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Abstract

Using well-established time domain methods, Sommerfeld’s classical results
for the forerunner (the first precursor) at distant points in a homogeneous,
isotropic, and dispersive half-space are generalized to the stratified, isotropic,
and bi-isotropic slab cases, with arbitrary transient, normally incident, plane
wave excitation. The results hold at each point and impedance mismatch
cases are treated as well. As a consequence of the analysis, it is seen that also
inhomogeneities in a non-dispersive medium cause oscillations in the signal’s
early time behavior, similar to those in the dispersive medium.

1 Introduction and results

The early time behavior of a signal that propagates in a temporally dispersive
medium is an issue that has interested physicists over the years, see Brillouin’s
book [3] or the original works from 1914 by Sommerfeld [32] and Brillouin [2]. The
first precursor (Sommerfeld’s forerunner) in the homogeneous isotropic half-space
was investigated by Sommerfeld using the method of steepest descent. Sommer-
feld’s results hold for sinusoidal, normally incident, plane wave excitation and for
media such that Lorentz’ single-resonance dispersion model for the electric suscep-
tibility kernel

χ(t) =
ω2
p

ν0

e−
νt
2 sin (ν0t)H(t) (1.1)

is applicable. In this expression, H(t) denotes the Heaviside step, whereas ωp and
ν are the plasma and collision frequencies of the medium, respectively, and ν2

0 =
ω2

0 − ν2/4, where ω0 is the harmonic frequency of the medium. Sommerfeld’s result
for the electric field strength E(z, t) at a distant point z >> 0 in the dispersive
half-space z ∈ (0,∞) and for small wave front times τ = t − z/c0, where c0 is the
speed of light in vacuum, reads

E(z, τ) = ω

√
τ

a(z)
J1

(
2
√
τa(z)

)
H(τ), a(z) =

zω2
p

2c0
. (1.2)

In this expression, the approximation Ei(t) = sin (ωt)H(t) ≈ ωtH(t), for small
times t, of the incident sinusoidal electric field Ei(t) at the impedance matched edge,
z = 0, has been employed. The function J1 that appears in the formula is the Bessel
function of the first kind and order. The second precursor (Brillouin’s forerunner)
was investigated by Brillouin, also by means of asymptotic analysis. In the 1980’s,
the works of Sommerfeld and Brillouin were continued and improved, e.g., for multi-
frequency Lorentz media [24–26, 31]. Furthermore, in the early 1990’s, the first and
second forerunners in a lossless, homogeneous, single-resonance Pasteur half-space
(a reciprocal, bi-isotropic medium) were obtained by Engheta and Zablocky [6, 34].
Recently, also a time domain method has been used to obtain Sommerfeld’s precursor
in an isotropic slab, periodic with respect to depth [12].
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Propagation of transient electromagnetic waves in slabs consisting of dispersive,
stratified, isotropic or complex media has been investigated in a number of publi-
cations during the last decade, see, e.g., Refs. [1, 7–9, 13, 19–21, 23, 29]. As a result
of this analysis, corresponding inverse scattering problems were solved as well, i.e.,
the characteristic parameters of such media could be reconstructed, given scattering
data. Two methods of solution, both based on the wave splitting technique, are em-
ployed in the treatment of these problems: the invariant imbedding approach and
the Green functions technique. In this contribution, these time domain methods are
used to obtain Sommerfeld’s precursor in stratified isotropic or bi-isotropic slabs. In
the impedance matched case, the matrix function

PS(z, t) = −

√∫ z

0
A(z′, 0) dz′

t
J1

(
2

√
t

∫ z

0

A(z′, 0) dz′
)
H(t),

is referred to as Sommerfeld’s precursor kernel. A transient, causal, and normally
incident electric fieldEi(t) at the front wall—a 2-dimensional vector—then generates
the electric field

E+(z, t) = Q+(0, z){Ei(t) +

∫ t

0

PS(z, t− t′)Ei(t′) dt′}.

inside the medium at small wavefront times t. The 2 × 2-matrices A(z, 0) and
Q+(0, z) depend on the properties of the dispersive medium. The explicit expres-
sions are given below. Naturally, this precursor is a good approximation to the
propagating electric field only for small (positive) t.

In particular, if a Maclaurin expansion is applied to the special incident field
Ei(t) = sin (ωt)H(t)ex, the change of the order of summation and integration fol-
lowed by the use of the Bessel function’s equality [27]∫ b

0

J1(x) (b2 − x2)m dx = b2m − (2b)mm!Jm(b)

yields the formula

E+(z, t) = Q+(0, z)

√
t

(∫ z

0

A(z′, 0) dz′
)−1

× (1.3)

×
∞∑
k=0

(−1)kω2k+1
(
t

(∫ z

0

A(z′, 0) dz′
)−1 )k

J2k+1

(
2

√
t

∫ z

0

A(z′, 0) dz′
)
H(t)

(
1
0

)

for the first precursor. Similar results has been presented by Jackson [10] for the
isotropic, dispersive half-space and by Kristensson [14] for wave guides. Sommer-
feld’s result referred to above is recognized as the first term in this series since the
matrices A(z, 0) and Q+(0, z) are proportional to the identity matrix in isotropic
cases.

The analysis in the present article holds for all stratified bi-isotropic media with
sufficiently smooth material parameters. It is conjectured that the method can be
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used also for other complex media. In Sections 2–9, the problem of the propaga-
tion of transient waves in the dispersive medium is formulated and systematically
analyzed in the general mismatch case. In Section 10, the results in the previous
sections are used to obtain both Sommerfeld’s forerunner at arbitrary position in-
side the dispersive medium and the corresponding transient electric field measured
at the back wall.

2 Definitions and basic equations

Consider a stratified, dispersive bi-isotropic medium located between the two planes
z = 0 and z = d in a right-handed Cartesian coordinate system O(x, y, z), where the
three basis vectors are denoted by ex, ey, and ez, respectively. The bi-isotropic slab
is excited by a transient, normally incident plane wave with sources at z = −∞,
and the incident electric field at the boundary z = 0 at the time t is denoted by
Ei(t). The medium in the half-space z < 0 is homogeneous, isotropic, and non-
dispersive with arbitrary material constants ε(−0) and µ(−0). The medium in the
half-space z > d is also isotropic and non-dispersive with constant permittivity and
permeability ε(d+0) and µ(d+0), respectively. For linear, causal, and time-invariant
media, it is not a restriction to assume that the plane wave impinges on the surface
z = 0 at t = 0. Moreover, the incident electric field is assumed to be continuously
differentiable with bounded derivative at t > 0 except for at most finitely many
points; thus, a finite number of finite jump-discontinuities are permitted for t > 0.
The reflected electric field at z = −0 at time t is denoted by Er(t). Similarly, the
transmitted electric field at z = d+0 at time t is denoted byEt(t). Furthermore, it is
understood that the bi-isotropic medium is initially quiescent, i.e., the electric field
E(r, t) and the magnetic field H(r, t) at the point r ≡ (x, y, z) ≡ xex + yey + zez
at time t satisfy

E(r, t) = 0 and H(r, t) = 0 for 0 < z < d when t ≤ 0. (2.1)

As usual, the electric and magnetic flux densities at the point r at time t are denoted
by D(r, t) and B(r, t), respectively.

