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Rules for the ∇-operator

(1) ∇(ϕ+ ψ) = ∇ϕ+∇ψ
(2) ∇(ϕψ) = ψ∇ϕ+ ϕ∇ψ
(3) ∇(a · b) = (a · ∇)b+ (b · ∇)a+ a× (∇× b) + b× (∇× a)

(4) ∇(a · b) = −∇× (a× b) + 2(b · ∇)a+ a× (∇× b) + b× (∇× a) + a(∇ · b)− b(∇ · a)

(5) ∇ · (a+ b) = ∇ · a+∇ · b
(6) ∇ · (ϕa) = ϕ(∇ · a) + (∇ϕ) · a
(7) ∇ · (a× b) = b · (∇× a)− a · (∇× b)

(8) ∇× (a+ b) = ∇× a+∇× b
(9) ∇× (ϕa) = ϕ(∇× a) + (∇ϕ)× a

(10) ∇× (a× b) = a(∇ · b)− b(∇ · a) + (b · ∇)a− (a · ∇)b

(11) ∇× (a× b) = −∇(a · b) + 2(b · ∇)a+ a× (∇× b) + b× (∇× a) + a(∇ · b)− b(∇ · a)

(12) ∇ · ∇ϕ = ∇2ϕ = ∆ϕ

(13) ∇× (∇× a) = ∇(∇ · a)−∇2a

(14) ∇× (∇ϕ) = 0

(15) ∇ · (∇× a) = 0

(16) ∇2(ϕψ) = ϕ∇2ψ + ψ∇2ϕ+ 2∇ϕ · ∇ψ

(17) ∇r = r̂

(18) ∇× r = 0

(19) ∇× r̂ = 0

(20) ∇ · r = 3

(21) ∇ · r̂ =
2

r
(22) ∇(a · r) = a, a constant vector

(23) (a · ∇)r = a

(24) (a · ∇)r̂ =
1

r
(a− r̂(a · r̂)) =

a⊥
r

(25) ∇2(r · a) = 2∇ · a+ r · (∇2a)

(26) ∇u(f) = (∇f)
du

df

(27) ∇ · F (f) = (∇f) · dF
df

(28) ∇× F (f) = (∇f)× dF

df

(29) ∇ = r̂(r̂ · ∇)− r̂ × (r̂ ×∇)



Important vector identities

(1) (a× c)× (b× c) = c ((a× b) · c)
(2) (a× b) · (c× d) = (a · c)(b · d)− (a · d)(b · c)
(3) a× (b× c) = b(a · c)− c(a · b)
(4) a · (b× c) = b · (c× a) = c · (a× b)

Integration formulas

Stoke’s theorem and related theorems

(1)

∫∫

S

(∇×A) · n̂ dS =

∫

C

A · dr

(2)

∫∫

S

n̂×∇ϕdS =

∫

C

ϕdr

(3)

∫∫

S

(n̂×∇)×AdS =

∫

C

dr ×A

Gauss’ theorem (divergence theorem) and related theorems

(1)

∫∫∫

V

∇ ·Adv =

∫∫

S

A · n̂dS

(2)

∫∫∫

V

∇ϕdv =

∫∫

S

ϕn̂ dS

(3)

∫∫∫

V

∇×Adv =

∫∫

S

n̂×AdS

Green’s formulas

(1)

∫∫∫

V

(ψ∇2ϕ− ϕ∇2ψ) dv =

∫∫

S

(ψ∇ϕ− ϕ∇ψ) · n̂dS

(2)

∫∫∫

V

(ψ∇2A−A∇2ψ) dv

=

∫∫

S

(∇ψ × (n̂×A)−∇ψ(n̂ ·A)− ψ(n̂× (∇×A)) + n̂ψ(∇ ·A)) dS
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Preface

The book is about wave propagation along guiding structures, eg., transmission
lines, hollow waveguides and optical fibers. There are numerous applications for
these structures. Optical fiber systems are crucial for internet and many commu-
nication systems. Although transmission lines are replaced by optical fibers optical
systems and wireless systems in telecommunication, they are still very important at
short distance communication, in measurement equipment, and in high frequency
circuits. The hollow waveguides are used in radars and instruments for very high
frequencies. They are also important in particle accelerators where they transfer
microwaves at high power. We devote one chapter in the book to the electromag-
netic fields that can exist in cavities with metallic walls. Such cavities are vital
for modern particle accelerators. The cavities are placed along the pipe where the
particles travel. As a bunch of particles enters the cavity it is accelerated by the
electric field in the cavity.

The electromagnetic fields in waveguides and cavities are described by Maxwell’s
equations. These equations constitute a system of partial differential equations
(PDE). For a number of important geometries the equations can be solved analyt-
ically. In the book the analytic solutions for the most important geometries are
derived by utilizing the method of separation of variables. For more complicated
waveguide and cavity geometries we determine the electromagnetic fields by numer-
ical methods. There are a number of commercial software packages that are suitable
for such evaluations. We chose to refer to COMSOL Multiphysics, which is based
on the finite element method (FEM), in many of our examples. The commercial
software packages are very advanced and can solve Maxwell’s equations in most
geometries. However, it is vital to understand the analytical solutions of the sim-
ple geometries in order to evaluate and understand the numerical solutions of more
complicated geometries.

The book requires basic knowledge in vector analysis, electromagnetic theory
and circuit theory. The nabla operator is frequently used in order to obtain results
that are coordinate independent.

Every chapter is concluded with a problem section. The more advanced problems
are marked with an asterisk (∗). At the end of the book there are answers to most
of the problems.

v
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Chapter 1

The Maxwell equations

The Maxwell equations constitute the fundamental mathematical model for all the-
oretical analysis of macroscopic electromagnetic phenomena. James Clerk Maxwell1

published his famous equations in 1864. An impressive amount of evidences for the
validity of these equations have been gathered in different fields of applications. Mi-
croscopic phenomena require a more refined model including also quantum effects,
but these effects are out of the scope of this book.

The Maxwell equations are the cornerstone in the analysis of macroscopic elec-
tromagnetic wave propagation phenomena.2 In SI-units (MKSA) they read

∇×E(r, t) = −∂B(r, t)

∂t
(1.1)

∇×H(r, t) = J(r, t) +
∂D(r, t)

∂t
(1.2)

The equation (1.1) (or the corresponding integral formulation) is the Faraday’s law
of induction 3, and the equation (1.2) is the Ampère’s (generalized) law.4 The vector
fields in the Maxwell equations are5:

E(r, t) Electric field [V/m]
H(r, t) Magnetic field [A/m]
D(r, t) Electric flux density [As/m2]
B(r, t) Magnetic flux density [Vs/m2]
J(r, t) Current density [A/m2]

All of these fields are functions of the space coordinates r and time t. We often
suppress these arguments for notational reasons. Only when equations or expressions
can be misinterpreted we give the argument.

1James Clerk Maxwell (1831–1879), Scottish physicist and mathematician.
2A detailed derivation of these macroscopic equations from a microscopic formulation is found

in [8, 16].
3Michael Faraday (1791–1867), English chemist and physicist.
4André Marie Ampère (1775–1836), French physicist.
5For simplicity we sometimes use the names E-field, D-field, B-field and H-field.
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2 The Maxwell equations

The electric field E and the magnetic flux density B are defined by the force on
a charged particle

F = q (E + v ×B) (1.3)

where q is the electric charge of the particle and v its velocity. The relation is called
the Lorentz’ force.

The motion of the free charges in materials, eg., the conduction electrons, is
described by the current density J . The current contributions from all bounded
charges, eg., the electrons bound to the nucleus of the atom, are included in the time

derivative of the electric flux density
∂D

∂t
. In Chapter 2 we address the differences

between the electric flux density D and the electric field E, as well as the differences
between the magnetic field H and the magnetic flux density B.

One of the fundamental assumptions in physics is that electric charges are in-
destructible, i.e., the sum of the charges is always constant. The conservation of
charges is expressed in mathematical terms by the continuity equation

∇ · J(r, t) +
∂ρ(r, t)

∂t
= 0 (1.4)

Here ρ(r, t) is the charge density (charge/unit volume) that is associated with the
current density J(r, t). The charge density ρ models the distribution of free charges.
As alluded to above, the bounded charges are included in the electric flux density
D and the magnetic field H .

Two additional equations are usually associated with the Maxwell equations.

∇ ·B = 0 (1.5)

∇ ·D = ρ (1.6)

The equation (1.5) tells us that there are no magnetic charges and that the magnetic
flux is conserved. The equation (1.6) is usually called Gauss law. Under suitable
assumptions, both of these equations can be derived from (1.1), (1.2) and (1.4). To
see this, we take the divergence of (1.1) and (1.2). This implies





∇ · ∂B
∂t

= 0

∇ · J +∇ · ∂D
∂t

= 0

since ∇· (∇×A) ≡ 0. We interchange the order of differentiation and use (1.4) and
get 




∂(∇ ·B)

∂t
= 0

∂(∇ ·D − ρ)

∂t
= 0

These equations imply {
∇ ·B = f1

∇ ·D − ρ = f2



The Maxwell equations 3

where f1 and f2 are two functions that do not explicitly depend on time t (they can
depend on the spatial coordinates r). If the fields B, D and ρ are identically zero
before a fixed, finite time, i.e.,





B(r, t) = 0

D(r, t) = 0

ρ(r, t) = 0

t < τ (1.7)

then (1.5) and (1.6) follow. Static or time-harmonic fields do not satisfy these
initial conditions, since there is no finite time τ before the fields are all zero.6 We
assume that (1.7) is valid for time-dependent fields and then it is sufficient to use
the equations (1.1), (1.2) and (1.4).

The vector equations (1.1) and (1.2) contain six different equations—one for each
vector component. Provided the current density J is given, the Maxwell equations
contain 12 unknowns—the four vector fields E, B, D and H . We lack six equations
in order to have as many equations as unknowns. The lacking six equations are called
the constitutive relations and they are addressed in the next Chapter.

In vacuum E is parallel with D and B is parallel with H , such that
{
D = ε0E

B = µ0H
(1.8)

where ε0 and µ0 are the permittivity and the permeability of vacuum. The numerical
values of these constants are: ε0 ≈ 8.854 ·10−12 As/Vm and µ0 = 4π ·10−7 Vs/Am ≈
1.257 · 10−6 Vs/Am.

Inside a material there is a difference between the field ε0E and the electric flux
density D, and between the magnetic flux density B and the field µ0H . These
differences are a measure of the interaction between the charges in the material and
the fields. The differences between these fields are described by the polarization P ,
and the magnetization M . The definitions of these fields are

P = D − ε0E (1.9)

M =
1

µ0

B −H (1.10)

The polarization P is the volume density of electric dipole moment, and hence a
measure of the relative separation of the positive and negative bounded charges in
the material. It includes both permanent and induced polarization. In an analogous
manner, the magnetization M is the volume density of magnetic dipole moment
and hence a measure of the net (bounded) currents in the material. The origin of
M can also be both permanent or induced.

The polarization and the magnetization effects of the material are governed by
the constitutive relations of the material. The constitutive relations constitute the
six missing equations.

6We will return to the derivation of equations (1.5) and (1.6) for time-harmonic fields in Chap-
ter 2 on Page 15.
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V

S

n̂

Figure 1.1: Geometry of integration.

1.1 Boundary conditions at interfaces

At an interface between two different materials some components of the electromag-
netic field are discontinuous. In this section we give a derivation of these boundary
conditions. Only surfaces that are fixed in time (no moving surfaces) are treated.

The Maxwell equations, as they are presented in equations (1.1)–(1.2), assume
that all field quantities are differentiable functions of space and time. At an inter-
face between two media, the fields, as already mentioned above, are discontinuous
functions of the spatial variables. Therefore, we need to reformulate the Maxwell
equations such that they are also valid for fields that are not differentiable at all
points in space.

We let V be an arbitrary (simply connected) volume, bounded by the surface
S with unit outward normal vector n̂, see Figure 1.1. We integrate the Maxwell
equations, (1.1)–(1.2) and (1.5)–(1.6), over the volume V and obtain

∫∫∫

V

∇×E dv = −
∫∫∫

V

∂B

∂t
dv

∫∫∫

V

∇×H dv =

∫∫∫

V

J dv +

∫∫∫

V

∂D

∂t
dv

∫∫∫

V

∇ ·B dv = 0

∫∫∫

V

∇ ·D dv =

∫∫∫

V

ρ dv

(1.11)

where dv is the volume measure (dv = dx dy dz).
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The following two integration theorems for vector fields are useful:

∫∫∫

V

∇ ·A dv =

∫∫

S

A · n̂ dS

∫∫∫

V

∇×A dv =

∫∫

S

n̂×A dS

Here A is a continuously differentiable vector field in V , and dS is the surface
element of S. The first theorem is usually called the divergence theorem or the
Gauss theorem7 and the other Gauss analogous theorem (see Problem 1.1).

After interchanging the differentiation w.r.t. time t and integration (volume V
is fixed in time and we assume all field to be sufficiently regular) (1.11) reads

∫∫

S

n̂×E dS = − d

dt

∫∫∫

V

B dv (1.12)

∫∫

S

n̂×H dS =

∫∫∫

V

J dv +
d

dt

∫∫∫

V

D dv (1.13)

∫∫

S

B · n̂ dS = 0 (1.14)

∫∫

S

D · n̂ dS =

∫∫∫

V

ρ dv (1.15)

In a domain V where the fields E, B, D and H are continuously differentiable,
these integral expressions are equivalent to the differential equations (1.1) and (1.6).
We have proved this equivalence one way and in the other direction we do the
analysis in a reversed direction and use the fact that the volume V is arbitrary.

The integral formulation, (1.12)–(1.15), has the advantage that the fields do not
have to be differentiable in the spatial variables to make sense. In this respect,
the integral formulation is more general than the differential formulation in (1.1)–
(1.2). The fields E, B, D and H , that satisfy the equations (1.12)–(1.15) are called
weak solutions to the Maxwell equations, in the case the fields are not continuously
differentiable and (1.1)–(1.2) lack meaning.

The integral expressions (1.12)–(1.15) are applied to a volume Vh that cuts the
interface between two different media, see Figure 1.2. The unit normal n̂ of the
interface S is directed from medium 2 into medium 1. We assume that all electro-
magnetic fields E, B, D and H , and their time derivatives, have finite values in
the limit from both sides of the interface. For the electric field, these limit values in
medium 1 and 2 are denoted E1 and E2, respectively, and a similar notation, with
index 1 or 2, is adopted for the other fields. The current density J and the charge
density ρ can adopt infinite values at the interface for perfectly conducting (metal)

7Distinguish between the Gauss law, (1.6), and the Gauss theorem.
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1

2

S

a
h

n̂

Figure 1.2: Interface between two different media 1 and 2.

surfaces.8 It is convenient to introduce a surface current density JS and surface
charge density ρS as a limit process

{
JS = hJ

ρS = hρ

where h is the thickness of the layer that contains the charges close to the surface.
We assume that this thickness approaches zero and that J and ρ go to infinity in
such a way that JS and ρS have well defined values in this process. The surface
current density JS is assumed to be a tangential field to the surface S. We let
the height of the volume Vh be h and the area on the upper and lower part of the
bounding surface of Vh be a, which is small compared to the curvature of the surface
S and small enough such that the fields are approximately constant over a.

The terms d
dt

∫∫∫
Vh
B dv and d

dt

∫∫∫
Vh
D dv approach zero as h → 0, since the

fields B and D and their time derivatives are assumed to be finite at the interface.
Moreover, the contributions from all side areas (area ∼ h) of the surface integrals in
(1.12)–(1.15) approach zero as h → 0. The contribution from the upper part (unit
normal n̂) and lower part (unit normal −n̂) are proportional to the area a, if the
area is chosen sufficiently small and the mean value theorem for integrals are used.
The contributions from the upper and the lower parts of the surface integrals in the
limit h→ 0 are

a [n̂× (E1 −E2)] = 0

a [n̂× (H1 −H2)] = ahJ = aJS

a [n̂ · (B1 −B2)] = 0

a [n̂ · (D1 −D2)] = ahρ = aρS

8This is of course an idealization of a situation where the density assumes very high values in
a macroscopically thin layer.
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We simplify these expressions by dividing with the area a. The result is





n̂× (E1 −E2) = 0

n̂× (H1 −H2) = JS

n̂ · (B1 −B2) = 0

n̂ · (D1 −D2) = ρS

(1.16)

These boundary conditions prescribe how the electromagnetic fields on each side
of the interface are related to each other(unit normal n̂ is directed from medium 2
into medium 1). We formulate these boundary conditions in words.

• The tangential components of the electric field are continuous across the in-
terface.

• The tangential components of the magnetic field are discontinuous over the
interface. The size of the discontinuity is JS. If the surface current density
is zero, eg., when the material has finite conductivity9, the tangential compo-
nents of the magnetic field are continuous across the interface.

• The normal component of the magnetic flux density is continuous across the
interface.

• The normal component of the electric flux density is discontinuous across the
interface. The size of the discontinuity is ρS. If the surface charge density is
zero, the normal component of the electric flux density is continuous across
the interface.

In Figure 1.3 we illustrate the typical variations in the normal components of
the electric and the magnetic flux densities as a function of the distance across the
interface between two media.

A special case of (1.16) is the case where medium 2 is a perfectly conducting
material, which often is a good model for metals and other materials with high
conductivity. In material 2 the fields are zero and we get from (1.16)





n̂×E1 = 0

n̂×H1 = JS

n̂ ·B1 = 0

n̂ ·D1 = ρS

(1.17)

where JS and ρS are the surface current density and surface charge density, respec-
tively.

9This is an implication of the assumption that the electric field E is finite close to the interface.
We have JS = hJ = hσE → 0, as h→ 0.
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Figure 1.3: The variation of the normal components Bn and Dn at the interface between

two different media.

1.1.1 Impedance boundary conditions

At an interface between a non-conducting medium and a metal, the boundary con-
dition in (1.17) is often a good enough approximation. When there is a need for
more accurate evaluations there are two ways to go. We can treat the two media as
two regions and simply use the exact boundary conditions in (1.16). A disadvantage
is that we have to solve for the electric and magnetic field in both regions. If we
use FEM both regions have to be discretized. The wavelength in a conductor is
considerably much smaller than the wavelength in free space, c.f., section 5.9. Since
the mesh size is proportional to the wavelength a much finer mesh is needed in the
metal than in the non-conducting region and that increases the computational time
and required memory. There is a third alternative and that is to use an impedance
boundary condition. This condition is derived in section 5.9. We let E and H be
the electric and magnetic fields at the surface, but in the non-conducting region,
and n̂ the normal unit vector directed out from the metal. Then the condition is

E − n̂(E · n̂) = −ηsn̂×H

ηs = (1− i)

√
ωµ0

2σ
=

1− i

σδ

(1.18)

Here ηs is the wave impedance of the metal, and δ =
√

2/(ωµ0σ) the skin depth of
the metal, c.f., section 5.9. Notice that E − n̂(E · n̂) is the tangential component
of the electric field.

Most commercial simulation programs, like COMSOL Multiphysics, have the
impedance boundary condition as an option.
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1.2 Energy conservation and Poynting’s theorem

Energy conservation is shown from the Maxwell equations (1.1) and (1.2).





∇×E = −∂B
∂t

∇×H = J +
∂D

∂t

We make a scalar multiplication of the first equation with H and the second with
E and subtract. The result is

H · (∇×E)−E · (∇×H) +H · ∂B
∂t

+E · ∂D
∂t

+E · J = 0

By using the differential rule ∇ · (a × b) = b · (∇ × a) − a · (∇ × b) we obtain
Poynting’s theorem.

∇ · S +H · ∂B
∂t

+E · ∂D
∂t

+E · J = 0 (1.19)

We have here introduced the Poynting’s vector,10 S = E×H , which gives the power
flow per unit area in the direction of the vector S. The energy conservation is made
visible if we integrate equation (1.19) over a volume V , bounded by the surface S
with unit outward normal vector n̂, see Figure 1.1, and use the divergence theorem.
We get

∫∫

S

S · n̂ dS =

∫∫∫

V

∇ · S dv

= −
∫∫∫

V

[
H · ∂B

∂t
+E · ∂D

∂t

]
dv −

∫∫∫

V

E · J dv

(1.20)

The terms are interpreted in the following way:

• The left hand side: ∫∫

S

S · n̂ dS

This is the total power radiated out of the bounding surface S.

• The right hand side: The power flow through the surface S is compensated by
two different contributions. The first volume integral on the right hand side

∫∫∫

V

[
H · ∂B

∂t
+E · ∂D

∂t

]
dv

10John Henry Poynting (1852–1914), English physicist.
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gives the power bounded in the electromagnetic field in the volume V . This
includes the power needed to polarize and magnetize the material in V . The
second volume integral in (1.20)

∫∫∫

V

E · J dv

gives the work per unit time, i.e., the power, that the electric field does on the
charges in V .

To this end, (1.20) expresses energy balance or more correctly power balance in
the volume V , i.e.,

Through S radiated power + power consumption in V

= − power bounded to the electromagnetic field in V

In the derivation above we assumed that the volume V does not cut any surface
where the fields are discontinuous, eg., an interface between two media. We now
prove that this assumption is no severe restriction and the assumption can easily
be relaxed. If the surface S is an interface between two media, see Figure 1.2,
Poynting’s vector in medium 1 close to the interface is

S1 = E1 ×H1

and Poynting’s vector close to the interface in medium 2 is

S2 = E2 ×H2

The boundary condition at the interface is given by (1.16).

n̂×E1 = n̂×E2

n̂×H1 = n̂×H2 + JS

We now prove that the power transported by the electromagnetic field is contin-
uous across the interface. Stated differently, we prove

∫∫

S

S1 · n̂ dS =

∫∫

S

S2 · n̂ dS −
∫∫

S

E2 · JS dS (1.21)

where the surface S is an arbitrary part of the interface. Note that the unit normal
n̂ is directed from medium 2 into medium 1. The last surface integral gives the
work per unit time done by the electric field on the charges at the interface. If there
are no surface currents at the interface the normal component of Poynting’s vector
is continuous across the interface. It is irrelevant which electric field we use in the
last surface integral in (1.21) since the surface current density JS is parallel to the
interface S and the tangential components of the electric field are continuous across
the interface, i.e., ∫∫

S

E1 · JS dS =

∫∫

S

E2 · JS dS
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Equation (1.21) is easily proved by a cyclic permutation of the vectors and the use
of the boundary conditions.

n̂ · S1 = n̂ · (E1 ×H1) = H1 · (n̂×E1) = H1 · (n̂×E2)

= −E2 · (n̂×H1) = −E2 · (n̂×H2 + JS)

= n̂ · (E2 ×H2)−E2 · JS = n̂ · S2 −E2 · JS
By integration of this expression over the interface S we obtain power conservation
over the surface S as expressed in equation (1.21).

Problems in Chapter 1

1.1 Show the following analogous theorem of Gauss theorem:
∫∫∫

V

∇×A dv =

∫∫

S

n̂×A dS

Apply the theorem of divergence (Gauss theorem) to the vector field B = A × a,
where a is an arbitrary constant vector.

1.2 A finite volume contains a magnetic material with magnetization M . In the absence
of current density (free charges), J = 0, show that the static magnetic field, H, and
the magnetic flux density, B, satisfy

∫∫∫
B ·H dv = 0

where the integration is over all space.

Ampère’s law ∇×H = 0 implies that there exists a potential Φ such that

H = −∇Φ

Use the divergence theorem to prove the problem.

1.3 An infinitely long, straight conductor of circular cross section (radius a) consists of
a material with finite conductivity σ. In the conductor a static current I is flowing.
The current density J is assumed to be homogeneous over the cross section of the
conductor. Compute the terms in Poynting’s theorem and show that power balance
holds for a volume V , which consists of a finite portion l of the conductor.

On the surface of the conductor we have S = −ρ̂1
2aσE

2 where the electric field on
the surface of the conductor is related to the current by I = πa2σE. The terms in
Poynting’s theorem are

∫∫

S

S · n̂dS = −πa2lσE2

∫∫∫

V

E · J dv = πa2lσE2
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Chapter 2

Time harmonic fields and Fourier
transform

Time harmonic fields are common in many applications. We obtain the time har-
monic formulation from the general results in the previous section by a Fourier
transform in the time variable of all fields (vector and scalar fields).

The Fourier transform in the time variable of a vector field, eg., the electric field
E(r, t), is defined as

E(r, ω) =

∫ ∞

−∞
E(r, t)eiωt dt

with its inverse transform

E(r, t) =
1

2π

∫ ∞

−∞
E(r, ω)e−iωt dω

The Fourier transform for all other time dependent fields are defined in the same
way. To avoid heavy notation we use the same symbol for the physical field E(r, t),
as for the Fourier transformed field E(r, ω)—only the argument differs. In most
cases the context implies whether it is the physical field or the Fourier transformed
field that is intended, otherwise the time argument t or the (angular)frequency ω is
written out to distinguish the fields.

All physical quantities are real, which imply constraints on the Fourier transform.
The field values for negative values of ω are related to the values for positive values
of ω by a complex conjugate. To see this, we write down the criterion for the field
E to be real. ∫ ∞

−∞
E(r, ω)e−iωt dω =

{∫ ∞

−∞
E(r, ω)e−iωt dω

}∗

where the star ( ∗) denotes the complex conjugate. For real ω, we have
∫ ∞

−∞
E(r, ω)e−iωt dω =

∫ ∞

−∞
E∗(r, ω)eiωt dω =

∫ ∞

−∞
E∗(r,−ω)e−iωt dω

where we in the last integral have substituted ω for −ω. Therefore, for real ω we
have

E(r, ω) = E∗(r,−ω)

13
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Band Frequency Wave length Application

ELF < 3 KHz > 100 km
VLF 3–30 KHz 100–10 km Navigation
LV 30–300 KHz 10–1 km Navigation
MV 300–3000 KHz 1000–100 m Radio
KV (HF) 3–30 MHz 100–10 m Radio
VHF 30–300 MHz 10–1 m FM, TV
UHF 300–1000 MHz 100–30 cm Radar, TV, mobile communication
† 1–30 GHz 30–1 cm Radar, satellite communication
† 30–300 GHz 10–1 mm Radar

4.2–7.9 · 1014 Hz 0.38–0.72 µm Visible light

This shows that when the physical field is constructed from its Fourier transform, it
suffices to integrate over the non-negative frequencies. By the change in variables,
ω → −ω, and the use of the condition above, we have

E(r, t) =
1

2π

∫ ∞

−∞
E(r, ω)e−iωt dω

=
1

2π

∫ 0

−∞
E(r, ω)e−iωt dω +

1

2π

∫ ∞

0

E(r, ω)e−iωt dω

=
1

2π

∫ ∞

0

[
E(r, ω)e−iωt +E(r,−ω)eiωt

]
dω

=
1

2π

∫ ∞

0

[
E(r, ω)e−iωt +E∗(r, ω)eiωt

]
dω =

1

π
Re

∫ ∞

0

E(r, ω)e−iωt dω

(2.1)
where Re z denotes the real part of the complex number z. A similar result holds
for all other Fourier transformed fields that we are using.

Fields that are purely time harmonic are of special interests in many applications,
see Table 2. Purely time harmonic fields have the time dependence

cos(ωt− α)

A simple way of obtaining purely time harmonic waves is to use phasors. Then the
complex field E(r, ω) is related to the time harmonic field E(r, t) via the rule

E(r, t) = Re
{
E(r, ω)e−iωt

}
(2.2)

If we write E(r, ω) as

E(r, ω) = x̂Ex(r, ω) + ŷEy(r, ω) + ẑEz(r, ω)

= x̂|Ex(r, ω)|eiα(r) + ŷ|Ey(r, ω)|eiβ(r) + ẑ|Ez(r, ω)|eiγ(r)

we obtain the same result as in the expression above. This way of constructing
purely time harmonic waves is convenient and often used.
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2.1 The Maxwell equations

As a first step in our analysis of time harmonic fields, we Fourier transform the
Maxwell equations (1.1) and (1.2) ( ∂

∂t
→ −iω)

∇×E(r, ω) = iωB(r, ω) (2.3)

∇×H(r, ω) = J(r, ω)− iωD(r, ω) (2.4)

The explicit harmonic time dependence exp{−iωt} has been suppressed from these
equations, i.e., the physical fields are

E(r, t) = Re
{
E(r, ω)e−iωt

}

This convention is applied to all purely time harmonic fields. Note that the elec-
tromagnetic fields E(r, ω), B(r, ω), D(r, ω) and H(r, ω), and the current density
J(r, ω) are complex vector fields.

The continuity equation (1.4) is transformed in a similar way

∇ · J(r, ω)− iωρ(r, ω) = 0 (2.5)

The remaining two equations from Chapter 1, (1.5) and (1.6), are transformed
into

∇ ·B(r, ω) = 0 (2.6)

∇ ·D(r, ω) = ρ(r, ω) (2.7)

These equations are a consequence of (2.3) and (2.4) and the continuity equa-
tion (2.5) (c.f., Chapter 1 on Page 2). To see this we take the divergence of the
Maxwell equations (2.3) and (2.4), and get (∇ · (∇×A) = 0)

iω∇ ·B(r, ω) = 0

iω∇ ·D(r, ω) = ∇ · J(r, ω) = iωρ(r, ω)

Division by iω (provided ω 6= 0) gives (2.6) and (2.7).
In a homogenous non-magnetic source free medium we obtain the Helmholtz

equation for the electric field by eliminating the magnetic field from (2.3) and (2.4).
This is done by taking the rotation of (2.3) and utilizing (2.4). The result is

∇2E(r, ω) + k(ω)2E(r, ω) = 0 (2.8)

where
k(ω) = ω

√
ε0µ0(ε+ iσ/(ωε0))

is the wavenumber. The magnetic field satisfies the same equation

∇2H(r, ω) + k(ω)2H(r, ω) = 0 (2.9)

To this end, in vacuum, the time-harmonic Maxwell field equations are
{
∇×E(r, ω) = ik0 (c0B(r, ω))

∇× (η0H(r, ω)) = −ik0 (c0η0D(r, ω))
(2.10)
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where η0 =
√
µ0/ε0 is the intrinsic impedance of vacuum, c0 = 1/

√
ε0µ0 the speed

of light in vacuum, and k0 = ω/c0 the wave number in vacuum. In (2.10) all
field quantities have the same units, i.e., that of the electric field. This form is the
standard form of the Maxwell equations that we use in this book.

2.2 Constitutive relations

The constitutive relations are the relations between the fields E, D, B and H .
In this book we restrict ourselves to materials that are linear and isotropic. That
covers most solids, liquids and gases. The constitutive relations then read

D(r, ω) = ε0ε(ω)E(r, ω)

B(r, ω) = µ0µ(ω)H(r, ω)

The parameters ε and µ are the (relative) permittivity and permeability of the
medium, respectively.

We also note that a material with a conductivity that satisfies Ohm’s law J(r, ω) =
σ(ω)E(r, ω), always can be included in the constitutive relations by redefining the
permittivity .

εnew = εold + i
σ

ωε0
The right hand side in Ampère’s law (2.4) is

J − iωD = σE − iωε0εold ·E = −iωε0εnew ·E

2.3 Poynting’s theorem

In Chapter 1 we derived Poynting’s theorem, see (1.19) on Page 9.

∇ · S(t) +H(t) · ∂B(t)

∂t
+E(t) · ∂D(t)

∂t
+E(t) · J(t) = 0

The equation describes conservation of power and contains products of two fields. In
this section we study time harmonic fields, and the quantity that is of most interest
for us is the time average over one period1. We denote the time average as < ·>
and for Poynting’s theorem we get

<∇ · S(t)> + <H(t) · ∂B(t)

∂t
> + <E(t) · ∂D(t)

∂t
> + <E(t) · J(t)>= 0

1The time average of a product of two time harmonic fields f1(t) and f2(t) is easily obtained
by averaging over one period T = 2π/ω.

<f1(t)f2(t)> =
1

T

∫ T

0

f1(t)f2(t) dt =
1

T

∫ T

0

Re
{
f1(ω)e−iωt

}
Re
{
f2(ω)e−iωt

}
dt

=
1

4T

∫ T

0

{
f1(ω)f2(ω)e−2iωt + f∗1 (ω)f∗2 (ω)e2iωt + f1(ω)f∗2 (ω) + f∗1 (ω)f2(ω)

}
dt

=
1

4
{f1(ω)f∗2 (ω) + f∗1 (ω)f2(ω)} =

1

2
Re {f1(ω)f∗2 (ω)}
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The different terms in this quantity are

<S(t)>=
1

2
Re {E(ω)×H∗(ω)} (2.11)

and

<H(t) · ∂B(t)

∂t
>=

1

2
Re {iωH(ω) ·B∗(ω)}

<E(t) · ∂D(t)

∂t
>=

1

2
Re {iωE(ω) ·D∗(ω)}

<E(t) · J(t)>=
1

2
Re {E(ω) · J∗(ω)}

Poynting’s theorem (balance of power) for time harmonic fields, averaged over a
period, becomes (<∇ · S(t)>= ∇· <S(t)>):

∇· <S(t)>+
1

2
Re {iω [H(ω) ·B∗(ω) +E(ω) ·D∗(ω)]}

+
1

2
Re {E(ω) · J∗(ω)} = 0

(2.12)

Of special interest is the case without currents2 J = 0. Poynting’s theorem is
then simplified to

∇· <S(t)> = −1

2
Re {iω [H(ω) ·B∗(ω) +E(ω) ·D∗(ω)]}

= − iω

4

{
H(ω) ·B∗(ω)−H∗(ω) ·B(ω)

+E(ω) ·D∗(ω)−E(ω)∗ ·D(ω)
}

where we used Re z = (z + z∗)/2.

Problems in Chapter 2

2.1 Find two complex vectors, A and B, such that A ·B = 0 and

A′ ·B′ 6= 0

A′′ ·B′′ 6= 0

where A′ and B′ are the real parts of the vectors, respectively, and where the
imaginary parts are denoted A′′ and B′′, respectively.

{
A = x̂+ iŷ

B = (x̂+ ξŷ) + i(−ξx̂+ ŷ)

where ξ is an arbitrary real number.

2Conducting currents can, as we have seen, be included in the permittivity dyadic ε.
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2.2 For real vectors A and B we have

B · (B ×A) = 0

Prove that this equality also holds for arbitrary complex vectors A and B.



Chapter 3

Transmission lines

When we analyze signals in circuits we have to know their frequency band and the
size of the circuit in order to make appropriate approximations. We exemplify by
considering signals with frequencies ranging from dc up to very high frequencies
in a circuit that contains linear elements, i.e., resistors, capacitors, inductors and
sources.

Definition: A circuit is discrete if we can neglect wave propagation in the
analysis of the circuit. In most cases the circuit is discrete if the size of the circuit
is much smaller than the wavelength in free space of the electromagnetic waves,
λ = c/f .

• We first consider circuits at zero frequency, i.e., dc circuits. The wavelength
λ = c/f is infinite and the circuits are discrete. Capacitors correspond to
an open circuit and inductors to a short circuit. The current in a wire with
negligible resistance is constant in both time and space and the voltage drop
along the wire is zero. The voltages and currents are determined by the Ohm’s
and Kirchhoff’s laws. These follow from the static equations and relations

∇×E(r) = 0

J(r) = σE(r)

∇ · J(r) = 0

• We increase the frequency, but not more than that the wavelength λ = c/f is
still much larger than the size of the circuit. The circuit is still discrete and
the voltage v and current i for inductors and capacitors are related by the
induction law (1.1) and the continuity equation (1.4), that imply

i = C
dv

dt

v = L
di

dt

where C is the capacitance and L the inductance. These relations, in com-
bination with the Ohm’s and Kirchhoff’s laws, are sufficient for determining

19
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the voltages and currents in the circuit. In most cases the wires that connect
circuit elements have negligible resistance, inductance and capacitance. This
ensures that the current and voltage in each wire are constant in space, but
not in time.

• We increase the frequency to a level where the wavelength is not much larger
than the size of the circuit. Now wave propagation has to be taken into
account. The phase and amplitude of the current and voltage along wires vary
with both time and space. We have to abandon circuit theory and switch to
transmission line theory, which is the subject of this chapter. The theory is
based upon the full Maxwell equations but is phrased in terms of currents and
voltages.

• If we continue to increase the frequency we reach the level where even trans-
mission line theory is not sufficient to describe the circuit. This happens when
components and wires act as antennas and radiate electromagnetic waves. We
then need both electromagnetic field theory and transmission line theory to
describe the circuit.

Often a system can be divided into different parts, where some parts are discrete
while others need transmission line theory, or the full Maxwell equations. An exam-
ple is an antenna system. The signal to the antenna is formed in a discrete circuit.
The signal travels to the antenna via a transmission line and reaches the antenna,
which is a radiating component.

3.1 Time and frequency domain

It is often advantageous to analyze signals in linear circuits in the frequency domain.
We repeat some of the transformation rules between the time and frequency domains
given in Chapter 2 and also give a short description of transformations based on
Fourier series and Laplace transform. In the frequency domain the algebraic relations
between voltages and currents are the same for all of the transformations described
here. In the book we use either phasors or the Fourier transform to transform
between time domain and frequency domain.

3.1.1 Phasors (jω method)

For time harmonic signals we use phasors. The transformation between the time
and frequency domain is as follows:

v(t) = V0 cos(ωt+ φ)↔ V = V0e
jφ

where V is the complex voltage. This is equivalent to the transformation v(t) =
Re{V ejωt}, used in Chapter 2. An alternative is to use sinωt as reference for the
phase and then the transformation reads

v(t) = V0 sin(ωt+ φ)↔ V = V0e
jφ (3.1)
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From circuit theory it is well-known that the relations between current and voltage
are 




V = RI resistor

V = jωLI inductor

V =
I

jωC
capacitor

In general the relationship between the complex voltage and current is written V =
ZI where Z is the impedance. This means that the impedance for a resistor is R,
for an inductor it is jωL and for a capacitor it is 1/jωC. The admittance Y = 1/Z
is also used frequently in this chapter.

3.1.2 Fourier transformation

If the signal v(t) is absolutely integrable, i.e.,
∞∫
−∞
|v(t)| dt < ∞, it can be Fourier

transformed

V (ω) =

∫ ∞

−∞
v(t)e−jωt dt

v(t) =
1

2π

∫ ∞

−∞
V (ω)ejωt dω

(3.2)

The Fourier transform here differs from the one in Chapter 2 in that e−iωt is ex-
changed for ejωt, see the comment below. As seen in Chapter 2 the negative values
of the angular frequency is not a problem since they can be eliminated by using

V (ω) = V ∗(−ω)

In the frequency domain the relations between current and voltage are identical with
the corresponding relations obtained by the jω-method, i.e.,





V (ω) = RI(ω) resistor

V (ω) = jωLI(ω) inductor

V (ω) =
I(ω)

jωC
capacitor

Comment on j and i

The electrical engineering literature uses the time convention ejωt in the phasor
method and the Fourier transformation, while physics literature uses e−iωt. We can
transform expressions from one convention to the other by complex conjugation of all
expressions and exchanging i and j. In this chapter we use ejωt whereas in the rest of
the book we use e−iωt. The reason is that transmission lines are mostly treated in the
literature of electrical engineering while hollow waveguides and dielectric waveguides
are more common in physics literature.
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3.1.3 Fourier series

A periodic signal with the period T satisfies f(t) = f(t + T ) for all times t. We
introduce the fundamental angular frequency ω0 = 2π/T . The set of functions
{ejnω0t}n=∞

n=−∞ is a complete orthogonal system of functions on an interval of length
T and we may expand f(t) in a Fourier series as

f(t) =
∞∑

n=−∞
cne

jnω0t

We obtain the Fourier coefficients cm if we multiply with e−jmω0t on the left and
right hand sides and integrate over one period

cm =
1

T

∫ T

0

f(t)e−jmω0t dt

An alternative is to use the expansion in the system {1, cos(nω0t), sin(nω0t)}n=∞
n=1

f(t) = a0 +
∞∑

n=1

[an cos(nω0t) + bn sin(nω0t)]

Also this set of functions is complete and orthogonal. The Fourier coefficients are ob-
tained by multiplying with 1, cos(mω0t), and sin(mω0t), respectively, and integrate
over one period

a0 =
1

T

∫ T

0

f(t) dt

am =
2

T

∫ T

0

f(t) cos(mω0t) dt, m > 0

bm =
2

T

∫ T

0

f(t) sin(mω0t) dt

We see that a0 = c0 is the dc part of the signal. The relations for n > 0 are
cn = 0.5(an − jbn) and c−n = c∗n, as can be seen from the Euler identity.

If we let the current and voltage have the expansions

i(t) =
∞∑

n=−∞
Ine

jnω0t

v(t) =
∞∑

n=−∞
Vne

jnω0t

the relations between the coefficients Vn and In are




Vn = RIn resistor

Vn = jnω0LIn inductor

Vn =
In

jnω0C
capacitor

Thus it is straightforward to determine the Fourier coefficients for the currents and
voltages in a circuit. In this chapter we will not use the expansions in Fourier series.
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Figure 3.1: A two-port. Notice that the total current entering each port is always zero.

3.1.4 Laplace transformation

If the signal v(t) is defined for t ≥ 0 we may use the Laplace transform

V (s) =

∫ ∞

0−
v(t)e−st dt

In most cases we use tables of Laplace transforms in order to obtain v(t) from
V (s). If we exchange s for jω in the frequency domain we get the corresponding
expression for the jω-method and Fourier transformation. The Laplace transform is
well suited for determination of transients and for stability and frequency analysis.
The relations for the Laplace transforms of current and voltage read





V (s) = RI(s) resistor

V (s) = sLI(s) inductor

V (s) =
I(s)

sC
capacitor

3.2 Two-ports

A two-port is a circuit with two ports, c.f., figure 3.1. We only consider passive linear
two-ports in this book. Passive means that there are no independent sources in the
two-port. The sum of the currents entering a port is always zero. In the frequency
domain the two-port is represented by a matrix with four complex elements. The
matrix elements depends on which combinations of I1, I2, V1 and V2 we use, as seen
below.

3.2.1 The impedance matrix
(
V1

V2

)
= [Z]

(
I1

I2

)
=

(
Z11 Z12

Z21 Z22

)(
I1

I2

)
(3.3)

The inverse of the impedance matrix is the admittance matrix, [Y ] = [Z]−1

(
I1

I2

)
= [Y ]

(
V1

V2

)
=

(
Y11 Y12

Y21 Y22

)(
V1

V2

)
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+
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Figure 3.2: Reciprocal two-port. If voltage V at port 1 gives the shortening current I

in port 2 then the voltage V at port 2 gives the shortening current I at port 1.

3.2.2 The cascade matrix (ABCD-matrix)

We introduce the ABCD matrix as
(
V1

I1

)
= [K]

(
V2

−I2

)
=

(
A B
C D

)(
V2

−I2

)
(3.4)

We have put a minus sign in front of I2 in order to cascade two-ports in a simple
manner. The relation can be inverted:

(
V2

I2

)
= [K ′]

(
V1

−I1

)
=

(
A′ B′

C ′ D′

)(
V1

−I1

)

We notice that the [K ′] matrix is obtained from the [K]−1 matrix by changing sign
of the non-diagonal elements.

