â, ê) + ∆n(Q) ≤ γ if and
only if

[

1
n
êT ê−σ 2 − 1 1

n
âT ê

1
n
êT â 1

n
âT â+ ∆n(Q) − γ

]

5 0,

or, equivalently,

[

n(σ 2 + 1) 0

0 nγ − n∆n(Q)

]

−
[

ê â
]T
I
[

ê â
]

4 0.

Noting that the left hand side of the last inequality is

also a Schur complement, it follows that it is equivalent

to




I ê â

êT n(σ 2 + 1) 0

âT 0 nγ − n∆n(Q)



 4 0. (29)

Let �k =
√

Gzu(eiω k)∗Gzu(eiω k)Gyv(eiω k)Gyv(eiω k)∗. The
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constraints can then be approximated by

a(ω k) ≥ �k
∣

∣M(eiω k)2
∣

∣

∣

∣

∣

∣

Q(eiω k) + V (e
iω k)

N(eiω k)

∣

∣

∣

∣

, k = 1 . . .n

(30)
e(ω k) ≥

∣

∣E(eiω k)Q(eiω k) + F(eiω k)
∣

∣ , k = 1 . . .n (31)

σ 2 + 1 > 1
n

n
∑

k=1
e(ω k)2. (32)

Minimizing γ subject to (29)–(32) is a semidefinite
program.

A procedure for numerical solution will now be out-

lined.

1) Determine N,M ,U ,V ∈ RH∞ by a coprime fac-
torization of Gyu and calculate A, B, E, F and L.

2) Choose n large, determine the grid points ω k,
k = 1 . . .n and solve the optimization problem of
minimizing γ subject to (29)–(32). The transfer
function Q is parametrized with a finite basis

representation, for example as an FIR filter. If the

problem is infeasible it could mean that a larger

σ 2 is needed to stabilize the plant. This can be
checked analytically using the condition in [6]. If
σ 2 is sufficiently large according to this condition,
the problem could still become infeasible if n is too

small or Q is too coarsely parametrized.

3) If NQ + V has zeros on the unit circle, deter-
mine a small perturbation Q̂ of Q as outlined by

Lemma 4.

4) Determine K from (19).
5) Use a finite basis approximation A(ω ) of CC∗, for

example the parametrization

A(ω ) = A0 +
Nc
∑

k=1
Ak
(

ekiω + e−kiω
)

, (33)

and fit A(ω ) to the right hand side of (22), for ex-
ample by minimizing the mean squared deviation.

6) Perform a spectral factorization of A(ω ), choosing
C as the stable and minimum phase spectral

factor.

7) Let D = KC−1.

A. Example

Consider the system in Fig. 5. A SISO plant is

controlled over an AWGN channel. The SISO plant

CD

P
w y

r t

n

Fig. 5. Control of a SISO plant over an AWGN channel.
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Fig. 6. Minimum variance of the plant output y as a function of
the SNR (or maximum allowed transmission power) σ 2, for the plant
G = 1/(z(z− 2)). The variance grows unbounded as σ 2 approaches
the lower limit for stabilization.

represents a special case where

G(z) =
[

Gzv(z) Gzu(z)
Gyv(z) Gyu(z)

]

=
[

P(z) P(z)
P(z) P(z)

]

.

Let the plant be P(z) = 1/(z(z − 2)). It has one
unstable pole and a one-sample time delay. Using the

stabilizability condition (2), it is determined that stabi-
lization is possible for σ 2 > 12. (We have η = 0, since
there are no non-minimum phase zeros, and δ = 9,
because of the location of the unstable pole and the

relative degree, which is 2. For details, see [6]).
A controller was determined for various values of σ 2,

using the algorithm outlined above. The optimization

was performed in Matlab, using the toolboxes Yalmip

[34] and SeDuMi [35]. In the optimization program,
n = 629 grid points were used and Q was parametrized
as an FIR filter with length 20. The plant output

variance is plotted in Fig. 6 for a number of different σ 2.
It can be seen that the variance grows unbounded as

σ 2 approaches 12 and the feedback system comes closer
to instability. This seems to be in agreement with the

performance bound given in [13].

VI. CONCLUSION

This paper has considered a special class of decen-

tralized control problems where the controller is split in

two parts that are separated by a noisy communication

channel with an SNR constraint. It has been shown that

an optimal linear design can be obtained with arbitrary

accuracy by solving a convex optimization problem and

performing a spectral factorization.

The results in this paper can be viewed as a general-

ization of some results pertaining to a communication

problem that can be obtained by considering the open-

loop version of the control problem.

As mentioned in Section I, the problem in this pa-

per has previously been considered in the case with

an AWGN channel with feedback [9], where a similar
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result is obtained using a slightly different technique. A

disadvantage with that result is, though, that it requires

the controller to be over-parametrized with four degrees

of freedom. The technique used in this paper has been

applied to that case as well in [25], giving a solution
that does not require an over-parametrization.