In this paragraph, the properties of the dispersive medium are defined. The
constitutive relations are assumed to be{

D(r, t) = ε(z) [E(r, t) + (χee ∗E) (r, t)] + c(z)−1(χem ∗H)(r, t),

B(r, t) = c(z)−1(χme ∗E)(r, t) + µ(z) [H(r, t) + (χmm ∗H) (r, t)] ,
(2.2)

where, e.g.,

(χee ∗E)(r, t) =

∫ t

0

χee(z, t− t′)E(r, t′) dt′. (2.3)

The value of the upper limit of integration in Eq. (2.3) is due to causality [11]
and the lower limit is a direct consequence of Eq. (2.1). Thus, all time depen-
dent functions are causal, i.e., identically zero for negative times. The functions
(0, d) � z → ε(z) and (0, d) � z → µ(z) are (the non-dispersive parts of) the
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permittivity and permeability of the dispersive medium, respectively. They are as-
sumed to be continuously differentiable with bounded derivatives. Furthermore, the
general mismatch case is considered, i.e., ε(−0) �= ε(+0) and/or µ(−0) �= µ(+0) in
general, and similarly at the back wall z = d. The phase velocity at position z

c(z) := (µ(z)ε(z))−1/2

has been introduced in the constitutive relations in order to simplify the analysis.
At this stage, it is also appropriate to define the wave impedance of the medium

η(z) :=
√
µ(z)/ε(z)

at position z. All the functions χee, χem, χme, and χmm have the same unit, s−1,
and are known as the susceptibility kernels. The integral kernels χee and χmm model
the ordinary dispersive effects of the medium. For practical reasons, define{

G := (χee + χmm)/2,

F := (χee − χmm)/2.
(2.4)

The chirality kernel
K := (χem − χme)/2 (2.5)

and the non-reciprocity kernel

L := (χem + χme)/2 (2.6)

— the medium is reciprocal if L = 0, see Ref. [11] — are the characteristic properties
of the bi-isotropic medium. The susceptibility kernels depend on the spatial variable
z and the time t only, i.e., the slab is stratified with respect to depth z. These integral
kernels and their first and second time derivatives are assumed to be bounded and
continuous functions in the set (z, t) ∈ (0, d) × (0,∞). Finally, it is clear, that the
constitutive relations (2.2) hold throughout space if the susceptibility kernels are
given the value zero outside the dispersive slab.

The electromagnetic field obeys the source-free Maxwell equations:

∇×E = −∂tB, ∇×H = ∂tD, ∇ ·D = 0, ∇ ·B = 0. (2.7)

Transverse solutions to these equations, independent of the transverse coordinates
(x, y), are sought, i.e., the space- and time dependence{

E(r, t) = exEx(z, t) + eyEy(z, t),

H(r, t) = exHx(z, t) + eyHy(z, t),

is presumed to hold (whenever these vector fields are well-defined), and similarly for
the flux densities. The investigation in Ref. [28] shows that this condition can be
weakened in the sense that it is not necessary to assume that the z-components of the
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vector fields vanish inside the bi-isotropic medium, provided that the electromagnetic
field is independent of x and y. The Maxwell equations (2.7) can now be written

∂zE = ∂t(JB), ∂z(JH) = ∂tD, J =

(
0 −1
1 0

)
, (2.8)

where a compact matrix notation has been introduced. Define matrix-valued sus-
ceptibility kernels by

χee := χeeI, χme := χmeJ, χmm := χmmI, χem := χemJ,

where I is the 2 × 2 identity matrix. Elimination of the flux densities B and D
in the Maxwell equations (2.8) using the constitutive relations (2.2) yields a partial
integro-differential equation in the electric and magnetic fields E and H only. The
result of this operation is

∂z

(
E

ηJH

)
=

η′

η

(
0 0
0 I

) (
E

ηJH

)
+

+ c−1∂t

((
χme∗ I + χmm∗

I + χee∗ −χem∗

) (
E

ηJH

))
,

(2.9)

where 0 is the 2×2 zero matrix. This non-local wave equation for the electromagnetic
field is now to be analyzed.

3 Wave splitting

Define new dependent variables through the wave splitting(
E+

E−

)
= P

(
E

ηJH

)
, P =

1

2

(
I −I
I I

)
, P−1 =

(
I I
−I I

)
. (3.1)

This is obviously a bijective linear map and by strict causality one has

E±(z, t) = 0 for 0 < z < d when t <

∫ z

0

c(z′)−1 dz′, (3.2)

see Ref. [28]. Thus, the condition (2.1) can be strengthened:

E(r, t) = 0 and H(r, t) = 0 for 0 < z < d when t <

∫ z

0

c(z′)−1 dz′,

and similarly for the flux densities. In the isotropic half-space z < 0, the vector fields
E±(z, t) coincide with the incident and reflected electric fields at the point (z, t),
respectively. Analogously, E+(z, t) is the transmitted electric field at (z, t) and
E−(z, t) = 0 when z > d, since there is no incident wave from the right. A similar
interpretation cannot in general be made inside the dispersive slab. However, the
sum of the split vector fields is equal to the (total) electric field. For a survey of the
wave splitting technique, the reader is referred to Ref. [4]. For recent contributions
to the solution of direct and inverse scattering problems in complex media using the
wave splitting technique, see Refs. [7, 9, 20, 21].
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4 Dynamics and boundary conditions

In this section, the non-local hyperbolic equation for the split vector fields is derived.
In addition, the boundary conditions relevant for the scattering and propagation
problems are obtained. The wave splitting (3.1) and the continuity of (the tangential
components of) the electric and magnetic fields E and H at the front wall imply
that the relation

t0E
i(t) = E+(+0, t)− r0E

−(+0, t) (4.1)

holds (whenever the incident electric field is well-defined), where

t0 =
2η(+0)

η(+0) + η(−0)
and r0 =

η(−0)− η(+0)

η(+0) + η(−0)
.

Note that t0 is the transmission coefficient at the front wall z = 0 for the transition
from the non-dispersive medium to the dispersive medium and that r0 is the reflec-
tion coefficient at z = 0 viewed from the dispersive medium. Similarly, one obtains
the boundary condition at the back wall:

E−(d− 0, t) = r1E
+(d− 0, t), where r1 =

η(d + 0)− η(d− 0)

η(d + 0) + η(d− 0)
. (4.2)

Clearly, r1 is the reflection coefficient at the surface z = d viewed from the dispersive
medium. It is also convenient to introduce the transmission coefficient t1 at the
back wall z = d for the transition from the non-dispersive medium to the dispersive
medium:

t1 =
2η(d− 0)

η(d + 0) + η(d− 0)
.