3.2.3 The hybrid matrix
(
V1

I2

)
= [H]

(
I1

V2

)
=

(
h11 h12

h21 h22

)(
I1

V2

)

The inverse hybrid matrix, [G] = [H]−1, is given by

(
I1

V2

)
= [G]

(
V1

I2

)
=

(
g11 g12

g21 g22

)(
V1

I2

)

3.2.4 Reciprocity

Assume a system where we place a signal generator at a certain point and measure
the signal at another point. We then exchange the source and measurement points
and measure the signal again. If the measured signal is the same in the two cases
the system is reciprocal.
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We use the following definition of reciprocity for two-ports: If V2, I2 give V1, I1

and V ′2 , I ′2 give V ′1 , I ′1 then the two-port is reciprocal if

V1I
′
1 − V ′1I1 + V2I

′
2 − V ′2I2 = 0

We insert the impedance matrix and get

(Z12 − Z21)(I ′1I2 − I ′2I1) = 0

for all I1, I2, I ′1 and I ′2. Thus the two-port is reciprocal if and only if [Z] is a
symmetric matrix. The inverse of a symmetric matrix is symmetric and hence also
[Y ] has to be symmetric in a reciprocal two-port. Reciprocity implies that if I1 = 0,
I ′2 = 0 and V1 = V ′2 then

V1I
′
1 = V ′2I2 ⇒ I ′1 = I2

c.f., figure 3.2. If V1 = 0, V ′2 = 0 and I1 = I ′2 then

V2I
′
2 = V ′1I1 ⇒ V ′1 = V2

One can prove that all linear two-ports that do not have any dependent sources are
reciprocal.

3.2.5 Transformation between matrices

The transformations between the matrices [Z], [K], and [H] and between [Y ], [G],
and [K ′] are given by the table below:

[Z] [H] [K]

[Z]



Z11 Z12

Z21 Z22







∆H

h22

h12

h22

−h21

h22

1

h22







A

C

∆K

C

1

C

D

C




[H]




∆Z

Z22

Z12

Z22

−Z21

Z22

1

Z22






h11 h12

h21 h22







B

D

∆K

D

− 1

D

C

D




[K]




Z11

Z21

∆Z

Z21

1

Z21

Z22

Z21







−∆H

h21
−h11

h21

−h22

h21
− 1

h21






A B

C D



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[Y ] [G] [K ′]

[Y ]



Y11 Y12

Y21 Y22







∆G

g22

g12

g22

−g21

g22

1

g22







A′

B′
− 1

B′

−∆′K
B′

D′

B′




[G]




∆Y

Y22

Y12

Y22

−Y21

Y22

1

Y22






g11 g12

g21 g22







C ′

D′
− 1

D′

∆′K
D′

B′

D′




[K ′]




−Y11

Y12
− 1

Y12

−∆Y

Y12
−Y22

Y12







−∆G

g12
−g22

g12

−g11

g12
− 1

g12






A′ B′

C ′ D′




We use ∆K = det{K} to denote the determinant of the cascade matrix. From these
transformations we see that a reciprocal two-port has a hybrid matrix that is anti sym-
metric, i.e., h12 = −h21, since the impedance matrix is symmetric. We also notice that
∆K = 1 for a reciprocal two-port and that [G] is anti symmetric and ∆K′ = 1, since [Y ]
is symmetric.

3.2.6 Circuit models for two-ports

We have seen that a general two-port is determined by four complex parameters. They can
be substituted by an equivalent two-port with two impedances and two dependent sources.
In figure 3.3 we see the two equivalent two-ports that can be obtained directly from the Z−
and H−matrices, respectively. A reciprocal two-port is determined by the three complex
numbers Z11, Z12 = Z21, and Z22. In this case we can still use the equivalent circuits in
figure 3.3 but we can also find equivalent T− and Π−circuits with passive components. A
T−circuit, c.f., figure 3.4, has the following impedance matrix

[Z] =

(
Za + Zc Zc
Zc Zb + Zc

)

This equals the impedance matrix for a reciprocal two-port if we let

Za = Z11 − Z21

Zb = Z22 − Z21

Zc = Z21

The admittance matrix for a Π-coupling, c.f., figure 3.4, is obtained by shortening port 1
and port 2, respectively.

[Y ] =

(
Ya + Yc −Yc
−Yc Yb + Yc

)
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Figure 3.3: Equivalent circuits for a passive two-port. The upper corresponds to the

impedance representation and the lower to the hybrid representation.
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Figure 3.4: Equivalent T− and Π-circuits for a reciprocal passive two-port.

We can always substitute a reciprocal two-port for a Π-coupling by using

Ya = Y11 + Y21

Yb = Y22 + Y21

Yc = −Y21

3.2.7 Combined two-ports

A two-port can be feedback coupled by another two-port in four different ways. We can
use these different couplings when we create feedback amplifiers. The four couplings cor-
respond to voltage amplifier, V → V , current amplifier, I → I, transimpedance amplifier,
I → V , and transadmittance amplifier V → I. The input impedance should be as large as
possible when voltage is the input and as low as possible when current is the input. The
output impedance should be as small as possible when voltage is the output and as high
as possible when current is the outpot.
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Figure 3.5: Series-parallel coupling: [H] = [Ha] + [Hb]
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Figure 3.6: Parallel-series coupling: [G] = [G]a + [Gb]

Series-parallel coupling (V − V -coupling)

According to figure 3.5 we get

(
V1

I2

)
=

(
V a

1

Ia2

)
+

(
V b

1

Ib2

)
= ([Ha] + [Hb])

(
V2

I1

)

The total hybrid matrix is then given by [H] = [Ha] + [Hb]. Series-parallel coupling of N

two-ports with hybrid matrices [Hn] result in the total hybrid matrix is [H] =
N∑
n=1

[Hn].

Parallel-series coupling (I − I-coupling)

According to figure 3.6 we get

(
I1

V2

)
=

(
Ia1
V a

2

)
+

(
Ib1
V b

2

)
= ([Ga] + [Gb])

(
V1

I2

)

The total hybrid matrix is given by [G] = [Ga] + [Gb]. If we use N two-ports with hybrid

matrices [Gn] we get the total hybrid matrix [G] =
N∑
n=1

[Gn].
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Figure 3.7: Series coupling: [Z] = [Za] + [Zb].
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Figure 3.8: Parallel coupling: [Y ] = [Y a] + [Y b].

Series coupling (V − I-coupling)

According to figure 3.7 we get

(
V1

V2

)
=

(
V a

1

V a
2

)
+

(
V b

1

V b
2

)
= ([Za] + [Zb])

(
I1

I2

)

The total impedance matrix is given by [Z] = [Za] + [Zb]. With N two-ports with

impedance matrices [Zn] in series the total impedance matrix is [Z] =
N∑
n=1

[Zn].

Parallel coupling (I − V -coupling)

According to figure 3.8 we get

(
I1

I2

)
=

(
Ia1
Ia2

)
+

(
Ib1
Ib2

)
= ([Y a] + [Y b])

(
V1

V2

)

The total admittance matrix is given by [Y ] = [Y a] + [Y b]. With N two-ports with

admittance matrices [Yn] in parallel the total admittance matrix is [Y ] =
N∑
n=1

[Yn].
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Figure 3.9: Cascade coupling: [K] = [Ka][Kb].

3.2.8 Cascad coupled two-ports

We cascade two two-ports according to figure 3.9 and get the total cascade matrix in the
following way (

V1

I1

)
= [Ka]

(
V
−I

)
= [Ka][Kb]

(
V2

−I2

)

The total matrix is given by [K] = [Ka][Kb]. The two matrices do not commute, in
general. The order of the two-ports is thus important. When N two-ports with cascade
matrices [Kn] are cascaded the total cascade matrix is

[K] =
N∏

n=1

[Kn]

3.3 Transmission lines in time domain

Transmission lines are wires that are not short compared to the wavelength. The wave-
length is given by λ = c/f where c is the speed of light in the medium surrounding the
wires and f is the frequency.

The signals propagating along a line can be expressed in terms of the voltage between
the wires and current in the wires. This leads to the scalar wave equation for the voltage
(or current). The signal can also be described as electromagnetic waves that are bound to
the wires. To find the electromagnetic fields we have to solve the Maxwell equations with
appropriate boundary conditions. The two views lead to the same results but in most
cases it is more convenient to use the equations for voltage and current rather than the
Maxwell equations.

3.3.1 Wave equation

A transmission line consists of two conductors. We always consider the line to be straight
and let it run along the z−direction. The voltage between the conductors, v(z, t), and the
current i(z, t) are defined by figure 3.10.

A transmission line is defined by the four distributed line parameters

C : capacitance per unit length (F/m)

L : inductance per unit length (H/m)

G : conductance per unit length (1/(Ωm))

R : resistance per unit length (Ω/m)
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Figure 3.10: Voltage and current for the transmission line
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Figure 3.11: Circuit model for a transmission line

For a homogeneous transmission line the line parameters are independent of z and t. The
voltage v between the conductors gives rise to line charges ρ` and −ρ` on the conductors.
The capacitance per unit length is defined by C = ρ`(z, t)/v(z, t). The current i on the
conductors gives rise to a magnetic flux Φ per unit length of the line. The inductance per
unit length is defined by L = Φ(z, t)/i(z, t). The voltage v between the conductors may
give rise to a leakage of current between the conductors. The conductance per unit length
is defined by G = ileak(z, t)/v(z, t), where ileak is the leakage current per unit length. The
resistance of the conductors give a voltage drop along the line. If the voltage drop per
unit length is vdrop then the resistance per unit length is R = 2vdrop(z, t)/i(z, t).

We derive the equations for the transmission line by examining a very short piece of
the line. The piece, which is shown in figure 3.11, is short enough to be a discrete circuit.

The Kirchhoff’s voltage law for the loop 1 → 2 → 3 → 4 and the Kirchhoff’s current
law for the node A give the transmission line equations

v(z, t) = Rdz i(z, t) + Ldz
∂i(z, t)

∂t
+ v(z + dz, t)

i(z, t) = Gdz v(z, t) + C dz
∂v(z, t)

∂t
+ i(z + dz, t)

We divide by dz and let dz→ 0 to get

−∂v(z, t)

∂z
= Ri(z, t) + L

∂i(z, t)

∂t
(3.5)

−∂i(z, t)
∂z

= Gv(z, t) + C
∂v(z, t)

∂t
(3.6)

We eliminate the current by operating with ∂
∂z on (3.5) and with R + L ∂

∂t on (3.6). We
combine the two equations to get the scalar wave equation for the voltage

∂2v(z, t)

∂z2
− LC∂

2v(z, t)

∂t2
− (LG+RC)

∂v(z, t)

∂t
−RGv(z, t) = 0 (3.7)

Also the current i(z, t) satisfies this equation.
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v v

v+(z − vt) v−(z + vt)

Figure 3.12: Wave propagation of pulses

3.3.2 Wave propagation in the time domain

For simplicity we start with a lossless transmission line. That means that both R and G
are zero and the transmission line equations read

− ∂v(z, t)

∂z
= L

∂i(z, t)

∂t
(3.8)

− ∂i(z, t)

∂z
= C

∂v(z, t)

∂t
(3.9)

∂2v(z, t)

∂z2
− LC∂

2v(z, t)

∂t2
= 0 (3.10)

The general solution to this equation is

v(z, t) = f(z − vpt) + g(z + vpt)

where

vp =
1√
LC

is the phase speed. To verify the solution we make the substitution of variables

ξ = z − vpt

η = z + vpt

that transforms the wave equation (3.10) to the equation

∂2v

∂η∂ξ
= 0 ⇒ ∂v

∂ξ
= f1(ξ) ⇒ v =

∫
f1(ξ) dξ + g(η) = f(ξ) + g(η)

The function f(z − vpt) has constant argument when z = vpt + konstant. That means
that f(z − vpt) is a wave that propagates with the speed vp = 1/

√
LC in the positive

z−direction, see figure 3.12. In the same way we can argue that g(z + vpt) is a wave
that propagates with speed vp in the negative z−direction. We indicate the direction of
propagation by writing the solution as

v(z, t) = v+(z − vpt) + v−(z + vpt) (3.11)

The shape of v+ and v− are determined by the sources and load impedances of the
transmission line. We get the currents corresponding to v+ and v− by inserting (3.11)
into (3.8) or (3.9)

i(z, t) = i+(z − vpt) + i−(z + vpt)
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where
v+(z − vpt)

i+(z − vpt
= −v

−(z + vpt)

i−(z + vpt)
=

√
L

C
= Z0

We have introduced the characteristic impedance of the transmission line, Z0, which
has the dimension Ω. It is important to understand that the characteristic impedance
is the quotient of the voltage and current running in the positive z−direction. It is not
the quotient of the total voltage and current. We can prove that the phase speed vp =
1/
√
LC is equal to the wave speed of electromagnetic waves in the material surrounding

the conductors, i.e., vp = 1/
√
ε0εµ0 = c/

√
ε where ε0 and µ0 are the permittivity and

permeability of vacuum, ε is the relative permittivity for the material surrounding the
conductors and c = 3 · 108 m/s is the speed of light in vacuum. We summarize the results
for wave propagation on a lossless transmission line

v(z, t) = v+(z − vpt) + v−(z + vpt)

i(z, t) = i+(z − vpt) + i−(z + vpt) =
1

Z0
(v+(z − vpt)− v−(z + vpt))

vp = 1/
√
LC, Z0 =

√
L/C

(3.12)

3.3.3 Reflection on a lossless line

We assume a lossless transmission line along 0 < z < `. It has the characteristic impedance
Z0 and is terminated by a load resistance RL at z = `. A wave vi(z, t) = v+(z − vpt) has
been generated at z = 0 and it generates a reflected wave vr(z, t) = v−(z + vpt) once it
reaches z = `. The total voltage and current on the line are

v(z, t) = vi(z, t) + vr(z, t)

i(z, t) = ii(z, t) + ir(z, t) =
1

Z0
(vi(z, t)− vr(z, t))

(3.13)

We need the boundary condition at z = `

v(`, t)

i(`, t)
= RL

We insert (3.13) into the boundary condition

Z0
vi(`, t) + vr(`, t)

vi(`, t)− vr(`, t)
= RL

which gives us the reflected wave

vr(`, t) =
RL − Z0

RL + Z0
vi(`, t)

We see that the reflected wave is just a scaled version of the incident wave. The scaling
constant is the dimensionless reflection coefficient

Γ = (RL − Z0)/(RL + Z0) (3.14)



34 Transmission lines

Example 3.1

• If RL = Z0 then Γ = 0 and vr(z, t) = 0. The load impedance is then matched to
the line. All power sent to the load is absorbed by it. In most cases we try to use
matched loads.

• If the line is open at z = ` then RL =∞. We get Γ = 1 and vr(`, t) = vi(`, t).

• If the line is shortened at z = ` then RL = 0 and we get Γ = −1 and vr(`, t) =
−vi(`, t).

Example 3.2
A dc source with open circuit voltage V0 and an inner resistance Ri = 4R is at time t = 0

t = 0

-
+

V0

ℓ0 z

Z0 R
R

=
4

connected at z = 0 to a transmission line with characteristic impedance Z0 = R. The
transmission line has the length ` and is open at z = `. We determine the total voltage
v(0, t) for t > 0 by analyzing the process in a chronological order.

t = 0+: A step pulse vi(z, t) starts to propagate along the line. The voltage at z = 0
is given by v(0, t) = vi(0, t) = Z0ii(0, t) = Ri(0, t). The line is equivalent to a
resistance R and the voltage division formula gives

v(0, t) = vi(0, t) =
R

4R+R
V0 =

1

5
V0

0 < t < `
vp

: The step with amplitude v1 = V0/5 is moving with speed vp towards z = `.

t = `
vp

: The step v1 is reflected at z = `. At z = ` the line is open. Thus Zb = Rb =
∞ and the reflection coefficient is Γ` = 1. The reflected step has the amplitude
v2 = Γ`v1 = V0/5. Still v(0, t) = v1 = V0/5 since the reflected wave has not reached
z = 0.

`
vp
< t < 2`

vp
: The step v2 is moving like a v−(z + vpt) wave towards z = 0.
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v

v( )  , 3ℓ 2v

1

5
V0

ℓ/

/

ℓ2

z

z

t = 2`
vp

: v2 is reflected at z = 0. The load impedance at z = 0 is the inner resistance 4R
and the reflection coefficient is

Γ0 =
4R−R
4R+R

=
3

5

The reflected wave is a step with amplitude v3 = Γ0v2 = 3V0/25. The total voltage
at z = 0 is

v(0, 2`/v+
p ) = v1 + v2 + v3 = V0/5 + V0/5 + 3V0/25 = 13V0/25

t > 2`
vp

: The reflections continue. After infinite time the voltage at z = 0 is a geometrical
series

v(0,∞) = v1 + v2 + v3 · · · =
2V0

5

∞∑

k=0

(
3

5

)k
=

2V0

5

1

1− 3/5
= V0

This does not surprise us since after long time the circuit is a dc circuit. The time
evolution of the voltage is very rapid since the travel time `/vp is very short.

3.4 Transmission lines in frequency domain

We now turn to time harmonic signals. The voltages are generated by a time harmonic
source that was switched on early enough such that all transients have disappeared. The
incident and reflected sinusiodal waves form a standing wave pattern along the line. We
transform the voltages and currents to the frequency domain by the jω method. In the
frequency domain the complex voltage V (z) and current I(z) satisfy the frequency domain
versions of the transmission line equations, c.f., (3.5) and (3.6)

− dV (z)

dz
= (R+ jωL)I(z)

− dI(z)

dz
= (G+ jωC)V (z)

(3.15)

We first consider the lossless case R = 0, G = 0. By differentiating the upper equation
w.r.t. z and using the lower equation we get

d2V (z)

dz2
+ β2V (z) = 0
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Figure 3.13: The input impedance Z(0).

where β = ω
√
LC = ω/vp is the phase coefficient. The equation has the two independent

solutions
V (z) = V +(z) + V −(z) = Vpe

−jβz + Vne
jβz (3.16)

In general Vp = |Vp|ejφp and Vn = |Vn|ejφn . The time dependent voltage is given by

v(z, t) = Re
{
V (z)ejωt

}
= v+(z, t) + v−(z, t)

= |Vp| cos(ωt− βz + φp) + |Vn| cos(ωt+ βz + φn)

Since ωt − βz = ω(t − z/vp) we see that v+(z, t) is a wave propagating in the positive
z−direction with speed v. In the same manner v−(z, t) is a wave propagating in the
negative z−direction with speed vp. The wavelength for the time harmonic waves is the
shortest length λ > 0 for which v+(z, t) = v+(z + λ, t) for all t. That gives βλ = 2π or

λ = 2π/β = 2πvp/ω = vp/f

The complex current satisfies the same equation as V (z) and hence

I(z) = I+(z) + I−(z) = Ipe
−jβz + Ine

jβz (3.17)

We insert (3.16) and (3.17) in (3.15) and get

V +(z)

I+(z)
= −V

−(z)

I−(z)
= Z0

where Z0 =
√
L/C is the characteristic impedance of the transmission line, c.f., (3.12).

3.4.1 Input impedance

We assume a lossless line with length ` and characteristic impedance Z0 with a load
impedance ZL at z = `. The line and load are equivalent to an input impedance Z(0) at
` = 0 where

Z(0) =
V (0)

I(0)
= Z0

Vp + Vn
Vp − Vn

= Z0
1 + Vn/Vp
1− Vn/Vp

(3.18)

To get the quotient Vn/Vp we use the boundary condition at z = `

ZL =
V (`)

I(`)
= Z0

Vpe
−jβ` + Vne

jβ`

Vpe−jβ` − Vnejβ`

We get
Vn
Vp

=
ZL − Z0

ZL + Z0
e−2jβ`
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and insert this into (3.18)

Z(0) = Z0
(ZL + Z0)ejβ` + (ZL − Z0)e−jβ`

(ZL + Z0)ejβ` − (ZL − Z0)e−jβ`

= Z0
ZL cos(β`) + jZ0 sin(β`)

Z0 cos(β`) + jZL sin(β`)

(3.19)

This is the complex input impedance in the frequency domain. Circuit theory would give
Z(0) = ZL which in many cases is completely wrong, as will be seen from the examples
below.

We see that at the load, z = `, the reflection coefficient in the frequency domain is in
accordance with the corresponding coefficient in time domain, c.f., (3.14)

Γ =
V −(`)

V +(`)
=
ZL − Z0

ZL + Z0

At a position z < ` the reflection coefficient gets a phase shift of 2β(`− z), i.e.,

V −(z)

V +(z)
= Γe−2jβ(`−z) =

ZL − Z0

ZL + Z0
e−2jβ(`−z)

Example 3.3
Matched line: If ZL = Z0 then Γ = 0 and Z(0) = Z0 regardless of the length of the
line and there are no waves propagating in the negative z−direction. We say that the
impedance is matched to the line.

Example 3.4
Shortened and open lines: An open line at z = ` has ZL =∞ and a shortened line at
z = ` has ZL = 0. The corresponding input impedances are

ZL =∞ ⇒ Z(0) = −jZ0 cotβ` (3.20)

ZL = 0 ⇒ Z(0) = jZ0 tanβ` (3.21)

The input impedance is purely reactive in both cases. This is expected since there is no
dissipation of power in the line or in the load.

Example 3.5
Quarter wave transformer: When the length of the line is a quarter of a wavelength
long, ` = λ/4, then β` = π/2 and

Z(0) =
Z2

0

ZL
(3.22)

When ZL = ∞ then Z(0) = 0 and when ZL = 0 then Z(0) = ∞, which is opposite of
what circuit theory predicts.

Example 3.6
Matching a load by λ/4 transformer: Assume that we like to match a resistive load
RL to a lossless line with characteristic impedance Z1. This is done by using a quarter
wave transformer with characteristic impedance Z0 =

√
Z1RL.
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3.4.2 Standing wave ratio

At high frequencies it is difficult to determine the load impedance and the characteristic
impedance by direct measurements. A convenient method to obtain these quantities is to
measure the standing wave ratio (SWR). We then measure the amplitude, |V (z)|, along
the line with an instrument that can register the rms voltages.

The standing wave ratio is the quotient between the largest and smallest value of |V (z)|
along the line

SWR =
|V (z)|max

|V (z)|min

When the waves Vpe
−jβz and Vne

jβz are in phase we get the maximum voltage and when
they are out of phase we get the minimum voltage. Thus

SWR =
|Vp|+ |Vn|
|Vp| − |Vn|

=
1 + |Γ|
1− |Γ|

|Γ| = SWR− 1

SWR + 1

|Γ| = |Vn||Vp|
=

∣∣∣∣
ZL − Z0

ZL + Z0

∣∣∣∣

The distance ∆z between two maxima is determined by

e2jβ∆z = ej2π, β∆z = π

and hence ∆z = λ/2.

3.4.3 Waves on lossy transmission lines in the frequency
domain

When R > 0 and G > 0 the transmission line is lossy and some of the power we transport
along the line is transformed to heat in the wires and in the material between the wires.
Due to these power losses the waves are attenuated and decay exponentially along the
direction of propagation. The losses are assumed to be quite small such that R� ωL and
G� 1/(ωC).

From the general transmission line equations (3.15) we derive the equation for the
voltage

d2V (z)

dz2
− γ2V (z) = 0 (3.23)

where
γ =

√
(R+ jωL)(G+ jωC) = propagation constant. (3.24)

The general solution to (3.23) is

V (z) = Vpe
−γz + Vne

γz

The corresponding current is

I(z) = Ipe
−γz + Ine

γz =
1

Z0
(Vpe

−γz − Vneγz)
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where

Z0 =

√
R+ jωL

G+ jωC
(3.25)

is the characteristic impedance. We can decompose the propagation constant in its real
and imaginary parts

γ = α+ jβ

where α =attenuation constant and β =phase constant. With cosωt as phase reference
the time domain expressions for a time harmonic wave are

v(z, t) = Re
{
V (z)ejωt

}
= |Vp|e−αz cos(ωt− βz + φp) + |Vn|eαz cos(ωt+ βz + φn)

where Vp = |Vp|ejφp and Vn = |Vn|ejφn . Also in this case we can define a wave speed. In
order to have a constant argument in cos(ωt− βz+φp) we must have z = ωt/β+constant
and this leads us to the definition of the phase speed

vp =
ω

β

If we have a line with length ` and characteristic impedance Z0, that is terminated by
a load impedance ZL, the input impedance is

Z(0) = Z0
ZL cosh γ`+ Z0 sinh γ`

ZL sinh γ`+ Z0 cosh γ`

The derivation is almost identical to the one for the lossless line.

3.4.4 Distortion free lines

When we have losses the phase speed, attenuation constant and the characteristic impedance
are all frequency dependent. If we send a pulse along such a transmission line the shape of
the pulse changes. We say that the pulse gets distorted when it propagates. The distor-
tion of pulses is a serious problem in all communication systems based on guided waves.
Luckily enough we can get rid of the distortion if we can adjust L or C such that

R

L
=
G

C

Then
γ =
√
LC
√

(R/L+ jω)(G/C + jω) =
√
RG+ jω

√
LC

and we get a line that is distortion free since the attenuation α =
√
RG and the phase

speed vp = ω/β = 1/
√
LC are frequency independent. The characteristic impedance of

a distortion free line is the same as for a lossless line, i.e., Z0 =
√
L/C. If we send a

pulse along a distortion free line the amplitude of the pulse decreases exponentially with
distance but its shape is unaffected.

Historical notes on distortion free lines

In the early times of telephone communication, distortion was a big problem. One could
only transmit speech over short distances otherwise it would be too distorted. Also in
telegraphy, where the Morse code was usually used, the transmission speed was limited by
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the distorsion. It was Oliver Heaviside that realised that if one increases the inductance
of the telephone lines the distortion is reduced. He wrote a paper on this in 1887 but
the telegraphic companies ignored his results. It took some years before the american
company AT&T rediscovered Heaviside’s work and added inductances to their telephone
lines. The inductance were coils that were placed with some distance apart along the lines.
These coils are called Pupin coils due to their inventor M. I. Pupin. Today we often use
optical fibers rather than copper wires for communication. In optical fibers distortion is
also a major problem. It causes pulses to be broader when they propagate and this limits
the bit rate of the cable.

The first atlantic cable for telegraphy was laid in 1858. After a month of operation
the operator tried to increase the transmission speed by increasing the voltage. The cable
was overheated and destroyed. In 1865 and 1866 two, more successful, cables were laid.
The transmission rate was very limited for these early cables. The main reason was the
resistance of the cables. The cable had only one wire since they used the sea water as the
other conductor. The wire was made of copper and had a radius of approximately 1.6 mm.
It was surrounded by an insulating cover. The total radius of the cable was 15 mm. Based
on the parameters that is known for the cable we can estimate the line parameters to be
R = 2.2 · 10−3 Ω/m, L = 0.4 µH/m, C = 80 pF/m and G = 10−13 (Ωm−1. With these
parameters it is seen that the attenuation of a received signal increases exponentially with
frequency. Already at 5 Hz the signal is attenuated 60 dB. Only the very low frequencies
of the signal are transmitted and at such low frequencies G � ωC and R � ωL. The
voltage then satisfies the equation

∂2v(z, t)

∂z2
= RC

∂v(z, t)

∂t

This is the diffusion equation. Assume that we apply a voltage at z = 0 that is a step
function in time v(0, t) = V0H(t), where H(t) is the Heaviside step function and let
v(z, 0) = 0 for z > 0. The solution to this problem is well-known

v(z, t) = V0

∫ t

0
z

√
RC

4π(t− s)3
exp

(
− z2RC

4(t− s)

)
ds

The voltage at the receiving station in America is seen in Figure 3.14 for a unit step
voltage at England. The problem for the receiver is that the current becomes very low,
only 0.1 mA for V0 = 1 V when the receiver is a shortage. Hence the signal is hard to
detect unless the voltage at the transmitter is high. The communication speed was eight
words per minute using Morse code which corresponds to approximately less than one sign
per second.

3.5 Wave propagation in terms of E and H

We have described the wave propagation in terms of voltage and current. We may treat
the wave propagation in terms of the electromagnetic fields instead. In most cases the
analysis is then more complicated since we have to use the vector fields E and H instead
of the scalar quantities v and i. Another drawback is that it is hard to link the analysis to
circuit theory concepts. Despite of this, it is of interest to analyze the wave propagation
in terms of the electromagnetic fields. As we will see, there are cases where we are forced
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Figure 3.14: The received voltage v(D, t) for a unit step voltage v(0, t) = H(t) V, where

D = 4300 km is the length of the Atlantic cable. The line parameters are R = 2.2 · 10−3

Ω/m, L = 0.4 µH/m, C = 80 pF/m and G = 10−13 (Ωm)−1.

to use electromagnetic theory. We first consider transmission lines for which the material
between the conductors is homogenous. We also assume that the resistance per unit length
is very small. The propagating wave is a transverse electromagnetic (TEM) wave, which
means that the electric and magnetic fields lack z−component. In the frequency domain
the current, voltage and the fields must have the same propagator e±γz.

E(x, y, z) = ET (x, y)e±γz

H(x, y, z) = HT (x, y)e±γz
(3.26)

From the z−component of the induction law it follows that∇×ET (x, y) = 0. It then exists
a potential Ψ(x, y) such that ET (x, y) = −∇Ψ(x, y). In the region between conductors
there is no charge density and Gauss law gives 0 = ∇ · ET (x, y) = −∇2Ψ(x, y). The
Ampère’s law shows that the relations between the electric and magnetic fields are the
same as for a plane wave in free space. We conclude that the electric and magnetic fields
are obtained from the following boundary value problem

∇2Ψ(x, y) = 0, between conductors

Ψ(x, y) =

{
V1 on conductor 1

V2 on conductor 2

(3.27)
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Figure 3.15: The cross-section of two types of transmission lines. The structure to the

left is open and the structure to the right is of coaxial type where the electromagnetic

field is confined to the region between the conductors. The curves Γ1 and Γ2 define the

boundary of the conductors. The normal vectors n̂1 and n̂2 are directed out from the

conductors.

We let V = V1−V2 denote the voltage between the conductors. The electric and magnetic
fields are obtained from

E(x, y, z) = −e±γz∇Ψ(x, y)

H(x, y, z) = ±j
γ

ωµ0
ẑ ×E(x, y, z)

where the upper (lower) sign is for waves traveling in the negative (positive) z−direction.

3.6 Transmission line parameters

We first assume a transmission line with two conductors, with conductivity σc, imbedded
in a homogenous dielectric material with relative permittivity ε and conductivity σd. The
conductivity σd is assumed to satisfy σd � ωε0ε, whereas σc � ωε0. The skin depth

δ =

√
2

ωσcµ0
of the conductors is assumed to be much smaller than the diameters of

the conductors. It is sufficient to solve the static problem (3.27) to obtain all four line
parameters. We assume that conductor 1 has the larger potential, i.e., V = V1 − V2 > 0.
From Ψ(x, y) we get the charge per unit length as

ρ` =

∮

Γ1

ρs d` = −
∮

Γ2

ρs d` = −ε0ε
∮

Γ1

n̂ · ∇Ψ(x, y) d`

and the capacitance per unit length as

C =
ρ`
V

An alternative is to use the energy relation in (3.33). The inductance is obtained from the
phase speed vp = (ε0εµ0)−1/2 = (LC)−1/2

L =
1

Cv2
p

=
ε0εµ0

C
, (3.28)

where we assume that the R and G are very small. An alternative is to obtain L from
(3.33). We get the conductance from the relation

G = C
σd
ε0ε

(3.29)



Transmission line parameters 43

To obtain the resistance we first relate the surface current density to the surface charge
density ρS

JS = n̂×H = η−1n̂× (ẑ ×E) = η−1ẑ (n̂ ·E) = ẑvpρS (3.30)

where vp = 1/
√
µ0ε0ε is the phase speed and η =

√
µ0/ε0ε is the wave impedance. The

dissipated power per unit length in the conductors is

Pd =
1

2
R|I|2

We can express this power in terms of the surface currents and surface charge densities

Pd =
1

2
Rs

∮

Γ1+Γ2

|Js|2, dell =
1

2
v2

pRs

∮

Γ1+Γ2

ρ2
S d`

where RS is the surface resistance

RS =
1

σcδ
=

√
ωµ0

2σc
(3.31)

The expression for the surface resistance is derived in chapter 5. The resistance per unit
length is thus given by

R =
1

|I|2Rs
∮

Γ1+Γ2

|Js|2 d` =
1

|I|2 v
2
pRs

∮

Γ1+Γ2

ρ2
S d` (3.32)

The current is either obtained from |I| = Z−1
0 |V | = vp|ρ`|, or from integration over one of

the conductors

|I| =
∮

Γ1

|Js|d` =

∮

Γ2

|Js| d`

Example 3.7
We exemplify by considering wave propagation in the positive z−direction in a coaxial
cable. Consider a circular coaxial cable with metallic surfaces at ρ = a and ρ = b > a.
The region a < ρ < b is filled with a homogenous material with relative permittivity ε.
Due to the axial symmetry the potential only depends on the radial distance ρ and then

∇2Ψ(ρ) =
1

ρ

∂

∂ρ
ρ
∂Ψ(ρ)

∂ρ
= 0

Ψ(a) = V

Ψ(b) = 0

We let the potential be zero on the outer conductor since in most applications the outer
conductor of a coaxial cable is connected to ground. The solution is obtained by integrating
the equation two times and using the boundary condition

Ψ(ρ) = V
ln(ρ/b)

ln(a/b)

The corresponding electric and magnetic fields read

E(ρ) = −∇Ψ(ρ) = − V

ρ ln(a/b)
ρ̂

H(ρ) =
β

ωµ0
ẑ ×E(ρ) = −1

η

V

ρ ln(a/b)
φ̂
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where η =
√
µ0/ε0ε is the wave impedance of the material between the conductors. We

may also express the magnetic field in terms o the current along the inner conductor. The
Ampère’s law gives

H(ρ) =
I

2πρ
φ̂

From these expressions we get the capacitance of the coaxial cable. Since the charge per
unit length on the inner conductor is given by

ρ` =

2π∫

0

ρ̂ ·D(a)adφ = −ε0ε
2π∫

0

ρ̂ · ∇Ψ(a)a dφ = 2π
ε0εV

ln(b/a)
,

the capacitance per unit length is

C = 2π
ε0ε

ln(b/a)

We can also obtain this expression from the energy relation

1

4
C|V |2 =

1

4
ε0ε

∫∫

Ω
|E(ρ)|2 dS =

π

2
ε0ε

∫ b

a
|E(ρ)|2ρdρ

= time average of electric energy density per unit length

(3.33)

The inductance L, conductance G and resistance R follow from (3.28), (3.29) and (3.32).
The expressions are listed in subsection 3.6.1.

Example 3.8
In the determination of the line parameters we assume that Ez = 0, but this is not really
true when we have a resistance in the conductors. Due to Ohm’s law we have Ez = Jz/σc
in the conductor where Jz is the current density. Since Ez is continuous across the surface
it is not zero on the boundary, and hence not in the region between the conductors. In
this example we show that the approximation Ez = 0 is relevant for most transmission
lines.

We first observe that the surface current density on each conductor is given by (3.30)
JS = ẑvpρS . The current density J in the conductor is a function of the distance ξ to the
surface i.e., locally it can be written as J(ξ). The current density at the surface ξ = 0 is
given by1

J(0) = JS/δ = vpρS/δ

where δ =
√

2/(ωµ0σc) is the skin depth of the conductors. The relation between J(0)
and the electric field on the surface of the conductor is

Ez = J(0)/σc

The relation between the normal component of the electric field on the surface of the
conductor and the surface charge density is

En = ρs/(ε0ε)

1This will be shown in chapter 5
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Thus on the surface of the conductor the difference in magnitude between the transverse
and z−components of the electric field is

En
Ez

=

√
2σc
ε0εω

At 10 Ghz this value is on the order of 104 for a transmission line with metallic conductors.

3.6.1 Explicit expressions

For the coaxial cable, the parallel plate line, and the circular two-wire line we can determine
R, L, C and G analytically. The expressions are given below. For other types it is
often convenient to use a numerical method, eg., the finite element method to obtain the
parameters.

Coaxial cable

b

aC =
2πε0ε

ln(b/a)

L =
µ0

2π
ln
b

a

Z0 =

√
L

C
=

1

2π

√
µ0

ε0ε
ln
b

a
(lossless)

R =
RS
2π

(
1

a
+

1

b

)
whereRS = 1/(δσc) =

√
ωµ0

2σc
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Parallel plate

Notice that b� a.

a

b

b ≫ a

C =
ε0εb

a

L =
µ0a

b

Z0 =

√
L

C
=

√
µ0

ε0ε

a

b
(lossless)

R =
2RS
b

(3.34)

Two-wire line

c

a2 a2

C = πε0ε

(
ln

(
c

2a
+

√( c
2a

)2
− 1

))−1

L =
µ0

π
ln

(
c

2a
+

√( c
2a

)2
− 1

)

Z0 =

√
L

C
=

1

π

√
µ0

ε0ε
ln

(
c

2a
+

√( c
2a

)2
− 1

)
(lossless)

R =
RS
πa

c/(2a)√
(c/(2a))2 − 1

Notice that C and R for a two-wire line become infinite when c → 2a, while L and
Z0 → 0.

3.6.2 Determination of R, L, G, C with the finite element
method

When the medium surrounding the wires is homogenous it is straightforward to determine
the line parameters by numerical methods. In this book we use the commercial finite
element method program COMSOL for the numerical simulations. In COMSOL there are
two modules that we use, the ac/dc-module and the RF-module. The ac/dc-module is
used in this section. We determine the line parameters for a two wire line and indicate all
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steps that are to be done in COMSOL. The wires have radius a = 1 cm and the distance
between their axes is c = 3 cm. The surrounding medium is air.

1. Start COMSOL and choose 2D> AC/DC-module>Electrostatics>Stationary.

2. The default length unit in COMSOL is meter.

3. We must use a finite computational region and reduce the infinite region to a large
rectangle. The rectangle has to be much larger than the size of the cross section of
the wires. We first let the rectangle be a square 80× 80 cm2.

4. Next we draw the circular wires and put them in the center of the square, c.f., figure
3.16.

5. We make the domain between the large rectangle and the conductors our compu-
tational domain. In COMSOL this is done by creating the difference between the
rectangle and the conductors.

6. We let the potential be zero on the large rectangle, 0.5 V on the left conductor and
−0.5 V on the right.

7. Add air to Materials and let the computational region have air as material.

8. Start with the default mesh. Then check the result with a finer mesh to check the
accuracy. Use Mesh>size>fine to get the finer mesh.

9. We obtain ρ` by integrating the surface charge density over the surface of the
conductor with positive voltage. In COMSOL this is done by Results>Derived
results>Line integration>Surface charge density.

10. Since we have one volt between the conductors the capacitance C equals the value of
the integral. An alternative is to use the energy relation in (3.33). We then let COM-
SOL calculate the electric energy by using Results>Derived results>Surface
integral>Electric field norm. Take the square of the norm and multiply with ε0

(i.e., es.normE2 ∗ 8.854e− 12 in expression).

11. From C we get L and G from (3.28) and (3.29).

12. Finally we get the resistance by letting the FEM program numerically evaluate the
integral in (3.32).

The geometry and solution are shown in figure 3.16. COMSOL gives the value C =
2.885 · 10−11 F/m with the default mesh. A finer resolution only improves the accuracy
slightly. This is to be compared with the value obtained from the analytic expression which
gives C = 2.8901 ·10−11 F/m. The numerical value is accurate and it shows that the finite
element method is a suitable tool for this type of calculation. If we decrease the size of the
surrounding square to 20×20 cm2 we get the capacitance C = 2.95·10−11 F/m even with a
refined mesh. We see from the example that it is important to check results obtained from
COMSOL by comparing calculations with different sizes of the computational domain and
different refinements of the mesh.

Example 3.9
In this example we let COMSOL calculate the capacitance of a plate transmission line with
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Figure 3.16: The geometry and voltage for the two-wire calculation in COMSOL. The

right wire has the potential V = −0.5 V and the left the potential V = 0.5 V. The outer

square has the size 80× 80 cm2 and potential 0 V.

different values of the quotient b/a between the width b of the plates and the distance a
between the plates. The results obtained from the FEM calculations are presented in table
9. These are very accurate and we see that the error in the approximate analytic result is
not negligible unless b/a is very large.

3.6.3 Transverse inhomogeneous region

If the material between the conductors is inhomogeneous in the transverse directions we
need to modify the method above. We present an approximate method for determining
the line parameters and the propagation constant. A more accurate method is given in
Chapter 5. The two methods are compared and it is seen that the approximate method
is sufficiently accurate for most applications.

It is assumed that the medium between the wires has an xy-dependent conductivity and
permittivity. Such transmission lines are quite common in microwave circuits where micro-
strips on substrates are used. The waves are referred to as quasi TEM-waves since there are
small z−components of the electric and magnetic fields. We first neglect the z−components
and introduce a potential ψ(x, y) for the electric field as E(x, y, z) = −∇Tψ(ρ)e−γz. The
potential satisfies the equation

∇T · ε(ρ)∇Tψ(ρ) = 0 (3.35)

From this equation we obtain the capacitance and the conductance. Since the permeability
is µ = 1 everywhere, the magnetic field is very close to the magnetic field we would have
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b/a analytic FEM

5 44.2 pF 59.2 pF

10 88.5 pF 105 pF

20 177 pF 195 pF

50 442 pF 464 pF

100 885 pF 909 pF

Table 3.1: The capacitance of a parallel plate line as a function of b/a. The approximate

analytic values are from (3.34). The FEM values are from a 2D-solver and are very

accurate.

if there is vacuum between the wires. Hence we can obtain the magnetic field and the
inductance by using vacuum between the wires.

We use COMSOL to solve the problem. The line parameters are obtained from the
following steps:

• We use 2D>AC/DC module>Electric currents (ec)>Frequency domain.

• We draw the geometry of the wire. In order to have a finite computational domain
we use an outer rectangle with length much larger than the distance between the
wires and the diameter of the wires.

• We create the computational domain as the difference between the rectangle and
the wires.

• The frequency is entered in Study>Frequency domain.

• The materials in the different regions are now defined. We may either find a prede-
fined material or design our own. We design a material by Materials>+ material
and add the values of conductivity and relative permittivity for the material.

• For convenience we set the potential ψ = 0.5 V on one of the conductors and −0.5
V on the other, while the rectangle is ground. There are cases when one of the
conductors is the ground plane. Then it is convenient to let the bottom of the
rectangle be the ground plane and let the other conductor have ψ = V = 1 V.

• We use two mesh sizes, eg., fine and finer, and compare the results to check the
accuracy.

• The capacitance is obtained from the energy relation

1

4
CV 2 = WE = time average of electric energy =

1

4

∫∫

Ω
E ·D dS

where S is the computational domain and v is the voltage between the conduc-
tors. We set V = 1 V and calculate the electric energy by Results>Derived
results>Surface integral. The result is the surface charge, but also the capaci-
tance per unit length, since V = 1 V.
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• The conductance per unit length G is obtained from the energy relation

1

2
GV 2 = Pσ = active Ohmic power loss =

1

2

∫∫

Ω

|J(ρ)|2
σ(ρ)

dS

We let COMSOL calculate Pσ from Results>Derived results>Surface integral>
Resistive losses (or Total power dissipation density or Electromagnetic
power loss density). We now have both C and G and turn to L.