Objects for further research include an extension to

handle MIMO channels or plants with more than one

controller input or measurement signal. Of course it

would also be of interest to know if non-LTI controllers

could provide better performance or require lower SNR

levels for stabilization when the channel noise is colored.

APPENDIX

Lemma 7: Suppose that Y ∈N + is square and outer,
X ∈N +, and that Y−1X ∈ Lp. Then Y−1X ∈ H p.
Proof: Y−1 ∈ N + by Theorem 10 in [28]. It is easy

to verify that the product of two N + functions is N +.
The result follows from Lp ∩N + = H p [26].

Proof of Lemma 4: The proof is based on construc-

tion of Q̂ through a perturbation of Q. Take Q ∈ ΘQ
and let

K = MQ − U
NQ + V .

If K ∈ RL1 then let Q̂ = Q and the construction is
complete. Suppose instead that K has at least one pole

on T. Since MQ − U ∈ RH∞, z is a pole of K if and
only if

N(z)Q(z) + V (z) = 0. (34)

Moreover, suppose that (34) holds and that N(z) = 0.
Then it follows from the Bezout identity that V (z) ,= 0,
which is a contradiction. Thus if NQ + V has a zero at
z then N(z) ,= 0.
Suppose now that NQ + V has a zero at z0 ∈ T and

that z0 /∈ R (the case when z0 ∈ R is discussed later).
Let

Q̂ = Q + λ0 + λ1z
−1, λ0,λ1 ∈ R.

Then
∥

∥

∥
EQ̂ + F

∥

∥

∥

2
< σ 2 + 1 if pλ0p + pλ1p < δ λ for small

enough δ λ .

The coefficients λ0,λ1 will be chosen so that the zero
at z0 is perturbed away from T. It must also be made

sure that none of the other zeros can reach T under

the same perturbation. For this reason, define the set

of zeros not on the unit circle,

Ω = {z : z /∈ T,N(z)Q(z) + V (z) = 0},

and the smallest distance from that set to the unit circle,

r = inf
z1∈Ω,z2∈T

pz1 − z2p ,

where r > 0 since Ω has a finite number of elements.
The location of the zeros of NQ̂+V depend continuously
on (λ0,λ1). Thus, there exists δ r > 0 such that if pλ0p +
pλ1p < δ r then all zeros are displaced strictly less than
r.

Introduce the function

X (z,λ0,λ1) = NQ̂ + V = NQ + V + N(λ0 + λ1z
−1).

Then

det









Re
�X
�λ0

Re
�X
�λ1

Im
�X
�λ0

Im
�X
�λ1









= det
[

Re N Re Nz−1

Im N Im Nz−1

]

is non-zero at z = z0 since N(z0) ,= 0 and z0 ∈ T \R.
Then, by the implicit function theorem, there is a dif-

ferentiable mapping z ]→ (λ0,λ1) defined in a neighbor-
hood of z0, such that

N(z)Q̂(z) + V (z)
= N(z)Q(z) + V (z) + N(z)(λ0(z) + λ1(z)z−1) = 0.

This means that a new location z can be determined

for the zero, and the mapping gives the corresponding

λ0,λ1.
Take ε > 0. Since ϕ(Q) is continuous there exists

δQ > 0 such that
∥

∥

∥
Q̂ − Q

∥

∥

∥

∞
< δQ [

∣

∣

∣
ϕ(Q̂) −ϕ(Q)

∣

∣

∣
< ε .

Continuity of the mapping from z to (λ0,λ1) implies that
there exists δ z > 0 such that

pz− z0p < δ z [ pλ0(z)p + pλ1(z)p < min{δQ,δ λ ,δ r}.

Now pick z /∈ T such that pz− z0p < δ z and the mapping
to λ0,λ1 is defined. Then

∥

∥

∥
Q̂ − Q

∥

∥

∥

∞
≤ pλ0(z)p + pλ1(z)p < min{δQ,δ λ ,δ r},

which implies that
∥

∥

∥
EQ̂ + F

∥

∥

∥

2
< σ 2 + 1, pϕ(Q̂) −ϕ(Q)p < ε ,

and that there are no new zeros on T. Since z /∈ T it

follows that NQ̂ + V has at least one zero less than
NQ + V on T.

If z0 is real, then define instead

Q̂ = Q + λ0, λ0 ∈ R

and determine λ0 analogously. Note, however, that the
zero must be kept on the real axis.

If Q̂ is such that NQ̂+V has zeros on T, the procedure
may be repeated again, with ε appropriately chosen,
until there are no such zeros. Thus, for every Q ∈ ΘQ
and ε > 0 it is possible to construct Q̂ such that

NQ̂ + V has no zeros on T, pϕ(Q̂) − ϕ(Q)p < ε and
∥

∥

∥
EQ̂ + F

∥

∥

∥

2
< σ 2 + 1.
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