Note that r0 + t0 = 1 and r1 + t1 = 1. The two equations (4.1) and (4.2) are relevant
for the propagation of waves inside the dispersive medium. For the scattered electric
fields one obtains {

Er(t) = (1 + r0)E
−(+0, t)− r0E

i(t),

Et(t) = (1 + r1)E
+(d− 0, t).

(4.3)

This equation is referred to when the scattering operators are defined later on. Note
that 1 + r0 and 1 + r1 are the transmission coefficients at the front and back walls,
z = 0 and z = d, respectively, for the transition from the dispersive medium to the
(adequate) non-dispersive medium. Analogously, and viewed from the surrounding
isotropic media, the reflection coefficients at the front and back walls are equal to
−r0 and −r1, respectively.

The dynamic equation for the split vector fields E± reads(
(∂z + c−1∂t)E

+

(∂z − c−1∂t)E
−

)
=

η′

2η

(
I −I
−I I

) (
E+

E−

)
+

1

2c
∂t

(
χ ∗

(
E+

E−

))
, (4.4)

where the 4× 4 susceptibility kernel χ is defined by

χ :=

(
−χee − χmm − χem + χme −χee + χmm + χem + χme
χee − χmm + χem + χme χee + χmm − χem + χme

)
.
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This equation is easily obtained from the wave equation (2.9) and the wave splitting
(3.1). Recall the definitions (2.4)–(2.6) of the susceptibility kernels G, K, F , and
L. By introducing the susceptibility matrices

G := GI, F := F I, K := KJ, and L := LJ,

the notation for the direct and inverse scattering problems in Refs. [20, 29] is adopted.
The matrix kernel χ can now be written

1

2
χ =

(
−G−K −F + L
F + L G−K

)
.

In order to analyze the dynamic equation (4.4), it is also convenient to introduce

b(z) ≡
(
b++(z) b+−(z)
b−+(z) b−−(z)

)
:=

1

2c
χ(z, 0) +

d

dz
ln

√
η(z)

η0

(
I −I
−I I

)
,

where η0 is the wave impedance in vacuum and bij are 2×2-matrices. The two sub-
matrices b±± on the diagonal determine the propagation of jump-discontinuities
along the directions ±ez, respectively.

5 Propagation of jump discontinuities

Any finite jump-discontinuity

[E±(z1, t)] := E±(z1, t + 0)−E±(z1, t− 0)

in E± at (z1, t) is attenuated and rotated as it propagates through the medium:

[E±(z2, t±
∫ z2

z1

c(z′)−1 dz′)] = Q±(z1, z2)[E
±(z1, t)], 0 < z1, z2 < d, (5.1)

where the matrices Q±(z1, z2) satisfy the ordinary differential equations{
∂z2Q

±(z1, z2) = b±±(z2)Q
±(z1, z2), 0 < z1, z2 < d,

Q±(z1, z1) = I, 0 < z1 < d,
(5.2)

respectively. The solutions to these equations are

Q±(z1, z2) = e
∫ z2
z1

b±±(z′) dz′
=

√
η(z2)

η(z1)
e±a(z1,z2)

(
cosφ(z1, z2) − sinφ(z1, z2)
sinφ(z1, z2) cosφ(z1, z2)

)
,

where the angle of rotation

φ(z1, z2) = −
∫ z2

z1

K(z′, 0)c(z′)−1 dz′
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and the exponent

a(z1, z2) = −
∫ z2

z1

G(z′, 0)c(z′)−1 dz′.

Note the property

∂z1Q
±(z1, z2) = −b±±(z1)Q

±(z1, z2), 0 < z1, z2 < d. (5.3)

The origin of the jump discontinuities in the split vector fields E± is the jumps in
the incident electric field Ei. Such a jump propagates periodically back and forth
through the slab. At the walls, the reflected portions are completely determined by
Eqs. (4.1) and (4.2). Similarly, the transmitted fractions are given by Eq. (4.3). The
process stops after a finite number of reflections if either the front or the back wall
is impedance matched. Otherwise, it goes on forever.

The special case when the input is the Heaviside step function H(t) is particu-
larly important. In a general bi-an-isotropic case, both polarizations of the incident
electric field are needed for a complete investigation and it is appropriate to treat
these two cases simultaneously. Therefore, define the 2× 2 matrix-valued functions
U±(z, t) such that the first columns are the solutions E±(z, t), respectively, to the
dynamic equation (4.4), subject to the the input Ei(t) = H(t)ex, while the second
columns are the corresponding solutions when the excitation is Ei(t) = H(t)ey. Due
to the axial symmetry of the bi-isotropic medium, the component form of U±(z, t)
is

U±(z, t) =

(
U±1 (z, t) −U±2 (z, t)
U±2 (z, t) U±1 (z, t)

)
. (5.4)

The canonical solutions U±(z, t) have jump-discontinuities across the characteristics

t(z) =

∫ z

0

c(z′)−1 dz′ + kP and t(z) =

∫ d

z

c(z′)−1 dz′ + kP + P/2,

respectively, where

P := 2

∫ d

0

c(z′)−1 dz′

is one roundtrip and k runs over the natural numbers. Furthermore, these functions
are continuous, but not differentiable, across the families of curves

t(z) =

∫ d

z

c(z′)−1 dz′ + kP + P/2 and t(z) =

∫ z

0

c(z′)−1 dz′ + kP,

respectively. Elsewhere, they are well-defined and differentiable, and the entries
satisfy the causality condition (3.2). The jump in U+ across the discontinuity curves
is obtained from Eqs. (5.1), (4.1), and (4.2). The result, which has an obvious
physical meaning, is

[U+(z,

∫ z

0

c(z′)−1 dz′ + kP )] = Q+(0, z)
(
r0Q

−(d, 0)r1Q
+(0, d)

)k
t0.
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Analogously, one obtains

[U−(z,

∫ d

z

c(z′)−1 dz′ + kP + P/2)] = Q−(d, z)r1Q
+(0, d)(r0Q

−(d, 0)r1Q
+(0, d))kt0.

In the next section, the canonical solutions are used to obtain the solution to the
general propagation problem when the input Ei has the regularity stated in Sec-
tion 2.

6 Duhamel’s principle

Duhamel’s principle [5] for the linear, isotropic, causal, and time invariant local
hyperbolic problem has been employed successively in many articles on direct and
inverse scattering when scattering operators, imbedding kernels, and Green func-
tions are defined, see, e.g., Refs. [15–18, 22]. It has also been referred to in the
fundamental, non-local isotropic cases [1, 13], and in several extensions to various
complex media [7–9, 19–21, 23, 29, 33]. See also Ref. [30], where Duhamel’s princi-
ple is used for the more basic canonical functions in the dispersive, isotropic case.
By straightforward generalization of this result to the considered vector case, the
split vector fields E±(z, t) at an arbitrary point z inside the dispersive medium can
be related to the general excitation Ei(t) at the front wall. The result for general
2× 2-systems obtained in Ref. [28] reads

E±(z, t) = ∂t

∫ t−
∫ z
0 c(z

′)−1 dz′

0

U±(z, t− t′)Ei(t′) dt′.