• We change the subdomain settings such that there is air in all regions in the com-
putational domain, but keep the voltages. We solve the problem and calculate the
capacitance in the same manner as above. Since there is vacuum between the wires
we use the relation c0 = 1/

√
LC to get L, the inductance per unit length. Here c0

is the speed of light in vacuum.

• The resistance per unit length R is obtained from the vacuum calculation in the
following manner: The surface resistance of each conductor is Rs =

√
ωµ0/(2σc),

where σc is the conductivity of the conductor. The resistance of each conductor is
obtained from

Rk =
RS
∮

Γk
|JS · ẑ|2 d`

(
∮

Γk
JS · ẑ d`)2

=
c2

0RS
∮

Γk
(ρS)2 d`

(
c0

∮
Γk
ρS d`

)2 = RS

∮
Γk

(ρS)2 d`
(∮

Γk
ρS d`

)2 , k = 1, 2

where we have used Js · ẑ = |H| = η−1
0 |E| = c0ρS . The derivation of these relations

is given in Chapter 5. The resistance R is the sum of the resistances of the two
conductors, R = R1 +R2. The two integrals are evaluated by using the line integral
of the normal component of the displacement field and the line integral of the square
of the normal component of the displacement field, respectively.

• The propagation constant is calculated from γ =
√

(R+ jωL)(G+ jωC) and the
characteristic impedance from Z =

√
(R+ jωL)/(G+ jωC).

Example 3.10

We consider a microstrip on a substrate. The substrate thickness is 0.5 mm, the
permittivity is ε = 4 and the conductivity is σ = 0.01 S/m. The width of the strip is 3
mm and the thickness 0.1 mm. The material in the strip is copper with conductivity σc =
5.998 · 107 S/m. We use the methods described above to determine the line parameters,
and from them the characteristic impedance and the propagation constant. The frequency
is f = 100 MHz.

We choose the size 60 mm x 50 mm for the outer rectangle. The bottom side of
the rectangle is the ground plane. The voltage of the microstrip is set to one volt in
the computations. We first determine the inductance per unit length by solving Laplace
equation when the substrate is replaced by vacuum. We let the microstrip have potential
one volt and the other surfaces be ground. That gives the time average of the electric
energy per unit length We = 1.993 · 10−11 N, which corresponds to the capacitance C0 =
4We/1

2 = 79.72 pF/m and the distributed inductance L = 1/(c2
0C0) = 139.5 nH/m. We

then do the quasi-static calculation with the substrate. Again we use the potential of one
volt on the microstrip and let the other surfaces be ground. The electric energy per unit
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Figure 3.17: The voltage contour lines for the microstrip with substrate σ = 0.01

S/m and ε = 4. Notice the discontinuity in the tangent of the lines at the surface of the

substrate.

Figure 3.18: The voltage contour lines for the microstrip with vacuum substrate σ = 0

S/m and ε = 1. The voltage contour lines are identical with the magnetic field lines.

length is in this case We = 6.638 · 10−11 N, corresponding to C = 4We/1
2 = 265.5 pF/m.

The time average of the Ohmic losses in the substrate is Pσ = 0.03471 W/m and this gives
the conductance per unit length G = 2Pσ/1

2 = 0.0694 S/m.
The surface resistance is Rs =

√
ωµ0/(2σc) = 0.00256 Ω. The resistance of the line is

obtained from the calculation where the substrate is replaced by vacuum. Then

R =
RS
∮
|JS · ẑ|2 d`

(
∮
JS · ẑ d`)2

=
c2

0RS
∮

Γ(ρS)2 d`
(
c0

∮
Γ ρS d`

)2 = RS

∮
Γ(ρS)2 d`
(∮

Γ ρS d`
)2

where we have used Js · ẑ = |H| = η−1
0 |E| = c0ρS . This gives R = 0.601 Ω/m. We can

now calculate the propagation constant

γ =
√

(R+ jωL)(G+ jωC) = 0.7927 + j3.90 m−1 (3.36)

If we use the more accurate method presented in Chapter 5 we get γ = 0.791 + j3.908.
This indicates that the method presented here is accurate for microstrip problems. The
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Figure 3.19: A flow diagram of the scattering matrix. The incident waves V +
1 and V +

2

are assumed to travel in the positive z−direction and hence two coordinate systems are

used.

resistance is very small and can be neglected in the calculation of γ. If high accuracy is
needed then the method in Chapter 5 is recommended.

3.7 The scattering matrix S

The scattering matrix for a two-port is a very important quantity for measurements at high
frequencies. It relates the voltages of a two-port. The voltages are decomposed into waves
traveling to the ports and the waves traveling from the ports. When the characteristic
impedances of the transmission lines at the two-ports are the same, the S-matrix is defined
by (

V −1
V −2

)
=

(
S11 S12

S21 S22

)(
V +

1

V +
2

)
= [S]

(
V +

1

V +
2

)
(3.37)

where superindex + indicates that the wave travels towards the two-port and − that it
travels from the two-port. Then S11 and S22 are the reflection coefficients at port 1 and
2, respectively, and the element S21 is the transmission coefficients from port 1 to port 2,
and vice versa for S12.

The transmitted power from an incident wave at port one to port two and the reflected
power at port one are given by

Pt = |S21|2Pi
Pr = |S11|2Pi

(3.38)

3.7.1 S-matrix when the characteristic impedance is not the
same

Now assume a two-port where the transmission line connected to port 1 has characteristic
impedance Z1 and the transmission line that is connected to port 2 has characteristic
impedance Z2. We like to keep the expressions for the transmitted and reflected powers
in (3.38) and for this reason we need to alter the definition of S21 and S12

S21 =
V +

2

V +
1

√
Z1

Z2

S12 =
V +

1

V +
2

√
Z2

Z1

(3.39)
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The definitions of S11 and S22 are the same as in (3.37) and the expressions for the powers
in (3.38) still hold.

3.7.2 Relation between S and Z

There is a relation between the scattering matrix and the impedance matrix. We let the
two transmission lines that are connected to the two ports have the same characteristic
impedance Z0. We let [U ] denote the 2 by 2 unit matrix and utilize that

V = V + + V − = ([U ] + [S])V +

I = I+ + I− =
1

Z0
(V + − V −) =

1

Z0
([U ]− [S])V +

Since V = [Z]I we get
1

Z0
[Z]([U ]− [S]) = [U ] + [S]

and

[Z] = Z0([U ] + [S])([U ]− [S])−1

[S] = (Z0[U ] + [Z])−1([Z]− Z0[U ])

The impedance matrix for a reciprocal two-port is symmetric and that means that also
the corresponding scattering matrix is symmetric. A lossless two-port satisfies

Re{V tI∗} =
1

Z0
Re{(V + + V −)t(V + − V −)∗}

=
1

Z0
Re{V +tV +∗ + V −tV +∗ − V +tV −∗ − V −tV −∗} = 0

Since V −tV +∗ − V +tV −∗ is purely imaginary and V +tV +∗ − V −tV −∗ purely real we get

V +tV +∗ − V −tV −∗ = V +t([U ]− [S]t[S]∗)V +∗ = 0

This is valid for all input signals V + and then [S] satisfies

[S]t[S]∗ = [U ]

We see that the scattering matrix of a lossless two-port is a unitary matrix and hence its
inverse is equal to its Hermite conjugate

[S]−1 = [S]∗t

If we use the tables in subsection 3.2.5 we can relate the S-matrix to the hybrid and
cascade matrices. The S-matrix can be obtained from measurements.

3.7.3 Matching of load impedances

When a load is impedance matched to a transmission line, the transmission of the signal
is optimized in some sense, often w.r.t. the transmitted power. If the signal is a single
frequency then there are many ways to obtain an exact match. If the signal contains a
band of frequencies and if the load is frequency dependent it is mostly not possible to
match the load exactly in the whole frequency band. Instead we try to find an optimal
matching.



54 Transmission lines

jB jB

jX jX

ZL ZL

Figure 3.20: Two-ports for matching of ZL.

Conjugate matching

In circuit theory we know that we maximize the power from a source with inner impedance
Zi by choosing the load impedance equal to the complex conjugate of the inner impedance,
i.e., ZL = Z∗i . In many cases we have a given load impedance ZL. In order to get maximum
power to the load we have to use a lossless matching circuit.

Matching a load to a transmission line

A load impedance ZL is impedance matched to a transmission line with characteristic
impedance Z0 only if ZL = Z0. Otherwise power is reflected at the load. We can match a
load to a line by adding reactive components. It is quite easy to match a load at a single
frequency. We have already seen that the resistive load impedance can be matched to a
transmission line with a characteristic impedance Z0 by using quarter wave transmission
line with characteristic impedance, c.f., (3.22)

Z1 =
Z2

0

ZL

If the load has a reactance X we can get rid of the reactance by first adding a reactance
−X in series, or a susceptance B = −X/

√
R2 +X2 in parallel with ZL, before we add

the quarter wave transformer. Below we present two other methods that can be used.
All three methods described here manage to match the impedance at one frequency. It is
more difficult to get an impedance match for a band of frequencies and we do not discuss
that in detail here.

Two-port matching

We can match the impedance ZL to a characteristic impedance Z0 by adding a capacitance
and an inductance. The two possible matching two-ports are depicted in figure 3.20

For the two-port to the left we get

Z0 = jX +
1

jB + (GL + jBL)
(3.40)

and for the two-port to the right we get

1

Z0
= jB +

1

jX +RL + jXL
(3.41)
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where ZL = RL+jXL and YL = GL+jBL. We assume that the transmission line is lossless,
i.e., Z0 is real. By identifying the real and imaginary parts in the two expressions we can
solve for X and B. The upper equation gives

X = ±Z0

√
1− Z0GL
Z0GL

B = ±
√
GL(1− Z0GL)

Z0
−BL

We see that we must have Z0GL ≤ 1, i.e., RL + X2
L/RL ≥ Z0 to satisfy the relations.

This is satisfied if RL ≥ Z0. Equation (3.41) gives

X = ±
√
RL(Z0 −RL)−XL

B = ±
√

(Z0 −RL)/RL
Z0

This requires that RL ≤ Z0. Evidently we should use the two-port to the left when
RL ≥ Z0 and the two-port to the right when RL ≤ Z0.

Example 3.11
Apparently we have two choices when RL = Z0. If we use the left circuit we see that
X = 0 and B = −BL and if we choose the right circuit we get B = 0 and X = −XL.

3.7.4 Matching with stub

A short transmission line is sometimes called a stub. We can match the impedance ZL to
a characteristic impedance Z0 by adding a shortened stub with length ` and characteristic
impedance Z0 at a distance d from the load. We can either connect the stub in series or in
parallel. We have the two parameters d and ` to play with and that is enough to achieve
impedance match.

The input impedance of the stub is purely reactive and is given by

Zst = jZ0 tanβ`

The input impedance of the transmission line at the distance d from the load is

Zin = Z0
ZL cos(βd) + jZ0 sin(βd)

Z0 cos(βd) + jZL sin(βd)

We first connect the stub in parallel with the load. We get impedance match when

1

Z0
=

1

Zstub
+

1

Zin

This gives

1 = − j

tanβ`
+

1 + jzL tanβd

zL + j tanβd
(3.42)

The real part of the equation gives the expression for d

tanβd =
xL ±

√
rL((rL − 1)2 + x2

L)

rL − 1
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We pick the smallest d that satisfies this equation. We then get ` from the imaginary part
of (3.42)

tanβ` =
r2
L + (xL + tanβd)2

r2
L tanβd− (1− xL tanβd)(xL + tanβd)

This equation has infinitely many solutions and we pick the smallest positive solution. If
ZL is purely resistive the expression is simplified.

The other alternative is to connect the stub in series which gives

Z0 = Zstub + Zin

from which ` and d are solved.

3.8 Smith chart

The Smith chart was first constructed in 1939 by P. H. Smith, a researcher at Bell Tele-
phone Laboratories. It is still a useful tool in microwave technique. Many measurement
instruments for microwaves, eg., the network analyzer, can display the frequency depen-
dence of the input impedance of a device in a Smith chart. The Smith chart graph contains
almost all information about the device. The Smith chart is also an important tool for
matching loads to a transmission lines with known characteristic impedance. In this sub-
section we give a short introduction to the Smith chart and give some examples on how
it can be used.

We assume a lossless transmission line with characteristic impedance Z0 and load
impedance Z. The reflection coefficient at the load is given by

Γ =
V −(`)

V +(`)
=
Vn
Vp
e2jβ` =

Z − Z0

Z + Z0
=
z − 1

z + 1
(3.43)

where we introduced the normalized impedance z = Z/Z0. We now express z as a function
of Γ

z =
1 + Γ

1− Γ
(3.44)

The relation in (3.43) is a so called Möbius transformation from the complex plane z =
r + jx to the complex plane Γ = Γr + jΓi. The inverse transformation is given by (3.44)
and is a Möbius transformation from the Γ-plane to the z−plane. One can show that all
Möbius transformations are conformal, i.e., they preserve angles. That means that if two
lines cross each other at an angle α in the z−plane, then the images of the lines in the γ-
plane cross each other at the same angle. The Möbius transformation maps a generalized
circle in the z−plane to a generalized circle in the γ-plane, and vice versa. A generalized
circle is a circle or a straight line. The mapping from the z−plane to the Γ−plane implies:

• A passive load, i.e., a load impedance z = r + jx with r ≥ 0, is mapped on a point
inside the circle |Γ| ≤ 1. Load impedances with |z| = ∞ are mapped to the point
Γ = 1.

• The imaginary axis, z = jx, is mapped to a circle |Γ| = |jx− 1|/|jx+ 1| = 1. Loads
z = ±j∞ are mapped on Γ = 1 and z = 0 is mapped on Γ = −1.

• The line z = r + jx, −∞ < x < ∞ is mapped on a circle that goes through the
points Γ = 1 and Γ = (r − 1)/(r + 1) and has its centre on the real axis.
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Figure 3.21: The Smith chart for the impedance z. When the admittance y is displayed

x is exchanged for b and r for g.

• The positive real axis z = r, r ≥ 0 is mapped on the line Γ = Γr, −1 ≤ Γr ≤ 1.

• The line z = r + jx, 0 ≤ r < ∞ is mapped on the circle segment from the point
Γ = (jx−1)/(jx+1) = exp(j(π−2 arctanx)) to the point Γ = 1. The circle segment
is perpendicular to the circle Γ = 1.

• An inductive load, i.e., a load impedance z with x > 0, is mapped on a point with
Γi > 0.

• A capacitive load, i.e., a load impedance z with x < 0, is mapped on a point with
Γi < 0.

• If an impedance z is mapped on the point Γ then z∗ is mapped on Γ∗.

When we draw the mapping of the straight lines z = r + jx, −∞ < x < ∞ and
z = r+ jx, 0 ≤ r <∞ in the Γ−plane we get the Smith-chart. Some important properties
of the Smith chart are:

1. A matched impedance load has Z = Z0, i.e., z = 1, and is mapped on Γ = 0.

2. If the reflection coefficient at the load, i.e., at z = `, is Γ(`) = Γ0 then at a point
z0 < ` it is

Γ(z0) = Γ0e
−2jβ(`−z0)

Hence we move clock wise an angle 2β(`− z0) = 4π(`− z0)/λ along the circle with
radius |Γ0| in the Smith chart when the distance to the load increases by a distance
(`− z0).

3. When we move quarter of a wavelength, (` − z0) = λ/4, towards the generator we
rotate an angle 2βλ/4 = π clock wise. Hence the reflection coefficient changes sign,
Γ(`− λ/4) = −Γ0.
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4. The admittance y = 1/z is on the same circle with radius |Γ| as z but at the point
rotated 180◦ around Γ = 0. Then the values x and r in the Smith chart should be
read as the normalized susceptance b and the normalized conductance g.

3.8.1 Matching a load by using the Smith chart

If we only are interested to match an impedance ZL = RL + jXL to a transmission line
with characteristic impedance Z0 for a specified frequency, the Smith chart is an efficient
and fast tool. We can do it in a large number of ways. The matching can be seen as a
game where the goal is to obtain an input impedance Zin = Z0. We start at the position
zL = ZL/Z0 in the Smith chart and try to reach zin = 1. The rules for this game are as
follows:

1. We are allowed to rotate clockwise on a circle with center at Γ = 0. An angle
φ of clockwise rotation is related to a translation ∆z towards the generator as
φ = 2β∆z = 4π∆z/λ.

2. We may move along curves with r constant in the z−diagram and curves with g
constant in the y−diagram. A move along a curve where r is constant corresponds
to adding a reactance x in series with the current input impedance and a move along
a curve with g constant corresponds to adding a susceptance b in parallel with the
current input impedance.

We cannot add resistors or conductors since they consume power.

3.8.2 Frequency sweep in the Smith chart

Assume an input impedance Zin(f) that is a complex function of the frequency f . When
Zin(f) is plotted as a function of frequency in the Smith chart the graph contains all
information that is needed.

3.9 z−dependent parameters

We now consider a transmission line where the line parameters depend on z. We still
let the line occupy the distance 0 < z < `. By solving a system of first order ordinary
differential equations we can determine the cascade matrix [K]. We start with the line
equations

d

dz

(
V (z)
I(z)

)
= −

(
0 R(z) + jωL(z)

G(z) + jωC(z) 0

)(
V (z)
I(z)

)
= −[D(z)]

(
V (z)
I(z)

)
(3.45)

The cascade matrix from 0 to z is given by
(
V (0)
I(0)

)
= [K(z)]

(
V (z)
I(z)

)
(3.46)

We notice that this is in accordance with (3.4), since the current I(z) is directed outwards
at the positive pole. We know that the boundary condition for the cascade matrix is
[K(0)] = [U ]. If we differentiate (3.46) wrt z we get

(
0
0

)
= [K ′(z)]

(
V (z)
I(z)

)
+ [K(z)]

d

dz

(
V (z)
I(z)

)
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We insert (3.45) to get the equation for the cascade matrix

[K ′(z)] = [K(z)][D(z)] (3.47)

If the matrix [D(z)] commute with [D(z′], i.e., if [D(z)][D(z′)] = [D(z′)][D(z)], then the
formal solution reads

[K(z)] = e
∫ z
0 [D(z′)]dz′

The exponential function of a matrix is defined by the Maclaurin expansion

e[A] =

∞∑

n=0

1

n!
[A]n

where [A]0 = [U ] is the identity matrix. There are many ways to calculate the exponent
of a matrix. One way is to use the Caley-Hamilton theorem, see example.

Example 3.12
For a line 0 ≤ z ≤ ` with constant material parameters the matrix [D] is constant. The
cascade matrix is then given by

[K(z)] = e[D]z

Example 3.13
Caley-Hamilton theorem: The Caley-Hamilton theorem says that every square matrix
satisfies its own characteristic equation. We first prove the theorem and then use it to
determine the exponential function of a square matrix.

The characteristic equations shows up when we determine the eigenvalues of a matrix.
If [A] is a n× n matrix the eigenvalues λ and eigenvectors b are determined by

[A]b = λb ⇒ ([A]− λ[U ])b = 0

In order to have non-trivial solutions the determinant of [A]− λ[U ] must be zero

det([A]− λ[U ]) = 0

That leads to the polynomial equation of grade n for λ

anλ
n + an−1λ

n−1 + . . . a0 = 0

If all solutions λk, k = 1, . . . n, to this equation are distinct we can prove the Caley-
Hamilton theorem. Let bk be the eigenvector corresponding to the eigenvalue λk. We can
write the characteristic equation as

Char(λ) =
n∏

k=1

(λ− λk) = 0

Now form

Char([A]) =
n∏

k=1

([A]− λk[U ])
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Then for 1 ≤ p ≤ n

Char([A])bp =
n∏

k=1

([A]− λk[U ])bp = [0]

since the factor number p in the product gives zero. Hence Char([A])b = 0 for every b that
is a linear combination of eigenvectors. Since the eigenvectors are linearly independent it
follows that Char([A]) = [0] and the theorem is proven.

We use the theorem to write e[A] as a polynomial of finite grade of [A]. Every polyno-
mial f(λ) can be decomposed as:

f(λ) = Char(λ)q(λ) + p(λ)

where q(λ) and p(λ) are polynomials and where p(λ) is a polynomial with grade less than
n. If we make this decomposition for the exponential function we see that

e[A] = Char([A])q([A]) + p([A]) = p([A])

It is now sufficient to determine the polynomial p of grade less than n to determine e[A].
The polynomial p is determined by

eλk = p(λk) = p0 + p1λk + . . . pn−1λ
n−1
k , k = 1, 2 . . . n

This is a system of equations with n equations and n unknowns.

3.9.1 Solution based on propagators

We again consider an inhomogeneous transmission line on the section 0 < z < `. At z = 0
our line is connected to a homogeneous line z < 0 with characteristic impedance Z0. At
z = ` we have connected a load impedance Zb. The inhomogeneous line is excited by an
incident voltage wave V +(0). For 0 < z < ` we define V ±(z) by

(
V +(z)
V −(z)

)
=

1

2

(
1 Z(z)
1 −Z(z)

)(
V (z)
I(z)

)
= [A]

(
V (z)
I(z)

)

We introduce the propagators g±(z) such that
(
V +(z)
V −(z)

)
=

(
g+(z)
g−(z)

)
V +(0) (3.48)

This relation is differentiated w.r.t. z

d

dz

(
V +(z)
V −(z)

)
=

d

dz

(
g+(z)
g−(z)

)
V +(0)

and then we utilize (3.45) and (3.48) and obtain

−[P (z)]

(
g+(z)
g−(z)

)
V +(0) =

d

dz

(
g+(z)
g−(z)

)
V +(0)

where [P (z)] = [A(z)][D(z)][A(z)]−1 − d[A(z)]

dz
[A(z)]−1. Thus the propagators satisfy the

same equations as V ±(z)

d

dz

(
g+(z)
g−(z)

)
= −[P (z)]

(
g+(z)
g−(z)

)
(3.49)

The boundary conditions for g±(z) are g+(0) = 1 and g−(`) = Γ(`)g+(`) = Zb−Z(`)
Zb+Z(`)g

+(`).
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Problems in Chapter 3

3.1 a) The time-harmonic voltage is v(t) = V0 cos(ωt+π/4). Determine the correspond-
ing complex voltage V .

b)The complex voltage is V = V0(1− j)/
√

2 where V0 is real. Determine v(t).

3.2 Draw the equivalent circuit for a two-port based on the

a) impedance matrix

b) admittance matrix

c) hybrid matrix

b) the inverse hybrid matrix

3.3 Derive the relation between [Z] and [H] for a general two-port.

3.4 Show that Z and Y are symmetric matrices for a reciprocal N -port.

3.5 Show that the impedance matrix for a lossless N -port is purely imaginary.

3.6 A lossy transmission line has the following data at 100 MHz:

Z0 = 50 Ω (real) α = 10−3 m−1 β = 0,95πm−1

Determine L, C, R and G at 100 MHz.

3.7

t = 0

-
+ -

+

V0

ℓ0 x

Z0 R
R

=
4

v2(t)

A lossless transmission line has the length `. The line has the characteristic impedance
R and the phase speed vp. In the left end the line is connected to an ideal voltage
source in series with a resistance 4R, see figure. The other end of the line is open.
That means that i(`, t) = 0. The voltage source gives the voltage

v(t) = 0 t < 0
v(t) = V0 t ≥ 0

where V0 is constant voltage. We are interested in the voltage v2(t) in the right end
of the line. The source and the resistor are connected to the line via short wires.

a) Determine v2(t) when t→ +∞.

b) Determine v2(`/2vp).

c) Determine v2(3`/2vp).
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d) Determine v2(5`/2vp).

e) Determine v2(7`/2vp).

3.8 A lossy transmission line is terminated by a matched load. The voltage along the
line is measured at two positions 20 m apart.The result was 2,8 V and 2,1 V.

a) Determine the attenuation constant α.

b) Determine the attenuation in dB/km.

3.9 A lossless transmission line has the length 30 m. The input impedance of the line was
measured when the other end was shortened, and when it was open. When it was
open the input impedance was j360 V/A and when it was shortened the impedance
was j10 V/A. The wavelength along the line was larger than 1 km. Determine the
characteristic impedance Z0 and the phase coefficient β.

3.10 An antenna with the purely resistive impedance 300 Ω is to be matched to a coaxial
cable with the characteristic impedance 60 Ω. For this purpose a quarter wave
transmission line is used. The quarter wave line consists of a coaxial cable with the
relative permittivity ε = 2 between the conductors. Determine the length ` and the
characteristic impedance Z0 of the quarter wave line when the frequency is 200 MHz.

3.11 A lossless transmission line has the characteristic impedance Z0 = 60 Ω. One end
is connected to a load resistance Rb = 180 Ω. Determine the reflection coefficient at
the load Γ and the standing wave ratio SWR.

3.12 A lossless line with the characteristic impedance Z0 = 50 Ω has a resistive load Rb.
The standing wave ratio is SWR= 3. Determine Rb.

3.13 A lossless transmission line with characteristic impedance Z0 = 60 Ω is terminated
by a load impedance Zb = (60 + j60) Ω. The length of the line is λ/8, where λ is the
wavelength along the line. Determine the input impedance of the line.

3.14

L

L
R

R

t = 0

V0

Zb=

RZ=

RZb=

+

-

v(t)

a) A voltage source with output resistance R has the open circuit voltage V0. At
time t = 0 the source is connected to a circuit that consists of three lossless
transmission lines, see figure. The three transmission lines are identical and
has the length L, the characteristic impedance Z = R and the phase speed vp.
Determine the voltage v(t) over the load Zb1 for all times.

b) Assume that the three transmission lines are connected to a time harmonic volt-
age source. The three lines can then be replaced by an equivalent impedance
Zin. Determine Zin if the frequency is chosen such that each of the lines is a
quarter of a wave length long.
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3.15

bZ

z

+

-
+
-

0

Z0

Z0= j

` = λ

(z)V V0

The figure depicts a lossless transmission line with an ideal voltage source and a
purely reactive load. The line is one wavelength long. The reactance of the load
equals the characteristic impedance of the line. Determine the z−values in the
interval [0, 2π/β] for which the amplitude of v(z, t) has its maximum.

3.16 ` z

+
-

0

+
- Z(0),

Z0

V0V0

= R

Zb = R(1 + j )

The figure shows a lossless line with the load impedance Zb = R(1 + j). The
characteristic impedance of the line is R. It is possible to chose the length ` such
that the input impedance Z(0) is real.

a) Determine the values of β` in the interval 0 < β` < π for which Z(0) is real.

b) Determine for each of the β`-value in a) the corresponding value of Z(0).

Summary of chapter 3

Transmission lines

Time domain line equations

− ∂v(z, t)

∂z
= Ri(z, t) + L

∂i(z, t)

∂t

− ∂i(z, t)

∂z
= Gv(z, t) + C

∂v(z, t)

∂t
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Frequency domain line equations

− dV (z)

dz
= (R+ jωL)I(z)

− dI(z)

dz
= (G+ jωC)V (z)

Characteristic impedance

Z0 =





√
L

C
lossless line

√
R+ jωL

G+ jωC
lossy line

Reflection coefficient at the load

Γ =
vr(`, t)

vi(`, t)
=
RL − Z0

RL + Z0

Input impedance

Z(0) =





Z0
ZL cos(β`) + jZ0 sin(β`)

Z0 cos(β`) + jZL sin(β`)
, lossless line

Z0
ZL cosh γ`+ Z0 sinh γ`

ZL sinh γ`+ Z0 cosh γ`
lossy line



Chapter 4

Electromagnetic fields with a
preferred direction

In this chapter we decompose an arbitrary vector field in the longitudinal component along
the z−direction and the transverse vector in the x-y-plane. We apply this decomposition
to the Maxwell equations and analyze the solutions to these equations for a geometry that
is constant in the z−direction. The equations that are derived in this chapter form the
basis for the following chapters.

From now on we use the time dependence e−iωt in contrast to the transmission line
chapter where we used ejωt. The reason is that most literature on waveguides uses this
convention.

4.1 Decomposition of vector fields

An arbitrary vector field F (r) can always be decomposed in two perpendicular vectors1.
We let one component be along the z−axis and the other in the xy-plane. A similar
decomposition is used for the ∇-operator. We introduce the notations:




∇ = ∇T + ẑ

∂

∂z
F (r) = F T (r) + ẑFz(r)

where F T denotes the vector in the xy-plane. The two components of the vector F are
uniquely determined and are obtained as

{
Fz(r) = ẑ · F (r)

F T (r) = F (r)− ẑ (ẑ · F (r)) = F (r)− ẑFz(r) = ẑ × (F (r)× ẑ)

In the last equality we used the BAC-CAB-rule, A× (B ×C) = B(A ·C)−C(A ·B).
The z−component of a vector is called the longitudinal component and the xy-component

the transverse component. We use a related decomposition of the position vector r

r = x̂x+ ŷy + ẑz = ρ+ ẑz

1The dependence of ω or t is not written explicitly in the argument of the fields in this chapter

65
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Since ∇T and ẑ are perpendicular we decompose the rotation of a vector as

ẑ · (∇× F (r)) = ẑ ·
[(
∇T + ẑ

∂

∂z

)
× (F T (r) + ẑFz(r))

]

= ẑ · (∇T × F T (r)) = −∇T · (ẑ × F T (r))

(4.1)

In the last equality we applied a cyclic permutation. The transverse component of the
rotation is

∇× F (r)− ẑ (ẑ · (∇× F (r)))

=

[(
∇T + ẑ

∂

∂z

)
× (F T (r) + ẑFz(r))

]
− ẑ (ẑ · (∇T × F T (r)))

= ∇T × ẑFz(r) + ẑ
∂

∂z
× F T (r) = ẑ × ∂

∂z
F T (r)− ẑ ×∇TFz(r)

(4.2)

since ∇T × F T (r) = ẑ (ẑ · (∇T × F T (r))).
The decompositions we have described so far are valid for all vector fields. We now

apply them to the fields in the Maxwell equations.

4.2 Decomposition of the Maxwell field equations

The Maxwell field equations for a dispersive material are
{
∇×E(r, ω) = iωµ0µ(r, ω)H(r, ω)

∇×H(r, ω) = −iωε0ε(r, ω)E(r, ω)

We use the decomposition of a vector field that was introduced in section 4.1. The longi-
tudinal components of the equations become, see (4.1),

{
ẑ · (∇T ×ET (r, ω)) = iωµ0µ(r, ω)Hz(r, ω)

ẑ · (∇T ×HT (r, ω)) = −iωε0ε(r, ω)Ez(r, ω)
(4.3)

The transverse parts are, see (4.2),





ẑ × ∂

∂z
ET (r, ω)− ẑ ×∇TEz(r, ω) = iωµ0µ(r, ω)HT (r, ω)

ẑ × ∂

∂z
HT (r, ω)− ẑ ×∇THz(r, ω) = −iωε0ε(r, ω)ET (r, ω)

We can solve for the z−derivatives of the transverse fields by acting with ẑ× on these
equations 




∂

∂z
ET (r, ω) = ∇TEz(r, ω)− iωµ0µ(r, ω)ẑ ×HT (r, ω)

∂

∂z
HT (r, ω) = ∇THz(r, ω) + iωε0ε(r, ω)ẑ ×ET (r, ω)

(4.4)

These equations can be written as a 4× 4 system of equations

∂

∂z

(
ET (r, ω)
η0HT (r, ω)

)
+ i

ω

c0

(
0 µ(r, ω)ẑ×

−ε(r, ω)ẑ× 0

)(
ET (r, ω)
η0HT (r, ω)

)

=

(
∇TEz(r, ω)
η0∇THz(r, ω)

)
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where η0 =
√
µ0/ε0 is the wave impedance of vacuum. The operator ẑ× on the right hand

side gives a rotation by an angle π/2 in the x-y-plane of the vector it acts on. We see that
the longitudinal components Ez and Hz act as sources to the transverse components.

The decomposition in longitudinal and transverse fields wrt the z−axis is a general
decomposition of the electromagnetic fields in isotropic materials. In the problems that
are treated in this book the decomposition is very useful since the z−axis is along the
guiding structure, see chapters 5 and 8.

4.3 Specific z-dependence of the fields

From now on we let the z−axis be parallel to the guiding structures that are treated in
this book. We treat fields with the z−dependence exp(ikzz). If Ez and Hz have this
z-dependence it follows from (4.3) that the transverse components of the fields have the
same z−dependence and thus all fields can be written as

E(r, ω) = E(ρ, kz, ω)eikzz

The coefficient kz is referred to as the longitudinal wave number. The Maxwell equations
now simplifies to partial differential equations in the transverse coordinates x and y

{
ẑ · (∇T ×ET (ρ, kz, ω)) = iωµ0µ(ω)Hz(ρ, kz, ω)

ẑ · (∇T ×HT (ρ, kz, ω)) = −iωε0ε(ω)Ez(ρ, kz, ω)
(4.5)

and {
ikzẑ ×ET (ρ, kz, ω)− iωµ0µ(ω)HT (ρ, kz, ω) = ẑ ×∇TEz(ρ, kz, ω)

ikzẑ ×HT (ρ, kz, ω) + iωε0ε(ω)ET (ρ, kz, ω) = ẑ ×∇THz(ρ, kz, ω)
(4.6)

We observe that the transverse components of the vectors E and H, i.e. ET and HT

can be expressed in terms of the longitudinal components Ez and Hz. We see this by
operating with ẑ× on the first of the transverse equations in (4.6), utilizing A×(B×C) =
B(A · C) − C(A · B) (BAC-CAB-rule), and by eliminating ẑ ×HT (ρ, kz, ω) using the
second equation in (4.6). If we treat the second equation in (4.6) in the same manner we
get 




− ikzET (ρ, kz, ω)− ωµ0µ(ω)

kz

[
ẑ ×∇THz(ρ, kz, ω)

− iωε0ε(ω)ET (ρ, kz, ω)
]

= −∇TEz(ρ, kz, ω)

− ikzHT (ρ, kz, ω) +
ωε0ε(ω)

kz

[
ẑ ×∇TEz(ρ, kz, ω)

+ iωµ0µ(ω)HT (ρ, kz, ω)
]

= −∇THz(ρ, kz, ω)

or 



ET (ρ, kz, ω) = i
kz∇TEz(ρ, kz, ω)− ωµ0µ(ω)ẑ ×∇THz(ρ, kz, ω)

ω2

c20
ε(ω)µ(ω)− k2

z

HT (ρ, kz, ω) = i
kz∇THz(ρ, kz, ω) + ωε0ε(ω)ẑ ×∇TEz(ρ, kz, ω)

ω2

c20
ε(ω)µ(ω)− k2

z
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We rewrite these equations





ET (ρ, kz, ω) =
i

k2
t

{kz∇TEz(ρ, kz, ω)− ωµ0µ(ω)ẑ ×∇THz(ρ, kz, ω)}

HT (ρ, kz, ω) =
i

k2
t

{kz∇THz(ρ, kz, ω) + ωε0ε(ω)ẑ ×∇TEz(ρ, kz, ω)}
(4.7)

where we introduced the transverse wave number kt

k2
t =

ω2

c2
0

ε(ω)µ(ω)− k2
z (4.8)

The relation between the wave numbers k(ω), kz, and kt is

k2 = k2
t + k2

z

Since the transverse components of the the electric and magnetic fields are determined
by the z−components of the fields, it is sufficient to determine the z-components of the
electric and magnetic fields in order to construct the transverse parts. Thus the full vector
problem that we started with has been reduced to much simpler scalar problems.

Each of the longitudinal components, Ez(ρ, kz, ω) och Hz(ρ, kz, ω), satisfies a partial
differential equation in the variables x och y. We easily get these equations from (2.8) and
(2.9) on page 15. The result is

{
∇2
TEz(ρ, kz, ω) + k2

tEz(ρ, kz, ω) = 0

∇2
THz(ρ, kz, ω) + k2

tHz(ρ, kz, ω) = 0
(4.9)

where the transverse wave number kt is defined in (4.8). The transverse components
also satisfy a system of partial differential equations. They are less useful since they are
vectorial.

Problems in Chapter 4

∗4.1 Let A = ∇ × (∇× F ). Determine AT och Az expressed in F T , Fz, ∇T och
∂
∂z .

4.2 Show that one can relate ET and HT in the following way:

If Ez = 0 then ET = −ωµ0µ(ω)

kz
ẑ ×HT

and

If Hz = 0 then HT =
ωε0ε(ω)

kz
ẑ ×ET

We have here assumed that all fields have the specific z-dependence exp(ikzz).
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Summary of chapter 4

Decomposition E(r, ω) = E(ρ, kz, ω)e
ikzz

Maxwell equtions

{
ẑ · (∇T ×ET (ρ, kz, ω)) = iωµ0µ(ω)Hz(ρ, kz, ω)

ẑ · (∇T ×HT (ρ, kz, ω)) = −iωε0ε(ω)Ez(ρ, kz, ω)
{

ikzẑ ×ET (ρ, kz, ω)− iωµ0µ(ω)HT (ρ, kz, ω) = ẑ ×∇TEz(ρ, kz, ω)

ikzẑ ×HT (ρ, kz, ω) + iωε0ε(ω)ET (ρ, kz, ω) = ẑ ×∇THz(ρ, kz, ω)

Transverse components





ET (ρ, kz, ω) =
i

k2
t

{kz∇TEz(ρ, kz, ω)− ωµ0µ(ω)ẑ ×∇THz(ρ, kz, ω)}

HT (ρ, kz, ω) =
i

k2
t

{kz∇THz(ρ, kz, ω) + ωε0ε(ω)ẑ ×∇TEz(ρ, kz, ω)}

k2
t =

ω2

c2
0

ε(ω)µ(ω)− k2
z

Equations for the longitudinal components

∇2
TEz(ρ, kz, ω) + k2

tEz(ρ, kz, ω) = 0

∇2
THz(ρ, kz, ω) + k2

tHz(ρ, kz, ω) = 0
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Chapter 5

Waveguides at fix frequency

Waveguides are structures that guide waves along a given direction. Figure 5.1 gives an
example of geometry for a waveguide. The surface of the waveguide is denoted S and the
normal to the surface n̂. Note that the normal n̂ is a function of the coordinates x and
y, but not of the coordinate z. The cross section of the waveguide is denoted Ω and it
is circumscribed by the curve Γ, c.f., figure 5.4. Figure 5.4a shows a waveguide with a
simply connected cross section Ω, while the figure 5.4b shows a waveguide with an inner
surface (the curve Γ consists of two non-connected parts). The analysis in this chapter is
valid for waveguides with general cross section.

Two types of waveguides that are studied in this book. The first type is referred to as
closed waveguide, or hollow waveguide and has metallic walls that enclose the region. The
other type is the open waveguide, for which parts of the enclosing surface is not metallic.
Resonance cavities and dielectric resonators are related to hollow waveguides and dielectric
waveguides, respectively, and these are also analyzed in this book.

Figure 5.2 shows two different hollow waveguides and an optical fiber, which is an
open waveguide. The figure also shows reflector antennas that are fed by circular and
rectangular horn antennas. In such antenna systems hollow waveguides are crucial. Figure
5.3 shows another application for hollow waveguides and hollow cavities. It is a klystron
that generates electromagnetic fields with high power and a waveguide that leads this
power to a cavity in a linear accelerator.

This chapter treats the hollow waveguides. A special type of open waveguides referred
to as dielectric waveguides are treated in chapter 8. To analyse the hollow waveguides
mathematically we need boundary conditions and wave equations. The boundary condi-
tions for the metallic walls are treated in section 5.1. The derivation of the wave equation
from the Maxwell equations in a source free region is given in section 5.2 and 5.3. In the
same sections the solutions to the equations are discussed. In section 5.4 the solutions are
expressed in terms of expansions in orthogonal and complete sets of basis functions. Some
very important examples of waveguides are presented in 5.5. The normalizations for the
sets of basis functions are given in section 5.7. Based upon these normalizations we derive
expressions for the power flow and the losses in the walls and present them in sections 5.8
and 5.9.

71
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z

S

Ω

Γ
n

Figure 5.1: Geometry for waveguide.

5.1 Boundary conditions

We now analyze the boundary conditions for the electric and magnetic fields on the metallic
surface S of a hollow waveguide. We assume isotropic material in the interior, i.e., the
constitutive relations are given by

{
D(r, ω) = ε0ε(r, ω)E(r, ω)

B(r, ω) = µ0µ(r, ω)H(r, ω)

The sufficient boundary conditions on a perfectly conducting surface are, c.f., (1.17) on
page 7, {

n̂×E(r, ω) = 0

n̂ ·H(r, ω) = 0
r on S

since B = µ0µH for an isotropic material.
We express the boundary conditions in terms of the decomposed fields in section 4.1

{
n̂× (ET (r, ω) + ẑEz(r, ω)) = 0

n̂ · (HT (r, ω) + ẑHz(r, ω)) = 0
r on S

The unit normal vector n̂ to the surface S has no z-component, i.e., n̂ · ẑ = 0. Since
n̂×ET only has a component along the z-axis, while n̂× ẑ is perpendicular to the z−axis
(directed tangential to Γ), each term in the first equation has to be zero. The second
term in the second equation is zero since n̂ and ẑ are perpendicular. The conditions are
equivalent to 




Ez(r, ω) = 0

ẑ · (n̂×ET (r, ω)) = n̂ · (ET × ẑ) = 0

n̂ ·HT (r, ω) = 0

r on S (5.1)

These equations are valid on the entire surface S, which implies that also the following
z-derivative is zero (remember that n̂ is independent of z):

n̂ · ∂
∂z
HT (r, ω) = 0 r on S

We utilize (4.4)

∂

∂z
HT (r, ω) = ∇THz(r, ω) + iωε0ε(r, ω)ẑ ×ET (r, ω)
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Figure 5.2: Examples of waveguides. Reflector antenna with a rectangular and circular

feed horn.

in order to eliminate the z-derivative, and get

n̂ · (∇THz(r, ω) + iωε0ε(r, ω)ẑ ×ET (r, ω)) = 0 r on S

By utilizing the original boundary condition (5.1), the boundary conditions on the surface
S are reduced to 



Ez(r, ω) = 0

∂

∂n
Hz(r, ω) = 0

r on S (5.2)

where ∂
∂nHz(r, ω) = n̂·∇THz(r, ω). These boundary conditions only contain the z−components

of the fields and they are sufficient for determining the waves that can exist in a hollow
waveguide.

5.2 TM- and TE-modes

In this section we solve the Maxwell equations in a waveguide with general cross-section
Ω and perfectly conducting walls S. The conditions in (5.2) separates the z-component
of the electric field, Ez from the z−component of the magnetic field, Hz. We look for
solutions where either Ez or Hz is zero, i.e.,

{
Hz(r, ω) = 0 (TM-case)

Ez(r, ω) = 0 (TE-case)

The first case is the transverse magnetic case (TM-case), where the magnetic field lacks
z−component. The other case is the transverse electric case (TE-case). The solutions to
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Figure 5.3: Upper: Klystron that generates the field for a cavity in an accelerator.

Lower: Feed of a cavity in an accelerator.

the two cases do not couple since there is no coupling via the differential equations or the
boundary conditions. We will later also discuss the conditions that have to be satisfied in
order to obtain solutions with both Ez and Hz zero.

We let the region z1 < z < z2 be source free, i.e., J = 0, c.f., figur 5.5 and determine
the waves that can exist in this region. Regions with sources are treated in section 5.10.