The matrix-valued functions U±(z, t) are the canonical functions introduced in the
foregoing section. Note that strict causality has been referred to in this expression.
Evaluation of the time differentiation yields

E±(z, t) =

∫ t−
∫ z
0 c(z

′)−1 dz′

0

∂tU
±(z, t− t′)Ei(t′) dt′+

+
∞∑

k=k±

[U±(z,±
∫ z

0

c(z′)−1 dz′ + kP )]Ei(t∓
∫ z

0

c(z′)−1 dz′ − kP ),

where k+ = 0 and k− = 1. Of course, ∂t denotes the classical time derivative.

7 Green functions and scattering operators

The Green functions for the propagation of electromagnetic waves in bi-an-isotropic
slabs are discussed thoroughly in Ref. [28]. Essentially, they are the classical time
derivatives of the canonical solutions defined in Section 5. Here, the definition

G±(z, t) := t−1
0 Q+(z, 0)∂tU

±(z, t +

∫ z

0

c(z′)−1 dz′). (7.1)
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is adopted. Clearly, the Green functions inherit the symmetry (5.4). By time
invariance arguments, the result in the previous sections can be formulated as

E+(z, t +

∫ z

0

c(z′)−1 dz′) = Q+(0, z)t0
(
G+(z, ·) ∗Ei(·)

)
(t)+

+ Q+(0, z)
∞∑
k=0

(
r0Q

−(d, 0)r1Q
+(0, d)

)k
t0E

i(t− kP )
(7.2)

and

E−(z, t +

∫ z

0

c(z′)−1 dz′) = Q+(0, z)t0
(
G−(z, ·) ∗Ei(·)

)
(t)+

+ Q−(d, z)r1Q
+(0, d)×

×
∞∑
k=0

(
r0Q

−(d, 0)r1Q
+(0, d)

)k
t0E

i
(
t− 2

∫ d

z

c(z′)−1 dz′ − kP
)
,

(7.3)

where the property Q+(0, z)−1 = Q+(z, 0) has been employed. Note that time t is
measured from the wave front. The Green functions are identically zero at negative
times and in the general mismatch case they both have finite jump discontinuities
along the curves

t(z) = 2

∫ d

z

c(z′)−1 dz′ + kP and t(z) = kP,

where k runs over the natural numbers. These results follow immediately from the
definition (7.1) and the regularity of the function U+(z, t). A discussion of the
partial mismatch cases is found in Ref. [28]. The boundary values{

G+(0, t) = r0G
−(0, t), t �= kP

G−(d, t) = r1G
+(d, t), t �= kP

(7.4)

follow easily from Eqs. (4.1) and (4.2) and the definition of the Green functions. It
is now easy to write down the scattering operators. Eqs. (4.3) and (7.3) immediately
yield

Er(t) = −r0E
i(t) + t0(1 + r0)

(
R ∗Ei

)
(t)+

+ t0r1(1 + r0)
∞∑
k=1

(r1r0)
k−1

(
Q−(d, 0)Q+(0, d)

)k
Ei(t− kP )

(7.5)

for the reflected electric field. For the transmitted electric field, the result is

Et(t + P/2) = (1 + r1)Q
+(0, d)t0

(
T(·) ∗Ei(·)

)
(t)+

+ (1 + r1)Q
+(0, d)t0

∞∑
k=0

(
r0Q

−(d, 0)r1Q
+(0, d)

)k
Ei(t− kP ).

(7.6)

The precursor is evaluated from the first term on the right side of the latter equation
for small t. The properties {

R(t) = G−(0, t),

T(t) = G+(d, t)
(7.7)
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are called the physical reflection and transmission kernels at the time t, respectively.
The Green functions equations are now derived. Straightforward differentiation

of Eqs. (7.2) and (7.3) using Eq. (5.2) and the knowledge of the location of the jump
discontinuities of the Green functions yields

∂zE
+(z, t +

∫ z

0

c(z′)−1 dz′) = b++(z)Q+(0, z)t0
(
G+(z, ·) ∗Ei(·)

)
(t)+

+ Q+(0, z)t0
(
(∂zG

+(z, ·)) ∗Ei(·)
)
(t)+

+ Q+(0, z)t0
2

c(z)

∞∑
k=0

[G+(z, 2

∫ d

z

c(z′)−1 dz′ + kP )]Ei(t− 2

∫ d

z

c(z′)−1 dz′ − kP )+

+ b++(z)Q+(0, z)
∞∑
k=0

(
r0Q

−(d, 0)r1Q
+(0, d)

)k
t0E

i(t− kP )

and (
∂z −

2

c(z)
∂t

)
E−(z, t +

∫ z

0

c(z′)−1 dz′) =

= b++(z)Q+(0, z)t0
(
G−(z, ·) ∗Ei(·)

)
(t)+

+ Q+(0, z)t0

(((
∂z −

2

c(z)
∂t

)
G−(z, ·)

)
∗Ei(·)

)
(t)+

+ Q+(0, z)t0

(
− 2

c(z)

) ∞∑
k=0

[G−(z, kP )]Ei(t− kP )+

+ b−−(z)Q−(d, z)r1Q
+(0, d)×

×
∞∑
k=0

(
r0Q

−(d, 0)r1Q
+(0, d)

)k
t0E

i(t− 2

∫ d

z

c(z′)−1 dz′ − kP ).

Note that ∂z denotes the total derivative in these two formulas. Notice also, that
in the derivation of the first expression, the jumps [G+(z, kP )] do not contribute,
since the differentiation is along the discontinuity lines t = kP . Similarly, the jumps
[G−(z, 2

∫ d

z
c(z′)−1 dz′ + kP )] do not enter the second formula. Observe that the

obtained expressions equal (∂z±c(z)−1∂t)E
±(z, t) (partial derivatives), respectively,

evaluated at the time t +
∫ z

0
c(z′)−1 dz′. The Green functions equations are now

obtained by substituting the dynamic equation (4.4) into these equations, followed
by identification of terms. The result is(

∂zG
+(z, t)(

∂z − 2
c(z)

∂t

)
G−(z, t)

)
=

(
0 b+−(z)

b−+(z) b−−(z)− b++(z)

) (
G+(z, t)
G−(z, t)

)
+

+
1

c(z)

(
∂t(−G−K)(z, ·) ∂t(−F + L)(z, ·)
∂t(F + L)(z, ·) ∂t(G−K)(z, ·)

)
∗

(
G+(z, ·)
G−(z, ·)

)
(t)+

+
1

c(z)

∞∑
k=0

(
∂t(−G−K)(z, t− kP ) ∂t(−F + L)(z, t− 2

∫ d

z
c(z′)−1 dz′ − kP )

∂t(F + L)(z, t− kP ) ∂t(G−K)(z, t− 2
∫ d

z
c(z′)−1 dz′ − kP )

)
×

×
( (

r0Q
−(d, 0)r1Q

+(0, d)
)k

r1Q
−(d, z)Q+(z, d)

(
r0Q

−(d, 0)r1Q
+(0, d)

)k
)
.
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The point (z, t) is of course assumed to be located off the discontinuity lines. In
addition, one obtains the (cross-) jump relations

[G+(z, 2

∫ d

z

c(z′)−1 dz′ + kP )] =

= b+−(z)
c(z)

2
r1Q

−(d, z)Q+(z, d)
(
r0Q

−(d, 0)r1Q
+(0, d)

)k (7.8)

and

[G−(z, kP )] = −b−+(z)
c(z)

2

(
r0Q

−(d, 0)r1Q
+(0, d)

)k
. (7.9)

Alternatively, the Green functions equations can be obtained from the definition
(7.1) by differentiating the canonical functions equation with respect to time as was
done in Ref. [28]. The canonical functions equation is just the dynamic equation
with the vector fields E± replaced by the matrix functions U±, respectively. By
straightforward analysis of the Green functions equations and the use of the (cross-)
jump relations (7.8)–(7.9), the (co-) jump relations

[G+(z, kP )] = −
(
r0Q

−(d, 0)r1Q
+(0, d)

)k ∫ z

0

a+(z′) dz′ + lim
z→+0

[G+(z, kP )] (7.10)

and

[G−(z, 2

∫ d

z

c(z′)−1 dz′ + kP )] = Q−(d, z)Q+(z, d)× (7.11){
−r1

(
r0Q

−(d, 0)r1Q
+(0, d)

)k ∫ d

z

a−(z′) dz′ + lim
z→d−0

[G−(z, 2

∫ d

z

c(z′)−1 dz′ + kP )]

}

are obtained, where

a±(z) =
c(z)b+−(z)b−+(z)

2
− ∂tG(z, 0)± ∂tK(z, 0)

c(z)
.

At the boundaries, the jumps are related to one another by the equations

[G+(0, kP )] = r0[G
−(0, kP )], [G−(d, kP )] = r1[G

+(d, kP )], (7.12)

where k runs over the natural numbers. This follows immediately from Eq. (7.4).
Each jump at the boundary is the sum of two jumps (except at (0, 0)). Below, special
need arises for the Green functions equation for G+ during the first roundtrip, i.e.,
when 0 < t < P . It reads

∂zG
+ = − η′

2η
G− − 1

c
(I + G+∗)∂t(G + K)− 1

c
∂t

{
(F− L) ∗G−

}
+

− 1

c
r1Q

−(d, z)Q+(z, d)∂t (F− L)
t→t−2

∫ d
z c(z

′)−1 dz′ .

(7.13)

This equation is evaluated at (z, t) except for the second line which is evaluated at

(z, t− 2
∫ d

z
c(z′)−1 dz′).
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8 Reflection imbedding equations

In this section, the reflection kernel R(z, t) for a subsection [z, d], 0 < z < d,
of the physical slab [0, d] is considered. These kernels are the physical reflection
kernels for the subslab problem [z, d], with impedance matched front wall z = z,
i.e., η(ζ) = η(z) for all ζ < z. This problem can be viewed as an imbedding problem
in which a one-parameter family R(z, t), 0 < z < d, of reflection kernels is studied.
The integral kernel R(z, t) is called the reflection imbedding kernel for the dispersive
slab [z, d].

The representation of the reflection imbedding kernel R(z, t) is obtained as the
special impedance matched case (r0 = 0, t0 = 1) of Eq. (7.5).

E−(z, t) =
(
R(z, ·) ∗E+(z, ·)

)
(t)+

+ r1Q
−(d, z)Q+(z, d)E+(z, t− 2

∫ d

z

c(z′)−1 dz′).
(8.1)

The reflection imbedding kernel has the same symmetry, (5.4), as the canonical
functions and the Green functions. As an immediate consequence of Eq. (4.2) and
the definition Eq. (7.5), the boundary value

R(d− 0, t) = 0 (8.2)

is obtained. Furthermore, repeated use of Eqs. (7.2), (7.3), and (8.1) yields a close
relation between the imbedding approach and the Green functions formulation:

G−(z, t) = R(z, t) +
(
R(z, ·) ∗G+(z, ·)

)
(t)+

+
∞∑
k=1

(
r0Q

−(d, 0)r1Q
+(0, d)

)k
R(z, t− kP )+

+ r1Q
−(d, z)Q+(z, d)G+(z, t− 2

∫ d

z

c−1(z′) dz′).

(8.3)

This is a relation between the Green functions for the general mismatch case and
the reflection kernels of the imbedded impedance matched subslabs [z, d]. From the
relation (8.3), it is clear that the imbedding kernels have only jump discontinuities
across the three curves

t(z) = 0, t(z) = 2

∫ d

z

c(z′)−1 dz′, and t(z) = 4

∫ d

z

c(z′)−1 dz′.

To prove this, Eqs. (7.8) and (7.9) are needed. The following jump relations are also
obtained:

[R(z, 0)] = [G−(z, 0)] =
c(z)η′(z)

4η(z)
I− 1

2
(F(z, 0) + L(z, 0)),

[R(z, 2

∫ d

z

c(z′)−1 dz′)] = [G−(z, 2

∫ d

z

c(z′)−1 dz′)]− r1Q
−(d, z)Q+(z, d)[G+(z, 0)],

[R(z, 4

∫ d

z

c(z′)−1 dz′)] = −r1Q
−(d, z)Q+(z, d)[G+(z, 2

∫ d

z

c(z′)−1 dz′)].
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Note that from the boundary condition (7.12), the sum of these jumps in the limit
z tends to d is equal to zero in agreement with (8.2). The specific values are given
by the jump relations (7.8)–(7.11).

Naturally, there is a close relationship between the physical reflection kernel
R(t) in the general mismatch case, i.e., the function G−(0, t), and the reflection
imbedding kernel R(+0, t) of the matched subsection problem. From the continuity
of the electric and magnetic fields at the boundary and the definitions (7.5) and
(8.1) of the particular reflection kernels, it follows that this relation is a delayed
Volterra equation of the second kind.

0 = R(t)−R(+0, t)− r0{R(·) ∗R(+0, ·)}(t)+
− r0r1

(
R(t− P ) + R(+0, t− P )

)
Q−(d, 0)Q+(0, d)+

−
∞∑
k=2

(
r0Q

−(d, 0)r1Q
+(0, d)

)k
R(+0, t− kP ).

(8.4)

In particular, R(t) = R(+0, t) when the front wall is impedance matched (r0 = 0).
Note that the result above also is obtained by setting z = 0 in Eq. (8.3) and using
the boundary condition (7.4).