We first describe our strategy for finding general solutions. The waveguide is assumed
to be filled with an isotropic, homogeneous material with material parameters ε(ω) and
µ(ω). The z−components of the equations (2.8) and (2.9) on page 15, and the boundary
conditions for Ez(r, ω) and Hz(r, ω) are summarized as

{
∇2Ez(r, ω) + k2(ω)Ez = 0

Ez(r, ω) = 0 r on S
z ∈ [z1, z2],ρ ∈ Ω (TM-case)




∇2Hz(r, ω) + k2(ω)Hz = 0

∂Hz

∂n
(r, ω) = 0 r on S

z ∈ [z1, z2],ρ ∈ Ω (TE-case)

(5.3)

where the wave number in the material is

k2(ω) =
ω2

c2
0

ε(ω)µ(ω)

From the solutions to these equations we can determine the entire vector field E and H
from (4.7) on page 68. The first case in (5.3) is the transverse magnetic case (TM-case)
where Hz = 0. The other case is the transverse electric case (TE-case) where Ez = 0.

We use the method of separation of variables to solve the two boundary value problems
in (5.3). The method is frequently used in mathematical physics and in our case it leads
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Figure 5.4: Cross sections of waveguides. The z-axis is directed perpendicular to the

plane of the paper and τ̂ = ẑ × n̂.
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Figure 5.5: The source free region in the waveguide.

to a complete set of functions in the transverse coordinates x and y. The z−component of
the electric (TM-case) or magnetic field (TE-case) is expanded in this system. The other
components follow from the relations between the transverse and longitudinal components.

5.2.1 The longitudinal components of the fields

We make the following ansatz

{
Ez(r) = v(ρ)a(z), (TM-case)

Hz(r) = w(ρ)b(z), (TE-case)

where ρ = x̂x+ ŷy and η0 is the wave impedance for vacuum. We insert this into (5.3)




a(z)∇2

T v(ρ) + v(ρ)
∂2a

∂z2
(z) + k2v(ρ)a(z) = 0

v(ρ) = 0 ρ on Γ

and 



b(z)∇2
Tw(ρ) + w(ρ)

∂2b

∂z2
(z) + k2w(ρ)b(z) = 0

∂w

∂n
(ρ) = 0 ρ on Γ
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After division with v(ρ)a(z) and w(ρ)b(z), respectively, we get





∇2
T v(ρ)

v(ρ)
= − 1

a(z)

∂2a

∂z2
(z)− k2

v(ρ) = 0 ρ on Γ





∇2
Tw(ρ)

w(ρ)
= − 1

b(z)

∂2b

∂z2
(z)− k2

∂w

∂n
(ρ) = 0 ρ on Γ

In these differential equations the left hand side only depends on the variables x and y,
while the right hand side only depends on z. This can only be satisfied if both sides are
equal to a constant and we denote this constant −k2

t for reasons that will soon be obvious.
We identify the following two eigenvalue problems for the hollow waveguide




∇2
T v(ρ) + k2

t v(ρ) =
∂2v(ρ)

∂x2
+
∂2v(ρ)

∂y2
+ k2

t v(ρ) = 0

v(ρ) = 0 ρ on Γ

(TM-case)

and 



∇2
Tw(ρ) + k2

tw(ρ) =
∂2w(ρ)

∂x2
+
∂2w(ρ)

∂y2
+ k2

tw(ρ) = 0

∂w

∂n
(ρ) = 0 ρ on Γ

(TE-case)

Later in this section we give explicit examples on geometries and their corresponding
sets of systems of eigenfunction, but here we continue with the general analysis. The
eigenvalue problems for the TM- and TE-case are expressed in the transverse coordinates
x and y. There is only a countable set of values of k2

t (kt is the transverse wave number)
for which there exist non-trivial solutions. These values of k2

t are called the eigenvalues
of the problem and can be numbered in their order of size. For most geometries the
eigenvalues of the TE- and TM-cases are different, but we use the same notation for the
two cases for practical reasons. One can prove that the eigenvalues are positive, k2

t > 0,
c.f., example 5.1, and number the eigenvalues according to:

0 < kt
2
1 ≤ kt22 ≤ kt23 ≤ . . .

There is only a finite number of eigenvalues that have the same values. The eigenfunction
corresponding to eigenvalue number n is denoted vn(ρ) for the TM-case and wn(ρ) for the
TE-case, i.e., they are solutions to 1

{
∇2
T vn(ρ) + kt

2
nvn(ρ) = 0 ρ ∈ Ω

vn(ρ) = 0 ρ on Γ
(TM-case) (5.4)

and 


∇2
Twn(ρ) + kt

2
nwn(ρ) = 0 ρ ∈ Ω

∂wn(ρ)

∂n
= 0 ρ on Γ

(TE-case) (5.5)

Note that these eigenfunctions are determined by the geometry of the cross section which
is defined by Ω. They are independent of the angular frequency ω and of the material

1In the two-dimensional case it is often practical to count the eigenvalues in a sequence with
two indices mn, see examples presented later in this section.
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in the waveguide, i.e., independent of ε(ω) and µ(ω). We always let the eigenfunctions
vn(ρ) and wn(ρ) be real valued .

Each of the sets of eigenfunctions, {vn(ρ)}∞n=1 and {wn(ρ)}∞n=1, constitutes a complete
set of functions in the plane. We can expand an arbitrary function, defined in the region
Ω, in this set of functions. The functions Ez(r, ω) and Hz(r, ω) are expanded as





Ez(r, ω) =

∞∑

n=1

an(z, ω)vn(ρ)

Hz(r, ω) =
∞∑

n=1

bn(z, ω)wn(ρ)

(5.6)

Example 5.1
All eigenvalues to the TM- and TE-cases are non-negative numbers. This can be shown

by integrating the vector rule ∇ · (f∇f) = ∇f · ∇f + f∇2f , over the cross section Ω.
Gauss’ theorem in the plane gives

∮

Γ
f(ρ)

∂

∂n
f(ρ) dl =

∫∫

Ω

(∇T f(ρ))2 dxdy +

∫∫

Ω

f(ρ)∇2
T f(ρ) dxdy

Notice that if the function is independent of the z-coordinate, then ∇f = ∇T f .
We first consider the TM-case and let f(ρ) = vn(ρ). Due to the boundary condition

on the boundary curve Γ, vn = 0, the line integral vanishes. We then use the differential
equation for the eigenvalue problem (5.4) to get the equality

∫∫

Ω

(∇T vn(ρ))2 dxdy = kt
2
n

∫∫

Ω

(vn(ρ))2 dxdy (5.7)

and the inequality

kt
2
n

∫∫

Ω

(vn(ρ))2 dxdy ≥ 0

If vn is not identically zero, the inequality implies that the eigenvalue for the TM-case is
non-negative, kt

2
n ≥ 0.

By letting f(ρ) = wn(ρ), and by using (5.5) and the boundary condition ∂
∂nwn(ρ) = 0,

the corresponding relation for the TE-case
∫∫

Ω

(∇Twn(ρ))2 dxdy = kt
2
n

∫∫

Ω

(wn(ρ))2 dxdy (5.8)

and the inequality

kt
2
n

∫∫

Ω

(wn(ρ))2 dxdy ≥ 0

are obtained. Unless wn is not identically zero, the eigenvalue for the TE-case is also
non-negative, kt

2
n ≥ 0.

We can prove an even stronger result, namely that the eigenvalue kt
2
n = 0 leads to

a contradiction and that the eigenvalues are positive for the TM- and TE-cases2. From

2The eigenvalue kt
2
n = 0 is possible for the TEM-case.
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equations (5.7) and (5.8) we find that kt
2
n = 0 implies that ∇T vn = ∇Twn = 0 in Ω,

i.e., vn = constant and wn = constant in Ω. In the TM-case this implies that vn = 0 in Ω
since the boundary condition vn = 0 on Γ implies that the constant has to be zero. Thus
there is a contradiction and the eigenvalues kt

2
n in the TM-case are all positive. To prove

the same result for the TE-case we use a result from page 66 and (4.3).

Hz(r, ω) =
1

iωµ0µ(ω)
ẑ · (∇T ×ET (r, ω)) =

1

iωµ0µ(ω)
ẑ · (∇×ET (r, ω))

Since wm =constant in Ω, Hz in the left hand side cannot depend on ρ. Stoke’s theorem
on the cross section Ω gives
∫∫

Ω

Hz dxdy =
1

iωµ0µ(ω)

∫∫

Ω

ẑ · (∇×ET (r, ω)) dxdy =
1

iωµ0µ(ω)

∮

Γ
ET (r, ω) · dr = 0

due to the boundary condition n̂×E = 0. We get

Hz

∫∫

Ω

dxdy = 0

which implies that Hz = 0 or wn = 0, which is a contradiction, and as above it follows
that all eigenvalues kt

2
n in the TE-case are positive.

Example 5.2
We now prove that the eigenfunctions vn and vm, or wn and wm, that belong to different

eigenvalues kt
2
n and kt

2
m in the TM- and TE-cases are orthogonal. We start with Gauss’

theorem in the plane (fn = vn in the TM-case and fn = wn in the TE-case)

0 =

∮

Γ
(fn∇T fm − fm∇T fn) · n̂ dl =

∫∫

Ω

∇T · (fn∇T fm − fm∇T fn) dxdy

=

∫∫

Ω

(∇T fn · ∇T fm −∇T fm · ∇T fn + fn∇2
T fm − fm∇2

T fn) dxdy

= (kt
2
n − kt2m)

∫∫

Ω

fnfm dxdy

where we have used the eigenvalue equation (5.4) or (5.5). If the eigenvalues are different
∫∫

Ω

fnfm dxdy = 0

i.e., the eigenfunctions vn and vm or wn and wm that belongs to the eigenvalues kt
2
n and

kt
2
m are orthogonal.

We insert the expansions in equation (5.6) into the original equation (5.3). By shifting
differentiation and summation and utilizing the properties of the eigenfunctions {vn(ρ)}∞n=1

and {wn(ρ)}∞n=1, we get the following ordinary differential equations for the Fourier coef-
ficients an and bn:





∂2an
∂z2

(z, ω) +

(
ω2

c2
0

ε(ω)µ(ω)− kt2n
)
an(z, ω) = 0

∂2bn
∂z2

(z, ω) +

(
ω2

c2
0

ε(ω)µ(ω)− kt2n
)
bn(z, ω) = 0
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The general solutions to these equations are

{
an(z, ω) = a±n e

±ikzn(ω)z

bn(z, ω) = b±n e
±ikzn(ω)z

where the longitudinal wavenumber kzn is

kzn(ω) =

(
ω2

c2
0

ε(ω)µ(ω)− kt2n
) 1

2

(5.9)

The longitudinal wavenumber is a complex number that depends on frequency. This is
in contrast to the transverse wavenumber that is real and independent of frequency. The
branch of the complex square root for the longitudinal wavenumber is in this book chosen
such that the real and imaginary part of kzn are both non-negative. The relation between
the wavenumber k(ω), the longitudinal wavenumber kzn and the transverse wavenumber
ktn is

k2(ω) = kt
2
n + kz

2
n(ω)

c.f., also the analysis in section 4.3. It should be emphasized that in most cases the
waveguides are filled with air, or vacuum, and unless the frequency is very large (f > 50
GHz) the material can be considered to be lossless with ε = µ = 1. Note that the real part
of kzn is less than the wavenumber, k(ω), of the material in the waveguide, which means
that the phase velocity in the z−direction, vp = ω/kz, is larger than the speed of light in
the material. Since no information is transported with the phase velocity this does not
violate the theory of special relativity.

We conclude that the longitudinal components of the electric and magnetic fields have
the following general series expansions





Ez(r, ω) =
∞∑

n=1

vn(ρ)
(
a+
n (ω)eikzn(ω)z + a−n (ω)e−ikzn(ω)z

)

Hz(r, ω) =

∞∑

n=1

wn(ρ)
(
b+n (ω)eikzn(ω)z + b−n (ω)e−ikzn(ω)z

) (5.10)

Each term in these sums corresponds to a waveguide mode. The coefficients an± and b±n
are determined by the excitation of the waves in the waveguide. Note that the longitudinal
wavenumbers kzn are different in the sums, and that kzn in general is a complex number.
The plus sign in the exponent corresponds to a wave traveling in the positive z−direction,
while the minus sign corresponds to a wave traveling in the negative z-direction. A general
expression for a field propagating in the positive z-direction is





Ez(r, ω) =

∞∑

n=1

vn(ρ)a+
n (ω)eikzn(ω)z

Hz(r, ω) =
∞∑

n=1

wn(ρ)b+n (ω)eikzn(ω)z

(5.11)

In the lossless case we say that the mode number n is a propagating mode if ktn <
k = ω/c, since then kzn is a real number and hence the wave is not attenuated in the
z−direction. If ktn > k then the mode is a non-propagating mode since Re kzn = 0 and
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Figure 5.6: Waveguide dispersion for a circular waveguide (radius a) as a function of

frequency f . The dispersion relations for the first four modes are shown. The arrow shows

a frequency where only two of the modes are propagating. The longitudinal wavenum-

ber kzn is normalized with the wavenumber k(ω)and the frequency f is nornalized with

c0/(2πa
√
εµ), c.f., the explicit expressions of eigenvalues in table 5.4.

Im kzn < 0 which means that the wave is attenuated. If ktn = k we say that the mode is
at its cut-off frequency. Then kzn = 0 and the wave is a standing wave in the xy−plane.
In the sum (5.11) only a finite number of modes are propagating at a fixed frequency. The
reason is that ktn is a non-decreasing sequence of real numbers. The cut-off frequency
fcn = ωcn/(2π) for mode n is given by kzn = 0, i.e.,

fcn =
ktnc0

2π
√
εµ

(5.12)

The relation between the frequency f , the longitudinal wavenumber kzn and the cut-off
frequency fcn is

kzn =
2π

c0

√
εµ
(
f2 − fc2n

) 1
2

The relation between the longitudinal wavenumber and the frequency is called the dis-
persion relation. The dispersion relation for the lowest modes in a circular waveguide is
depicted in figure 5.6. The waveguide dispersion is different from the material dispersion
that is given by the frequency dependence of the wavenumber k(ω).

When there are losses in the waveguide, i.e., if at least one of the the material param-
eters ε(ω) or µ(ω) is complex, we define the cut-off frequency to be the frequency where
ktn = Re k(ω). In the lossy case, propagating modes have a small positive imaginary part
of kzn and then even propagating modes are attenuated in the direction of propagation.
Only for frequencies where the material is lossless, i.e., where ε(ω) and µ(ω) are real,
modes can propagate without attenuation. Later in this chapter we will take into account
the fact that the walls of a waveguide are not perfectly conducting. Then the losses due
to currents in the walls give rise to attenuation of the modes.
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5.2.2 Transverse components of the fields

To make the picture complete we have to determine the transverse components of the
fields for each mode. We observe that the z-components of the electric and magnetic fields
have the explicit z−dependence exp{±ikzz}. To generate the transverse components of
the fields we use the results from section 4.3. Equation (4.7) on page 68 provides us with
the relations we need





ET (ρ, kz, ω) =
i

k2
t

{±kz∇TEz(ρ, kz, ω)− ωµ0µ(ω)ẑ ×∇THz(ρ, kz, ω)}

HT (ρ, kz, ω) =
i

k2
t

{±kz∇THz(ρ, kz, ω) + ωε0ε(ω)ẑ ×∇TEz(ρ, kz, ω)}

where the relation (5.9) has been used. The result is





ET (r, ω) =
∞∑

n=1

i

kt
2
n

{
a+
n kzn∇T vn(ρ)− b+nωµ0µ(ω)ẑ ×∇Twn(ρ)

}
eikznz

−
∞∑

n=1

i

kt
2
n

{
a−n kzn∇T vn(ρ) + b−nωµ0µ(ω)ẑ ×∇Twn(ρ)

}
e−ikznz

HT (r, ω) =
∞∑

n=1

i

kt
2
n

{
b+n kzn∇Twn(ρ) + a+

nωε0ε(ω)ẑ ×∇T vn(ρ)
}
eikznz

−
∞∑

n=1

i

kt
2
n

{
b−n kzn∇Twn(ρ)− a−nωε0ε(ω)ẑ ×∇T vn(ρ)

}
e−ikznz

(5.13)

The transverse components are well defined quantities since k2
t > 0. In particular a mode

propagating in the positive z-direction has the transverse fields





ET (r, ω) =

∞∑

n=1

i

kt
2
n

{
a+
n kzn∇T vn(ρ)− b+nωµ0µ(ω)ẑ ×∇Twn(ρ)

}
eikznz

HT (r, ω) =
∞∑

n=1

i

kt
2
n

{
b+n kzn∇Twn(ρ) + a+

nωε0ε(ω)ẑ ×∇T vn(ρ)
}
eikznz

At this stage we know how to obtain the entire electric and magnetic fields for the TE
and TM waveguide modes in a hollow waveguide.

5.3 TEM-modes

In the previous sections we have assumed that either the electric or the magnetic field
has a z−component that is non-zero. Under this assumption we found complete sets of
functions, c.f., section 5.2. In particular we found that the transverse wavenumber is
always positive and that no TE- or TM-modes with eigenvalue ktn = 0 exist.

In this section we analyze if there are any solutions to the Maxwell field equations
in the waveguide for which both Ez = Hz = 0. Such solutions have only transverse
components of the fields and are called TEM-modes. In transmission lines the fields are
mostly TEM-waves (this is at least the case when the material is independent of the
transverse coordinates ρ and the transmission line is lossless). The transmission lines
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have been analyzed in chapter 3 by solving the equations for the voltage and current along
the line. In this section we do the analysis in terms of the electric and magnetic fields.
We start from the equations in chapter 4.

If the z-components of the fields are zero we obtain from (4.3) and (4.4)
{
ẑ · (∇T ×ET (r, ω)) = 0

ẑ · (∇T ×HT (r, ω)) = 0

and 



∂

∂z
ET (r, ω) = −iωµ0µ(ω)ẑ ×HT (r, ω)

∂

∂z
HT (r, ω) = iωε0ε(ω)ẑ ×ET (r, ω)

(5.14)

Since ∇T ×ET (r, ω) only has a z-component we see that

∇T ×ET (r, ω) = 0

everywhere. Then there exists a scalar potential ψ(r, ω) such that

ET (r, ω) = −∇TΨ(r, ω) (5.15)

The potential Ψ is not uniquely defined, since every potential that differs by a function of
z from Ψ gives the same field ET . Equations (2.7) and (2.8) on page 15 give

{
∇2ET (r, ω) + k2(ω)ET (r, ω) = 0

∇T ·ET (r, ω) = 0

where the wavenumber, as usual, is k2(ω) = ω2ε(ω)µ(ω)/c2
0. When we insert ET (r, ω) =

−∇TΨ(r, ω) into this equation we get
{
∇T

(
∇2Ψ(r, ω) + k2(ω)Ψ(r, ω)

)
= 0

∇2
TΨ(r, ω) = 0

We eliminate the derivatives w.r.t. the transverse coordinates by using the lower equation.
The result is

∇T
{
d2

dz2
Ψ(r, ω) + k2(ω)Ψ(r, ω)

}
= 0

which gives
d2

dz2
Ψ(r, ω) + k2(ω)Ψ(r, ω) = C(z)

The fields are independent of the value of C(z) and we can utilize that the potential is not
uniquely determined and let C(z) be zero. We have now shown that the scalar potential
Ψ satisfies

d2

dz2
Ψ(r, ω) + k2(ω)Ψ(r, ω) = 0

The solutions to this equation are

Ψ(r, ω) = ψ±(ρ)e±ik(ω)z

We see that for the TEM-mode kz = k(ω), i.e., the wavenumber for propagation in
the ±z-direction is the same as the wavenumber for the material. That means that the
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phase velocity of the TEM-mode equals the phase velocity of a plane wave in the material
in an unbounded space. There is no cut-off frequency for a TEM-mode, which means that
if the material is lossless, all frequencies propagate without attenuation. The functions
ψ±(ρ) do not depend on ω, as seen later in the analysis. Based on this result we construct
ET (r, ω) and HT (r, ω) using equations (5.14) and (5.15). The result is




ET (r, ω) = −∇Tψ+(ρ)eik(ω)z −∇Tψ−(ρ)e−ik(ω)z

HT (r, ω) = (η0η(ω))−1ẑ ×
(
∇Tψ+(ρ)eik(ω)z −∇Tψ−(ρ)e−ik(ω)z

) (5.16)

where we have introduced the relative wave impedance for the material in the waveguide
η(ω) as

η(ω) =

√
µ(ω)

ε(ω)
(5.17)

Thus the relation between the E and H fields for the TEM-mode is the same as for a
plane wave.

A necessary condition for TEM-modes to exist in a waveguide with a homogenous ma-
terial is that a non-constant scalar potential ψ(ρ) exists in the waveguide. This potential
is the solution to the two-dimensional Laplace equation. We obtain the two-dimensional
Laplace equation from the condition ∇ ·E = 0 and (5.15)

∇2
Tψ(ρ) = 0 (5.18)

The boundary condition is ψ = constant on every simply connected part of the curve Γ
(this is obtained from n̂×E = 0 i.e., ∂ψ

∂τ = 0).
The problem has a non-trivial solution unless the region Ω is simply connected. An

example of a region where a solution exists is shown in figure 5.4b. We also see that the
solution ψ is independent of ω. The potential is normalized such that

∫∫

Ω

∇Tψ(ρ) · ∇Tψ(ρ) dxdy = 1 (5.19)

If we compare the longitudinal wavenumber kz for the TEM-mode with the corresponding
wavenumbers for the TM- and TE-cases, we see that the TEM-case corresponds to the
forbidden case kt = 0.

In chapter 3 we used V +(z) and V −(z) as the voltages traveling in the positive and neg-
ative z−directions, respectively. These voltages are related to the voltages ψ±(ρ)e±ik(ω)z

by
V ±(z) = ψ±(ρ)e±ik(ω)z|ρ on conductor one − ψ±(ρ)e±ik(ω)z|ρ on conductor two

5.3.1 Waveguides with several conductors

Consider a waveguide with N separated simply connected conductors. We denote the
border of conductor number n by Γn and consider the problems

∇2
Tψn(ρ) = 0

ψn(ρ) =

{
Vn on Γn

V0 on Γm, m = 1 . . . N,m 6= n

(5.20)
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Figure 5.7: The power flow density of the four TEM-modes in a waveguide consisting

of four metallic circular conductors in a hollow circular metallic cylinder. The light areas

have large power flow density.

where n = 1 . . . N − 1 and where Vn 6= V0. It is seen that these N − 1 problems are
independent since we cannot form any of these potentials by superposition of the other
ones. The potential for the case when n = N can be formed from the other N−1 potentials
by superposition. Thus there are N − 1 independent TEM-modes in a waveguide with N
simply connected conductors.

Figure 5.7 depicts the power flow density for the four TEM-modes in a waveguide
consisting of four metallic circular conductors in a hollow circular metallic cylinder. The
four modes have been obtained from COMSOL. Each of the modes is a superposition of
the modes obtained from the problems in (5.20) with N = 5.

5.4 Vector basis functions in hollow waveguides

Based on (5.10) and (5.13) we define a set of vector valued basis functions E±nν(r, ω), that
are suitable for the expansion of the electric field in a hollow waveguide.

The vector basis functions for TM-modes that propagate in ±z-direction are defined
as 3 {

E±nν(r, ω) = {ET nν(ρ, ω)± vn(ρ)ẑ} e±ikznz

H±nν(r, ω) = ±HT nν(ρ, ω)e±ikznz
ν = TM (5.21)

3Note that the functions are normalized such that Ez = vn and Hz = wn are dimensionless.
The E and H are to be multiplied with an amplitude with dimension A/m for TE-modes and
V/m for TM-modes.
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The TE vector basis functions are defined by
{
E±nν(r, ω) = ET nν(ρ, ω)e±ikznz

H±nν(r, ω) = {±HT nν(ρ, ω) + wn(ρ)ẑ} e±ikznz
ν = TE (5.22)

We define the vector basis for TEM-modes as{
E±nν(r, ω) = ET nν(ρ, ω)e±ikz

H±nν(r, ω) = ±HT nν(ρ, ω)e±ikz
ν = TEM (5.23)

where the n−index is needed since there exist more than one TEM-mode if there are more
than two conductors. In the expressions n is the mode index, while the index ν has the
three values, ν = TM,TE,TEM.

The connections between wn, vn, ψ and the transverse components ET nν and HT nν

are obtained from (4.7) and (5.16):




ET nν(ρ, ω) =





i
kt

2
n
kzn(ω)∇T vn(ρ), ν = TM

− iω
kt

2
n
µ0µ(ω)ẑ ×∇Twn(ρ), ν = TE

−∇TψN (ρ, ω), ν = TEM

HT nν(ρ, ω) = Z−1
nν ẑ ×ET nν(ρ, ω)

(5.24)

where Znν is the mode impedance defined by

Znν =





kzn
ωε0ε

, ν = TM
ωµ0µ
kzn

, ν = TE

η0η, ν = TEM

(5.25)

As before, vn(ρ) and wn(ρ) are the real eigenfunctions to the eigenvalue problems in
(5.4) and (5.5). We normalize them such that





∫∫

Ω

vn(ρ)vn′(ρ) dxdy = δn,n′

∫∫

Ω

wn(ρ)wn′(ρ) dxdy = δn,n′

(5.26)

where δij is the Kronecker delta (c.f., Appendix D).
The vector basis functions in (5.24) constitute a complete set of vector basis functions

for the Maxwell field equations in a source free region of the waveguide. With this notation
a general solution can be written in a very condensed form





E(r, ω) =
∑

n
ν=TM,TE,TEM

(
a+
nνE

+
nν(r, ω) + a−nνE

−
nν(r, ω)

)

H(r, ω) =
∑

n
ν=TM,TE,TEM

(
a+
nνH

+
nν(r, ω) + a−nνH

−
nν(r, ω)

)
{
z ∈ [z1, z2]

ρ ∈ Ω
(5.27)

where summation is over the mode indices n and ν = TM,TE,TEM. An advantage with
this definition of the vector basis functions is that the expansion coefficients a±nν are the
same for the expansions of the electric and magnetic fields. The expansion coefficients a±nν
are determined by the sources of the fields c.f., section 5.10. In general the coefficients a+

nν

are determined by sources to the left of the source free region and a−nν are determined by
sources to the right of the source free region.
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x

y

b

Figure 5.8: Geometry for a planar waveguide.

5.4.1 The fundamental mode

The mode with the lowest cut-off frequency is called the fundamental mode. The band-
width, BW, of a waveguide is the width of the frequency band where only the fundamental
mode can propagate. Let f0 be the cut-off frequency of the fundamental mode and f1 the
cut-off frequency for the next mode. The fractional bandwidth is defined by

bf =
BW

fcenter
= 2

f1 − f0

f1 + f0
(5.28)

where BW = f1−f0 is the bandwidth and fcenter = 0.5(f0 +f1) is the center frequency. It
is very common to use the fundamental mode for transportation of power or information.
If the frequency is in the frequency band where only the fundamental mode can propagate
then there is only one phase speed involved and that is crucial in order to control the
phase of the waves.

5.5 Examples

We now give examples of very important, cross-sections for which we can derive explicit
expressions of the vector basis functions.

5.5.1 Planar waveguide

We start with the simplest case, which is the planar waveguide. The geometry of this
waveguide is depicted in figure 5.8.

The solution is obtained from the following one-dimensional eigenvalue problems:




d2Y (y)

dy2
+ γY (y) = 0, 0 ≤ y ≤ b

Y (y) = 0, y = 0, b

and 



d2Y (y)

dy2
+ γY (y) = 0, 0 ≤ y ≤ b

dY

dy
(y) = 0, y = 0, b
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Eigenfunctions vn, wn, ψ Eigenvalues k2
t n

TMn vn =

√
2

b
sin
(nπy

b

)
π2n

2

b2

TEn wn =

√
2

b
cos
(nπy

b

)
π2n

2

b2

TEM ∇Tψ =

√
1

b
ŷ 0

Table 5.1: A table of the normalized eigenfunctions to equations (5.4), (5.5) and (5.18)

for the planar waveguide, c.f., figure 5.8 for the definition of the geometry. The integer n

has the values n = 1, 2, 3, . . ..

The solutions to these problems are given by

Yn(y) = sin
(nπy

b

)
, n = 1, 2, 3, . . .

and
Yn(y) = cos

(nπy
b

)
, n = 0, 1, 2, 3, . . .

respectively. The eigenvalues are in both cases γ = n2π2/b2. These sets of functions are
complete. From the functions we construct the functions vn and wn, that in this case only
depend on the coordinate y. The normalized TM-case basis functions are

vn(y) =

√
2

b
sin
(nπy

b

)
, n = 1, 2, 3, . . .

and the TE-case basis functions are

wn(y) =

√
2

b
cos
(nπy

b

)
, n = 1, 2, 3, . . .

The index n = 0 does nor correspond to a TM-mode, as seen from page 78.
The planar waveguide has two separated surfaces which means that a TEM-mode

exists. We use (5.18) to determine the TEM-mode basis functions





d2ψ(y)

dy2
= 0, 0 ≤ y ≤ b

ψ(y) =

{
C1, y = 0

C2, y = b

The solution is

ψ(y) = C1 +
C2 − C1

b
y

and the TEM-mode has the normalized basis function (see (5.16))

∇Tψ±(y) =

√
1

b
ŷ

The results are collected in table 5.1.
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Figure 5.9: The geometry for a waveguide with rectangular cross-section.

5.5.2 Waveguide with rectangular cross-section

We continue and determine the eigenfunctions for the rectangular waveguide. This is the
most common type of hollow waveguide. The geometry is depicted in figure 5.9. The
surface is simply connected and hence no TEM-mode exists. The convention is to let the
longest side of the rectangle be along the x-axis.

The eigenvalues that are to be solved are





∂2v(ρ)

∂x2
+
∂2v(ρ)

∂y2
+ k2

t v(ρ) = 0

v(ρ) = 0 ρ on Γ

(TM-case)

and 



∂2w(ρ)

∂x2
+
∂2w(ρ)

∂y2
+ k2

tw(ρ) = 0

∂w

∂n
(ρ) = 0 ρ on Γ

(TE-case)

The solution is based on the following one-dimensional eigenvalue problems:





d2X(x)

dx2
+ γX(x) = 0, 0 ≤ x ≤ a

X(x) = 0, x = 0, a

and 



d2X̃(x)

dx2
+ γX̃(x) = 0, 0 ≤ x ≤ a

dX̃

dx
(x) = 0, x = 0, a

The solutions to these two problems are

Xm(x) = sin
(mπx

a

)
, m = 1, 2, 3, . . .

and
X̃m(x) = cos

(mπx
a

)
, m = 0, 1, 2, 3, . . . ,
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Eigenfunctions vmn, wmn Eigenvalues k2
t mn

TMmn vmn =
2√
ab

sin
(mπx

a

)
sin
(nπy

b

)
π2

(
m2

a2
+
n2

b2

)

TEmn wmn =

√
εmεn
ab

cos
(mπx

a

)
cos
(nπy

b

)
π2

(
m2

a2
+
n2

b2

)

Table 5.2: Table of normalized eigenfunctions to equations (5.4) and (5.5) for rectangular

waveguides, see figure 5.9. The integers m and n can have values m,n = 0, 1, 2, 3, . . ., with

the exception that m and n are not zero for TM-modes, and m and n cannot both be zero

for the TE-modes (εm = 2− δm,0), see page 78. The convention in this book is always to

have the long side of the rectangle along the x-axis, i.e., a > b. The mode with the lowest

cut-off frequency is then the TE10 mode. This mode is called the fundamental mode and

is very important.

respectively. These sets of functions are orthogonal and complete on the interval x ∈ [0, a].
The solution to the two-dimensional eigenvalue problems for the rectangular waveguide
are obtained as a product of these sets of one-dimensional eigenfunctions 4, i.e.,





sin
(mπx

a

)
sin
(nπy

b

)
, TM-case

cos
(mπx

a

)
cos
(nπy

b

)
, TE-case

The eigenvalues in the two cases are the same k2
t = π2

(
m2/a2 + n2/b2

)
. The normalized

functions are 



vmn =
2√
ab

sin
(mπx

a

)
sin
(nπy

b

)
, TM-case

wmn =

√
εmεn
ab

cos
(mπx

a

)
cos
(nπy

b

)
, TE-case

where the Neumann-factor is εm = 2− δm,0. The results are collected in table 5.2.

Example 5.3
The fundamental mode of a rectangular waveguide with a > b is the TE10 mode. It has

the cut-off frequency fc10 =
c0

2a
and w10 =

√
2

ab
cos
(πx
a

)
. The normalized electric field

is

E10TE(x, ω) = ŷ
iωµ0

π

√
2a

b
sin
(πx
a

)
(5.29)

4A common method to create complete sets of functions in two dimensions is to take the
product of one-dimensional systems, i.e., if {fm(x)}∞m=1 and {gn(y)}∞n=1 are complete systems on
the intervals x ∈ [a, b] and y ∈ [c, d], respectively, then

{fm(x)gn(y)}∞m,n=1

is a complete set of functions in the rectangle [a, b]× [c, d].
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m 1 2 0 1 2 3 3 4 0 1

n 0 0 1 1 1 0 1 0 2 2

fcmn (GHz) 3.19 6.38 6.81 7.52 9.33 9.57 11.7 12.8 13.6 14.0

kzmn (m−1)a 43.3 107i 119i 136i 179i 184i 233i 255i 274i 282i

kzmn (m−1)b 144.6 86.6 70.6 22.6 114i 122i 188i 215i 237i 246i

aThe frequency is f = 3.8 GHz.
bThe frequency is f = 7.6 GHz.

Table 5.3: Table of the lowest cut-off frequencies fcmn and the longitudinal wavenumber

kzmn for a rectangular waveguide with dimensions 4.7 cm × 2.2 cm. Only TE-modes can

have m- or n-values that are zero. For frequencies below the cut-off frequency the longi-

tudinal wavenumber kzmn is imaginary and the corresponding mode is non-propagating.

The attenuation of that mode is exp(−Im{kzmn}z).

If a > 2b then the second mode is TE20 that has cut-off frequency fc20 =
c0

a
. If b < a < 2b

then TE01 is the second mode with cut-off frequency fc01 =
c0

2b
. In order to maximize the

bandwidth it is common to have rectangular waveguides with a > 2b. Then the bandwidth

is BW =
c0

2a
and the fractional bandwidth is bf = 2(c0/2a)/(3c0/2a) = 2/3 = 0.67.

Example 5.4
A rectangular waveguide has dimensions 4.7 cm × 2.2 cm. The cut-off frequencies fcmn
for the different modes are easy to calculate from (5.12) and table 5.2. The longitudinal
wavenumbers kzmn, given by (5.9), are related to the frequency f and the cut-off frequency
fcmn in the following way

kzmn =
2π

c0

√
εµ
√
f2 − f2

cmn

The results are given in table 5.3. The bandwidth is BW = 3.19 Ghz and the fractional
bandwidth is bf = 1.

5.5.3 Waveguide with circular cross-section

The geometry of the circular waveguide with radius a is depicted in figure 5.10. The
geometry has only one simply connected surface and hence there is no TEM-mode. It
is best to solve the eigenvalue problem in cylindrical-(polar)coordinates. The eigenvalue
problems are given by




∇2
T v(ρ) + k2

t v(ρ) =
1

ρ

∂

∂ρ

(
ρ
∂v(ρ)

∂ρ

)
+

1

ρ2

∂2v(ρ)

∂φ2
+ k2

t v(ρ) = 0

v(a, φ) = 0

(TM-case)

and



∇2
Tw(ρ) + k2

tw(ρ) =
1

ρ

∂

∂ρ

(
ρ
∂w(ρ)

∂ρ

)
+

1

ρ2

∂2w(ρ)

∂φ2
+ k2

tw(ρ) = 0

∂w

∂n
(a, φ) = 0

(TE-case)
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ρ
φ

a

x

y

Figure 5.10: Geometry for waveguide with circular cross-section.

We solve these eigenvalue problems by the method of separation of variables. We make
the ansatz v(ρ, φ) = f(ρ)g(φ) and insert this into the differential equation. After division
with f(ρ)g(φ)/ρ2 we get

ρ

f(ρ)

∂

∂ρ

(
ρ
∂f(ρ)

∂ρ

)
+ k2

t ρ
2 = − 1

g(φ)

∂2g(φ)

∂φ2

The right hand side depends only on φ and the left hand side depends only on ρ. That
means that they both have to be equal to a constant and we denote this constant γ. We
get 




ρ
∂

∂ρ

(
ρ
∂f(ρ)

∂ρ

)
+
(
k2
t ρ

2 − γ
)
f(ρ) = 0

∂2g(φ)

∂φ2
+ γg(φ) = 0

The solution to the eigenvalue problem in the variable φ is

g(φ) =

(
cosmφ
sinmφ

)
, m = 0, 1, 2, 3, . . .

Only integer values of m are allowed since the function must be periodic in φ with period
2π, i.e., only γ = m2, m = 0, 1, 2, 3, . . . are possible values. The corresponding set of
functions is complete on the interval φ ∈ [0, 2π). The solution to the equation in the
ρ-variable is a Bessel function, see appendix A. Only solutions that are regular in ρ = 0
are valid, i.e.,

f(ρ) = Jm(ktρ)

The boundary conditions vm(a, φ) = 0 and dwm
dρ (a, φ) = 0 for the TM- and TE-cases,

respectively, add extra conditions. For these boundary conditions to be satisfied, the
transverse wavenumber has to satisfy

kta =

{
ξmn, (TM-case)

ηmn, (TE-case)
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Eigenfunctions vmn, wmn Eigenvalues k2
t mn

TMmn vmn =

√
εmJm(ξmnρ/a)√
πaJ ′m(ξmn)

(
cosmφ

sinmφ

)
ξ2
mn

a2

TEmn wmn =

√
εmηmnJm(ηmnρ/a)√

π (η2
mn −m2)aJm(ηmn)

(
cosmφ

sinmφ

)
η2
mn

a2

Table 5.4: Table of the normalized eigenfunctions to equations (5.4) and (5.5) for

waveguides with circular cross-section, see figure 5.10 for definition of geometry. (εm =

2 − δm,0). The first values of the positive zeros ξmn to Jm(x) and the positive zeros ηmn
to J ′m(x), i.e., Jm(ξmn) = 0 and J ′m(ηmn) = 0, m = 0, 1, 2, 3, . . ., n = 1, 2, 3, . . . are listed

in tables A.1 and A.2 in appendix A. The mode with the lowest cut-off frequency is the

TE11 mode.

where ξmn and ηmn, n = 1, 2, 3, . . ., are zeros to the Bessel function Jm(x) and to the
derivative of the Bessel function, respectively, i.e., Jm(ξmn) = 0 and J ′m(ηmn) = 0. Nu-
merical values of the first of these zeros are given in appendix A.

The sets of functions {Jm(ξmnρ/a)}∞n=1, {J ′m(ηmnρ/a)}∞n=1 are both complete on the
interval ρ ∈ [0, a] for every value of m. The complete set of functions in the circle is,
in analogy with the rectangular waveguide, given by the product of the sets of basis
functions. The results of the normalized functions (the normalization integrals are given
in appendix A) are





vmn =

√
εmJm(ξmnρ/a)√
πaJ ′m(ξmn)

(
cosmφ

sinmφ

)
, TM-case

wmn =

√
εmηmnJm(ηmnρ/a)√

π (η2
mn −m2)aJm(ηmn)

(
cosmφ

sinmφ

)
, TE-case

where εm = 2− δm,0. The results are collected in table 5.4.

Example 5.5

The fundamental mode is the TE11 mode. The cut-off frequency is given by fc11 =
c0η11

2πa
where a is the radius of the cylinder and η11 = 1.841 is the first zero of J ′1(x). The second

mode is the TM01 mode with cut-off frequency fc01 =
c0ξ01

2πa
where ξ01 = 2.405 is the first

zero of J0(x). The bandwidth is BW = fc01 − fc11 =
c0

2πa
(2.405− 1.841) = 0.564

c0

2πa
.

The fractional bandwidth is bf = 2
0.564

1.841 + 2.405
= 0.265.

5.6 Analyzing waveguides with FEM

Waveguides with arbitrary cross-sections can be analyzed with numerical methods and in
this book we use the finite element method. The specific calculations are done with the
commercial software package COMSOL Multiphysics. We use COMSOL to find the cut-off
frequencies for the TE- and TM-modes in a hollow waveguide filled with a homogenous
non-conducting material with permittivity ε. We also let COMSOL determine the electric



Analyzing waveguides with FEM 93

and magnetic fields and the power flow density for the lowest modes. In COMSOL we do
the following steps:

• We choose 2D> Radio frequency> Electromagnetic waves> Eigenfrequency
study.

• We draw the cross section of the waveguide.

• In Study>Eigenfrequency we define how many modes that are to be determined
and the cut-off frequency where COMSOL starts to look for eigenfrequencies.

• We let COMSOL solve the eigenvalue problem. It then shows the electric field in
the cross section of the waveguide for the different modes. It also gives the cut-off
frequencies fc for the modes. From the cut-off frequencies we get the corresponding
kt from kt = ω/c0 = 2πfc/c0. There are spurious solutions with very low frequencies,
or complex frequencies that COMSOL presents. These can be recognized in the field
plot since they have a fuzzy field plot.

• To distinguish TE- from TM-modes we plot the z−component of the electric field. If
the plot is fuzzy with very small field values then the mode is a TE-mode, otherwise
it is a TM-mode.

• The fields that COMSOL presents are not normalized. We use a normalization such
that

∫∫
Ω |Ez(ρ)|2 dxdy = 1 for the TM-modes and

∫∫
Ω |Hz(ρ)|2 dxdy = 1 for the TE-

modes. To obtain this normalization we divide all field values with
∫∫

Ω |Ez(ρ)|2 dxdy
for the TM-modes and

∫∫
Ω |Hz(ρ)|2 dxdy for the TE-modes. To integrate we right

clock on Derived values and choose integration and surface integral.

• Notice that there are many options of surface graphs to choose from.

Example 5.6

We analyze the ridge waveguide. This is a waveguide with a large bandwidth since the
fundamental mode has a very low cut-off frequency. The cross-section is depicted in figure
5.11. We use the scheme for COMSOL to obtain the modes. The TM modes have cut-off
frequencies fc = 3.88 GHz, 3.88 GHz, 5.83 GHz, 5.83 GHz, 6.43 GHz, 6.43 GHz and the
TE modes have cut-off frequencies fc = 0.663 GHz, 2.51 GHz, 2.51 GHz, 2.86 GHz, 3.14
GHz. In figure 5.12 we see the active power flow density for one of the TM-mode with the
cut-off frequency 5.83 GHz. The other mode with the same cut-off frequency has its power
flow in the right part of the waveguide. This mode is very close to the TM12 mode in a 5
cm × 6 cm rectangular waveguide. The TM12 mode has cut-off frequency fc = 5.831 GHz
which is very close to the cut-off frequency 5.827 GHz obtained for the mode in figure 5.11.
The fractional bandwidth of this waveguide is bf = 2(fupper−flower)/(fupper +flower). The
ridge waveguide has the fractional bandwidth of 1.16. This is to be compared with the
value 0.67 for a rectangular waveguide with a > 2b.
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5 cm

2 cm

6 cm

5 cm

1 cm

Figure 5.11: Geometry for the ridge waveguide and the power flow density for the

TM-mode with cut-off frequency 5.83 GHz.