Straightforward differentiation of Eq. (8.1) yields in combination with Eqs. (5.2)–
(5.3) and the knowledge of the location of the jump discontinuities of the imbedding
kernel

(
∂z −

1

c(z)
∂t

)
E−(z, t) =

(((
∂z −

2

c(z)
∂t

)
R(z, ·)

)
∗E+(z, ·)

)
(t)+

+

(
R(z, ·) ∗

(
∂z +

1

c(z)
∂t

)
E+(z, ·)

)
(t)− 2

c(z)
R(z, 0)E+(z, t)+

+
2

c(z)
[R(z, 4

∫ d

z

c(z′)−1 dz′)]E+(z, t− 4

∫ d

z

c(z′)−1 dz′)+

+ (b−−(z)− b++(z))r1Q
−(d, z)Q+(z, d)E+(z, t− 2

∫ d

z

c(z′)−1 dz′)+

+ r1Q
−(d, z)Q+(z, d)

((
∂z +

1

c(z)
∂t

)
E+(z, t)

)
|
t→t−2

∫ d
z c(z

′)−1 dz′ .

The notation
((∂z + c(z)−1∂t)E

+(z, t))|
t→t−2

∫ d
z c(z

′)−1 dz′

means that (∂z + c(z)−1∂t)E
+(z, t) (partial derivatives) is evaluated at the time

t − 2
∫ d

z
c(z′)−1 dz′. By repeated substitution of the dynamics (4.4) into this equa-

tion and another application of Eq. (8.1), the vector field E− can be eliminated.
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Identification of terms then yields the reflection imbedding equation:(
∂z −

2

c
∂t

)
R =

η′

2η
R ∗R +

1

c
∂t {F + L + 2G ∗R + (F− L) ∗R ∗R}+

+ r1Q
−(d, z)Q+(z, d)2

( η′
2η

R +
1

c
∂t {G + (F− L) ∗R}

)
|
t→t−2

∫ d
z c(z

′)−1 dz′+

+
1

c(z)

(
r1Q

−(d, z)Q+(z, d)
)2(

∂t {F− L}
)
|
t→t−4

∫ d
z c(z

′)−1 dz′ . (8.5)

The notation means that the first line is evaluated at the point (z, t), the second at

(z, t− 2
∫ d

z
c(z′)−1 dz′), and the last at (z, t− 4

∫ d

z
c(z′)−1 dz′), respectively.

9 Partial solution to the propagation problem

Recently, an analytic expression of the reflection kernel in an absolutely and uni-
formly convergent series has been obtained in the homogeneous bi-isotropic case [29].
In this section, it is assumed that the imbedding equation () has been solved and
it is shown that the solution to the propagation problem, i.e., the Green functions
G±(z, t), can be expressed in the reflection imbedding kernels R(z, t) from the left,
the corresponding reflection imbedding kernels from the right, and the material pa-
rameters of the dispersive medium. Obviously, it suffices to obtain the expression
for G+(z, t) since G−(z, t) is given by Eq. (8.3) once G+(z, t) is known.

Assume first that the back wall is impedance matched, i.e., r1 = 0. In order
to separate this problem from the general one, lower-case letters are used for the
physical and imbedding reflection kernels, r(t) and r(z, t), respectively, and the
Green functions g±(z, t). Eq. (8.3) then reads

g−(z, t) = r(z, t) +
(
r(z, ·) ∗ g+(z, ·)

)
(t) (9.1)

and the boundary condition (8.4) at the front wall becomes

r(t)− r(+0, t)− r0{r(·) ∗ r(+0, ·)}(t) = 0. (9.2)

Recall also the boundary condition (Eqs. (7.4) and (7.7))

g+(+0, t) = r0r(t). (9.3)

By Eq. (9.1), it is possible to eliminate g− in Eq. (7.13) (which, in this case, holds
in each bounded time interval except on a finite number of discontinuity lines) to
obtain an equation in g+ and the material parameters only:

∂zg
+ = −(I + g+∗)A, (9.4)

where

A(z, t) =
η′(z)

2η(z)
r(z, t)+ (9.5)

+
1

c(z)
∂t

(
G(z, t) + K(z, t) + {(F− L)(z, ·)) ∗ r(z, ·)} (t)

)
.
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Since all the matrices commute, this equation has the solution

g+(z, t) = g+(+0, t) +
∞∑
n=1

(−1)n

n!

(( ∫ z

0

A(z′, ·) dz′ ∗
)n−1

∫ z

0

A(z′, ·) dz′
)
(t)+

+
∞∑
n=1

(−1)n

n!

(( ∫ z

0

A(z′, ·) dz′ ∗
)n

g+(+0, ·)
)
(t),

(9.6)
where the boundary value g+(+0, t) is related to r(+0, t) by Eqs. (9.3) and (9.2).
Note that this result also holds in the general mismatch case in the region bounded
by the curves t = 0, z = 0, and t = 2

∫ d

z
c(z′)−1 dz′. Note also that the series (9.6)

converges uniformly and absolutely in this region by Weierstrass’ comparison test
since the terms consist of convolutions of causal functions.

Before the investigation of Sommerfeld’s forerunner (the first precursor), it is nec-
essary to examine the difference between the signal in a medium that is impedance
matched at the back wall and the general mismatch case.

In Ref. [17], it is shown, that the discontinuities in the permittivity at the front
and back walls can be removed with so called Redheffer products. This leads to
solving Volterra equations of the second kind. In this paper, however, a different,
but related, approach is adopted. It is obvious that the solutionE±(z, t) of Eq. (4.4),
subject to the general boundary conditions Eq. (4.1) and Eq. (4.2), can be obtained
as the superposition of the solutions to the following two problems:

• Problem 1. Find the solution E±match(z, t) to Eq. (4.4) subject to the bound-
ary conditions {

t0E
i(t) = E+(+0, t)− r0E

−(+0, t),

E−(d− 0, t) = 0.

This is the impedance matched case r1 = 0 discussed above. The incident
electric field Ei(t) is the same as for the considered full mismatch problem.

• Problem 2. Find the solution E±right(z, t) to Eq. (4.4) subject to the boundary
conditions {

E+(+0, t) = r0E
−(+0, t),

E−(d− 0, t) = t1E
i
right(t) + r1E

+(d− 0, t),

where the incident electric field Ei
right(t) from the right is

Ei
right(t) =

r1

t1
E+

match(d− 0, t). (9.7)

The function E+
match(d − 0, t) is of course obtained from Problem 1. This is

the full mismatch case. However, the slab is now excited from the right and
not from the left.

Attention is now paid to the (total) transmitted electric field Et(t). Naturally,
similar results for the split vector fields E±(z, t) inside the dispersive slab can be
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obtained in the same vein as Et(t). However, as far as the observation of the
precursor is concerned, these results are not of interest, and they are not discussed
further in this article. Consecutive use of Eq. (4.3), Eq. (4.2), the continuity of the
total electric field at the back wall, Eq. (9.7), and the identity r1 + t1 = 1 yields

Et(t + P/2) = (1 + r1)E
+(d− 0, t + P/2) =

= E−right(d− 0, t + P/2) +E+
right(d− 0, t + P/2) +E+

match(d− 0, t + P/2) =

= Er
right(t + P/2) +Ei

right(t + P/2) +E+
match(d− 0, t + P/2) =

= Er
right(t + P/2) +

1

t1
E+

match(d− 0, t + P/2).

(9.8)
The vector Er

right(t+P/2) is, of course, the reflected electric field at the surface z = d
at time t+P/2 in Problem 2. In complete analogy with Eq. (7.5), a physical reflection
kernel Rright(t) can be defined in this case. Consequently, the notation Rleft(t) for
the reflection kernel R(t) defined in Eq. (7.5) is adopted, i.e., Rleft(t) ≡ R(t). The
expression (9.8) for the (total) transmitted electric field now becomes

Et(t + P/2) =
1

t1
E+

match(d− 0, t + P/2)− r1E
i
right(t + P/2)+

+ t1(1 + r1)
(
Rright(·) ∗Ei

right(·+ P/2)
)
(t)+

+ r0t1(1 + r1)
∞∑
k=1

(r1r0)
k−1

(
Q−(d, 0)Q+(0, d)

)k
Ei

right(t + P/2− kP ).

Using Eq. (9.7), Et(t+P/2) can be expressed in the vector fieldE+
match(d−0, t+P/2)

only:

Et(t + P/2) = (1 + r1)E
+
match(d− 0, t + P/2)+

+ r1(1 + r1)
(
Rright(·) ∗E+

match(d− 0, ·+ P/2)
)
(t)+

+ (1 + r1)
∞∑
k=1

(
r0Q

−(d, 0)r1Q
+(0, d)

)k
E+

match(d− 0, t + P/2− kP ).

(9.9)

The solution E±match(z, t) to Problem 1 is easily obtained by putting r1 = 0 in
Eqs. (7.2) and (7.3). The result for the propagating field is

E+
match(d, t + P/2) = Q+(0, d)t0E

i(t) + Q+(0, d)t0
(
t ∗Ei

)
(t),

where t(t) ≡ g+(d − 0, t) is the transmission kernel (in Problem 1). Insertion of
this equation in Eq. (9.9) and comparison with Eq. (7.6) yields a relation between
the transmission kernel T(t) for the full problem, the transmission kernel t(t) (in
Problem 1), and the (physical) reflection kernel Rright(t) (in Problem 2). The result
is

T(t) = t(t) + r1Rright(t) + r1

(
Rright ∗ t

)
(t)+

+
∞∑
k=1

(
r0Q

−(d, 0)r1Q
+(0, d)

)k
t(t− kP ).

(9.10)



18

Note that there is only a finite number of terms on the right side of this equation
for each fixed (finite) time interval. By Eqs. (9.6) and (9.3), it follows that

t(t) =
∞∑
n=1

(−1)n

n!

(( ∫ d

0

A(z′, ·) dz′ ∗
)n−1

∫ d

0

A(z′, ·) dz′
)
(t)+

+ r0r(t) + r0

∞∑
n=1

(−1)n

n!

(( ∫ d

0

A(z′, ·) dz′ ∗
)n

r(·)
)
(t),

(9.11)

Recall that A(z, t) defined by Eq. (9.5) depends on r(z, t). During the first roundtrip,
Eq. (9.10) reads

T(t) = t(t) + r1Rright(t) + r1

(
Rright ∗ t

)
(t), 0 < t < P,

or
T(t) = f(t) + g(t) + (f ∗ g)(t), 0 < t < P, (9.12)

where
f(t) = r0Rleft(t) + r1Rright(t) + r0r1(Rright ∗Rleft)(t) (9.13)

and

g(t) =
∞∑
n=1

(−1)n

n!

(( ∫ d

0

A(z′, ·) dz′ ∗
)n−1( ∫ d

0

A(z′, ·) dz′
))

(t).

Note that the fact, that the reflection kernel from the left, Rleft(t), is independent of
the conditions at the rear wall during the first roundtrip, i.e., Rleft(t) = r(t) when
0 < t < P , has been used to obtain this expression. Finally, note that it is possible
to obtain approximations to the (physical) reflection kernels for small t from the
reflection imbedding kernels at the walls, see Eq. (9.2):{

Rleft(t) = Rleft(+0,+0)er0Rleft(+0,+0)t,

Rright(t) = Rright(d− 0,+0)er1Rright(d−0,+0)t,
(9.14)

where 


Rleft(z, 0) = −c(z)b−+(z)

2
=

c(z)η′(z)

4η(z)
I− (F(z, 0) + L(z, 0))

2
,

Rright(z, 0) =
c(z)b+−(z)

2
= −c(z)η

′(z)

4η(z)
I− F(z, 0)− L(z, 0)

2
.

(9.15)

Obviously, for small t, the function f(t) is a linear combination of exponentials. It
is identically zero if r0 = r1 = 0. In the next section, the precursor inside the
dispersive medium is investigated with the aid of the above results.

10 Sommerfeld’s precursor

Sommerfeld’s precursor kernel PS(z, t) inside the dispersive medium is defined as
the solution to Eq. (9.4) subject to the boundary condition given by (9.3) and (9.2)
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with linearized input, i.e., the solution to


∂zPS(z, t) = −
(
I +

∫ t

0

PS(z, t
′) dt′

)
A(z, 0), z > 0, t > 0

PS(+0, t) = r0Rleft(+0,+0)er0Rleft(+0,+0)t, t > 0.

(10.1)

Of course, the precursor kernel is valid as a solution to the propagation problem
only for small (positive) times t such that t < 2

∫ d

z
c(z′)−1 dz′. It is obtained in the

same way as Eq. (9.6):

PS(z, t) = PS(+0, t) + h(z, t) +
(
PS(+0, ·) ∗ h(z, ·)

)
(t),

where

h(z, t) =
∞∑
n=1

(−1)n

n!

tn−1

(n− 1)!

( ∫ z

0

A(z′, 0) dz′
)n

H(t),

and

A(z, 0) =

( c(z)η′(z)
2η(z)

I + F(z, 0)− L(z, 0)
)
Rleft(z,+0) + ∂tG(z, 0) + ∂tK(z, 0)

c(z)
=

=

( c(z)η′(z)
2η(z)

)2
I− c(z)η′(z)

η(z)
L(z, 0)− F(z, 0)2 + L(z, 0)2 + 2∂tG(z, 0) + 2∂tK(z, 0)

2c(z)
.

By the familiar Bessel function expansion

J1(2
√
z)√

z
=

∞∑
m=0

(−1)m

m!

zm

(m + 1)!
, (10.2)

the matrix-valued function h(z, t) is expressed as

h(z, t) = −

√∫ z

0
A(z′, 0) dz′

t
J1

(
2

√
t

∫ z

0

A(z′, 0) dz′
)
H(t). (10.3)

(Recall that H(t) is the Heaviside step.) Note that the series expansion of h(z, t)
in Eq. (10.3) is well-defined by the fact that the radius of convergence of the series
(10.2) is infinite. The choice of branch-cut for the square root function is irrelevant
since both sides of Eq. (10.2) are even functions of

√
z. As mentioned before, the

observed electric field at the back wall differs from the precursor inside the medium.
The necessary modification to this case is provided by Eq. (9.12):

Tprecursor(t) = f1(t) + h(d− 0, t) +
(
f1(·) ∗ h(d− 0, ·)

)
(t),

where f1 is the approximation of the function f for small (positive) t given by
Eqs. (9.13), (9.14), and (9.15).