5.7 Normalization integrals

In this section we solve the following integrals

∫∫

Ω

ẑ · {ET nν(ρ, ω)×HT
∗
n′ν′(ρ, ω)} dxdy

∫∫

Ω

ẑ · {ET nν(ρ, ω)×HT n′ν′(ρ, ω)} dxdy

(5.30)

The real part of the first integral is the power that the mode nν transports in the waveg-
uide, see section avs:Effekt. The second integral is needed when we treat sources in
waveguides in section 5.10. The values of the integrals are given in equations (5.37) and
(5.39).

The eigenfunctions vn(ρ) and wn(ρ) are real functions that are normalized according
to (5.26), i.e., 




∫∫

Ω

vn(ρ)vn′(ρ) dxdy = δn,n′

∫∫

Ω

wn(ρ)wn′(ρ) dxdy = δn,n′

From the relation ∇ · (g∇f) = g(∇2f) +∇g · ∇f and Gauss’ theorem (in two dimensions)
we obtain ∫∫

Ω

∇T g(ρ) · ∇T f(ρ) dxdy = −
∫∫

Ω

g(ρ)∇2
T f(ρ) dxdy

+

∫

Γ

g(ρ)n̂ · ∇T f(ρ) dl

(5.31)

where dl is the line element along the border curve Γ.
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Figure 5.12: The power flow density for the fundamental mode of the ridge waveguide,

i.e., the TE-mode with cut-off frequency 0.663 GHz. The power flow is concentrated to

the narrow section. Notice that the electric field is very strong at edges.

If we use the eigenfunctions for the TM-case such that f(ρ) = vn(ρ) and g(ρ) = vn′(ρ),
the curve integral is zero since vn(ρ) = 0 on the boundary curve Γ. We get

∫∫

Ω

∇T vn(ρ)·∇T vn′(ρ) dxdy = −
∫∫

Ω

vn(ρ)∇2
T vn′(ρ) dxdy

= kt
2
n′

∫∫

Ω

vn(ρ)vn′(ρ) dxdy = kt
2
nδn,n′

(5.32)

where we have used equations (5.4) and (5.26).
If we use the eigenfunctions for the TE-case, i.e., f(ρ) = wn(ρ) and g(ρ) = wn′(ρ) in

(5.31), the curve integral is zero since ∂
∂nwn(ρ) = 0 on the boundary curve Γ, and hence

∫∫

Ω

∇Twn(ρ)·∇Twn′(ρ) dxdy = −
∫∫

Ω

wn(ρ)∇2
Twn′(ρ) dxdy

= kt
2
n′

∫∫

Ω

wn(ρ)wn′(ρ) dxdy = kt
2
nδn,n′

(5.33)

where we used equations (5.5) and (5.26). We see that the gradient of the eigenfunctions
are othogonal, but not normalized.



96 Waveguides at fix frequency

Four more combinations of integrals are of interest in later sections:





∫∫

Ω

ẑ · {∇T vn(ρ)×∇Twn′(ρ)} dxdy

∫∫

Ω

ẑ · {(ẑ ×∇Twn(ρ))× (ẑ ×∇T vn′(ρ))} dxdy

(5.34)

and 



∫∫

Ω

ẑ · {∇T vn(ρ)× (ẑ ×∇T vn′(ρ))} dxdy

∫∫

Ω

ẑ · {(ẑ ×∇Twn(ρ))×∇Twn′(ρ)} dxdy

(5.35)

We rewrite the first integral in (5.34) by using formulas for the nabla-operator and Stoke’s
theorem (the unit normal vector to Ω is ẑ).

∫∫

Ω

ẑ · {∇T vn(ρ)×∇Twn′(ρ)} dxdy = ẑ ·
∫∫

Ω

∇T × (vn(ρ)∇Twn′(ρ)) dxdy

=

∫∫

Ω

∇× (vn(ρ)∇Twn′(ρ)) · n̂dxdy =

∫

Γ

(vn(ρ)∇Twn′(ρ)) · dr = 0

since vn(ρ) = 0 on the boundary curve Γ. The linear element is dr = ẑ × n̂dl = τ̂dl.
In the same manner we can show that the second integral in (5.34) is zero by using
(c× a)× (c× b) = c ((a× b) · c) and utilizing

∫∫

Ω

ẑ· {(ẑ ×∇Twn(ρ))× (ẑ ×∇T vn′(ρ))} dxdy

=

∫∫

Ω

ẑ · {∇Twn(ρ)×∇T vn′(ρ)} dxdy = 0

The integrals in (5.35) are simplified by using the BAC-CAB-rule.

∫∫

Ω

ẑ · {∇T vn(ρ)× (ẑ ×∇T vn′(ρ))} dxdy

=

∫∫

Ω

∇T vn(ρ) · ∇T vn′(ρ) dxdy

∫∫

Ω

ẑ · {(ẑ ×∇Twn(ρ))×∇Twn′(ρ)} dxdy

= −
∫∫

Ω

∇Twn(ρ) · ∇Twn′(ρ) dxdy

By using the orthogonality integrals (5.32) and (5.33) we can summarize the integrals in



Power flow density 97

(5.34) and (5.35) as




∫∫

Ω

ẑ · {∇T vn(ρ)×∇Twn′(ρ)} dxdy = 0

∫∫

Ω

ẑ · {(ẑ ×∇Twn(ρ))× (ẑ ×∇T vn′(ρ))} dxdy = 0

∫∫

Ω

ẑ · {∇T vn(ρ)× (ẑ ×∇T vn′(ρ))} dxdy = kt
2
nδn,n′

∫∫

Ω

ẑ · {(ẑ ×∇Twn(ρ))×∇Twn′(ρ)} dxdy = −kt2nδn,n′

(5.36)

We use the integrals in (5.36) to calculate the following normal surface integral:
∫∫

Ω

ẑ · {ET nν(ρ, ω)×HT
∗
n′ν′(ρ, ω)} dxdy

This integral is used in section 5.8. By using the definitions of ET nν(ρ, ω) and HT nν(ρ, ω)
in (5.24) we find by using (5.36) that

∫∫

Ω

ẑ · {ET nν(ρ, ω)×HT
∗
n′ν′(ρ, ω)} dxdy = 2PEnνδn,n′δν,ν′ (5.37)

We have here introduced the mode power PEnν as

PEnν =





ω

2kt
2
n

{
kzn(ω)ε0ε

∗(ω), ν = TM

kz
∗
n(ω)µ0µ(ω), ν = TE

1

2η0η∗
, ν = TEM

(5.38)

In lossless materials the mode powers are real, and thus purely active, for frequencies above
the cut-off frequency, and imaginary, and thus purely reactive, for frequencies below the
cut-off frequency.

In section 5.10 we need the following integral
∫∫

Ω

ẑ · {ET nν(ρ, ω)×HT n′ν′(ρ, ω)} dxdy = −2Unνδn,n′δν,ν′ (5.39)

where

Unν =





ωkzn(ω)

2kt
2
n

{
ε0ε(ω), ν = TM

µ0µ(ω), ν = TE

1

2η0η
, ν = TEM

(5.40)

5.8 Power flow density

The active power flow density of the electromagnetic field is given by the Poynting vec-
tor(see (1.20) on page 9)

<S(t)> (r, ω) =
1

2
Re {E(r, ω)×H∗(r, ω)}
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We are in particular interested of the z-component of this vector, since it gives the time
average of the power per unit area transported along the waveguide

ẑ· <S(t)> (r, ω) =
1

2
ẑ · Re {E(r, ω)×H∗(r, ω)}

We introduce the decomposition of the vector fields in their longitudinal and transverse
parts according to section 4.1.

ẑ· <S(t)> (r, ω) =
1

2
ẑ · Re {(ET (r, ω) + ẑEz(r, ω))× (H∗T (r, ω) + ẑH∗z (r, ω))}

=
1

2
ẑ · Re {ET (r, ω)×H∗T (r, ω)}

We use the general waveguide solution given by equations (5.27), (5.21) and (5.22), in
order to rewrite the expression for the power flow in the z-direction. We get

ẑ· <S(t)> (r, ω) =
∑

n,n′

ν,ν′=TM,TE,TEM

1

2
ẑ · Re

{(
a+
nνET nν(ρ, ω)eikznz + a−nνET nν(ρ, ω)e−ikznz

)

×
(
a+∗
n′ν′HT

∗
n′ν′(ρ, ω)e−ikz

∗
n′z − a−∗n′ν′HT

∗
n′ν′(ρ, ω)eikz

∗
n′z
)}

The time average of the total power flow at z is

∫∫

Ω

ẑ· <S(t)> (r, ω) dxdy

In this surface integral over the cross section the integral in (5.37) appears. The integration
over the cross section Ω of the Poynting vector implies that all terms with products of vn
and wn vanish, and the power flow in the waveguide is

∫∫

Ω

ẑ· <S(t)> (r, ω) dxdy = Re
∑

n
ν=TM,TE,TEM

PEnν

{∣∣a+
nν

∣∣2 ei(kzn−kz∗n)z −
∣∣a−nν

∣∣2 e−i(kzn−kz∗n)z

+ a−nνa
+∗
nν e
−i(kzn+kz

∗
n)z − a+

nνa
−∗
nν e

i(kzn+kz
∗
n)z
}

= Re
∑

n
ν=TM,TE,TEM

PEnν

{∣∣a+
nν

∣∣2 e−2 Im kznz −
∣∣a−nν

∣∣2 e2 Im kznz + 2i Im
(
a−nνa

+∗
nν e
−2i Re kznz

)}

where the mode power, PEnν , is given by (5.38), which is a general expression. In addition
to the terms that express power flow in the +z- and −z-directions, |a+

nν |2 and |a−nν |2,
respectively, there are terms that express the interaction of waves propagating in opposite
directions (standing wave phenomena).

We now specialize to the lossless case, i.e., with ε(ω) and µ(ω) real, and wave prop-
agation either in the positive, or the negative, z−direction. The expression simplifies
to ∫∫

Ω

ẑ· <S(t)> (r, ω) dxdy = Re
∑

n
ν=TM,TE

PEnν
∣∣a+
nν

∣∣2 e−2 Im kznz (5.41)
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S z

z= 0

ǫ 1,µ1

ǫ 2,µ2

Figure 5.13: Reflection and transmission in a waveguide filled with two isotropic mate-

rials with material parameters ε1, µ1 and ε2, µ2.

for the waves propagating in the +z-direction and
∫∫

Ω

ẑ· <S(t)> (r, ω) dxdy = −Re
∑

n
ν=TM,TE

PEnν
∣∣a−nν

∣∣2 e2 Im kznz

for the waves propagating in the −z-direction. These sums are finite since kzn, and hence
PEnν , is purely imaginary when f < fcn, or equivalently ktn > k(ω).

Example 5.7
In a microwave oven there is a door with a metallic screen that is perforated with circular
holes. The holes are filled with air. The screen is a high pass filter since it lets visible light
pass but blocks microwaves efficiently. If we assume that the holes in the screen have a
radius of 0.5 mm, the lowest cut-off frequency is fcTE11

= 1.841c0/2πa = 1.76 · 1011 Hz,
see table 5.4. The frequencies for visible light are far above this cut-off frequency and thus
light can pass through the holes. The frequency used by microwave ovens is f = 2.45 GHz,
i.e., well below the cut-off frequency for the fundamental mode. The attenuation of the

power at this frequency is αTE11 = 4π
c0

√
fc

2
n − f2 = 7363 m−1. With a thickness of 0.5

mm this corresponds to an attenuation of 16 dB of the microwaves.

Example 5.8
Sources in the region z < 0 generates a waveguide mode. The region z < 0 is assumed
to be filled with a lossless material with parameters ε1 and µ1, while the region z > 0 is
filled with a lossless material with ε2 and µ2, see figure 5.13. Determine the reflection and
transmission coefficients for the waves.

We denote the electric and magnetic fields generated by the sources E+
nν(r, ω) and

H+
nν(r, ω). Since the material parameters are discontinuous in the plane z = 0 there is a

reflected wave in the region z < 0. The electric and magnetic fields in the region z < 0 is
a sum of the incident and reflected fields, see (5.27) (normalization is a+

nν = 1)




E(r, ω) = E+
nν(r, ω) +

∑

n′
ν′=TM,TE

rn′ν′E
−
n′ν′(r, ω)

H(r, ω) = H+
nν(r, ω) +

∑

n′
ν′=TM,TE

rn′ν′H
−
n′ν′(r, ω)

z ≤ 0
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where ε and µ have values ε1 and µ1.
A general ansatz for the region z > 0 is





E(r, ω) =
∑

n′
ν′=TM,TE

tn′ν′E
+
n′ν′(r, ω)

H(r, ω) =
∑

n′
ν′=TM,TE

tn′ν′H
+
n′ν′(r, ω)

z ≥ 0

where ε and µ have values ε2 and µ2. Due to the boundary conditions (continuity of the
transverse components of E and H) and the orthogonality relations (5.36) each mode,
nν, generated from the source couples only to the same mode at the interface z = 0. The
fields in the region z < 0 then reduce to

{
E(r, ω) = E+

nν(r, ω) + rnνE
−
nν(r, ω)

H(r, ω) = H+
nν(r, ω) + rnνH

−
nν(r, ω)

z ≤ 0

and the fields in the region z > 0 reduce to

{
E(r, ω) = tnνE

+
nν(r, ω)

H(r, ω) = tnνH
+
nν(r, ω)

z ≥ 0

The boundary condition on the interface z = 0 give (see equations (5.24), (5.21) and
(5.22)) { (

k2
1 − kt2n

)1/2
(1 + rnν) = tnν

(
k2

2 − kt2n
)1/2

(1− rnν) ε1 = tnνε2
ν = TM

and {
(1 + rnν)µ1 = tnνµ2

(
k2

1 − kt2n
)1/2

(1− rnν) = tnν
(
k2

2 − kt2n
)1/2 ν = TE

where k1 = ω
c0

√
ε1µ1 and k2 = ω

c0

√
ε2µ2 are the wave numbers in region 1 and 2, respec-

tively. Note that the transverse wavenumber ktn, and the basis functions vn(ρ) and wn(ρ),
are identical in the two regions z < 0 and z > 0. The solutions to these equations are





rnν =
ε1
(
k2

2 − kt2n
)1/2 − ε2

(
k2

1 − kt2n
)1/2

ε1
(
k2

2 − kt2n
)1/2

+ ε2
(
k2

1 − kt2n
)1/2

tnν =
2ε1
(
k2

1 − kt2n
)1/2

ε1
(
k2

2 − kt2n
)1/2

+ ε2
(
k2

1 − kt2n
)1/2

ν = TM

and 



rnν =
µ2

(
k2

1 − kt2n
)1/2 − µ1

(
k2

2 − kt2n
)1/2

µ2

(
k2

1 − kt2n
)1/2

+ µ1

(
k2

2 − kt2n
)1/2

tnν =
2µ1

(
k2

1 − kt2n
)1/2

µ2

(
k2

1 − kt2n
)1/2

+ µ1

(
k2

2 − kt2n
)1/2

ν = TE
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Figure 5.14: The interface between the non-perfectly conducting wall and the inner

region of the waveguide.

5.9 Losses in walls

So far the walls of the waveguides have been perfect conductors. This means that a
waveguide mode with cut-off frequency below the frequency of the field is not attenuated
if the the material in the waveguide is lossless. In this section a more realistic model is
presented where the conductivity of the walls is assumed to be very large, but finite. By
use of appropriate approximations the theory for waveguides with perfectly conducting
walls can be generalized and expressions for the attenuation of propagating modes can be
derived. The approximations are valid, as will be seen, for frequencies that are not close
to the cut-off frequency of the mode.

We start by analyzing reflection of plane waves impinging on a plane metallic surface.
The metal has permittivity εc, permeability µc and conductivity σ. The condition for a
good conductor

σ � ωε0εc

is assumed to be fullfilled. The fields in the metal are denoted Ec, Dc, Bc and Hc while
the fields outside the metal do not have any index. We let n̂c be the normal to the
surface, directed into the metal, and introduce the coordinate ξ along the n̂c-direction,
see figure 5.14. The boundary conditions at the surface are given by (see (1.16) on page 7)

n̂c ×H = n̂c ×Hc

n̂c ×E = n̂c ×Ec

i.e., the tangential components of E and H are continuous. There are no surface currents
since σ is finite.

The wavenumber k(ω) for the metal is

k(ω) =
ω
√
µc

c0

(
εc + i

σ

ωε0

)1/2

The material parameters εc and µc are assumed to be real. We extract a factor εc and use
the approximation σ � ωε0εc. We get

k(ω) =
ω
√
εcµc

c0

(
1 + i

σ

ωεcε0

)1/2

≈ ω
√
εcµc

c0

(
i
σ

ωεcε0

)1/2

=
1 + i√

2

√
σµ0µcω
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Material σ (S/m) f = 50 (Hz) f = 1 (MHz) f = 1 (GHz)

Silver 6.30 · 107 8.97 (mm) 0.063 (mm) 0.0020 (mm)

Copper 5.96 · 107 9.22 0.065 0.0021

Gold 4.52 · 107 10.6 0.075 0.0024

Aluminium 3.78 · 107 11.6 0.082 0.0026

Iron (µ = 103) 1.04 · 107 0.70 0.005 0.00016

Fresh water 0.001 2250 (m) †a †a
Saltwater 4 35.6 0.25 (m) †a

aAt this frequency the approximation σ � ωε0ε is not valid and ε ≈ 80.

Table 5.5: Table of the skin depth δ in different materials at different frequencies. The

conductivities of the metals are at temperature 20◦ C. The values for fresh and saltwater

are approximative.

since (i)1/2 = (1 + i)/
√

2. A plane wave with dependence exp(ikξ) is decomposed as

eikξ = eiξ/δe−ξ/δ

where

δ =

√
2

ωµ0µcσ
(5.42)

The quantity δ is the skin depth of the material and is the characteristic depth where the
electric field has been attenuated a factor e−1.

At microwave frequencies the skin depth is much smaller than the dimensions of the
waveguide, see table 5.5. That implies that in the walls the ξ-derivatives of the fields
are much greater than the derivatives in the tangential directions and for this reason we
neglect the tangential derivatives of Ec and Hc as

∇ ' n̂c
∂

∂ξ
(5.43)

Since the normal component of H at a perfectly conducting surface is zero, we can assume
that the normal component of Hc is negligible compared to the tangential components.
Thus the magnetic field in the metal has a component in a direction τ̂ tangential to the
boundary curve Γ and a component along the ẑ-direction, but no component along the
ξ−direction. We will soon see that this is in accordance with the approximation in (5.43).

When we utilize the approximation (5.43), the Maxwell field equations are simplified
to 




Hc = − i

ωµ0µc
n̂c ×

∂Ec

∂ξ

Ec =
1

σ
n̂c ×

∂Hc

∂ξ

(5.44)

Note that the displacement current−iωε0εcEc is negligible compared to the current density
σEc in Ampère’s law, since σ � ωε0εc. We eliminate the electric field from the equations
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by operating with n̂c × ∂
∂ξ on the lower of the two equations in (5.44)

n̂c ×
∂Ec

∂ξ
=

1

σ
n̂c ×

(
n̂c ×

∂2Hc

∂ξ2

)
=

1

σ

(
n̂c

(
n̂c ·

∂2Hc

∂ξ2

)
− ∂2Hc

∂ξ2

)

When we insert this into Faraday’s law we get

Hc = − i

ωσµ0µc

(
n̂c

(
n̂c ·

∂2Hc

∂ξ2

)
− ∂2Hc

∂ξ2

)

The normal component of this equation gives n̂c ·Hc = 0, which we anticipated earlier.
Since n̂c · ∂

2Hc
∂ξ2

= ∂2

∂ξ2
(n̂c ·Hc) = 0 we obtain the equation

∂2Hc

∂ξ2
+ iωµ0µcσHc = 0

with solution
Hc = H‖e

−ξ/δeiξ/δ (5.45)

where δ is the skin depth of the metal, c.f., equation (5.42), and H‖ is the tangential
component of the magnetic field at the surface, which can be decomposed in components
along the directions τ̂ and ẑ. Based on the approximations in this section we conclude
that the amplitude of the tangential components are the same as for a perfectly conducting
surface. The corresponding electric field is obtained by inserting (5.45) into Ampère’s law
in equation (5.44).

Ec '
i− 1

σδ

(
n̂c ×H‖

)
e−ξ/δeiξ/δ

The tangential components of the electric and magnetic fields are continuous and if we let
ξ = 0 we get the impedance boundary condition that relates the tangential components
of the magnetic field to the tangential components of the magnetic field at the surface of
a conducting surface, c.f., equation (1.18) in section 1.1

E − n̂(E · n̂) = −ηsn̂×H (5.46)

where E and H are the electric and magnetic fields at the surface, ηs = 1−i
σδ is the

impedance of the metal and n̂ = −n̂c is the normal unit vector, directed out from the
metal.

We are now in position to determine the ohmic losses in the metal. The time average
of the power loss density in the metal is given by

p =
1

2
Re {J ·E∗c} =

σ

2
Ec ·E∗c =

1

σδ2
|H‖|2e−2ξ/δ

We get the power loss per unit area by integrating this expression in the ξ-direction.

dPc
da

=

∫ ∞

0
p(ξ) dξ =

1

2σδ
|H‖|2 =

1

2
Rs|H‖|2 (5.47)

where we introduced

Rs =
1

σδ
= surface resistance (5.48)

c.f., (3.31) in chapter 3. We have chosen to integrate all the way to infinity for practical
reasons. We know that the metallic wall has finite thickness but since the skin depth is very
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small and the integrand falls off exponentially only the very first part of the integration
interval contributes to the integrand. Since H‖ in our approximation is assumed to be the
same as for a perfectly conducting surface we can relate H‖ to the surface current density
of a perfectly conducting surface

H‖ = −n̂c × JS
and hence

dPc
da

=
1

2
Rs|JS |2 (5.49)

We now turn to the objective of this section, namely the attenuation of waves in a
waveguide. The walls of the waveguide are very good, but not perfect, conductors, and for
simplicity we assume that the waveguide is filled with a lossless material with real material
parameters ε and µ. In a first order approximation we obtain an attenuation of a mode
due to the losses in the waveguide walls. The frequency of the wave exceeds the cut-off
frequency. We study one mode at a time and only propagation in the positive z-direction.
The Ez and Hz components of the mode are given by

{
Ez(r) = a+

n vn(ρ)eikznz TM-mod

Hz(r) = b+nwn(ρ)eikznz TE-mod

where the eigenfunctions vn and wn are normalized according to (5.26). The corresponding
tangential components of the magnetic fields are given by equations (5.13)

|H‖T |
2 =





|a+
n |2
(
ωε0ε

kt
2
n

)2

|ẑ ×∇T vn|2, TM-mod

|b+n |2
kz

2
n

kt
4
n

|∇Twn|2, TE-mode

Thus the total magnetic field on the metal surface is given by

|H‖|2 = |H‖T |
2 + |Hz|2 =





|a+
n |2

(ωε0ε)
2

kt
4
n

|ẑ ×∇T vn|2, TM-mod

|b+n |2
(
kz

2
n

kt
4
n

|∇Twn|2 + |wn|2
)
, TE-mode

(5.50)

We have seen that, see (5.41), the time average of the power flow, P , in a lossless
waveguide with perfectly conducting walls is

P =

∫∫

Ω

S · ẑ dxdy =





|a+
n |2

ε0ωkzn
2kt

2
n

ε, TM-mod

|b+n |2
µ0ωkzn

2kt
2
n

µ, TE-mod
(5.51)

In the case of perfectly conducting walls the power flow is independent of the z−coordinate
and the mode is not attenuated. When the walls are not perfectly conducting the mode
dissipates power when it propagates due to the ohmic losses in the walls. Hence the power
flow P is an exponentially decreasing function of z. On a distance dz of the waveguide
the mode dissipates the power

dP = −dz
∮

Γ

dPc
da

dl (5.52)
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We can express the power loss per unit area, dPc/da, in the coefficients a+
n and b+n by

utilizing equations (5.47) and (5.50). We express a+
n and b+n in terms of P by using

equation (5.51) and get an equation for the power flow

dP

dz
= −2αP (5.53)

with solution
P (z) = P (0)e−2αz

where

α =





RSωεε0

2kt
2
nkzn

∮
Γ |ẑ ×∇T vn|2 dl, TM-mod

RSkt
2
n

2ωµ0µkzn

∮
Γ

(
kz

2
n

kt
4
n
|∇Twn|2 + |wn|2

)
dl, TE-mod

These expressions give the attenuation in a waveguide with walls that are not perfectly
conducting. It should be noted that for frequencies very close to the cut-off frequency
the expression has to be modified since α then goes to infinity. We refer to the book by
Collin [5] for this analysis.

5.9.1 Losses in waveguides with FEM: method 1

It is quite straightforward to determine the attenuation in a waveguide with FEM. We
then use the relations in equations (5.49), (5.52) and (5.53)

α = − 1

2P (z)

dP (z)

dz
=

1

2P (z)

∮

Γ

dPc(z)

da
da =

Rs
4P (z)

∮

Γ
|Js|2 da (5.54)

With COMSOL the following steps give α:

• We choose the, 2D>Electromagnetic waves>Eigenfrequency study.

• We draw the cross section of the waveguide.

• We define the material in the waveguide. We either define the material ourselves,
or pick it from the list. Usually it is air, which is in the list.

• In Study>Eigenfrequency we define how many modes that are to be determined
and the cut-off frequency where COMSOL starts to look for eigenfrequencies.

• We let COMSOL solve the eigenvalue problem. It then shows the electric field in
the cross section of the waveguide for the different modes. It also gives the cut-off
frequencies fc for the modes. From the cut-off frequencies we get the corresponding
kt from kt = ω/c0 = 2πfc/c0.

• We now choose the mode that we like to study. We open up a new Study>Mode
analysis. From the eigenfrequency of the mode and the frequency of the field we
can calculate the value of kz. We choose Study>Mode analysis>Out-of-plane
wavenumber and enter the frequency and the value for kz in box for search for
modes around. One can also use effective mode index which is defined by
kz = neffk0 where k0 = ω/c0 is the wavenumber in vacuum.
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• We let COMSOL solve the problem and we check that we get the correct value of
kz.

• We use Results>Derived values>Line integration and integrate |Js|2 by choos-
ing the square of the predefined surface current density emw.normJs2. We then
calculate P (z) by Results>Derived values>Surface integration>emw.Poavz
(power flow, time average, z-component). From these two integrals we obtain αp
from (5.54).

5.9.2 Losses in waveguides with FEM: method 2

It is somewhat easier to use the impedance boundary condition to determine the attenu-
ation. We then do the following steps in Comsol:

• We choose the, 2D>Electromagnetic waves>Mode analyzis.

• We draw the cross section of the waveguide.

• Define the materials. One should be air (or vacuum) and is for the interior of
the waveguide. The other one is the material in the walls. In Geometric entity
level: we mark Boundary for the metal material and add the boundaries of the
waveguide.

• Right click on Electromagnetic waves and let all boundaries have Impedance
Boundary Condition.

• In Study>Mode Analysis we define how many modes that are to be analyzed
and the frequency that we are interested in. We also add the effective mode index
where COMSOL starts to look for eigenfrequencies.

• We let COMSOL solve the eigenvalue problem. It then shows the electric field in
the cross section of the waveguide for the different modes. It also gives the complex
effective mode index n. From this we get α as α = ωIm{n}/c.

Example 5.9
Using impedance boundary conditions we get that a rectangular copper waveguide with
dimension a = 0.3 m and b = 0.15 m has n = 0.7045 + i1.74 · 10−5 for the TE10-mode at
704 MHz. This gives α = 0.0002565 Np/m. In ESS the distance between the klystrons
and the cavities is approximately 20 meters. It means that the attenuation of the power
is e−2α20=0.9898. Approximately one percent of the power is lost in the waveguides. The
average power fed to the cavities is 5 MW which means that the loss is on the order of 50
kW. By increasing the size of the waveguide to 0.35× 0.175 m2 the effective mode index
is changed to n = 0.7937 + i1.208 · 10−5. Then e−2α20=0.9925 and the average loss is 38
kW.

5.10 Sources in waveguides

In this section we determine the fields that are generated by known current densities in
a waveguide. We assume that the waveguide has constant cross-section and perfectly
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Figure 5.15: Waveguide with a source region V , confined by the surfaces Ω1, Ω2 and

the lateral surface S.

conducting walls. The boundary to the cross section is assumed to be simply connected
and hence there are no TEM-modes. It is easy to generalize to the case with non-perfectly
conducting walls by using the theory in the previous section, and also to waveguides with
TEM-modes. We assume a finite region in the waveguide confined between the cross-
sections Ω1 and Ω2, see figure 5.15, where there is a known time-harmonic current density

J(r, t) = Re{J(r, ω)e−iωt}
Since the mode solutions that we developed and analyzed in section 5.4, constitute a
complete set of functions in a source free region, the fields generated by the source is
a superposition of propagating and non-propagating modes. The suitable vector valued
expansion functions are given in (5.27), with the corresponding definitions in equations
(5.24), (5.21) and (5.22).

As in the previous sections we use two indices for the modes, an index ν = TM,TE,
and an n-index for the modes for each ν. As before the scalar functions vn and wn are the
solutions to the eigenvalue problems in equations (5.4) and (5.5), normalized according to
(5.26). The normalized vector functions satisfy the orthogonality relations in (5.37).

We let V be the volme between the surfaces Ω1 and Ω2 at z = z1 and z = z2, where
z1 < z2, see figure 5.15. In the region z ≥ z2 the fields are propagating in the positive
z-direction, since the sources of the fields are in the region z < z2. When z ≥ z2 the
expansion of the fields reads





E+(r, ω) =
∑

n
ν=TM,TE

a+
nνE

+
nν(r, ω)

H+(r, ω) =
∑

n
ν=TM,TE

a+
nνH

+
nν(r, ω)

z ≥ z2 (5.55)

Analogously the fields are propagating in the negative z-direction when z ≤ z1 and then




E−(r, ω) =
∑

n
ν=TM,TE

a−nνE
−
nν(r, ω)

H−(r, ω) =
∑

n
ν=TM,TE

a−nνH
−
nν(r, ω)

z ≤ z1 (5.56)
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To determine the coefficients a±nν we use the Lorentz’ reciprocity theorem, which we
first derive. Let E and H be the fields generated by the current density J , i.e., E and
H satisfy {

∇×E = iωµ0µH

∇×H = J − iωε0εE

where the electric field E satisfies the boundary condition n̂ × E = 0 on the perfectly
conducting surface of the waveguide. By definition the vector fields E±nν , H±nν for the
modes satisfy the homogenous Maxwell equations (no current densities), i.e.,

{
∇×E±nν = iωµ0µH

±
nν

∇×H±nν = −iωε0εE
±
nν

and n̂×E±nν = 0 on the perfectly conducting surfaces.
The following identity is obtained from the Maxwell field equations and vector formulas

for the nabla-operator

∇ ·
(
E±nν ×H −E ×H±nν

)
= H ·

(
∇×E±nν

)
−E±nν · (∇×H)

−H±nν · (∇×E) +E ·
(
∇×H±nν

)
= −J ·E±nν

We integrate this relation over the volume V and utilize the divergence theorem

∫∫

S0

(E±nν ×H −E ×H±nν) · n̂dS = −
∫∫∫

V

J ·E±nν dv (5.57)

The surface S0 consists of the two cross-sections Ω1 and Ω2, and the part of the envi-
ronmental surface S between the surfaces z = z1 and z = z2, see figure 5.15, and n̂ is
the outward directed normal to S0. Since the environmental surface is the perfectly con-
ducting wall, where n̂ × E±nν = n̂ × E = 0, the corresponding surface integral does not
contribute. The integrals over Ω1 and Ω2 give contributions that can be determined from
the expansions in equations (5.55) and (5.56) and the orthogonality relation (5.37).

For the field E+
nν on the surface Ω1 we use the expansions in equations (5.56), (5.21)

and (5.22). The orthogonality relation (5.39) gives

∫∫

Ω1

(E+
nν ×H −E ×H+

nν) · n̂dS

= −
∑

n′
ν′=TM,TE

a−n′ν′

∫∫

Ω1

(
E+
nν ×H−n′ν′ −E−n′ν′ ×H+

nν

)
· ẑ dS

=
∑

n′
ν′=TM,TE

a−n′ν′e
i(kzn−kzn′ )z1

∫∫

Ω1

(ET nν ×HT n′ν′ +ET n′ν′ ×HT nν) · ẑ dS

= −4a−nνUnν

Note that on the surface Ω1, the outward directed normal is −ẑ. On the surface Ω2 we
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use the expansion (5.55) and get

∫∫

Ω2

(E+
nν ×H −E ×H+

nν) · n̂dS

=
∑

n′
ν′=TM,TE

a+
n′ν′

∫∫

Ω2

(
E+
nν ×H+

n′ν′ −E+
n′ν′ ×H+

nν

)
· ẑ dS

=
∑

n′
ν′=TM,TE

a+
n′ν′e

i(kzn+kzn′ )z2

∫∫

Ω2

(ET nν ×HT n′ν′ −ET n′ν′ ×HT nν) · ẑ dS = 0

By using (5.57) we obtain the expression

a−nν =
1

4Unν

∫∫∫

V

J ·E+
nν dv

where Unν is given by (5.40). In the same manner we get the coefficients for E−nν
∫∫

Ω1

(E−nν ×H −E ×H−nν) · n̂dS

= −
∑

n′
ν′=TM,TE

a−n′ν′

∫∫

Ω1

(
E−nν ×H−n′ν′ −E−n′ν′ ×H−nν

)
· ẑ dS

=
∑

n′
ν′=TM,TE

a−n′ν′e
−i(kzn+kzn′ )z1

∫∫

Ω1

(ET nν ×HT n′ν′ −ET n′ν′ ×HT nν) · ẑ dS = 0

and
∫∫

Ω2

(E−nν ×H −E ×H−nν) · n̂dS

=
∑

n′
ν′=TM,TE

a+
n′ν′

∫∫

Ω2

(
E−nν ×H+

n′ν′ −E+
n′ν′ ×H−nν

)
· ẑ dS

=
∑

n′
ν′=TM,TE

a+
n′ν′e

−i(kzn−kzn′ )z2
∫∫

Ω2

(ET nν ×HT n′ν′ +ET n′ν′ ×HT nν) · ẑ dS

= −4a+
nνUnν

This leads to

a+
nν =

1

4Unν

∫∫∫

V

J ·E−nν dv

The final result is:

a±nν =
1

4Unν

∫∫∫

V

J ·E∓nν dv (5.58)
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Example 5.10
Consider a current density J that is confined to a thin wire along the curve C with
tangential unit vector τ̂ . The volume integrals in (5.58) are reduced to line integrals.

a±nν =
1

4Unν

∫

C

I(ρ)E∓nν · dr (5.59)

where dr = τ̂dl.

Example 5.11
If the curve C is in a transverse plane z = z0 we see from equations (5.59), (5.21), (5.22)
and (5.23) that a+

nν = a−nν exp(−2ikzz0).

Example 5.12
A small, planar, closed wire with r-independent time-harmonic current I has its center in
r0. The wire is represented by a magnetic elementary dipole m = IAn̂, where A is the
area of the planar surface spanned by the wire and n̂ is the unit normal to A directed
according to the right hand rule. Since the loop is small H±nν(r) ' H±nν(r0) in A. From
(5.59), Stoke’s theorem, and the induction law we get

a±nν =
I

4Unν

∮

C

E∓nν · dr =
I

4Unν

∫∫

Ω

(∇×E∓nν) · n̂dS

' I

4Unν
iωµ0µH

∓
nν(r0) ·

∫∫

Ω

n̂dS =
iωµ0µ

4Unν
H∓nν(r0) ·m

Example 5.13
Consider an electric elementary dipole, p = iI dr/ω where the vector dr is much smaller
than the wavelength and the dimensions of the waveguide. When this dipole is placed in
a waveguide we see from (5.59) that

a±nν = − iω

4Unν
p ·E∓nν

Assume that the dipole is placed in the point r0. The field from the dipole is given by

E(r) =





− iω

4

∑

n
ν=TM,TE

1

Unν
(p ·E−nν(r0))E+

nν(r), z > z0

− iω

4

∑

n
ν=TM,TE

1

Unν
(p ·E+

nν(r0))E−nν(r), z < z0

This is rewritten as

E(r) =
iω

4
p · G(r, r0)

The function G is given by

G(r, r0) =





− ∑
n

ν=TM,TE

1

Unν
E−nν(r0)E+

nν(r), z > z0

− ∑
n

ν=TM,TE

1

Unν
E+
nν(r0)E−nν(r), z < z0
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Figure 5.16: The geometry for the mode matching method.

and is called the Green dyadic, which is a vectorial analogue of the Green function for
scalar fields.

5.11 Mode matching method

The mode matching method is an efficient method to determine the reflected and trans-
mitted fields at the transition between waveguides with different dimensions.

We first consider the case with two lossless waveguides that are joined at z = z0. The
waveguide in z > z0 has a cross section surface ΩH and the waveguide in z < z0 a cross
section surface ΩV . The surface ΩV is a subsurface to ΩH , as indicated in figure 5.16.
We assume modes with angular frequency ω propagating in the positive and negative
directions in both waveguides. The expansions of the fields are, according to (5.27) on
page 85, 




E(r) =
∑

n
ν=TM,TE,TEM

(
a+
nνE

+
nν(r) + a−nνE

−
nν(r)

)

H(r) =
∑

n
ν=TM,TE,TEM

(
a+
nνH

+
nν(r) + a−nνH

−
nν(r)

) z < z0





E(r) =
∑

n
ν=TM,TE,TEM

(
b+nνE

+
nν(r) + b−nνE

−
nν(r)

)

H(r) =
∑

n
ν=TM,TE,TEM

(
b+nνH

+
nν(r) + b−nνH

−
nν(r)

) z > z0

where the amplitudes of the incident modes, a+
nν and b−nν , are assumed to be known. We
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extract the transverse components of the fields from these sums





EV
T (r) =

∑

n
ν=TM,TE,TEM

(
a+
nνe

ikVznz + a−nνe
−ikVznz

)
EV
T nν(ρ)

HV
T (r) =

∑

n
ν=TM,TE,TEM

(
a+
nνe

ikVznz − a−nνe−ikVznz
)
HV

T nν(ρ)
z < z0





EH
T (r) =

∑

n
ν=TM,TE,TEM

(
b+nνe

ikHznz + b−nνe
−ikHznz

)
EH
T nν(ρ)

HH
T (r) =

∑

n
ν=TM,TE,TEM

(
b+nνe

ikHznz − b−nνe−ikHznz
)
HH

T nν(ρ)
z > z0

Note that transverse mode functions are different in the two waveguides since the trans-
verse wavenumber ktn depends on the cross section of the waveguide. We denote the
mode functions in the waveguides EV

T nν and EH
T nν . The same indices are used for the

mode functions for the magnetic field and for the longitudinal wavenumbers, i.e., kH,Vzn .
At z = z0 the transverse components of the electric and magnetic fields are continuous on
ΩV , while the transverse electric field is zero over the remaining part of ΩH , i.e., in the
part ρ ∈ ΩH but ρ /∈ ΩV . This leads to

EH
T (ρ, z0) =

{
0, ρ ∈ ΩH and ρ /∈ ΩV

EV
T (ρ, z0), ρ ∈ ΩV

HH
T (ρ, z0) = HV

T (ρ, z0), ρ ∈ ΩV

(5.60)

We now evaluate the normal surface integral over ΩH of the vector product between
HH∗

T n′ν′ and the upper equation in (5.60). We utilize the normalization integral (5.37) on
page 97 ∫∫

ΩH

ẑ ·
(
EH
T nν(ρ)×HH∗

T n′ν′(ρ)
)

dS = 2PHnνδnn′δνν′

where the mode powers in the lossless waveguide are given by, see (5.38),

PH,Vnν =





ε0εωkz
H,V
n

2
(
kt
H,V
n

)2 , ν = TM

µ0µωkz
H,V
n
∗

2
(
kt
H,V
n

)2 , ν = TE

1

2η0η
, ν = TEM

(5.61)

The following relation is obtained

P (B+(z0) +B−(z0)) = Qt(A+(z0) +A−(z0)) (5.62)

whereA±(z0) andB±(z0) are column vectorsA±nν(z) = a±nνe
±ikz

V
n z andB±nν(z) = b±nνe

±ikz
H
n z

where t denotes transpose. The matrix Q is given by

Qnν,n′ν′ =
1

2

∫∫

ΩV

ẑ ·
(
EV
T nν(ρ)×HH∗

T n′ν′(ρ)
)

dS
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while P is the diagonal matrix

Pnν,n′ν′ = PHnνδnn′δνν′

Next we evaluate the normal surface integral over ΩV of the vector product of EV ∗
T n′ν′ and

the lower of the equations in (5.60) and get the relation

Q∗(B+(z0)−B−(z0)) = R∗(A+(z0)−A−(z0)) (5.63)

where R is the diagonal matrix

Rnν,n′ν′ = P Vnνδnn′δνν′

The mode power P Vnν is given by (5.61).
The system of equations (5.62) and (5.63) gives the relations between the amplitudes

of the incident modes, A+(z0), B−(z0), and the amplitudes of the outgoing modes A−(z0),
B+(z0): (

A−(z0)

B+(z0)

)
=

(
S11 S12

S21 S22

)(
A+(z0)

B−(z0)

)
= S

(
A+(z0)

B−(z0)

)

where S is the scattering matrix with elements given by





S11 = (Q∗P−1Qt +R∗)−1(R∗ −Q∗P−1Qt)

S12 = 2(Q∗P−1Qt +R∗)−1Q∗

S21 = 2(QtR∗−1Q∗ + P )−1Qt

S22 = (QtR∗−1Q∗ + P )−1(QtR∗−1Q∗ − P )

We have so far considered waveguides for which ΩV < ΩH . The case when ΩV > ΩH

leads to similar expressions for the relations between the amplitudes

(
A−(z0)

B+(z0)

)
=

(
S̃11 S̃12

S̃21 S̃22

)(
A+(z0)

B−(z0)

)

where the scattering matrix is





S̃11 = (R+ Q̃tP ∗−1Q̃∗)−1(Q̃tP ∗−1Q̃∗ −R)

S̃12 = 2(R+ Q̃tP ∗−1Q̃∗)−1Q̃t

S̃21 = 2(Q̃∗R−1Q̃t + P ∗)−1Q̃∗

S̃22 = (Q̃∗R−1Q̃t + P ∗)−1(P ∗ − Q̃∗R−1Q̃t)

and where

Q̃nν,n′ν′ =
1

2

∫∫

ΩH

ẑ ·
(
EH
T nν(ρ)×HV ∗

T n′ν′(ρ)
)

dS

Example 5.14
Consider a transition between the two planar waveguides depicted in figure 5.17. An
incident TEM wave propagates in the positive z-direction and gives rise to a reflected
and transmittet TEM-wave at the transition z = 0. The frequency is low enough such
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a=7.5mm
b=15mm
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z

Figure 5.17: Transition between two planar waveguides.
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Figure 5.18: Reflection and transmission coefficients for the TEM-mode.

that no other modes than the TEM-mode can propagate. For low enough frequencies the
transition can be treated by transmission line theory. This gives the reflection coefficient
Γ = (Z2 − Z1)/(Z2 + Z1) and the transmission coefficient T = 2Z2/(Z2 + Z1). For a
planar waveguide the characteristic impedance is given by Z = dη/w, where d is the
distance between the plates and w is the width of the two conductors. The reflection and
transmission coefficients are then given by

R =
b− a
b+ a

T =
2b

b+ a

(5.64)

These coefficients can be compared with the corresponding coefficients obtained from the
mode matching method. In this case B−(z0) = 0. The scattering matrix element S11

acts as a reflection matrix and the matrix element S21

√
Z2

Z1
as a transmission matrix,

where

√
Z2

Z1
=

√
b

a
is the quotient of the characteristic impedances of the transmission

lines at port 1 and 2, c.f., (3.39). In figure 5.18 the reflection coefficient for the TEM
wave calculated from the mode matching method is compared with the corresponding
coefficients calculated from transmission line theory. In this case a = 7.5 mm and b = 15
mm. We see that transmission line theory is only accurate up to approximately 1 GHz.
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5 GHz

15 GHz

25 GHz

Figure 5.19: The magnetic field distribution for the junction in figure 5.17 generated

by COMSOL at 5, 15, and 25 GHz. The incident TEM-wave enters from the left. The

total length of the waveguide is 32 cm. At 5 GHz only the TEM wave propagates. At 15

GHz only the TEM wave propagates in the left waveguide and both the TEM and TM1

modes propagate in the right part. At 25 GHz TEM and TM1 propagate in the left part

and TEM, TM1, TM2 propagate in the right part.