Sommerfeld’s precursor inside the medium at the position z is defined as (c.f.
Eq. (7.2))

E+(z, t) = t0Q
+(0, z){Ei(t) +

∫ t

0

PS(z, t− t′)Ei(t′) dt′}.
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The expression is valid for small wave front times t such that t < 2
∫ d

z
c(z′)−1 dz′.

At the boundary z = d, the expression of Sommerfeld’s precursor is (c.f. Eq. (7.6))

(1 + r1)Q
+(0, d)t0{Ei(t) +

(
Tprecursor(·) ∗Ei(·)

)
(t)}.

Inside the impedance matched, semi-infinite medium, the incident signal is can-
celed by Sommerfeld’s precursor. Specifically, h(z, t) = PS(z, t) → −δ(t)I as
z → +∞ in the space S ′ of temperated distributions. This is seen in a straight-
forward manner from the relation J ′0(t) = −J1(t) for the Bessel functions J0(t) and
J1(t) of the first kind, an integration by parts, and, finally, from a substitution of
variables such that the Hankel transform of order zero is recognized. (Recall that
the Hankel transform of order zero is closely related to the Fourier transformation in
two variables. Since the Fourier transformation is an isomorphism on the Schwartz
class S of rapidly decreasing functions, the proposition follows from the Riemann-
Lebesgue lemma.)

Sommerfeld’s precursor kernel, PS(z, t), is now derived in the isotropic, stratified,
and impedance matched case, with χem = χem = χem = 0, ε(z)χee(z, t) = ε0χ(z, t),
and µ(z) = µ0 throughout space. Specifically, the constitutive relations are

D(z, t) = ε0
{
εr(z)E(z, t) +

(
χ(z, ·) ∗E(z, ·)

)
(t)

}
, B(z, t) = µ0H(z, t),

where the relative permittivity εr(z) is continuous throughout space and and con-
tinuously differentiable inside the dispersive medium. As usual, the permittivity
and permeability of vacuum are denoted by ε0 and µ0, respectively. Sommerfeld’s
precursor kernel is given by Eq. (10.3), where

A(z, 0) =
c′(z)2 + 4cr(z)

2∂tχ(z, 0)− cr(z)
4χ(z, 0)2

8c(z)
I

and cr(z) = c(z)/c0 = 1/
√
εr(z) is the relative phase velocity of the dispersive

medium at position z. This is a generalization of the result for the periodic medium
given in Ref. [12]. Note, in particular, that also inhomogeneities in a non-dispersive
medium cause oscillations in the propagating and transmitted fields. If the medium
is homogeneous, then

A := A(z, 0) =
4c2rχ

′(0)− c4rχ(0)2

8c(0)
I.

Naturally, the homogeneous medium is also a special case of the periodic medium
treated by Karlsson and Stewart [12]. The result for the single-resonance Lorentz’
kernel (1.1) is A = c2rω

2
p/(2c). By Eq. (1.3), Sommerfeld’s result (1.2) is easily

obtained (cr = 1). In the general homogeneous, impedance matched case, the
precursor kernel is

PS(z, t) = h(z, t) = −
√

z(4c2rχ
′(0)− c4rχ(0)2)

8tc(0)
J1

(√
zt(4c2rχ

′(0)− c4rχ(0)2)

2c(0)

)
H(t).
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A similar situation occurs in the propagation of transient electromagnetic waves in
waveguides, see Ref. [14].

The present investigation is completed by deriving the precursor kernel in the ho-
mogeneous, reciprocal, and impedance matched bi-isotropic half-space discussed in
Refs. [6, 34]. The specific medium has a single resonance and the collision frequency
is negligible. The counterpart in the time domain to the time-harmonic constitutive
relations of Post-type used in these references is


D(r, t) = ε

{
E(r, t) + (G ∗E)(r,�) + �(K ∗B)(r,�)

}
,

H(r, t) = ε
{
c(K ∗E)(r,�) + �∈

[
B(r,�) + (F ∗B)(r,�)

]}
,

where 


G =

ω∈√

ω�
sin (ω��)H(�),

F = −
ω∈	√

ω∈� + ω∈	

sin (
√
ω∈� + ω∈	 �)H(�),

K = −α� cos (ω��)H(�).

The relation between this set of constitutive relations and the set of constitutive
relations (2.2)–(2.6)—recall that L ≡ 0 in this reciprocal case—is given in terms of
the resolvent of the kernel F(r,�), see Kristensson and Rikte [21]:

G− F + F + (G − F) ∗ F = ′

This is a Volterra equation of the second kind and therefore uniquely solvable. The
relation between the kernels G, F , K and G, F , K is easily found.{

K = K + (G − F) ∗ K,
G + F = G − K ∗ K.

These equations are used to transform the kernels G, F , K into the kernels G, F ,
K. Conversely, they are also used to transform the kernels G, F , K into the kernels
G, F , K, by solving suitable Volterra equations of the second kind.

The initial values of the susceptibility kernels G(t), F (t), K(t) and the (time)
derivatives G′(t) and K ′(t) are



G(0) = 0,

F (0) = 0,

K(0) = −αc,
G′(0) = (G ′(′)−F ′(′)−K′(′)∈)/∈ = (ω∈√ + ω∈	 − α∈� )/∈,

K ′(0) = 0,
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respectively. These values are used in the evaluation of the two relevant matrices
A(z, 0) and Q+(0, z). The result is


A(z, 0) =

G′(0)

c
I =

ω2
p + ω2

m − α2
c

2c
I,

Q+(0, z) =

(
cosφ(0, z) − sinφ(0, z)
sinφ(0, z) cosφ(0, z)

)
, φ(0, z) = −K(0)z

c
=

αcz

c
.

If these matrices are inserted in Eq. (1.3), the leading edge result in Refs. [6, 34]
is obtained. Clearly, the precursor has rotated the angle αcz/c during the travel
through the medium from z = 0 to z = z in agreement with the heuristic picture
of optical rotatory power. This simple interpretation is mainly due to the fact that
K ′(0) = 0. The more realistic case with, e.g., a damping term in the expression for
K(�) is much more complicated. However, with the method presented in this paper,
this problem can be solved numerically.

11 Conclusion

In this paper, a generalization of Sommerfeld’s results for the first precursor in
homogeneous Lorentz media is presented by applying time domain methods. Explicit
results of the first precursor can be obtained

• in stratified isotropic and bi-isotropic media with smooth but otherwise arbi-
trary dispersion models,

• for finite slabs with impedance mismatch at the boundaries,

• with arbitrary (sufficiently smooth) excitation.

In addition, it is shown that also inhomogeneities cause oscillations in the early time
response. These oscillations are quite similar to those caused by, e.g., a Lorentz
medium. Furthermore, it is believed that the results presented in this article can
be extended to other complex media, e.g., an-isotropic media, although the analysis
becomes more complicated in these cases.
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