This despite that the cut-off frequency for the next propagating modes TE1 and TM1 is
10 GHz.

Example 5.15
To analyze the transition in figure 5.17 with COMSOL we choose 2D>Electromagnetic
waves>Frequency domain. We draw the geometry and define the boundary conditions.
All of the surfaces are perfect conductors except the vertical surface to the left, which
is the input port, and the vertical surface to the right, which is the output port. In
boundary conditions we specify the vertical surface to the left to be the input port and
the vertical surface to the right to be the output port. Now we can specify the frequency
in Study>Frequency domain and let COMSOL calculate the field in the waveguide.
Figure 5.19 shows the magnetic field at 5 GHz, 15 GHz and 25 GHz. The cut-off frequencies
for the TM1 mode is 10 GHz in the right part of the waveguide and 20 GHz in the left
part. This is in accordance with the three figures.

It seems that we can handle junctions with FEM. FEM is more flexible than the mode
matching technique since it does not rely on analytical expressions for the waveguide
modes. We might then get the impression that the mode matching method is redundant,
but this is not all true. There are a number of cases where the mode-matching technique
is superior to FEM. If there are long distances between junctions then the mode matching
technique is very efficient. The mode matching technique decomposes the waves in their
mode sums and that is not as straightforward with FEM.

5.11.1 Cascading

A waveguide with several discontinuities can be treated by a cascading method. Assume
the geometry depicted in figure 5.20. The relation between A±(z0) and B±(z0) can be
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z

z0 z1

A + (z)

A − (z)

B + (z)

B − (z)

C + (z)

C − (z)

Figure 5.20: Three cascaded waveguides.

written, see equations (5.62) and (5.63)

(
P0 P0

Q∗0 −Q∗0

)(
B+(z0)
B−(z0)

)
=

(
Qt0 Qt0
R∗0 −R∗0

)(
A+(z0)
A−(z0)

)

The relation between B±(z1) and C±(z1) is given by

(
P1 P1

Q∗1 −Q∗1

)(
C+(z1)
C−(z1)

)
=

(
Qt1 Qt1
R∗1 −R∗1

)(
B+(z1)
B−(z1)

)

The relation between B±(z1) and B±(z0) is

(
B+(z1)
B−(z1)

)
=

(
E+(z1 − z0) 0

0 E−(z1 − z0)

)(
B+(z0)
B−(z0)

)

where E±nν,n′ν′(z) = δnn′δνν′ exp(±ikznz). By matrix multiplication we obtain the relations

between A±(z0) and C±(z1). This is straightforward to generalize to a waveguide with an
arbitrary number of transitions.

A continuous (tapered) transition from one waveguide to another can be treated by
cascading a large number of waveguides with constant cross sections.

5.11.2 Waveguides with bends

With FEM we can analyze waveguides that are not straight. In the example in figure 5.21
a TE10 mode enters the left port and exits at the upper port. It is straightforward to draw
the geometry in COMSOL. All of the surfaces are perfect conductors except the ports. At
the ports we specify that the mode is the first TE-mode, i.e., the TE10 mode. One can let
COMSOL calculate the reflection and transmission coefficient as a function of frequency.

5.12 Transmission lines in inhomogeneous media

by FEM

On page 48 in Chapter 3 we presented one method for the determination of the line
parameters for a transmission line where the conductors are in a medium with x and
y dependent ε and σ. We can now analyze these transmission lines by regarding them
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Figure 5.21: The electric field for a TE10 mode traveling in a waveguide with a bend.

The field is calculated by COMSOL. The frequency is 3 GHz. The cross section of the

waveguide in the straight sections is 1cm×0.5 cm. The figure shows the xz-plane and the

electric field is perpendicular to the plane.

as waveguides. We first analyze the microstrip on page 51 in Chapter 3 and compare
the results with the results obtained from the approximate method. We then consider a
microstrip with thickness on the order of the skin depth.

Example 5.16
Consider first the the microstrip in figure 3.17. We do the following steps:

• Choose 2D>Electromagnetic waves>Mode analysis.

• Draw a rectangle of size 60×50 mm where the bottom is the ground plane. Draw the
substrate as a 60×0.5 mm rectangle on top of the ground plane. Draw the microstrip
as a 3×0.1 mm rectangle and put it on top of the substrate. We create the region
between the outer rectangle and the microstrip as our computational domain.

• In order to calculate the voltage between the microstrip and the ground plane we
draw a straight vertical line from the ground plane to the point in the middle of the
lower line of the microstrip.

• We define the permittivity and conductivity of the substrate in +Material and the
material of the microstrip (and if we like alos the ground plane).

• We use impedance boundary condition for the boundaries of the microstrip. The
skin depth is δ =

√
2/(ωσµ0) = 6.5 µm, which is much smaller than the thickness

of the strip, and then the impedance boundary condition is a good approximation.

• Let the frequency be 30 GHz in the Study>Mode analysis. We add 2 in Study>Mode
analysis>Search for effective mode index at. We do this since we know that
the wave will almost be a TEM-mode in a medium with ε = 4 which means that
the effekctive mode index kz/k0 is close to

√
ε.

• Solve. The solution we look for has the power flow density confined to the region
between the microstrip and the ground plane. In this calculation we get the effective
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mode index neff = 1.8711 + j0.3806 which corresponds to γ = ineffk0 = 0.7977 +
j3.922. This is close to the value γ = 0.7789 + j3.905 m−1 that we got with the more
approximate method presented in Chapter 3. The value obtained with the method
presented here is accurate.

We can obtain the characteristic impedance Z0 and the line parameters in two different
ways. The first method is to first determine Z0 by Z0 = V/I where V is the voltage
between the two conductors and I is the current in one of the conductors. The voltage V
is obtained by a line integral of the electric field from the ground plane to the microstrip
and I is obtained by a line integral of the surface current density in the z-direction around
the outer rectangle. The surface current of the outer rectangle gives better accuracy than
that of the microstrip since the current density is rapidly varying close to the edges of the
microstrip. Once V and I are determined we obtain Z0 from Z0 = V/I. In this example
we get Z0 = 21.756 + j4.604 V/A. We then notice that, c.f., equations (3.24) and (3.25),

Z0γ = R+ jωL
γ

Z0
= G+ jωC

Thus

R = Real{Z0γ}

L =
Imag{Z0γ}

ω

G = Real{γZ−1
0 }

C =
Imag{γZ−1

0 }
ω

(5.65)

We get the values R = 0.006985 Ω/m, L = 141.6 nH/m, G = 0.0716 S/m and C = 262.8
pF/m. These are quite close to the ones we got in Chapter 3.

The other way to obtain the line parameters is slightly more complicated. First the
inductance per unit length is obtained by first calculating the time average of the magnetic
energy Wm and then the current I in the z−direction as the boundary integral of the
z−component of the surface current density of the outer rectangle. The magnetic energy
is a predefined quantity in COMSOL and is straightforward to obtain by integration over
the computational domain. Then

L =
4Wm

|I|2

This gives the value L = 139.8 nH/m, which is in good agreement with the value L =
139.5 nH/m obtained from the method in Chapter 3. We can obtain the current by
integrating over the microstrip, but the rapid variation of the current density on the
microstrip deteriorates the accuracy and it is better to integrate the current over the
ground plane.

To obtain the capacitance we use the energy relation

1

4
C|V |2 = WE = Time average of electric energy

where the voltage V is obtained by integrating the electric field from the ground plane
to the microstrip. Here we utilize the line that is the left side of the extra rectangle. By
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Figure 5.22: The power flow density for the microstrip.

Figure 5.23: The absolute value of the magnetic field for the microstrip in example

17. Notice that the magnetic field penetrates the microstrip.

integrating the y−component of the electric field along this side we get the voltage. The
electric energy is obtained by integrating the electric energy density over all subdomains.
In this case the value is 1.92 · 10−8 N. The value of the capacitance is C = 265.9 pF/m,
which is to be compared with 265.5 pF/m with the approximate method.

The conductance we get from

1

2
|V |2G = Ps = time average of dissipated power per unit length in the substrate

The dissipated power density is a predefined quantity. This gives G = 0.0695 S/m which
is to be compared with 0.0694 S/m with the method in Chapter 3. We see that the simpler
method in Chapter 3 gives very small errors in the line parameters.

Example 5.17
Consider the microstrip in figure 5.23 The dimensions of the microstrip is 3µm×0.5µm

and it consists of a metal with conductivity 4 · 107 S/m. The substrate has relative
permittivity ε = 4, conductivity σs = 0.01 S/m, and thickness 1µm. The ground plane
is assumed to have infinite conductivity. The frequency is 30 GHz. We determine the
propagation constant γ and the line parameters. We do the following steps:

• Choose 2D>Electromagnetic waves>Mode analysis.

• Draw a rectangle of size 60×50 µm where the bottom is the ground plane. Add the
substrate and the microstrip.

• In order to calculate the voltage between the microstrip and the ground plane we
draw a rectangle with dimension 1×0.5 µm (the width is not important) and let the
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left side of the rectangle go from the ground plane to the point in the middle of the
lower line of the microstrip. Thus the rectangle is a part of the substrate.

• We define the permittivity and conductivity of the substrate in +Material and the
microstrip and let the frequency be 100 MHz in the Study>Mode analysis.

• We add 2 in the Study>Mode analysis>Search for effective mode index at.
We do this since we know that the wave will almost be a TEM-mode in a medium
with ε = 4 which means that the effektive mode index kz/k0 is close to

√
ε.

• Solve. We look for the mode with the power flow density confined to the region below
the microrstrip. The effective mode index for that mode is neff = 1.91−j0.36, which
corresponds to the propagation constant γ = −226 + i1202 m−1.

• It is possible to calculate the inductance, capacitance and resistance. We can either
use Z0 = V/I and (5.65) or use

L =
4Wm

|I|2

C =
4We

|V |2

R =
2Pc
|I|2

G =
2Ps
|V |2

where the electric and magnetic energies Wm and We are obtained by integration of
the corresponding predefined densities over all subdomains. The dissipated power
in the microstrip, Pc, and in the substrate, Ps, are obtained by integrating the
resistive heating over the microstrip and the substrate, respectively. The current I
is obtained by integration of the current density over the microstrip, or, over the
groundplane. The voltage V is obtained from the boundary integral along the left
side of the extra rectangle. In this example the two methods give the same values
of the line parameters

L = 232.5 nH/m

C = 159 pF/m

R = 17.1 kΩ/m

G = 0.0395 S/m

The values have been checked by comparing with different meshes and sizes of the com-
putational domain. If we use the expression γ =

√
(R− iωL)(G− iωC) we get γ =

−220 + i1168 m−1, which differs by approximately two percent from the value obtained
from the effective mode index. This indicates that the transmission line model with line
parameters is a quite good approximation also in this case.
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Figure 5.24: The SIW at 50 GHz. The circles are the cross sections of the circular

metallic vias connecting two parallel conducting planes that are separated by a dielectric

substrate. Only the fundamental mode is propagating.

Figure 5.25: The SIW at 30 GHz. No modes are propagating since the frequency is

below the cut-off frequency for the fundamental mode.

5.13 Substrate integrated waveguides

Many applications today use frequencies above 10 GHz and then even a printed circuit
might not be discrete. One way to transmit signals at such frequencies is to use substrate
integrated waveguides (SIW). These are formed by a pattern of vias between parallel
ground planes. Vias are vertical thin circular conductors that serve as connections between
layers in a stratified substrate. In figure 5.24 a SIW in a substrate with ε = 5 is depicted.
The frequency is 50 GHz and the the input port is at the lower left corner and the output
port is at the upper right corner. The radius of the circular vias is 500 µm and the distance
between the centers of two consecutive vias is 1500 µm. The distance between the centers
of two parallel vias is 3000 µm. The waveguide is similar to a planar waveguide with
width 2000 µm. Such a waveguide has the cut-off frequency 33 GHz. At frequencies below
cut-off frequency for the fundamental mode, as in figure 5.25 , no waves propagate. In
figure 5.27 we have made the corners smoother in order to avoid reflections. We see that
the transmission from the input port to the output port is much better when the smooth
corners are used.
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Figure 5.26: The SIW at 70 GHz. At this frequency both the fundamental and the

second mode are propagating.

Figure 5.27: The SIW with smooth bends, at 50 GHz. The reflections at the corners

are reduced as compared to the SIW in figure 5.24.

Problems in Chapter 5

5.1 Show that the fields for the propagating TE- and TM-modes in a planar waveguide
can be written as a superposition of two linearly polarized, plane waves. Determine
in what directions the two waves propagate. How do they propagate at a frequency
close to the cut-off frequency and at a very high frequency?

5.2 The time average of the power flow in a lossless waveguide is always zero for non-
propagating modes. Show that the time average of the power flow in a waveguide
filled with a conductive material is larger than zero for all frequencies and all modes.
Where does the power go?

∗5.3 Determine the expressions for the TE- and TM-modes in a coaxial cable, with radius
a of the inner conductor and b of the inner surface of the outer conductor, see
figure 5.28.

5.4 In a circular waveguide the fundamental mode is the TE11-modes. Its cut-off fre-
quency is given by fcTE11

= 1.841c0/2πa, see table 5.4. By inserting a planar strip
in the waveguide the frequency of the fundamental mode can be reduced. Determine
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z

a
b

Figure 5.28: The geometry for the coaxial cable in problem 5.3.
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Figure 5.29: Geometry for problem 5.4. The circular waveguide with the metal strip.

the modes for the geometry in figure 5.29, and determine the reduction of the lowest
cut-off frequency.

Hint: The Bessel functions with half integer indices can be expressed in trigonometric
functions

Jm+1/2(z) =

√
2

π
zm+1/2

(
−1

z

d

dz

)m
sin z

z
=

√
2z

π
jm(z)

where jm(z) is a spherical Bessel function. In particular

J1/2(z) =

√
2

πz
sin z, J3/2(z) =

√
2z

π
(sin z − z cos z)

5.5 A rectangular waveguide with walls a = 4 cm and b = 3 cm is in the region z < 0
filled with air (ε = 1) and for z > 0 filled with a dielectric material with ε = 2. the
TM-mode with the lowest cut-off frequency propagates in the positive z-direction
for z < 0. The frequency is chosen such that it is the same as the cut-off frequency
for the second lowest TM-mode in the region. Let Pi and Pr be the time averages
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Figure 5.30: Geometry for problem 5.7.

of the total power flow in the waveguide for z < 0, for the incident and reflected
modes, respectively

a) Determine the quotient Pr/Pi.

b) Is there any frequency for which Pr = 0?

5.6 A circular hollow waveguide has the radius a = 3 cm.

a) Determine the modes that can propagate at the frequency f = 5 GHz when
the waveguide is filled with air.

b) Assume that the waveguide is filled with a plastic material with relative per-
mittivity ε = 3 and conductivity σ = 10−11 S/m. Determine the attenuation
of the dominant mode in dB/km as a function of frequency.

5.7 Consider a rectangular waveguide with size 0 < x < a, 0 < y < b, a = 6 cm,
b = 4 cm. In the region z > 0, a metallic plate is inserted, see figure 5.30. The plate
i parallel with the y-z-plane and is placed at x = x0. The walls of the waveguide
and the plate are perfect conductors. For a certain value of x0 we measure Pi and
Pr, where Pi and Pr are the time averages of the power flow in positive and negative
z-direction, respectively, in the region z < 0. If only the fundamental mode TE10

propagates in positive z-direction for z < 0 we have Pr/Pi = 1 for all frequencies
below 3.75 GHz and Pr/Pi < 1 for frequencies above 3.75 GHz.

a) Determine x0.

b) What is the quotient Pr/Pi when a TE03 mode propagates in the positive
z−direction for z < 0 at the frequency 20 GHz?

c) What is Pr/Pi when a TE30 mode propagates in positive z−direction for z < 0
at the frequency 10 GHz?

5.8 A waveguide has a cross section in the shape of a quarter circle with radius R.
Determine all TE- and TM-modes for the waveguide.



Problem 125

1
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4

Figure 5.31: Geometry for problem 5.10.

5.9 A hollow waveguide is terminated by a perfectly conducting surface at z = 0. Show
that the surface current that is induced by an incident mode gives rise to the reflected
mode and a ”transmitted” mode that cancels the incident mode.

5.10 The figure shows a magic T. All of the waveguides have the same dimensions a× b
where a > b. We send in the fundamental mode TE10 mode in different ports. The
frequency is in the frequency band where only the TE10 is propagating.

a) Assume that a TE10 mode is sent into 1 and that we can neglect the field that
is reflected back in port 1. How much of the incident power is transmitted
through ports 2, 3 and 4, respectively? Assume that the electric field in port 2
is directed upwards at a certain time and distance d from the symmetry plane.
How is the electric field then directed in port 3 at the same time and distance
from the symmetry plane?

b) Assume that the mode TE10 is sent into port 4 and that we can neglect the
reflected field in port 4. How much of the incident power is transmitted through
ports 1, 2 and 3, respectively? Assume that the electric field in port 2 is directed
upwards at a certain time and distance d from the symmetry plane. How is
the electric field then directed in port 3 at the same time and distance from
the symmetry plane?
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Summary of chapter 5

Mode solutions—TM- and TE-modes

Eigenvalue problem

{
∇2
T vn(ρ) + kt

2
nvn(ρ) = 0 ρ ∈ Ω

vn(ρ) = 0 ρ on Γ
(TM-case)




∇2
Twn(ρ) + kt

2
nwn(ρ) = 0 ρ ∈ Ω

∂wn(ρ)

∂n
= 0 ρ on Γ

(TE-case)

Normalization
∫∫

Ω

vn(ρ)vn′(ρ) dxdy = δn,n′

∫∫

Ω

wn(ρ)wn′(ρ) dxdy = δn,n′

Eigenmodes

{
E±nν(r, ω) = {ET nν(ρ, ω)± vn(ρ)ẑ} e±ikznz

H±nν(r, ω) = ±HT nν(ρ, ω)e±ikznz
ν = TM

{
En
±
ν (r, ω) = ET nν(ρ, ω)e±ikznz

H±nν(r, ω) = {±HT nν(ρ, ω) + (ω)n(ρ)ẑ} e±ikznz
ν = TE
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Transverse mode components

ET nν(ρ, ω) =
i

kt
2
n(ω)

{
kzn(ω)∇T vn(ρ), ν = TM

−ωµ0µ(ω)ẑ ×∇Twn(ρ), ν = TE

HT nν(ρ, ω) =
i

kt
2
n(ω)

{
ωε0ε(ω)ẑ ×∇T vn(ρ), ν = TM

kzn(ω)∇Twn(ρ), ν = TE

Mode solutions—TEM-mode

Potential problem

∇2
Tψ(ρ) = 0

ψ(ρ) = konstant ρ on Γ

Normalization
∫∫
Ω

∇Tψ(ρ) · ∇Tψ(ρ) dxdy = 1

Eigenmodes

{
E±ν (r, ω) = ET ν(ρ, ω)e±ikz

H±ν (r, ω) = ±HT ν(ρ, ω)e±ikz
ν = TEM
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Transverse components

ETTEM(ρ, ω) = −∇Tψ(ρ, ω)

η0HTTEM(ρ, ω) =
k(ω)c0

ωµ(ω)
ẑ ×ETTEM(ρ, ω)

General expansions in modes





E(r, ω) =
∑

n
ν=TM,TE,TEM

(
a+
nνE

+
nν(r, ω) + a−nνE

−
nν(r, ω)

)

H(r, ω) =
∑

n
ν=TM,TE,TEM

(
a+
nνH

+
nν(r, ω) + a−nνH

−
nν(r, ω)

)
{
z ∈ [z1, z2]

ρ ∈ Ω

Orthogonality relation

∫∫
Ω

ẑ · {ET nν(ρ, ω)×HT
∗
n′ν′(ρ, ω)} dS = 2PEnνδn,n′δν,ν′

Mode power

PEnν =





ω

2kt
2
n

{
kzn(ω)ε0ε

∗(ω), ν = TM

kz
∗
n(ω)µ0µ(ω), ν = TE

1

2η0η∗
, ν = TEM
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Power flow

General expressions

∫∫

Ω

ẑ· <S(t)> (r, ω) dxdy

=
∑

n
ν=TM,TE

RePEnν

{∣∣a+
nν

∣∣2 e−2 Im kznz −
∣∣a−nν

∣∣2 e2 Im kznz + 2i Im
(
a−nνa

+∗
nν e
−2i Re kznz

)}

Propagating modes

∫∫
Ω

ẑ· <S(t)> (r, ω) dxdy = ± ∑
ktn<k(ω)

PEnν
∣∣a±nν

∣∣2

Losses in walls

P (z) = P (0)e−αz

α =





ωεε0

σδkt
2
nkzn

∮

Γ
|ẑ ×∇T vn|2 dl, TM-mod

kt
2
n

ωσδµ0µkzn

∮

Γ

(
kz

2
n

kt
4
n

|∇Twn|2 + |wn|2
)

dl, TE-mod

Sources and determination of expansion
coefficients

a±nν =
1

4Unν

∫∫∫

V

J ·E∓nν dv
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Chapter 6

Resonance cavities

A finite volume of air or vacuum that is enclosed by a metallic surface constitutes a reso-
nance cavity. Only electromagnetic fields with certain frequencies can exist in the cavity.
These fields are called cavity modes, or eigenmodes, and the corresponding frequencies are
called eigenfrequencies, or resonance frequencies. In this chapter we describe how cavity
modes and resonance frequencies can be obtained by analytical and numerical methods.
Resonance cavities are frequently used as bandpass and bandstop filters in microwave sys-
tems. The losses are much smaller than in traditional bandpass filters based on circuit
components and that makes the filters based on cavities very narrow banded. In modern
particle accelerators the particles are accelerated by the electric fields in microwave cav-
ities. Another important application is klystrons and magnetrons, which are generators
for time-harmonic electromagnetic waves. Magnetrons are used in radars and also in mi-
crowave ovens. Klystrons are used as sources in, eg., particle accelerators and high power
communication systems.

6.1 General cavities

In this section we give the general theory for electromagnetic fields in cavities. We proceed
and analyze how fields are generated in cavities by a current density. Finally this theory
is applied to the generation of fields in cavities that are to be used at ESS, c.f., figures 6.1
and 6.2.

6.1.1 The resonances in a lossless cavity with sources

Assume a volume V with a homogeneous lossless material bounded by a perfectly conduct-
ing surface S with inward pointing normal n̂. The electromagnetic fields in this hollow
cavity have to satisfy the Maxwell equations and the boundary conditions at the walls of
the cavity. We have seen that in a source free region the Maxwell equations imply the
vector Helmholtz equation. The boundary condition for the electric field at the walls is
that n̂×E(ω, r) = 0. The eigenvalue problem for the electric field is

{
∇2E(r) + k2E(r) = 0 r ∈ V
n̂×E(r) = 0 r ∈ S

131
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Figure 6.1: The elliptic cavity to be used in the LINAC of ESS

A general vector field E can according to Helmholtz theorem be written as a sum of a
solenoidal function ∇×N and an irrotational function −∇Φ such that

E(r) = ∇×N(r)−∇Φ(r)

In order to express the electric field from a source in a cavity both solenoidal and irrota-
tional vector functions are needed. We will later show that only the solenoidal fields can
exist in an empty cavity. The solenoidal functions satisfy the eigenvalue problem





∇2En + k2
nEn = 0 inV

n̂×En = 0 onS

∇ ·En = 0 inV and onS

where k2
n is the eigenvalue for eigenfunction number n. The irrotational part of the field

only exist when there are sources inside the cavity. In most applications they are less
important than the solenoidal fields and for this reason we do not discuss them here.

The eigenfunctions can be proven to be orthogonal and they can be chosen to be real.
We let the eigenfunctions be real and normalize them such that

∫∫∫

V
Em ·En dV == δn,m (6.1)

for all m and n. From the identity ∇·(En×(∇×Em)) = (∇×Em) ·(∇×En)−k2
mEm ·En

and Gauss theorem it follows that
∫∫∫

V
(∇×Em) · (∇×En) dV = k2

m

∫∫∫

V
Em ·En dV = k2

mδn,m (6.2)

The set of solenoidal vector eigenfunctions constitute a complete set of vector functions
for the volume V . It means that any solenoidal vector field A(r, t) that satisfies n̂ ×
A(r, t) = 0 on S can be expanded in a series of the solenoidal vector eigenfunctions. In a
source free cavity ∇ ·E = 0 and hence the irrotational part of E is zero and we expand
the electric field in a series of solenoidal eigenfunctions.

E(r, t) =
∞∑

n=0

en(t)En(r) (6.3)
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particle bunches

electric field

z

z

Figure 6.2: The cross section of the elliptic cavity and the electric field. The bunches

are traveling to the right. The frequency of the fundamental mode is 704 MHz and the

bunches come with a frequency of 352MHz. The lower figure is at half a period later than

the upper one.

From the Maxwell equations it is seen that the electric field satisfies the source free wave
equation

∇2E − 1

c2

∂2E

∂t2
= 0

We insert the series expansion into this equation

∞∑

m=0

k2
mem(t)Em(r) +

∞∑

m=0

1

c2

∂2em(t)

∂t2
Em(r) = 0

We take the scalar product of the wave equation with En, integrate over the volume of
the cavity and use the orthogonality of the eigenfunctions, see (6.1). This leads to

∂2en(t)

∂t2
+ ω2

nen(t) = 0 (6.4)

Thus in an empty cavity en(t) = A cos(ωnt+ φ), where ωn = ckn is the resonance angular
frequency and A is a constant. We let the phase φ be zero, for convenience. The conclusion
is that only fields with the resonance frequencies fn = ωn/(2π) can exist in the empty
cavity.

6.1.2 Q-factor for a cavity

At room temperature, the walls of resonance cavities are not perfectly conducting which
leads to power losses, c.f., section 5.9, and non-zero bandwidths. The losses add a dissi-
pative term in (6.4)

d2en(t)

dt2
+ 2αn

den(t)

dt
+ ω2

nen(t) = 0 (6.5)
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The general solution is en(t) = An cos(ωt + φ)e−αnt, where ω =
√
ω2
n − α2

n. We assume
that the losses are very small, i.e., αn � ωn such that ω ≈ ωn.

The Q-factor (Quality factor) is a measure of the losses in the cavity. We now derive
an expression for the Q-factor and its relation to the bandwidth of the cavity.

We define the Q-value as

Q = 2π
the stored energy in the cavity time averaged over one period

the dissipated energy during one period at resonance
(6.6)

The stored and dissipated energies are evaluated during the same period. The time average
of the energy in the system for mode n is due to the orthogonality

Un(t) =
ε0ε

2T

t+T∫

t

|An|2 cos2(ωnt
′ + φ)e−2αnt′ dt′

∫

V
|En(r)|2 dV ≈ ε0ε

4
|An|2e−2αnt

where we have used αnT � 1. It means that the time average of the energy is given
by Un(t) = Un(0)e−2αnt, where Un(0) is the time average of the energy at t = 0. The
dissipated power during the period [0, T ] is Pn(0) = Un(0) − Un(T ) = Un(0)(1 − e−2αnT )
where T = 2π/ω0 is the period. Since αn � ωn it must be that 2αnT � 1 and e−2αnT ≈
1− 2αnT . That gives

Q =
2π

2αnT
=

ωn
2αn

From circuit theory, see example below, we know that the Q-value is related to the band-
width as

BW = f+ − f− =
αn
π

=
fn
Q

= bandwidth

The dissipated energy during one period is given by

Ud(t) = RS

t+T∫

t

∫∫

S
|JSn(r, t)|2 dS = RS

t+T∫

t

∫∫

S
|n̂×Hn(r, t)|2 dS

where RS =
1

σcδ
=

√
ωµcµ0

2σc
is the surface resistance, c.f., (3.31) and (5.48). The magnetic

field is related to the electric field by the induction law, i.e.,

µ0
∂Hn(r, t)

∂t
= −en(t)∇×En(r)

Example 6.1

Each mode in the cavity can be modeled by the parallel circuit in figure 6.3. From
Kirchhoff’s current law we get the equation for the voltage

d2v(t)

dt2
+ 2α

dv(t)

dt
+ ω2

0v(t) =
1

C

di(t)

dt
(6.7)

where α = (2RC)−1 is the attenuation constant and ω0 = 1/
√
LC is the resonance fre-

quency. This is the same equation we get for the amplitude en(t) of mode number n in
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Figure 6.3: The circuit analogues of a cavity mode. The values of R, L, and C are

different for different modes.

a cavity, i.e., with the electric field E(r, t) = en(t)En(r). If i(t) = 0 then the solution is
the damped sinusoidal signal

v(t) = A cos(ωt+ φ)e−αt,

where ω =
√
ω2

0 − α2. The analysis of the parallell resonance circuit can be found in most
textbooks on basic circuit theory. It is then seen that the Q-value is given by

Q =
2π

2αT
=
ω0

2α

and that the bandwidth is related to Q

BW = f+ − f− =
α

π
=
f0

Q
= bandwidth

where f± are the frequencies where the time averaged stored energy is half of the stored
energy at the resonance frequency. The stored electric energy We(t), stored magnetic
energy Wm(t) and the dissipated power Pd(t) in the circuit are related to the corresponding
quantities in the cavity as

We(t) =
ε0ε

2

∫∫∫

V
|En(r, t)|2 dV =

1

2
C(v(t))2

Wm(t) =
µ0

2

∫∫∫

V
|Hn(r, t)|2 dV =

1

2
L(iL(t))2

Pd(t) = RS

∫∫

S
|JSn(r, t)|2 dS = R(iR(t))2 =

(v(t))2

R

(6.8)

Example 6.2
Assume that there are several modes present in a source free cavity with metallic, but not
perfectly conducting, walls. In the time domain the electromagnetic field is given by

E(r, t) =
∑

n

en(t)En(r) (6.9)

The dissipated power is given by

Pd(t) = RS

∫∫

S
|
∑

n

JSn(r, t)|2 dS (6.10)
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S S V' '

VΔ

Figure 6.4: The volume V eclipsed by the surface S and the perturbed surface S′. The

volume between S and S′ is denoted ∆V .

Is this power equal to the sum of the dissipated powers for the modes?
The answer is yes. To prove it we use Poynting’s theorem in section 1.2
∫∫

S

E ×H · n̂dS =

∫∫∫

V

∇ · S dv

= −
∫∫∫

V

[
H · ∂B

∂t
+E · ∂D

∂t

]
dv −

∫∫∫

V

E · J dv

(6.11)

where the volume V is enclosed by the surface S. Now let S be a surface deep enough into
the metal such that the electromagnetic fields are zero. The dissipated power in the metal
is the term Pd(t) =

∫∫∫
V

E ·J dv, where only the volume in the metal gives a contribution.

Thus

Pd(t) = −
∫∫∫

V

[
H · ∂B

∂t
+E · ∂D

∂t

]
dv (6.12)

Since en(t) = An cosωnte
−αnt we get

Pd(t) = −
∫∫∫

V

[∑

n

Hn(r)en(t) ·
∑

m

Bm(r)
∂em(t)

∂t
+
∑

n

En(r)en(t) ·
∑

m

Dm(r)
∂em(t)

∂t

]
dv

(6.13)
We use the orthogonality and get

Pd(t) = −2ε0ε
∑

n

en(t)
∂en(t)

∂t
= 2ε0ε

∑

n

|An|2
(
αn cos2(ωnt) + cos(ωnt) sin(ωnt)

)
e−2αnt

(6.14)
The time average over one period from t to t+ T is

Pd = ε0
∑

n

|An|2αne−2αnt (6.15)

Thus the time average of the total dissipated power is the sum of the dissipated powers
for the modes.

6.1.3 Slater’s theorem

Slater’s theorem is due to J. C. Slater [18] who presented the theorem in 1946. It is
of importance in the design of cavities for accelerators. By using the theorem one can
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determine how the resonance frequencies of a cavity are affected by small changes of the
geometry in a cavity. As will be seen in the next subsection it is also very important for
measurements of the electric and magnetic fields of a cavity.

Consider a cavity with a volume V that is enclosed by the bounded surface S. The
mode number n has the resonance frequency fn. We then make a small (infinitesimal)
perturbation of the surface and volume such that the surface S is pushed into the volume
V . The new surface is called S′ and the new volume V ′. The frequency of mode n is
changed to f = fn + ∆f . Slater’s theorem gives the following expression for f

f2 − f2
n

f2
n

=

∫∫∫

∆V

(
µ0

ε0
|Hn(r)|2 − |En(r)|2

)
dV (6.16)

The integration is over V −V ′, see figure 6.4. Here Hn = (iωnµ0)−1∇×En is the magnetic

field of mode n. Notice that
1

4
ε0|En|2 is the electric energy density and

1

4
µ0|Hn|2 the

magnetic energy density of mode n. If we remove a volume where the electric energy is
larger than the magnetic energy the frequency deceases, otherwise it increases.

To prove Slater’s theorem we start with the Helmholtz equations for the electric and
magnetic fields E and H in the source free volume V ′

∇× (∇×E)− k2E = 0

∇× (∇×H)− k2H = 0

We consider mode number n and let E and H be the perturbed versions of En and Hn.
Since the perturbation is small, the wavenumber of the perturbed cavity, k = ω/c, is close
to the wavenumber of the unperturbed cavity, kn = ωn/c. We take the scalar product of
the upper equation and En and use the relation ∇ · (A×B) = B · (∇×A)−A · (∇×B)
two times to get

(∇× (∇×E)) ·En = ∇ · ((∇×E)×En +E × (∇×En)) + k2
nE ·En

We integrate over V ′ and use Gauss theorem

(k2 − k2
n)

∫∫∫

V ′
E ·En dV =

∫∫

S′
n̂ · ((∇×E)×En +E × (∇×En)) dS

The last integral is zero since n̂×E = 0 on S′ and then

(k2 − k2
n)

∫∫∫

V ′
E ·En dV =

∫∫

S′
n̂ · ((∇×E)×En) dS

We make use of the the completeness of the system En. Since V ′ is inside V we can
expand E in a series of En as

E =

∞∑

n=0

En

∫∫∫

V ′
E ·En dV

The eigenfunction E is very close to En in V ′, and we approximate E as

E ≈ En

∫∫∫

V ′
E ·En dV
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Figure 6.5: The metallic sphere on the symmetry axis of an axially symmetric cavity.

The frequency shift of the mode number n is proportional to the square of the electric

field at the position of the sphere of the same mode.

That means that

(k2 − k2
n)

∫∫∫

V ′
En ·En dV ≈

∫∫

S′
n̂ · ((∇×En)×En) dS

The right hand side can now be rewritten by Gauss theorem on the volume ∆V . The
volume ∆V is bounded by the surfaces S and S′ and we know that n̂ × En = 0 on S.
That gives

(k2 − k2
n)

∫∫∫

V ′
En ·En dV ≈

∫∫

S′
n̂ · ((∇×En)×En) dS = −

∫∫∫

∆V
∇ · ((∇×En)×En) dV

= −
∫∫∫

∆V
En · (∇× (∇×En))− (∇×En) · (∇×En) dV

We use ∇ × (∇ × En) = k2
nEn, Hn = (iωnµ0)−1∇ × En, k = 2πf/c, kn = 2πfn/c, and

the normalization of En over V .

f2 − f2
n = f2

n

∫∫∫

∆V

(
µ0

ε0
|Hn|2 − |En|2

)
dV (6.17)

which is the same as (6.16).

6.1.4 Measuring electric and magnetic fields in cavities

We can utilize Slater’s theorem in order to measure the electric and magnetic fields in a
cavity. To do this we use a small metallic sphere of radius R0. The radius of the sphere is
much smaller than the wavelength, c.f., figure 6.5. The sphere gives a shift of the resonance
frequencies of the cavity, in concordance with the Slater’s theorem, and by measuring this
shift, the electric or magnetic fields of the resonance modes can be determined.

When a sphere with radius R is placed in a constant electric field E0 = E0ẑ =
E0 cos θr̂ − E0 sin θθ̂ it creates an electric field in the vicinity of the sphere. The space
dependence of this field is the same as the electrostatic dipole field. The total electric field
close to the sphere is given by

Esphere(r, θ) = E0 +Edipole = E0ẑ +
p

4πε0r3
(2r̂ cos θ + θ̂ sin θ)

where p is the induced dipole moment. The dipole moment is obtained from the fact that
the tangential component Esphere is zero on the surface of the sphere. The tangential

component is the θ−component and since θ̂ · ẑ = − sin θ we get

θ̂ ·Esphere(R0, θ) = −E0 sin θ +
p

4πε0R3
sin θ = 0
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Thus p = 4πε0R
3E0 and

Esphere(r, θ) = E0 cos θ

(
1 +

2R3

r3

)
r̂ − E0 sin θ

(
1− R3

r3

)
θ̂

First consider the case when the magnetic field is zero. We have to be careful when
we determine the integral ∫∫∫

∆V

(
|En|2

)
dV

since the field En depends on the radius of the sphere. We need to start with a sphere
of radius 0 and add a layer with thickness δR, calculate the corresponding change in
frequency δf Then add a new layer and get a new δf and so on. Assume that we are
at the stage that the radius is R and the frequency f and that we add a layer δR. The
frequency shift is then given by

(f + δf)2 − f2

f2
= −2π

∫ π

0

∫ R+δR

R
|Esphere(r, θ)|2r2 sin θ dr dθ

≈ −2π

∫ π

0
|Esphere(R, θ)|2R2 sin θ dθ δR

= −12πR2E0 δR

We let δf = df be infinitesimal and get ((f + df)2 − f2)/f2 ≈ 2df/f . We now integrate
f from fn to fn + ∆f and R from 0 to R0. This gives

ln

(
fn + ∆f

fn

)
= −2πR3

0E
2
0

We utilize that ∆f � fn and that ln(1 + x) ≈ x for small x. Then

∆f ≈ −2πR3
0E

2
0fn (6.18)

Next consider the case when the electric field is zero and the magnetic field is non-zero.
We get the perturbation of the magnetic field by placing a perfectly conducting sphere
into a constant magnetic field H = H0ẑ. The boundary condition on the sphere is that
the normal component of the total magnetic field is zero on the surface of the sphere. This
gives very similar calculations as we used for the electric field. The magnetic field outside
the sphere is

Hsphere(r, θ) = H0

(
1− R3

r3

)
cos θr̂ −H0

(
1 +

R3

2r3

)
sin θθ̂

This leads to
∆f ≈ µ0

ε0
πH2

0R
3
0fn

If we add the contributions from the electric and magnetic cases we get

∆f ≈ fn
(
µ0

ε0
H2

0 − 2E2
0

)
πR3

0

where H0 is the value of |Hn| and E0 the value of |En| at the position of the sphere.
Notice that the electric field is normalized, c.f., Eq.(6.1).
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Figure 6.6: Geometry for cylindric resonance cavity.

Cavities that are used in accelerators are often axially symmetric and the mode that
is used in the cavity corresponds to the TM010 mode of a cylindric cavity. The beam is
then propagating along the symmetry axis, where the magnetic field is zero. By measuring
the resonance frequency of the TM010 mode while a sphere is moved along the symmetry
axis, one can determine the variation of the electric field along the symmetry axis for the
TM010 mode by using Eq. (6.18).

6.2 Example: Cylindrical cavities

We analyze a common type of resonance cavity that consists of a hollow waveguide termi-
nated by metallic plane surfaces at z = 0 and z = d, see figure 6.6. In order to determine
the fields that can exist in such a cavity we need boundary conditions for the z-component
of the electric and magnetic fields at z = 0 and z = d. Since ET (ρ, 0) = ET (ρ, d) = 0
for all ρ, it follows that ∇T ·ET (ρ, 0) = ∇T ·ET (ρ, d) = 0. There are no charges inside
the cavity and then ∇ · E(r) = 0, i.e., 0 = ∇TET (r) + ∂Ez(r)/∂z. It follows that the
z-derivative of Ez is zero at the end surfaces. The magnetic field H is zero in the metal
and B is always continuous and then it follows that Hz is zero at the end surfaces. We
conclude that the boundary conditions at z = 0 and z = d are





∂Ez(ρ, 0)

∂z
=
∂Ez(ρ, d)

∂z
= 0

Hz(ρ, 0) = Hz(ρ, d) = 0
(6.19)

The fields in the cavity is a superposition of waveguide modes propagating in the positive
and negative z-directions. From the expansions in (5.21) and (5.22) the z-components of
the fields of mode n are expressed as

{
Ez(r) = (a+

nνe
ikzz − a−nνe−ikzz)vn(ρ) ν = TM

Hz(r) = (a+
nνe

ikzz + a−nνe
−ikzz)wn(ρ) ν = TE

The boundary conditions give a+
nν = −a−nν and sin kzd = 0. Hence kz can only take the

discrete values

kz` =
`π

d

{
` = 0, 1, 2 . . . ν = TM

` = 1, 2 . . . ν = TE
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There exists no TE-mode with value ` = 0 since then Hz = 0. The frequencies that can
exist in the cavity are determined by k2 = kt

2
n + kz

2
` and thus

fn` =
c

2π

√
kt

2
n +

(
`π

d

)2

(6.20)

The fields for the corresponding resonances follow from (5.21) and (5.22)




En`(r) = Anlν

√
ε`
d

(
iET nν(ρ) sin

`πz

d
+ vn(ρ) cos

`πz

d
ẑ

)

Hn`(r) = Anlν

√
ε`
d
HT nν(ρ) cos

`πz

d

ν = TM

` = 0, 1, 2 . . .
(6.21)

where ε` = 2− δ`,0 and





En`(r) = Anlν i

√
2

d
ET nν(ρ) sin

`πz

d

Hn`(r) = Anlν

√
2

d

(
HT nν(ρ) cos

`πz

d
+ iwn(ρ) sin

`πz

d
ẑ

) ν = TE

` = 1, 2 . . .
(6.22)

Notice that Hnl and Enl are related via the induction law Hnl(r) = (iωµ0)−1∇×Enl(r).
Both ET nν(ρ) and HT nν(ρ) are imaginary, as seen from Eq. (5.24). Thus Enl is real and
Hnl imaginary. The amplitudes Anlν are determined from the normalization

∫∫∫

V
|Enl|2 dV =

µ0

ε0ε

∫∫∫

V
|Hnl|2 dV = 1

Then

AnlTM =
ktn
knl

AnlTE =
ktn
ωnlµ0

(6.23)

We are now prepared to determine the Q-value and bandwidth of a cylindrical cavity
with metal walls. The conductivity of the walls is σc and the relative permeability µ. The
electric field of the cavity mode number n is given by

E(r, t) = cos(ωnt+ φ)e−αtEn(r)

where En(r) is given by (6.21) for TM-modes and (6.22) for TE-modes. The time average
of the losses in the walls gets a contribution Pe(t) from the end surfaces and a contribution
Pm(t) from the lateral surface,

Pc(t) = Pe(t) + Pm(t)

The time averaged stored energy U(t) = Ue(t)+Um(t) = 2Ue(t), is due to the normalization

U(t) = 2Ue(t) =
ε0ε

2
e−2αnt (6.24)

The time average of the losses at the end surfaces are

Pe(t) =
RS
2

∫∫

Ω

|HT (ρ, 0)|2 + |HT (ρ, d)|2 dxdye−2αt = RS

∫∫

Ω

|HT (ρ, 0)|2 dxdye−2αt
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where RS =
1

σcδ
=

√
ωµcµ0

2σc
is the surface resistance, c.f., (5.47). From (5.24) and the

orthogonality relation in (5.33) we get

Pe(t) =





RS
ε`ε0ε

µ0d
e−2αnt TM

RS
kz

2
`ε0ε

µ2
0kt

2
nd
e−2αnt TE

We see that the quotient Pe(t)/U(t) is independent of the cross section Ω and only depends
on the length of the cavity

Pe(t)

U(t)
=





RS
2ε`
µ0d

TM

RS
2kz

2
`

µ0k2
n`d

TE

The time average of the losses in the lateral surface is

Pm(t) =
1

2
RS

∫ d

0

∫

Γ

|n̂×H(r)|2dΓdze−2αt

where n̂ is the normal to the lateral surface and Γ is the boundary curve. We now utilize
equations (5.21)–(5.24) and (6.23) to get

Pm(t) =





RSε0ε

2µ0k2
tn

e−2αnt

∫

Γ

|n̂ · ∇T vn(ρ)|2dΓ TM

RSε0ε

2µ0k2
nl

e−2αnt

∫

Γ

kz
2
`

kt
4
n

|n̂×∇Twn(ρ)|2 + |wn(ρ)|2dΓ TE

(6.25)

We conclude that the Q-factor is related to the attenuation coefficient α via Q = ωn`/2α
and that α is given by

α =
Pc(t)

2U(t)
=





RS
µ0


ε`
d

+
1

2kt
2
n

∫

Γ

|n̂ · ∇T vn(ρ)|2dΓ


 TM

RS
µ0k2

n`


kz

2
`

d
+

1

2

∫

Γ

kz
2
`

kt
2
n

|n̂×∇Twn(ρ)|2 + kt
2
n|wn(ρ)|2dΓ


 TE

(6.26)

Example 6.3
We give an example with a circular cylindric cavity. The resonances are denoted TEmnl
and TMmnl where the first two indices m and n are related to the variation in the azimuthal
and radial directions, and the index l to the variation in the z−direction. For a circular
waveguide with radius a the eigenfunctions vn and wn are given by the table 5.4 on
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page 92. By inserting those expressions into (6.25) the power losses in the lateral surface
are obtained

Pm(t) = RSe
−2αt





(kmn`a)2ξ−2
mnη

−2
0 a−1 TM

η2
mn

(η2
mn −m2)a

(
m2 (kz`a)2

η4
mn

+ 1

)
TE

Hence the Q-factors are




QTM =
η0kmn`a

2RS(1 + ε`a/d)

QTE =
(kmn`a)3η0(1−m2η−2

mn)

2RSη2
mn

(
1 + (kz`a)2m2η−4

mn + 2
(
1−m2η−2

mn

)
k2
z`a

3d−1η−2
mn

)

Since kmn`a =
√
η2
mn + (`πa/d)2 and kmn`a =

√
ξ2
mn + (`πa/d)2 the Q−values QTM and

QTE can both be written in the form f(a/d)/RS .

6.3 Example: Spherical cavities

Consider a spherical cavity with radius a, filled with air or vacuum. In order to determine
the resonances we need general solutions to Maxwells equations in spherical coordinates.

6.3.1 Vector spherical harmonics

Vector spherical harmonics are vector valued functions that constitute an orthogonal set
on the unit sphere. They are defined as, cf. [3]

A1σml(θ, φ) =
1√

l(l + 1)
∇× (rYσml(θ, φ))

A2σml(θ, φ) = r̂ ×A1σml(θ, φ) =
1√

l(l + 1)
r∇Yσml(θ, φ)

A3σml(θ, φ) = r̂Yσml(θ, φ).

(6.27)

where Yσml are the spherical harmonics:

Yσml(θ, φ) =

√
εm
2π

√
2l + 1

2

(l −m)!

(l +m)!
Pml (cos θ)

(
cosmφ
sinmφ,

)
(6.28)

where εm = 2− δm0 and τ, m, l take the values

σ =

(
e
o

)
, m = 0, 1, 2, . . . , l, l = 0, 1, . . . (6.29)

When l = 0 the vector spherical harmonics are defined to be zero. The functions Pml (cos θ)
are associated Legendre functions, c.f., [3]. The vector spherical harmonics constitute an
orthogonal set of vector functions on the unit sphere

∫

Ω
Aτn(θ, φ) ·Aτ ′n′(θ, φ) dΩ = δττ ′δnn′ , (6.30)

where the integration is over the unit sphere and where n is the multi index n = σml.
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6.3.2 Regular spherical vector waves

The regular divergence-free spherical vector waves are defined by





u1n(r) = jl(kr)A1σml(θ, φ)

u2n(r) =
1

k
∇× (jl(kr)A1σml(θ, φ))

= j′l(kr)A2σml(θ, φ) +
1

kr
jl(kr)(A2σml(θ, φ) +

√
l(l + 1)A3σml(θ, φ)),

(6.31)

where jl(kr) is the spherical Bessel function and n = σml is a multiindex. They satisfy
the vector Helmholtz equation

∇× (∇× uτnn(r))− k2uτnn(r) = 0

This is the same equation that the electric and magnetic fields satisfy in a source free
region. The waves are called regular since they have finite amplitude everywhere. There
are also non-regular waves that have the Bessel functions, jl replaced by Neumann func-
tions, nl. The irregular waves will be used later in this chapter when we determine the
resonances in the region between two concentric spheres.

6.3.3 Resonance frequencies in a spherical cavity

Consider a spherical cavity with radius a and filled with air, or vacuum. The boundary
condition is r̂ × E = 0. The electric field E can be expanded in the system of regular
divergence-free spherical vector waves. The case E = u1n is referred to as the TE-case
since the electric field lacks radial component. In the case E = u2n(r) the magnetic field

is given by H =
1

iωµ0
∇ × u2 =

k

iωµ0
u1n. Since H lacks radial component the case is

referred to as the TM-case. It follows that the resonances are obtained from
{
r̂ × u1n(ar̂) = 0 TE− case

r̂ × u2n(ar̂) = 0 TM− case
(6.32)

That leads to the equations for the wavenumbers

jl(ka) = 0, TE (6.33)

and
j′l(ka) + (ka)−1jl(ka) = 0, TM (6.34)

Table (4) gives the ten lowest resonance frequencies, with 15 digits accuracy, for a sphere
with radius a = 1 m and the corresponding τ and l values. The resonances are degenerated
such that there are 2l + 1 different modes for a resonance with polar index l, the modes

corresponds to m = 0, σ = e and m = 1, 2, . . . l, σ =

(
e
o

)
. The number of resonance

modes increases as the cube of the frequency for all resonance cavities. It means that the
density of modes is proportional to the square of the frequency. Figure 6.7 gives N1/3 as
a function of ka, where N is the number of modes with wavenumber less than k. The
largest k in the graph is given by ka = 230.5 and that corresponds to a radius of a = 36.7
wavelengths. There are 1.733 million modes with a wavenumber smaller than the largest
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Figure 6.7: The cube root, N1/3, of the total number of modes for a sphere with radius

a with wavenumber less than k, as a function of ka. The relation N1/3 ∼ ka is valid for

all cavities.

k in the graph. The number of resonances with a wavelength less than 500 nm in a sphere
with a radius of 1 meter is 2.8 · 1020, a huge number.

The time averages of the electric and magnetic energies are equal at resonance. For the

TE-case E = u1n and then the time average of the electric field is Ue =
ε0
4

∫∫∫
V

|u1|2 dv,

where V is the volume of the sphere. Due to the orthogonality of Aτn we get

∫∫∫

V

|u1|2 dv =

∫ a

0
(jl(kr))

2 r2 dr (6.35)

From appendix A.3 we get jl(x) =

√
2

πx
Jl+0.5(x) and the integral

∫
x(Jν(x))2 dx =

x2

2
(J ′ν(x))2 +

1

2

(
x2 − ν2

)
(Jν(x))2 + constant (6.36)

and get

Ue =
ε0
4

∫∫∫

V

|u1n|2 dv =
a3ε0

8
(j′l(ka))2 (6.37)

For τ = 2 we have E = u2. Then

H =
1

iωµ0
∇× u2 =

1

iωµ0k
∇× (∇× u1) =

k

iωµ0
u1
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Table 6.1: The 10 lowest resonance frequencies in a spherical vacuum cavity with
radius a = 1 m and perfectly conducting surface. nr is the order number for the
zeros of (6.33) and (6.34). All digits in the frequencies are correct.

order frequency (MHz) τ l-value nr
1 130.911744010408 TM 1 1
2 184.662441148350 TM 2 1
3 214.396074654639 TE 1 1
4 237.299051157491 TM 3 1
5 274.994531395624 TE 2 1
6 289.236527486054 TM 4 1
7 291.851935634332 TM 1 2
8 333.418355236651 TE 3 1
9 340.684892690868 TM 5 1
10 355.135373846648 TM 2 2

It is seen that
∫

V
|u1|2 dv =

∫ a

0
(jl(kr))

2 r2 dr = k−3ka

8

(
1 + 4(ka)2 − (2l + 1)2

)
(jl(ka))2

= k−3ka

2

(
(ka)2 − l(l + 1)

)
(jl(ka))2

(6.38)

The electric and magnetic energies are

Ue = Um =
µ0

4

(
k

ωµ0

)2 ∫

V
|u1|2 dv =

a3ε0
8(ka)2

(
(ka)4 − (ka)2l(l + 1)

)(jl(ka)

ka

)2

(6.39)

6.3.4 Q-values

We define the Q-value as

Q = 2π
the stored energy in the cavity time averaged over one period

the dissipated energy during one period at resonance
(6.40)

Consider first τ = 1, i.e., En = u1n. According to (6.37) the time averaged stored energy
is

U = 2Ue =
ε0
2

∫∫∫

V

|u1n|2 dv = a3 ε0
4

(j′l(ka))2 (6.41)

The dissipated power during one period, T , is

P =
T

2
RS

∫∫

S

|JS |2 dS =
T

2
RS

∫∫
|n̂×H|2 dS

where H = − i

ωµ0
∇ × u1 = − ik

ωµ0
u2. The surface resistance is RS =

√
ωnµcµ0

2σc
=

1

σcδ

where σc is the conductivity of the metal and δ =

√
2

ωnσcµcµ0
is the skin depth.
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The orthogonality of the vector spherical harmonics, equations (6.48) and (6.33) give

P =
T

2
RS

(
k

ωµ0

)2 ∫∫

S
|u2|2 dS = a2T

2
RS

(
k

ωµ0

)2 (
j′l(ka)

)2
= a2T

2
RSη

−2
0

(
j′l(ka)

)2

where η0 =

√
µ0

ε0
. The Q-value is

Q = 2π
U

P
= a

1

2RS
ωµcµ0 =

a

δ
(6.42)

For τ = 2 the stored energy is given by (6.39)

U =
ε0
2

∫∫∫

V

|u2n|2 dv =
a3ε0

4(ka)2

(
(ka)4 − (ka)2l(l + 1)

)(jl(ka)

ka

)2

(6.43)

The dissipated power integrated over one period is

P =
T

2
RS

∫∫
|JS |2 dS =

T

2
RS

∫∫
|n̂×H|2 dS

where H = − i

ωµ0
∇×u2 = − ik

ωµ0
u1 = −iη−1

0 u1 The orthogonality of the vector spherical

harmonics gives

P =
T

2
RS
(
η−1

0

)2 ∫∫

S
|n̂× u1|2 dS = a2 T

2η2
0

RS(jl(ka))2 (6.44)

Thus

Q = 2π
U

P
= aω

µ0

2RS(ka)4

(
(ka)4 − (ka)2l(l + 1)

)
=
a

δ

(
1− l(l + 1)

(ka)2

)
(6.45)

6.3.5 Two concentric spheres

Consider two concentric conducting spheres with radius a and b = a + h. The general
solutions are

E(r) = αu1l(r) + βw1l(r) (6.46)

for TE-modes and
E(r) = γlu2l(r) + κlw2l(r) (6.47)

for TM-modes. The vector functions wτl(r) are defined as





w1n(r) = nl(kr)A1σml(θ, φ)

w2n(r) =
1

k
∇× (nl(kr)A1σml(θ, φ))

= n′l(kr)A2σml(θ, φ) +
1

kr
nl(kr)(A2σml(θ, φ) +

√
l(l + 1)A3σml(θ, φ)),

(6.48)

where nl(kr) is the spherical Neumann function.
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The boundary conditions are that n̂ × E = 0 for r = a and r = b. By utilizing the
orthogonality of the vector spherical harmonics two systems of equations are obtained

αjl(ka) + βnl(ka) = 0

αjl(kb) + βnl(kb) = 0
(6.49)

for TE-modes and

γ

(
j′l(ka) +

jl(ka)

ka

)
+ β

(
n′l(ka) +

nl(ka)

ka

)
= 0

γ

(
j′l(kb) +

jl(kb)

kb

)
+ β

(
n′l(kb) +

nl(kb)

kb

)
= 0

(6.50)

for TM-modes. The resonance wavenumbers k are determined from the determinants



jl(ka)nl(kb)− jl(kb)nl(ka) = 0 TE(
j′l(ka) +

jl(ka)

ka

)(
n′l(kb) +

nl(kb)

kb

)
−
(
j′l(kb) +

jl(kb)

kb

)(
n′l(ka) +

nl(ka)

ka

)
= 0 TM

(6.51)
Now consider the case when h � a. Then the lowest resonance frequencies are for TM-
modes. The TE-modes have no radial component of the electric field and then the first
resonance is when h is on the order of half a wavelength. To find the lowest TM-modes

we make Taylor expansions of n′l(kb) +
nl(kb)

kb
and j′l(kb) +

jl(kb)

kb
such that

n′l(kb) +
nl(kb)

kb
= n′l(ka) +

nl(ka)

ka
+ kh

(
n′′l (ka) +

n′l(ka)

ka
− nl(ka)

(ka)2

)
+O((kh)2) (6.52)

By using the differential equation for spherical Bessel and Neumann functions, j′′l (ka) =

− 2

ka
j′l(ka) −

(
1− l(l + 1)

(ka)2

)
jl(ka) and the Wronski relation in (A.15) in appendix A

jl(ka)n′l(ka)− j′l(ka)nl(ka) =
1

(ka)2
the TM-equation leads to the equation for the lowest

resonance frequencies
ka ≈

√
l(l + 1) (6.53)

Schumann resonances

The region between the ionosphere and the ground of the earth acts as a resonance cavity.
Even though the conductivity of the ionosphere and the ground are small one may still
consider them to be perfect conductors. Since the radius of the earth is a = 6367 km and
the thickness h of the non-conducting atmosphere between the ground and the ionosphere
is 80-100 km we have h� a and hence the resonances are approximately given by (6.53).
The lowest resonances are f1 = 10.6 Hz, f2 = 18.4 Hz, f3 = 26.0 f4 = 33.5 Hz. This is
quite close to the measured frequencies f1 = 7.83 Hz, f2 = 14.3 Hz, f3 = 20.8 Hz and
f4 = 27.3 Hz.

The conductivity of the ionosphere varies in the range 10−7 − 10−4 S/m and seawater
has a conductivity on the order of 10−1 S/m. At the lowest Schuman resonance the
corresponding skin depths are 15 km for the ionosphere and 500 m for the ground. This
is to be compared with the thickness of 500 km for the ionosphere, the radius of the earth
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6367 km, and the thickness h ≈ 85 km of the layer between them. It means that it is
relevant to use the model of the ionosphere and the ground as perfect conductors.

The discrepancy between the frequencies from (6.53) and the measured frequencies are
due to that the ground and ionosphere are not perfectly conducting. A better analysis
is to use the impedance boundary conditions in (1.18) together with the expansions in
(6.46). With a conductivity of the ionosphere of 9 · 10−6 S/m and the thickness h = 100
km between the earth and the ground the resonance frequencies are f1 = 8.5 Hz, f2 = 15.3
Hz, f3 = 22.1 Hz and f4 = 29.0 Hz. The frequencies depend highly on the conductivity
of the ionosphere, but also on the thickness h. The frequencies increases with increasing
conductivity and also with increasing h. This is of no surprise since when σ and h increases
a larger part of the wave will travel in the non-conducting atmosphere.

6.4 Analyzing resonance cavities with FEM

The resonance cavities can be analyzed by FEM. There are three different cases that are
of interest:

1. If the cavity is axisymmetric we use 2D axisymmetric in COMSOL. That is a
very fast and accurate solver. The axially symmetric geometry makes it possible to
expand the electric and magnetic fields in a Fourier series in the system einφ. Then
the problem is reduced to a two-dimensional problem in the cylindrical coordinates
rc and z. Each n value is treated separately.

2. If the resonance cavity consists of a hollow waveguide with plane metallic walls at
z = 0 and z = h it is easy to analyze it with FEM. First the cut-off frequencies
for the different modes are determined using the scheme on page ??. Then the
resonance frequencies of the cavity are obtained from (6.20).

3. If neither of the two previous cases are relevant then we have to use the three-
dimensional solver.

We now give an example of the first and third cases.

Example 6.4
We determine some of the resonances of a hollow sphere with radius a = 1 m. We use
the solver 2D axisymmetric since the sphere is axially symmetric. All of the field
components can be expanded in a Fourier series

f(rc, φ, z) =

∞∑

m=−∞
fm(rc, z)e

imφ

Fields with different m-values do not couple to each other and ten each m value can be
treated separately.

1. First choose 2D axisymmetric>Radio Frequency>Electromagnetic waves
>Eigenfrequency.

2. Draw a circle with radius a = 0.1 m and put its center at (0, 0).

3. Choose Sector angle 180 degrees and Rotation -90 degrees. By that you have a
half circle in the right half-plane.
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4. Choose Air as material.

5. Go to Electromagnetic waves and choose perfect conductor as boundary con-
dition for the circular line. The symmetry axis has the condition Axial Symmetry
by default.

6. Choose Electromagnetic waves and the azimuthal index m.

7. In Study>Eigenfrequency we set the frequency to eg., 1 GHz. This is the fre-
quency where COMSOL starts to look for an eigenfrequency. We can also choose
the number of resonances that it will determine.

8. The mesh size is Normal by default. If we need a better accuracy then we choose
a finer mesh.

9. We now let Comsol solve the problem.

10. COMSOL calculates the lowest resonant frequencies and their electric fields. There
might be spurious solutions that are unphysical. The resonance frequency for these
solutions are either very far from 1 GHz, or even complex, and the corresponding
field plots are fuzzy.

If we are interested in the Q-value for a mode we can determine this in at least two
different ways. The first one is to use the expressions for the stored energies and the
dissipated power in (6.8), and the relation for Q in (6.40). The absorbed power is given
by

Pc =
1

2
RS

∫∫

S
|JS |2 dS =

1

2
RS

∫∫

S
|H|2 dS

where S is the surface of the cavity. We use Results>Derived values>Line integral to
evaluate this integral in COMSOL. Remember to mark Integration Settings>Compute
surface integral. In the axisymmetric mode in COMSOL the absolute value of the
magnetic field is a pre-defined quantity. This is enough to calculate the integral. The
stored energy U is obtained from the predefined quantity electric energy density. Integrate
the electric energy density by Results>Derived values>Surface integral and multiply
by 2 since U = 2Ue. Remember to mark Integration Settings>Compute volume

integral. The surface resistance is given by RS =

√
ωµcµ0

2σc
where σc is the conductivity

and µc the relative permeability of the metal.
The other option is to use the impedance boundary condition. We then add the

material of the metal in Material. We let the boundary of the half-circle have this
material. We then choose Impedance boundary condition under Electromagnetic
fields. The problem is now non-linear in the sense that the boundary condition depends
on the eigenfrequency. Comsol can handle this if we add a linearization point. We right
click on Eigenvalue solver and write our guess of frequency, in this case,s 1e9 in the
box below transform point. With that value Comsol can linearize the problem and get
an eigenvalue. For this application the value of the linearization point is not crucial. We
let Comsol solve the problem. The Q-value is a pre-defined quantity that we find if we
go to Results>Derived values>Global evaluation, choose the frequency that we are
interested in, and and choose Quality factor.

In figure 6.8 we see the electric and magnetic fields for the three lowest TE- and
TM-resonances.
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Figure 6.8: The electric field for the three lowest axisymmetric TE-modes and the

magnetic field for the three lowest axisymmetric TM-modes in a spherical cavity with

radius 1 m. The electric field of the TE-modes and the magnetic field of the TM-modes

are directed in the φ̂-direction.

Example 6.5
In order to obtain also the non-axisymmetric modes we choose m > 0 in Electromagnetic
waves .

6.5 Excitation of modes in a cavity

The electromagnetic fields in a cavity are excited by currents. These currents are generally
fed via a waveguide or coaxial cable to the cavity, c.f., figure 6.9. The current often has
a specified frequency in order to excite only one of the cavity modes. In an accelerator
the beam is also a current source and it excites a large number of cavity modes since the
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Table 6.2: The 10 lowest resonance frequencies in a spherical vacuum cavity with
radius a = 1 m and perfectly conducting surface. The table shows the significant
figures for three different meshes in Comsol. All values are in MHz. The 2-D
axisymmetric solver has been used. The exact frequencies are given in table 6.1

order normal (267 elements) fine (859 elements) extremely fine (11188 elements)
1 130.911 130.9117 130.911744
2 184.66 184.662 184.662441
3 214.39 214.396 214.3961
4 237.30 237.299 237.29905
5 275.00 274.995 274.9945
6 289.24 289.237 289.23653
7 291.8 291.85 291.85194
8 333.4 333.42 333.4184
9 340.6 340.68 340.6849
10 355.1 355.14 355.1354

beam has a wide frequency spectrum. We first examine the excitation problem in the
frequency domain, where the complex current density J(r, ω) is the Fourier transform of
the time dependent current density. We proceed by deriving the basic equations in the
time domain. The irrotational modes only exist while the current is on. When the source
is turned off only the solenoidal mode remain.

Sources in a lossless cavity

The Maxwell equations read

∇×E = iωµ0H

∇×H = J − iωε0E

The following identity is used

0 =

∫∫∫

V
∇ · (En ×H) dV =

∫∫∫

V
H · ∇ ×En −En · ∇ ×H dV (6.54)

We utilize the frequency domain version of the expansion in Eq. (6.3) and expand the
electric and magnetic fields

E =
∞∑

n=0

en(ω)En(r)

H = (iωµ0)−1∇×E = (iωµ0)−1
∞∑

n=0

en(ω)∇×En(r)

(6.55)

where en(ω) and fn(ω) are the Fourier transforms of en(t) and fn(t), and where we used
∇× F n = 0. The rotation of the magnetic field is given by

∇×H = (iωµ0)−1
∞∑

n=0

en(ω)∇× (∇×En(r)) = (iωµ0)−1
∞∑

n=0

en(ω)k2
nEn(r)) (6.56)
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Figure 6.9: Three examples of feeding systems for microwave cavities. The left cavity

is fed by a waveguide through a hole in the bottom surface. The waveguide in the middle

is fed by a coaxial cable that is attached to the wall of the cavity. The cavity to the right

is fed by a coaxial cable where the inner conductor continuous vertically into the cavity.

where we used ∇× (∇×En) = −∇2En = k2
nEn. The Ampére law gives

∇×H = J − iωε0

( ∞∑

n=0

enEn(r) +
∞∑

n=0

fnF n(r)

)
(6.57)

We first determine the equation for the coefficients en. We insert the expansions in (6.55)
and (6.56) into (6.57), take the scalar product with En, integrate over V , and use the
orthogonality of the vector functions (6.1). Thus

0 = −i
k2
n

ωµ0
en(ω)−

∫∫∫

V
J ·En dV + iωε0en(ω)

and the amplitude of the electric field follows

en(ω) = −iωµ0

∫∫∫
V J ·En dV

k2 − k2
n

(6.58)

We then determine an expression for fn by taking the scalar product of (6.57) and F n,
integrate over V and use the orthogonality (6.1). Then

fn(ω) = − i

ωε0

∫∫∫

V
J · F n dV

An alternative expression for fn(ω) is obtained if we use the equation of continuity ∇·J =
iωρ, where ρ is the space charge density. We then use F n = −∇Φn, ∇ · (JΦ) = Φ∇ · J +
J · ∇Φ, Gauss law and the boundary condition that Φ = 0 on S. Eventually this leads to

fn(ω) =
1

ε0

∫∫∫

V
ρ(r, ω)Φn(r) dV (6.59)
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Time-domain equations

We obtain the time domain relation for en(t) either by Fourier transformation of (6.58),
or by an analysis entirely in the time domain. Since multiplication with −iω in the
frequency domain corresponds to a time-derivative in the time-domain we obtain the
ordinary differential equation for the amplitudes en(t) from (6.58)

∂2en(t)

∂t2
+ ω2

nen(t) = −ε−1
0

∂

∂t

∫∫∫

V
J(r, t) ·En(r) dV (6.60)

Sources in a cavity with losses

When there is dissipation of power in the cavity we need to modify the basic expressions
above. The coupling of power to the beam introduces dissipation. Power may also escape
the cavity through the power coupler of the cavity, through waveguides that are designed
to attenuate the higher order modes, as Ohmic power losses in the walls of the cavity,
or as power fed back to the beam. We modify the equation for en(t) above by adding a
dissipation term to (6.60)

∂2en(t)

∂t2
+ 2αn

∂en(t)

∂t
+ ω2

nen(t) = −ε−1
0

∂

∂t

∫∫∫

V
J(r, t) ·En(r) dV (6.61)

This leads us to the relation in the frequency domain

en(ω) = −iωµ0

∫∫∫
V J(r, ω) ·En(r) dV

k2 + 2ikαnc−1 − k2
n

(6.62)

where kn = ωn/c.

6.5.1 Excitation of modes in cavities for accelerators

The electromagnetic fields in a cavity for an accelerator are generated by the feed and
by the beam of particles. The feed is usually a coaxial waveguide attached to the wall of
the cavity and it feeds the cavity with a field of a given frequency, c.f., figure 5.3. The
frequency is close to the mode that accelerates the particles.

The beam generates a wide spectrum of frequencies, and by that excites a large num-
ber of cavity modes, as it travels through the cavity . These modes are referred to as
higher order modes (HOM). Higher order modes with frequencies close to a multiple of
the frequency of the fundamental mode can affect the stability of the beam and give rise
to power losses. One often try to prevent this when the cavity is designed.

In this section we analyze the generation of modes in an axisymmetric cavity from a
beam that is centered at the axis of symmetry. The axisymmetric cavities are very common
in accelerators, and the accelerators at Maxlab and at ESS both use axisymmetric cavities.
We will exemplify by considering the generation of higher order modes in the axisymmetric
superconducting cavities that are to be used in ESS. The cavities of ESS are referred to
as elliptic cavities. The beam of protons in ESS will be 2 ms long and consist of bunches,
each having a length of 20-30 ps. The bunches come with a frequency of 352 MHz. It
means that the beam consists of 704.000 bunches. Each bunch has a total charge of 0.14
nAs. The beams come with a frequency of 20 Hz, i.e., with a period of 50 ms.
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The beam is equivalent to a current density

J(r, t) ≈
{
J(rc, z, t)ẑ rc < r0

0 rc > r0

and a charge density

ρ(r, t) ≈
{
v−1J(rc, z, t) rc < r0

0 rc > r0

We now assume that r0 is very small such that

J(rc, z, t) ≈
I(z, t)

2πrc
δ(rc)ẑ

ρ(rc, z, t) ≈
I(z, t)

2πrcv
δ(rc)

where δ(rc) is the delta function.The current I(z, t) consists of protons traveling with
velocity vẑ. Then

I(z, t) = I(t− z/v)

The Fourier transform of I(t) is denoted I(ω), and hence the Fourier transform of I(t−z/v)
is eikvzI(ω), where kv = ω/v. Notice that I(t) is the current measured at the entrance
z = 0 of the cavity.

Comment: The speed v is assumed to be constant. This is an approximation since the
charges are accelerated.

6.5.2 A single bunch

In the LINAC of ESS the beam consists of a train of very short bunches. The bunch length
∼ 20 ps is short enough to approximate the current and the charge density of the bunch
with delta pulses

I(t− z/v) ≈ qδ(t− z/v)

ρ(t− z/v) ≈ q

2πrcv
δ(t− z/v)δ(rc)

(6.63)

where q is the charge in a bunch. It means that the current density has boiled down to a
train of point charges q moving the speed v along the axis of symmetry of the cavity.

Q-factor and losses

When there are losses in the cavity a loss parameter αn is introduced for each mode. It is
related to the Q−value of the cavity as, c.f., (6.40)

αn =
ωn
2Q

The Q−values of the superconducting cavities are on the order 107 − 109, where 107 is a
typical value for a cavity with beam and 109 for an empty cavity. When the excitation of
the HOM is to be determined one must use the Q−value for an empty cavity. It means
that α < 10 for the HOM. The beams come with a frequency of 20 Hz, i.e., separated
with 50 ms, which means that the attenuation of the amplitude between the beams is no
more than e−α0.05 ≈ 0.6. Hence there will be a large amount of HOM energy in the cavity
when a new beam arrives. The Q−value for the cavity with the beam is only relevant for
the power feed of the cavity.
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The equation for the amplitudes in a cavity with losses

When losses are present, eg., by losses in the walls, equation (6.61) for en(t) is altered to

∂2en(t)

∂t2
+ 2αn

∂en(t)

∂t
+ ω2

nen(t) = −ε−1
0

∂

∂t

L∫

0

I(z, t)En(z) dz (6.64)

where we introduce the notation En(z) = ẑ ·En(0, 0, z). A very short bunch with charge
q, c.f., (6.63) simplifies the right hand side such that

∂2en(t)

∂t2
+ 2αn

∂en(t)

∂t
+ ω2

nen(t) = −qv
2

ε0
E′n(vt)(H(vt)−H(vt− L)) (6.65)

where E′n(z) is the derivative w.r.t. z and H(vt) is the Heaviside step function. The initial
conditions to the equation are en(0) = 0 and e′n(0) = 0. For t > L/v the equation is
homogenous with solution en(t) = Ane

−αnt cos(ω′nt + φn) where ω′n =
√
ω2
n + α2

n. Notice
that ωn is 2Q times αn and since Q is on the order of 106 or more, the approximation
ω′n = ωn is relevant and will be used hereafter.

A Fourier transformation of the ODE gives the Fourier transform en(ω) as

en(ω) =
qv

ε0

L∫
0

eikvzE′n(z) dz

(ω2 + 2iωαn − ω2
n)

= −iqω
ε0

L∫
0

eikvzEn(z) dz

(ω2 + 2iωαn − ω2
n)

(6.66)

where kv = ω/v.
When the bunch has left the cavity the amplitude is given by the solution to the

homogeneous equation
en(t) = Ane

−αnt cos(ωnt+ φn) (6.67)

We obtain the amplitude An and phase φn from the inverse Fourier transform of (6.66)
and residue calculus. This is done in subsection 6.5.4. The function en(ω) has poles at
ω = −iαn ± ωn and this implies that, c.f., subsection 6.5.4,

An = q

√
ω2
n + α2

n

ωnε0

∣∣∣∣∣∣

L∫

0

ei(ωn−iαn)z/vEn(z) dz

∣∣∣∣∣∣

and

φn = −arg



q

ωn − iαn
ωnε0

L∫

0

ei(ωn−iαn)z/vEn(z) dz





Since αn � ωn a relevant approximation is

An =
q

ε0

∣∣∣∣∣∣

L∫

0

eiωnz/vEn(z) dz

∣∣∣∣∣∣

and

φn = −arg





L∫

0

eiωnz/vEn(z) dz




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6.5.3 A train of bunches

A pulse in the LINAC of ESS consists of a train of bunches. Typically the pulse lasts for
2 ms and the time between the bunches is ∆t = 1/(352 · 106) s, since the frequency of the
cavity that creates the bunches is 352 MHz.

Let time t = 0 when the first bunch enters the cavity and assume that there is no field
in the cavity for t < 0. When M bunches have passed the cavity the total amplitude of
mode number n is

entot(t) =
M−1∑

m=0

en(t−m∆t) (6.68)

The Fourier transform is given by

entot(ω) = en(ω)

M−1∑

m=0

eimω∆t = en(ω)
eiωM∆t − 1

eiω∆t − 1

= en(ω)eiω(M−1)∆t/2 sin(ωM∆t/2)

sin(ω∆t/2)

(6.69)

We introduce the bunch train factor

F (ω,M) = eiω(M−1)∆t/2 sin(Mω∆t/2)

sin(ω∆t/2)

(6.68) and (6.69) are sufficient in order to obtain the amplitude in the time domain of
a cavity mode for all times and its corresponding Fourier transform. For a fixed frequency
the Fourier transformation of the amplification is a periodic function of M . The period
depends strongly on the product ω∆t. Assume an angular frequency

ω =
2π

∆t
m+ ∆ω

where m is an integer such that 0 < ∆ω < 2π. The absolute value of the bunch train
factor is given by

|F (ω,M)| = | sin(M∆ω∆t/2)|
| sin(∆ω∆t/2)|

This is a periodic function of M and the period is M0 =
2π

∆ω∆t
. In the next section we

will show that the same periodicity holds in the time domain. We notice that the shortest
period is M0 = 2 and is obtained when ∆w = 2π · 352 · 106/2 = π/∆t.

6.5.4 Amplitude in time domain

Each pulse of the beam consists of more than 700.000 bunches. Hence the summation in
(6.68) gets numerically cumbersome as time increases. There is a way to get around this
problem. When the beam has left the cavity the amplitude of the different cavity modes
can be obtained by finding the inverse Fourier transform of (6.66) by residue calculus.
The function entot(ω) has poles at ω = −iαn ± ωn. Thus

entot(ω) = − iωq

2ωnε0

L∫

0

eiωz/vEn(z) dz

(
1

ω + iαn − ωn
− 1

ω + iαn + ωn

)
eiωM∆t − 1

eiω∆t − 1
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The Fourier integral contour from −∞ to∞ can be closed by a half circle in the upper
half plane for negative times, which gives entot(t) = 0 for t < 0 since there are no poles in
the upper half plane. For times t > L/v + (M − 1)∆t it can be closed by a half circle in
the lower half plane and then

entot(t) = i
(
Res{entote

−iωt, ωn − iαn} − Res{entote
−iωt,−ωn − iαn}

)

= 2Re
{

iRes{entote
−iωt, ωn − iαn}

}

where Res stands for residue. For t > L/v + (M − 1)∆t, i.e., when the beam has left the
cavity, the amplitude of cavity mode number n is given by

entot(t) = 2qRe




ωn − iαn

2ωnε0
e−αnte−iωnt

L∫

0

ei(ωn−iαn)z/vEn(z) dz
ei(ωn−iαn)M∆t − 1

ei(ωn−iαn)∆t − 1




(6.70)

Thus
entot(t) = Antot cos(ωnt+ φn)e−αnt (6.71)

where the amplitude is given by

Antot =

∣∣∣∣∣∣
2q
ωn − iαn

2ωnε0

L∫

0

ei(ωn−iαn)z/vEn(z) dz
ei(ωn−iαn)M∆t − 1

ei(ωn−iαn)∆t − 1

∣∣∣∣∣∣
(6.72)

and the phase is given by

φn = −arg



2q

ωn − iαn
2ωnε0

L∫

0

ei(ωn−iαn)z/vEn(z) dz
ei(ωn−iαn)M∆t − 1

ei(ωn−iαn)∆t − 1



 (6.73)

Example 6.6
The fundamental theorem of beam loading: Consider a single bunch with charge q

that enters the cavity. First assume that there is no electromagnetic fields in the cavity.
When the bunch leaves the cavity it has generated electric fields en(t)En(r), and corre-
sponding magnetic fields, in the different cavity modes. The corresponding energies are
Wem(n, 1), that are the sum of the electric and magnetic energies in mode number n. If
attenuation is neglected these energies are constant until the next bunch arrives. These
energies are taken from the kinetic energy of the bunch. Thus the bunch is decelerated
by a force in the z−direction that can be written as F 1 = qκen(t)En(z)ẑ, where κ is a
constant.

To determine κ we let the next bunch enter exactly one period of mode number n after
the first bunch. When this bunch has left the cavity it has added the same electric field
to the cavity as the first bunch. Thus the stored energy of mode n is 4Wem(n, 1) since the
energy is a quadratic quantity in the amplitudes. The second bunch has then delivered
the energy 3Wem(n, 1) to the cavity. When it traveled through the cavity it experienced
the field generated by the first bunch and the field generated by itself. The force is then
F 2 = q(1 + κ)en(t)En(z). The work done by the forces equals the energies that the two
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bunches have stored, i.e.,

Wem(n, 1) = qκ

L∫

0

en(z/v)Ez(z) dz

3Wem(n, 1) = q(1 + κ)

L∫

0

en(z/v)Ez(z) dz

Thus 3κ = 1 + κ and κ = 0.5. The bunch is apparently exposed to half of the field it
generates plus the electric field that was present in the cavity when it arrived. This result
is called the fundamental theorem of beam loading.

Problems in Chapter 6

6.1 Show that the time averages of the stored electric and magnetic energies in a reso-
nance cavity are equal.

6.2 Assume a resonance cavity with a certain length. Prove that if the length is scaled
by a factor K then the Q-factor scales with a factor

√
K if the conductivity of the

walls is constant.

6.3 a) Determine Q for the TE101-mode in a rectangular parallelpiped with walls
a× b× d.

b) determine the resonance frequency and the Q-factor for the TE101-mode when
a = b = 2 cm, d = 4 cm and the cavity is made out of copper (σc = 5.8 · 107

S/m).

c) Determine the resonance frequency and the Q-factor for the TE101-mode if
a = b = 20 cm, d = 40 cm and the cavity is made out of copper (σc = 5.8 · 107

S/m).

6.4 Estimate the number of resonances with a wavelength larger than 500 nm in a cubic
vacuum cavity with volume one cubic meter.

Summary of chapter 6

Resonance cavities
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α =





RS
µ0


ε`
d

+
1

2kt
2
n

∫

Γ

|n̂ · ∇T vn(ρ)|2dΓ


 TM

RS
µ0k2

n`


2kz

2
`

d
+

1

2

∫

Γ

kz
2
`

kt
2
n

|n̂×∇Twn(ρ)|2 + kt
2
n|wn(ρ)|2dΓ


 TE

Q =
ωn`
2α

B = 2α



Chapter 7

Transients in waveguides

In chapter 5 we described propagation of time harmonic fields in hollow waveguides. There
are applications where the fields in the waveguide are not time harmonic, but consist of
a spectrum of frequencies. One way to analyze the propagation of signals with general
time dependence is to Fourier transform the input signal and then determine the output
signal by an inverse Fourier transform. In this chapter a time-domain method, based
upon propagators, is presented. By a convolution of the input signal with the propagator,
the signal can be determined at an arbitrary position in the waveguide. The propagator
corresponds to the impulse response of the waveguide and is independent of the input
signal, the geometry of the waveguide, and the mode number

Wave propagation of a fixed mode in a hollow waveguide is at a fixed frequency deter-
mined by

Ez(r, ω) = v(ρ)a(z, ω) = v(ρ)A(ω)eikz(ω)z (TM-fallet)

Hz(r, ω) = w(ρ)a(z, ω) = w(ρ)A(ω)eikz(ω)z (TE-fallet)
(7.1)

where the longitudinal wavenumber is

kz(ω) =
{
k2(ω)− k2

t

}1/2
=

{
ω2

c2
0

− k2
t

}1/2

Note that v(ρ), w(ρ), k2
t and c0 are independent of the frequency1. Even the case with

material dispersion can be handled (ε frequency dependent). We transform the expressions
in equation (7.1) to the time domain in order to study the transient wave phenomena in
the waveguide. The inverse Fourier transform of equation (7.1) gives the z-component of
the fields in a point z

Ez(r, t) = v(ρ)a(z, t)

Hz(r, t) = w(ρ)a(z, t)

where

a(z, t) =
1

2π

∫ ∞

−∞
a(z, ω)e−iωt dω =

1

2π

∫ ∞

−∞
A(ω)eikz(ω)ze−iωt dω

The amplitude A(ω) is the Fourier transform of a(0, t)

A(ω) =

∫ ∞

−∞
a(0, t)eiωt dt

1With a modification of the analysis in this chapter one can also handle cases where the speed
of light c is not equal to speed of light in vacuum.

161
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We add and subtract a term exp {iωz/c0}, that is determined by the asymptotic behavior
of the function kz(ω) for high frequencies, i.e.,

a(z, ω) = A(ω)eiωz/c0 +A(ω)eiωz/c0
(
eikz(ω)z−iωz/c0 − 1

)

Since a product of two Fourier transforms gives a convolution in the time domain, and
multiplication with a factor exp(−iωt0) gives a time delay t0, the z−component of the
electric field at a point z reads

a(z, t) = a(0, t− z/c0) +

∫ ∞

−∞
P (z, t− z/c0 − t′)a(0, t′) dt′ (7.2)

where 



P (z, t− z/c0) =
1

2π

∫ ∞

−∞

(
eikz(ω)z−izω/c0 − 1

)
e−iω(t−z/c0) dω

a(0, t) =
1

2π

∫ ∞

−∞
A(ω)e−iωt dω

We call the function P (z, t) the propagator kernel, since it maps the field at z = 0 on the
field at a point z.

We use the following pair of Fourier transforms




1

2π

∫ ∞

−∞

(
1− e−ibω+ib(ω2−a2)1/2

)
e−iωt dω = H(t)ab

J1

(
a
√
t2 + 2bt

)

√
t2 + 2bt

ab

∫ ∞

0

J1

(
a
√
t2 + 2bt

)

√
t2 + 2bt

eiωt dt = 1− e−ibω+ib(ω2−a2)1/2

where H(t) is the Heaviside functionen (H(t) = 1, t ≥ 0, otherwise zero) and furthermore
Im(ω2 − a2)1/2 > 0, argw ∈ [0, 2π]. This gives us an explicit expression for P (z, t)

P (z, t) = −c0ktz
J1

(
kt
√
c2

0t
2 + 2zc0t

)

√
c2

0t
2 + 2zc0t

H(t)

and an expression for the amplitude of the waveguide mode

a(z, t+ z/c0) = a(0, t)− c0ktz

∫ t

−∞

J1

(
kt
√
c2

0(t− t′)2 + 2c0z(t− t′)
)

√
c2

0(t− t′)2 + 2c0z(t− t′)
a(0, t′) dt′ (7.3)

The parameter t is the time after the wavefront has passed and is called the wave front
time (or equivalently retarded time). We notice that the wavefront is moving with the
speed c0.

We see that the coordinates {
ζ = ktz

s = ktc0t
(7.4)

are suitable dimensionless parameters to describe the wave propagation in the waveguide.
With these dimensionless coordinates all modes are propagating as

u(ζ, s+ ζ) = u(0, s) +

∫ s

−∞
P (ζ, s− s′)u(0, s′) ds′

P (ζ, s) = −ζ
J1

(√
s2 + 2ζs

)

√
s2 + 2ζs

H(s)
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Figure 7.1: The propagator kernel P (ζ, s) at three different positions ζ. Note that

when ζ increases the propagator kernel is compressed and increases in amplitude. One

can prove that in the limit ζ →∞ it holds that P (ζ, s)→ −δ(s).

The different modes only differ by a scaling in time and space given by equation (7.4). In
figure 7.1 the propagator kernel P (ζ, s) is depicted at three different positions ζ.

Example 7.1
If a(0, t) = δ(t) then

a(z, t+ z/c0) = δ(t) + P (z, t)

Hence the wavefront is a delta pulse that moves with the vacuum speed of light and is
followed by a tail that is given by P (z, t). In figure 7.1 we see that the oscillations of the
tail increases when the wave propagates.

Example 7.2
The expression (7.3) is also valid for negative z values. The propagator kernel P (z, t)
can then be used for reconstruction of the pulse at negative z values. One can also use
it in order to determine the input signal in order to create a pulse of a given shape, see
problem 2. When t < −2z/c0 the square root in the propagator kernel is imaginary and
can be written

√
c2

0t
2 + 2c0zt = i

√
−2c0zt− c2

0t
2. One can show that in this case

P (z, t) = −c0ktz
I1(kt

√
−2c0zt− c2

0t
2)√

−2c0zt− c2
0t

2
H(t)

where I1(y) = −iJ1(iy) is the modified Bessel functionen. In figure 7.2 we see the graph
of P (ζ, s) for some negative values of ζ.

Problems in Chapter 7
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Figure 7.2: The propagator kernel P (ζ, s) for three values of ζ.

7.1 When a pulse is propagating in a dispersive material of infinite extent a wave phe-
nomena referred to as a precursor is developed. This is the part of the signal that
comes directly after the wavefront. The wave equation for a dispersive material is
given by

∂2E(z, t)

∂z2
− 1

c2
0

∂2E(z, t)

∂t2
− 1

c2
0

∂2

∂t2

t∫

−∞

χ(t− t′)E(z, t′) dt′ = 0

where χ(t) is the susceptibilty kernel for the dispersive material and E is a com-
ponent of the electric field. The susceptibility kernel relates the displacement field
(electric density flow) to the electric field through the constitutive relation

D(z, t) = ε0(E(z, t) +

t∫

−∞

χ(t− t′)E(z, t′) dt′)

For frequencies in the optical regime the Lorentz’ model is appropriate for most
materials. If the material is lossless this model gives

χ(t) = ω2
p sin(ω0t)/ω0H(t)

where ωp is called the plasma frequency, ω0 is th resonance frequency for the bounded
electrons and H(t) is the Heaviside function. If the precursor is defined as the part of
the signal that arrives in the time interval ∆t << 1/ω0 directly after the wave front,
then show that the precursor in a dispersive material satifies the same equation as
the transient field in the waveguide.

7.2 A pulse with a mode with transverse wavenumber kt is sent through a waveguide of
length L. We wish that the pulse is a square pulse when it leaves the waveguide,
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i.e.,
a(L, t) = H(t)−H(t− t0)

Determine the shape of the input signal. The answer may include an integral with
known integrand.

7.3 Show that the propagator kernel satisfies the equation

P (z1 + z2, t) = P (z1, t) + P (z2, t) +

∫ t

0
P (z1, t− t′)P (z2, t

′) dt′

Summary of chapter 7

The propagator

Ez(r, t) = v(ρ)a(z, t)

a(z, t) = a(0, t− z/c0) +

∫ ∞

−∞
P (z, t− z/c0 − t′)a(0, t′) dt′

P (z, t) = −c0ktz
J1

(
kt
√
c2

0t
2 + 2zc0t

)

√
c2

0t
2 + 2zc0t

H(t)
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Chapter 8

Dielectric waveguides

In this chapter we analyze dielectric waveguides. In these waveguides the waves are guided
in a region with a dielectric material that has lower wave speed, and hence larger index of
refraction, than the surrounding regions. From Snell’s law we know that a plane wave that
impinges on a plane interface between two dielectric materials may be totally reflected.
For this to happen two criteria have to be fulfilled. The first is that the index of refraction
in the region the wave comes from is larger than in the region it is reflected from. The
other is that the angle of incidence is larger than the critical angle arcsin(n2/n1). It is
this phenomenon that makes it possible for waves to be trapped in a dielectric plate or
cylinder.

A large part of the chapter is devoted to optical fibers. The development of optical
fibers started in 1966 when Charles Kao1 realized that glass could be purified enough to
carry light signals with an attenuation of less than 20 dB/km. It took some time before
this limit was reached, but in 1970 three researchers, Robert Maurer, Donald Keck and
Peter Schultz at Corning Glass Works managed to purify silica such that the attenuation
of the waves in a fiber was only 17 dB/km. Five years later they reached 4 dB/km. The
optical fiber developed at Corning Glass Works is the same type as is used in todays
optical fiber systems. It is a circular dielectric cylinder made out of silica with a thin
circular region, referred to as the core, doped with a substance, often germanium dioxide,
that increases the index of refraction. The waves are then confined to the core. In the
standard optical fiber the attenuation is minimal at the wavelength λ = 1.55µm, which
is in the infrared region. For this reason most systems use this wavelength. For long
distance communication the single mode fiber is used. It means that the radius of the core
is so small that only one mode can exist (radius∼ 10µm). The advantage with a single
mode fiber is that the dispersion is small. For communication at short distances one can
use multimode fibers. These are fibers with a thick core where a large number of modes
can propagate. The multi mode fiber systems are cheaper to manufacture than the single
mode systems.

The bandwidth of an optical fiber is much larger than for an electric wire. In todays
systems one can transmit 40 Gb/s in a single fiber. Optical fibers save space in cable ducts,
they are immune to electrical interference and they are very hard to wiretap. Thus optical
fibers are superior to electric wires for long distance communication. In 2014 a danish
group at the Danish Technical University (DTU) set a new world record by transferring
43 terabit/s using one laser and one fiber.

1Kao was awarded the 2009 Nobel prize in physics for his discovery

167
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8.1 Planar dielectric waveguides

We first look at waves that propagate along dielectric plates. Consider a planar dielectric
plate that is infinite in the y− and z−directions and occupies the region 0 ≤ x ≤ d. The
plate is lossless and has a relative permittivity ε. Outside the plate there is vacuum. We
restrict ourselves to time-harmonic wave propagation in the z−direction. The waves in
the plate can be of TE-type, i.e., with the electric field in the y−direction, or of TM-type,
with the electric field in the xz-plane. Here we only consider the TM-case and leave the
TE-case as a problem.

Inside the plate the electric field is a superposition of an upward and a downward
traveling wave. The two waves can always be decomposed into a wave for which the
z−component of the electric field is an even function of x w.r.t. x = d/2 and a wave for
which it is an odd function. In the region x > d there are only waves traveling upwards
and in the region x < 0 there are only waves traveling downwards. We make the following
ansatz for the odd modes

v(x) =





Aeik0x(x−d), x > d

B sin(k1x(x− d/2)), 0 ≤ x ≤ d
−Ae−ik0xx, x < 0

where k0 = ω/c0 is the wave number in vacuum, k1 = k0
√
ε is the wavenumber in the

plate and

k0x =
√
k2

0 − k2
z

k1x =
√
k2

1 − k2
z

We get relations between A, B, and kz by using the boundary conditions at x = 0 and
x = d. Since v(x) is independent of y and antisymmetric it is enough to use the boundary
conditions that Ez and Dx are continuous at x = 0. The boundary conditions at x = d
lead to identical relations.

v(0−) = v(0+)

1

k2
0x

∂v(0−)

∂x
=

ε1
k2

1x

∂v(0+)

∂x

This gives

A = B sin(k1xd/2)

ik0xA =
ε1k

2
0x

k2
1x

k1xB cos(k1xd/2)

We combine the two equations and get the equation for non-trivial solutions

tan (k1xd/2) = −i
ε1k0x

k1x

If k0x has a real part power will be transported in the x−direction, i.e., there is a leakage of
power, and the wave in the waveguide is attenuated in the z−direction. Thus the criteria
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for a propagating mode is that k0x is imaginary and kz is real. Let k0x = iq. Then the
equation for q reads

tan (k1xd/2) =
ε1q

k1x

k1x =
√
k2

1 − k2
0 − q2

This equation is called a transcendental equation2. It has no explicit solutions and has
to be solved numerically. For a given d and frequency there are only a finite number of
solutions and hence a finite number of propagating modes. The fundamental mode has
cut-off frequency zero. To see this we assume that there exists a solution with real q.
When ω → 0 then k1x → 0 and tan(k1xd/2) → k1xd/2. The transcendental equation
simplifies to

k2
1xd

2
= ε1q

or equivalently k2
1 − k2

0 − q2 = 2qε1/d with solution

q = −ε1
d
±
√(ε1

d

)2
+ k2

1 − k2
0

Only the solution with plus sign in front of the square root gives a propagating mode since
the other solution implies an imaginary kz. As ω → 0 we use

√(ε1
d

)2
+ k2

1 − k2
0 =

ε1
d

√
1 +

(k2
1 − k2

0)d2

ε21
≈ ε1

d

(
1 +

(k2
1 − k2

0)d2

2ε21

)

Then

q ≈ (k2
1 − k2

0)d

2ε1
=
ω2d(ε1 − 1)

2c2
0ε1

and

kz =
√
k2

0 + q2 ≈ k0

√
1 + k2

0

(
d(n2

1 − 1)

n2
1

)2

As k0d → 0 then kz → k0. The wave is still bounded to the dielectric plate but it
propagates with the phase speed of the surrounding medium and since q is small, the field
decays slowly in the directions perpendicular to the plate. The even TM−mode and the
odd and even TE−modes are treated in the same manner. The difference is that none of
these modes has zero cut-off frequency.

It turns out that all dielectric waveguides have much in common. They all have one
or two fundamental modes with zero cut-off frequency. As frequency goes to zero the
fundamental mode propagates with the wave speed of the surrounding medium and kz
approaches k0.

8.2 Cylindrical dielectric waveguides

We assume an infinitely long and straight dielectric cylinder, directed along the z−axis,
with envelope surface S and cross section surface Ω. The boundary curve to Ω is Γ,

2A transcendental function is a function that is not a polynomial
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Figure 8.1: The dielectric waveguide with envelope surface S.

see figure 8.1. The cylinder has the relative permittivity ε1 and permeability µ1 and is
surrounded by a region with parameters ε2 and µ2. The cylinder is denoted core and the
outer region cladding. We assume that the core and cladding are lossless i.e., ε and µ
are real. The index of refraction in the two regions are given by

n1 = c0/c1 =
√
ε1µ1

n2 = c0/c2 =
√
ε2µ2

The wavenumber in vacuum is k0 = ω/c0, and the wavenumber in the core and cladding
are

k1 = ω/c1 = k0n1

k2 = ω/c2 = k0n2

8.2.1 The electromagnetic fields

In chapter 4 we introduced a general decomposition of the electromagnetic fields, that
is useful for the dielectric waveguides. Since the fields propagate along the waveguide,
i.e., in the z−direction, we make the following ansatz:

{
Ez(r, ω) = v(ρ, ω)eikz(ω)z

Hz(r, ω) = w(ρ, ω)eikz(ω)z

Note that we have utilized that kz has to be the same everywhere in order to satisfy the
boundary conditions. In contrast to the hollow waveguide, the functions v and w are
frequency dependent. In the rest of the chapter the ω dependence is understood in v, w
and kz. The functions v and w are solutions to the eigenvalue problems

{
∇2
T v(ρ) + k1

2
t v(ρ) = 0

∇2
Twp(ρ) + k1

2
tw(ρ) = 0

when ρ is inside Γ, (8.1)

{
∇2
T v(ρ) + k2

2
t v(ρ) = 0

∇2
Twp(ρ) + k2

2
tw(ρ) = 0

when ρ is outside Γ (8.2)
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The transverse wavenumbers kit are related to the wavenumbers ki and the longitudinal
wavenumber kz as

ki
2
t = k2

i − k2
z , i = 1, 2

Notice that the transverse wavenumber in the core differs from that in the cladding.

8.2.2 Boundary conditions

We need the boundary conditions at the surface S in order to determine v(ρ), w(ρ) and
kz. We first determine the boundary conditions for the electric and magnetic fields on the
lateral surface S.

There are no surface currents and hence the boundary conditions on S is (c.f., equation
(1.16) on page 7) {

n̂×E1 = n̂×E2

n̂×H1 = n̂×H2
r on S

where n̂ is the unit normal vector.
In analogy with the analysis of hollow waveguides we introduce the decomposition of E

and H fields in a longitudinal and transverse part. In the decomposed fields the boundary
conditions are {

n̂× (ET + ẑEz)

n̂× (HT + ẑHz)
are continuous over S

It follows that {
Ez
Hz

and

{
n̂×ET

n̂×HT
are continuous over S

We use equation (4.7) to rewrite the transverse field components in the longitudinal com-
ponents, and find that the following quantities are continuous over S:

{
Ez

Hz
and





1

k2
t

[
kzẑ · (n̂×∇TEz)− ωµ0µ(ω)

∂Hz

∂n

]

1

k2
t

[
kzẑ · (n̂×∇THz) + ωε0ε(ω)

∂Ez
∂n

]

Since eikzz is a common factor for all of the terms, the continuity is also valid for:

{
v(ρ)

w(ρ)
and





1

k2
t

[
kzẑ · (n̂×∇T v(ρ))− ωµ0µ(ω)

∂w(ρ)

∂n

]

1

k2
t

[
kzẑ · (n̂×∇Tw(ρ)) + ωε0ε(ω)

∂v(ρ)

∂n

] (8.3)

In addition to this system of equations we need the conditions that the fields are finite
everywhere, in particular at ρ =∞ and inside the core.

8.3 Circular dielectric waveguide

We now specialize to a circular dielectric waveguide. The core is a dielectric cylinder with
radius ρ = a and material parameters ε1 and µ1. In the cladding, ρ > a, the material
parameters are ε2 and µ2, see figure 8.2. Both regions are lossless (i.e., ε and µ are real).
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Figure 8.2: Geometry for the circular dielectric waveguide.

We can generalize our results to a waveguide with losses afterwards. We see from equation
(8.3) that the z−components of the electric and magnetic fields do couple.

As in the case with the hollow waveguide there exist a finite number of propagating
modes at each frequency. We will see that there exists one mode that has cut-off frequency
zero and hence propagates for all frequencies. If the core is small enough this will be the
only propagating mode. We call such a waveguide a single mode waveguide.

8.3.1 Waveguide modes

We now derive the expressions for the fields, the dispersion relations, the cut-off frequencies
and the power flow in a circular dielectric waveguide. We have seen that v(ρ, φ) and
w(ρ, φ) satisfy the Helmholtz equation in the two regions, c.f., equations (8.1) and (8.2).
In cylindrical coordinates we have

∇2
T =

∂2

∂ρ2
+

1

ρ

∂

∂ρ
+

1

ρ2

∂2

∂φ2
(8.4)

A separation of Helmholtz equation in cylindrical coordinates gives the eigenfunction sys-
tem in the azimuthal angle {1, sinmφ, cosmφ}, where m = 1, 2..., c.f., section 5.5.3 on
page 90. The boundary conditions imply that if v has the φ-dependence sinmφ then w
has the φ-dependence cosmφ and vice versa. We choose Ez to be an odd function in
φ, and hence Hz an even function 3 If we restrict ourselves to waves propagating in the
positive z-direction, we get

v(ρ, φ) = ψE(ρ) sinmφ

w(ρ, φ) = ψH(ρ) cosmφ

where the functions ψE and ψH satisfy Bessel’s differential equation

(
∂2

∂ρ2
+

1

ρ

∂

∂ρ
− m2

ρ2
+ k2

t

)
ψ(ρ) = 0 (8.5)

Bessel’s differential equation has two independent solutions, see appendix A, that can be
combined in different ways. We use combinations such that the conditions at ρ = 0 and
ρ =∞ are easy to satisfy.

3we can also let Ez be even andHz odd, i.e., to let sinmφ and cosmφ shift.
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• If kt is real or complex in the core ρ < a we use the combination

ψ(ρ) = AJm(ktρ) + ÃNm(ktρ) (8.6)

where Jm is the Bessel function and Nm is the Neumann function of order m.

• If kt is real in the cladding ρ > a we use the combination

ψ(ρ) = AH1
m(ktρ) + ÃH2

m(ktρ) (8.7)

where H1
m and H2

m are the Hankel functions of the first and second kind, respectively,
see appendix A.

• If kt is imaginary in the cladding it is suitable to express ψ(ρ) in modified Bessel
functions

ψ(ρ) = AKm(qρ) + ÃIm(qρ) (8.8)

where q2 = −k2
t .

The different types of Bessel functions are described in appendix A.
We now try to find propagating modes. A necessary condition for a propagating mode

is that kz is real. It will be seen that this implies that k1
2
t > 0 and k2

2
t < 0. Since the

fields have to be finite at ρ = 0 and ρ =∞ we make the following ansatz
{
vm(ρ, φ) = AJm(hρ) sinmφ

wm(ρ, φ) = BJm(hρ) cosmφ
ρ < a

{
vm(ρ, φ) = CKm(qρ) sinmφ

wm(ρ, φ) = DKm(qρ) cosmφ
ρ > a (8.9)

where we have introduced {
h = k1t

q = −ik2t

If we instead let vm(ρ, φ) be an even function of φ we make the ansatz
{
vm(ρ, φ) = AJm(hρ) cosmφ

wm(ρ, φ) = −BJm(hρ) sinmφ
ρ < a

{
vm(ρ, φ) = CKm(qρ) cosmφ

wm(ρ, φ) = −DKm(qρ) sinmφ
ρ > a (8.10)

It turns out that the even and odd ansatz above give identical characteristic equations for
the relations between A, B, C and D

In order to relate the Fourier coefficients A, B, C and D to each other, and to determine
the longitudinal wavenumber kz (and hence the transverse wavenumbers k1t = h and
k2t = iq), we utilize that the fields in equation (8.3) are continuous at ρ = a. In the
circular case n̂ = ρ̂ in equation (8.3) and hence




v(a−, φ) = v(a+, φ)

w(a−, φ) = w(a+, φ)

1

h2

[
kz
a

∂v(a−, φ)

∂φ
− ωµ0µ1

∂w(a−, φ)

∂ρ

]
= − 1

q2

[
kz
a

∂v(a+, φ)

∂φ
− ωµ0µ2

∂w(a+, φ)

∂ρ

]

1

h2

[
kz
a

∂w(a−, φ)

∂φ
+ ωε0ε1

∂v(a−, φ)

∂ρ

]
= − 1

q2

[
kz
a

∂w(a+, φ)

∂φ
+ ωε0ε2

∂v(a+, φ)

∂ρ

]
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The four equations follow




Jm(ha) 0 −Km(qa) 0
0 Jm(ha) 0 −Km(qa)

mkz
h2a

Jm(ha) −ωµ0µ1

h
J ′m(ha) mkz

q2a
Km(qa) −ωµ0µ2

q
K ′m(qa)

ωε0ε1
h

J ′m(ha) −mkz
h2a

Jm(ha)
ωε0ε2
q

K ′m(qa) −mkz
q2a

Km(qa)







A
B
C
D


 =




0
0
0
0




(8.11)
These equations have non-trivial solutions only if the determinant for the coefficients is
zero, i.e.,

∣∣∣∣∣∣∣∣∣∣∣

Jm(ha) 0 −Km(qa) 0
0 Jm(ha) 0 −Km(qa)

mkz
h2a

Jm(ha) −ωµ0µ1

h
J ′m(ha) mkz

q2a
Km(qa) −ωµ0µ2

q
K ′m(qa)

ωε0ε1
h

J ′m(ha) −mkz
h2a

Jm(ha)
ωε0ε2
q

K ′m(qa) −mkz
q2a

Km(qa)

∣∣∣∣∣∣∣∣∣∣∣

= 0

This is the characteristic equation that gives the longitudinal wavenumber kz. We expand
the determinant along the upper row and get

Jm(ha)

∣∣∣∣∣∣∣

Jm(ha) 0 −Km(qa)

−ωµ1
c0h

J ′m(ha) mkz
q2a

Km(qa) −ωµ2
c0q

K ′m(qa)

−mkz
h2a

Jm(ha) ωε2
c0q
K ′m(qa) −mkz

q2a
Km(qa)

∣∣∣∣∣∣∣

−Km(qa)

∣∣∣∣∣∣∣

0 Jm(ha) −Km(qa)
mkz
h2a

Jm(ha) −ωµ1
c0h

J ′m(ha) −ωµ2
c0q

K ′m(qa)
ωε1
c0h
J ′m(ha) −mkz

h2a
Jm(ha) −mkz

q2a
Km(qa)

∣∣∣∣∣∣∣
= 0

We expand the subdeterminants to get the equation

m2

(
1

q2a2
+

1

h2a2

)2(kz
k0

)2

=

(
µ1J

′
m(ha)

haJm(ha)
+
µ2K

′
m(qa)

qaKm(qa)

)(
ε1J
′
m(ha)

haJm(ha)
+
ε2K

′
m(qa)

qaKm(qa)

) (8.12)

where we have used k0 = ω/c0 = ω
√
ε0µ0. This equation is of second degree in the quantity

J ′m(ha)/(haJm(ha)) and has the two solutions

J ′m(ha)

haJm(ha)
= − K ′m(qa)

2qaKm(qa)

µ1ε2 + µ2ε1
µ1ε1

±
[(

K ′m(qa)

2qaKm(qa)

µ1ε2 − µ2ε1
µ1ε1

)2

+

(
mkz
k1

)2( 1

q2a2
+

1

h2a2

)2
]1/2 (8.13)

We have two sets of solutions to equation (8.12), one for the plus sign and one for the
minus sign, and that implies that we have two sets of waveguide modes. The solutions that
are associated with the equation with the plus sign are referred to as EH-modes and the
others as HE-modes. The characteristic equations are the equations for the longitudinal
wavenumber kz. The corresponding transverse wavenumbers in the core and cladding are
given by h =

√
k2

1 − k2
z and k2t = iq, where q2 = k2

z − k2
2 = k2

1 − k2
2 − h2.
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Figure 8.3: The normalized wavenumber kz/k0 as a function of the normalized frequency

V = k0a
√

(n2
1 − n2

2) for the lowest HE and EH modes when n1 = 1.5 and n2 = 1.

We define the cut-off frequency for a mode as the lowest frequency for which the mode
propagates without attenuation. If q2 is real and positive, the waves are exponentially
decreasing in the radial direction in the cladding since the argument in the modified
Bessel functions in equation (8.9) then is real and positive. No active power is in that
case radiated in the radial direction and the wave propagates without attenuation. If q2

is negative then power is radiated in the radial direction and the wave is attenuated in
the z-direction. Mathematically we define the cut-off frequency as the frequency for which
(qa)2 = 0, i.e., qa = 0. At the cut-off frequency we have h =

√
k2

1 − k2
2 = k0

√
n2

1 − n2
2.

When the characteristic equation is solved and kz is determined we can express three
of the coefficients A, B, C and D in the fourth. The fourth one determines the amplitude
of the mode and in order to find that we need to know the source of the field. From the
equations in (8.11) we get the following relations:

C

A
=
D

B
=
Jm(ha)

Km(qa)
(8.14)

B

A
=
D

C
=
mkz
k0

(
1

h2a2
+

1

q2a2

)(
µ1J

′
m(ha)

haJm(ha)
+
µ2K

′
m(qa)

qaKm(qa)

)−1

(8.15)

8.3.2 HE-modes

For m ≥ 1 only modes with both Ez and Hz non-zero can exist. These modes are called
hybrid modes and are not TE- or TM-modes. The characteristic equation that determines
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√
ε1 = n1 = 1.5,

√
ε2 = n2 = 1 and k0a = 10.

The points of interaction give the transverse wavenumber h for the propagating modes.

The vertical dotted line ha = k0a
√
n2

1 − n2
2 is the limit for the right hand sides of the

characteristic equations.

the longitudinal wavenumber for the HE-modes can be written as (see equation (8.13))

Jm+1(ha)

haJm(ha)
=

K ′m(qa)

2qaKm(qa)

µ1ε2 + µ2ε1
µ1ε1

+
m

(ha)2

+

[(
K ′m(qa)

2qaKm(qa)

µ1ε2 − µ2ε1
µ1ε1

)2

+

(
mkz
k1

)2( 1

q2a2
+

1

h2a2

)2
]1/2 (8.16)

The left and right hand sides, for the case m = 1, are plotted as a function of ha in
figure 8.4. The relevant parameters are m = 1, µ1 = µ2 = 1

√
ε1 = n1 = 1.5,

√
ε2 = n2 = 1

and k0a = 10. The points of intersection give the solutions and we see that for this
frequency there are four propagating HE-modes with m = 1. The vertical dashed lines
indicate the values of ha for which the left hand side goes to infinity, while the vertical
dotted line indicates the point where q → 0, i.e., where the right hand sides approach
−∞. If the frequency decreases the dotted line ha = k0a

√
n2

1 − n2
2 moves to the left and

the number of intersections, and hence propagating modes, are reduced. No matter how
much it decreases there is always at least one point of intersection. That means that the
lowest HE-mode for m = 1 propagates for all frequencies. This is a very important mode
and is the one used in single mode fibers.

It is more complicated to determine the cut-off frequencies for the HE-modes than for
the EH-modes. For m = 1 one can take the first two terms in a power series expansion
of K1(qa) and K2(qa). One then sees that the right hand side in equation (8.16) goes to
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infinity when qa→ 0 and hence the cut-off frequencies are given by

f1n =
c0

2πa

ξ1n√
n2

1 − n2
2

(8.17)

where ξ1n is the zero number n of J1 (the zero ξ11 = 0 is the first zero in this case), i.e.,

J1(ξ1n) = 0

If we take the three first terms in the asymptotic expansion of Km(qa) when qa→ 0 one
can prove that the cut-off frequencies for the modes HEmn are given by

fmn =
c0

2πa

xmn√
n2

1 − n2
2

(8.18)

where

xmn
Jm(xmn)

Jm−1(xmn)
= (m− 1)

n2
1 + n2

2

n2
2

, m > 1

The dispersion curves for the lowest HE-modes are depicted in figure 8.3. In the graph
the normalized wavenumber, kz/k0, is plotted as a function of the normalized frequency
V = k0a

√
n2

1 − n2
2. The normalized cut-off frequencies for the HE1n-modes start where

J1(V ) = 0, and the cut-off frequencies for the HEmn-modes with m > 1 start where
V Jm(V )/Jm−1(V ) = (m− 1)(n2

1 + n2
2)/n2

2.

8.3.3 EH-modes

If we utilize that J ′m(z) = m
z Jm(z)−Jm+1 the characteristic equation that determines the

longitudinal wavenumber for the EH-modes, see equation (8.13), can be written as

Jm+1(ha)

haJm(ha)
=

K ′m(qa)

2qaKm(qa)

µ1ε2 + µ2ε1
µ1ε1

+
m

(ha)2

−
[(

K ′m(qa)

2qaKm(qa)

µ1ε2 − µ2ε1
µ1ε1

)2

+

(
mkz
k1

)2( 1

q2a2
+

1

h2a2

)2
]1/2

The left hand side is the same as for the HE-modes but the right hand side have changed.
The left and right hand sides, for the case m = 1, are plotted as a function of ha in
figure 8.4. The relevant parameters arem = 1, µ1 = µ2 = 1,

√
ε1 = n1 = 1.5,

√
ε2 = n2 = 1

and k0a = 10. The points of intersection give the solutions and we see that for this
frequency there are three propagating EH-modes for m = 1. The vertical dashed lines
indicate the values of ha for which the left hand side goes to infinity, while the vertical
dotted line indicates the point where q → 0, i.e., where the right hand sides approach
−∞. When the frequency decreases such that k0a

√
n2

1 − n2
2 < 3.832 then there are no

points of intersection for the EH-equation and hence no propagating EH-modes. The
dispersion curves for the lowest EH-modes are depicted in figure 8.3. The graphs give
the normalized longitudinal wavenumber, kz/k0, plotted as a function of the normalized
frequency V = k0a

√
n2

1 − n2
2. We have chosen µ1 = µ2 = 1,

√
ε1 = n1 = 1.5 and√

ε2 = n2 = 1 as was the case also in figures 8.5 and 8.4 .
The cut-off frequencies for the EH-modes are the frequencies for which the curves for

the left and right hand sides intersect when q = 0, i.e., ha = k0a
√
n2

1 − n2
2. By using the
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asymptotics in eq. 8.23 we see that the right hand side goes to infinity when q → 0 and
hence Jm(ha) has to be zero when q = 0. The cut-off frequencies for the EH-modes are
then given by

fEHmn =
c0

2πa

ξmn√
n2

1 − n2
2

where Jm(ξmn) = 0. In figure 8.3 the dispersion curves start at the cut-off frequency V ,
where Jm(V ) = 0 and kz = k2.

8.3.4 TE- and TM-modes

The axially symmetric solutions have m = 0, where the odd modes have Ez = 0 and
Hz 6= 0, i.e., they are TE-modes. The even modes have Ez 6= 0 and Hz = 0 and are TM-
modes. For these modes the system of equations (8.11) is split up into two independent
systems (

J0(ha) −K0(qa)
ε1
haJ

′
0(ha) ε2

qaK
′
0(qa)

)(
A0

C0

)
=

(
0
0

)
(8.19)

for TM-modes and
(
J0(ha) −K0(qa)
µ1
haJ

′
0(ha) µ2

qaK
′
0(qa)

)(
B0

D0

)
=

(
0
0

)
(8.20)

for TE-modes. If we utilize that J ′0 = −J1 and K ′0 = −K1 the determinant condition gives
the characteristic equation

J1(ha)

haJ0(ha)
= −ε2

ε1

K1(qa)

qaK0(qa)
(8.21)

that determines kz for the TM-modes and

J1(ha)

haJ0(ha)
= −µ2

µ1

K1(qa)

qaK0(qa)
(8.22)

that determines kz for the TE-modes. The left and right hand sides are plotted as functions
of ha in figure 8.5. The core has in this figure µ1 = 1 and

√
ε1 = n1 = 1.5 (the values of

silica) and a radius given by k0a = 10. The cladding is air, i.e., ε2 = µ2 = 1. The points
of intersection are the solutions and in this case there are three propagating TE-modes
and three propagating TM-modes.

The cut-off frequencies for the TE- and TM-modes are obtained by letting q = 0 in
the characteristic equations. For small qa the asymptotic formulas (see appendix A and
equation (A.6) on page 200)

K0(qa) ∼ − ln(qa/2)− γ +O((qa)2)

Km(qa) ∼ 2m−1(m− 1)!(qa)−m
(8.23)

The right hand side goes to −∞ when qa goes to zero. This point corresponds to ha =
k0a
√
n2

1 − n2
2 and is indicated by a dotted vertical line in figure 8.5. In order for the left

hand side to go to infinity J0(ha) has to go to zero. The cut-off frequency for the TE- and
TM-modes are then determined by

f0n =
c0

2πa

ξ0n√
n2

1 − n2
2

where J0(ξ0n) = 0
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points of intersection give the transverse wavenumber h = k1t for the propagating modes.

The dotted vertical line indicates the highest frequency for which the right hand side is

real. The dashed vertical lines are placed at the zeros of the Bessel functions J0. At these

zeros the left hand side is singular.

The first zeros to J0(x) are given in table A.1 on page 196. The smallest zero is ξ01 = 2.405
which means that for frequencies f < 2.405c0/2πa

√
n2

1 − n2
2 there are no propagating TE-

and TM-modes.

8.4 Optical fibers

An optical fiber is a dielectric waveguide with very small losses at the frequency of op-
eration. The most common type of optical fiber is a circular silica fiber where the core
is doped. Due to the doping the core has a slightly larger index of refraction than the
cladding, see figure 8.6. The wavelength is often the one for which the losses are mini-
mized. In figure 8.6 we see the losses in a lightly doped core as a function of the vacuum
wavelength. Some of the phenomena that give rise to losses are indicated. We see that
the sum of the losses is at a minimum at the vacuum wavelength λ = 1.55µm, which is
in the infrared region. This is the most common wavelength used in optical fiber commu-
nication. In order to minimize dispersion the single mode fiber is used, which means that
the HE11 mode is the only propagating mode. The frequency then has to be below the
cut-off frequency for the next modes which are the TE01 and TM01 modes. The cut-off
frequencies for the TE01 and TM01 modes are given by k0a

√
n2

1 − n2
2 = 2.405, where a is

the radius of the core. In order to operate a fiber as a single mode fiber we have to have
k0a
√
n2

1 − n2
2 < 2.405.

Since 1980 communication systems based on optical fibers are invaluable for both long
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Figure 8.6: Spectrum for the losses for a single mode fiber made out of silica and with

the core doped with GeO2.

distance as well as short distance communication. They are gradually replacing systems
based on communication with electric wires and they complement the wireless systems
based on microwaves. The short but intense history of optical fiber systems is interesting
and some of the important achievements are given below 4:

1960 The He-Ne-laser is presented.

1963 The laser diode (GaAs) is presented.

1966 Silica is suggested by Charles Kao as a candidate for an optical waveguide. Since
the best glass materials at this time have an attenuation of 1 dB/m, the suggestion
does not seem to be feasible. One consider an attenuation of 20 dB/km to be the
largest attenuation that is acceptable for communication.

1970 Glass fibers with an attenuation of 17 dB/km are presented by a research group
at Corning Inc. The research in the area of optical fibers grows rapidly.

1975 Glass fibers with an attenuation of 4 dB/km are presented by the research group
at Corning Inc.

1977 The first optical fiber systems are tested and one manages to transfer 140 Mbit/s
on a 9 km long fiber. The fiber is a multi-mode fiber. i.e., the light pulses consist
of a large number of propagating modes.

4A more detailed historic overview is given in eg., J. E. Midwinter and Y. L. Guo, Optoelec-
tronics and Lightwave Technology, John Wiley & Sons, New York, 1992.
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1980 Extremely pure silica glass with an attenuation of 0.2 dB/km at the wavelength
1550 nm can be manufactured. Diode lasers and detectors for the 1550 nm
wavelength are developed. In order to reduce dispersion one develops the single
mode fiber. A bit rate of 140 Mbit/s over a distance of 200 km is reported.

1990 Erbium doped fibers that can be used as optical amplifiers are developed. Before
the development of the optical amplifiers the signal had to be transformed into an
electric signal in order to be amplified. The attenuation of the signal is now not
a problem. The phenomena that sets the limit for the bit rate is the dispersion.

today Fibers with 10 Gbit/s per channel are used in commercial systems. By using
wavelength dispersion multiplexing (WDM) each fiber can carry several channels
and bit rates of 40 Gbit/s are common in these systems. In laboratories bit rates
of 1 Tbit/s have been achieved.

Example 8.1
If we assume a fiber with n1 = 1.5028 and n2 = 1.5 where infrared light with vacuum
wavelength λ = 1.55µm is used the condition for the single mode fiber is that

a < 2.405/(k0

√
n2

1 − n2
2) = 2.405λ/(2π

√
n2

1 − n2
2)

That corresponds to a < 6.5µm.
Figure 8.7 shows the left and right hand sides in the characteristic equations for the

TE- and TM-modes, see equations (8.22) and (8.21), plotted as functions of the transverse
wavenumber in the core, h, multiplied with the radius s a. The fiber has µ1 = µ2 = 1,√
ε1 = n1 = 1.52,

√
ε2 = n2 = 1.50 and k0a = 40. Since n1/n2 ≈ 1 the characteristic

equations for the TE- and TM-modes are almost identical, as seen from the figure. The
points of intersection give the solutions to the characteristic equations, and in this case
there are three propagating modes each of the TE and TM-modes. When q → 0 the right
hand side goes to −∞. This point corresponds to ha = k0a

√
n2

1 − n2
2 and is indicated by

a vertical line in the figures. The corresponding curves for the EH- and HE-modes with
m = 1 are given in figure 8.8. At k0a = 40 we see that the modes HE11, HE12, HE13,
EH11 and EH12 propagate. In figure 8.9 there are dispersion curves for the lowest EH- and
HE-modes. The curves show the normalized longitudinal wavenumber kz/k0 as a function
of the normalized frequency V = k0a

√
n2

1 − n2
2.

8.4.1 Effective index of refraction and phase velocity

For a propagating mode we can write the longitudinal wavenumber kz as:

kz = nek0 = ne(n1, n2, ω)
ω

c0
(8.24)

were ne is the effective index of refraction. The Phase velocity for a propagating mode is
defined by (c.f., the definition on page 79)

vf =
ω

kz
=
c0

ne
(8.25)

For a propagating mode we have that kz =
√
k2

1 − h2 =
√
k2

2 + q2 where h2 > 0 and
q2 > 0 and hence k2 < kz < k1, n2 < ne < n1 and c1 < vf < c2.
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√
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points of intersection give the transverse wavenumber h = k1t for the propagating modes.

The dotted vertical line indicates the highest frequency for which the right hand side is

real. The dashed vertical lines are located at the zeros of the Bessel function J0, where

the left hand side is singular.

8.4.2 Dispersion

The dispersion is a measure of the frequency dependence of the wave propagation. In a
waveguide there are three different phenomena that lead to dispersion:

• Multi-mode dispersion: Since different modes have different phase speeds a pulse
that consists of several modes is dispersive.

• Waveguide dispersion: For a single mode the phase velocity is a function of fre-
quency. That means that a pulse consisting of a single mode changes shape when
it propagates.

• Material dispersion: The material in a waveguide might have an index of refraction
that is frequency dependent. This is the case for an optical fiber where the index
of refraction for the pure silica and the doped silica is frequency dependent in the
infrared region.

Since we are mainly interested in single mode fibers we do not consider multi-mode dis-
persion in this section. The sum of the waveguidedispersion and the material dispersion
is called the chromatic dispersion. The parameter that indicates the waveguide dispersion
is the dispersion parameter

D =
dτg
dλ

(8.26)
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where τg = dkz
dω is the inverse of the group velocity and λ is the wavelength in vacuum.

We see that

τg =
ne
c0
− λ

c0

dne
dλ

D =
dτg
dλ

= − λ
c0

d2ne
dλ2

If D is less than zero, the waveguide has positive, or also called normal, dispersion. If D
is greater than zero, the waveguide has negative, or anomalous dispersion. If a light pulse
is propagated through a normally dispersive medium, the higher frequency components
travel slower than the lower frequency components. The pulse therefore becomes positively
chirped, or up-chirped, increasing in frequency with time. Conversely, if a pulse travels
through an anomalously dispersive medium, high frequency components travel faster than
the lower ones, and the pulse becomes negatively chirped, or down-chirped, decreasing
in frequency with time. In optics materials have normal dispersion in most frequency
bands, but close to resonances there are small frequency bands where the dispersion can
be anomalous. The hollow waveguides described in chapter 5, with vacuum or air, always
have anomalous since the group velocity increases with frequency and the phase velocity
decreases with velocity. That means that high frequencies in a pulse travels faster than
low frequencies. This is seen from the analysis in chapter 7.

For a waveguide that has no chromatic dispersion, the group velocity, and then also τ ,
is frequency independent. That means that D is zero. A pulse propagating in a waveguide
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√

(n2
1 − n2

2) for the lowest HE and EH modes when µ1 = µ2 = 1,√
ε1 = n1 = 1.52 and

√
ε2 = n2 = 1.50. We see that the dispersion curves for HE31 and

EH11 are almost identical. These form together a linearly polarized mode.

without chromatic dispersion does not change its shape, but might be attenuated. If D is
large it means that τg and also the group velocity varies rapidly with λ. The large difference
in group velocity between different frequencies gives rise to a rapid pulse broadening. The
chromatic dispersion can be decomposed in the contribution from the material dispersion
Dm and the waveguide dispersion Dv as

D = Dm +Dv (8.27)

When n1−n2 � 1 we can determine the material dispersion by utilizing the approximation
ne ≈ n1 which gives

Dm = − λ
c0

d2n1

dλ2
(8.28)

When we consider the waveguide dispersion we keep n1 and n2 constant, i.e.,

Dv = − λ
c0

d2ne
dλ2
|n1,n2 konst.

Example 8.2
Figure 8.10 shows the material dispersion as a function of the wavelength. We have already
seen from figure 8.6 that the most suitable wavelength for a single mode fiber made out of
silica is λ = 1.55µm. At this wavelength the material dispersion is positive. In order to
obtain a dispersion free fiber at the wavelength λ = 1.55µm we have to compensate the
positive material dispersion with a negative waveguide dispersion. Since the wavelength
for the fiber is given we can obtain the desired waveguide dispersion by choosing a suitable
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Figure 8.10: Material dispersion for silica.

value for the radius of the core a. The method to choose a radius of the fiber such that
the dispersion is zero is called to dispersion-shift the fiber.

8.4.3 Attenuation in optical fibers

Sofar we have assumed that the material of the fiber has been lossless. This is an ap-
proximation since there are small losses in all fibers. These losses come from scattering
from impurities in the material and from losses in the silica glass itself, see figure 8.6. One
can purify the material such that the scattering from the impurities are negligible, but
the losses in the silica glass cannot go below a certain value. The absorption is, as we
have seen, very dependent on the wavelength. The smallest attenuation in silica is at the
wavelength 1.55µm. The attenuation is so small that it does not affect the expressions
and equations that have been derived in this chapter. For a fiber with n1 − n2 � 1 the
only change is that we replace the factor eikzz with ei Re{kz}ze−αz. The attenuation α is
approximately the same as for plane wave propagation in a dielectric material with small
losses

α = Im{kz} = k0 Im{ne} ' k0 Im{√ε1} '
k0 Im{ε1}
2
√

Re{ε1}
(8.29)

where ε1 = Re{ε1}+ i Im{ε1} is the complex permittivity.

8.4.4 Dielectric waveguides analyzed with FEM

We have seen that the dielectric waveguides are much harder to analyze analytically than
the hollow waveguides. Fortunately the numerical methods can handle a large number
of problems. We give three examples here, the circular dielectric waveguide, a dielectric
waveguide with elliptic cross section and finally a dielectric resonator.
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Figure 8.11: Electric field for a circular optical fiber.

Example 8.3
Consider a circular dielectric waveguide with radius a = 4µm and with n = 1.503 in the
core and n = 1.5 in the cladding. The wavelength in vacuum is λ = 1.55µm. Find kz and
the electric field distribution. We do the following steps:

• Choose 2D and 2D> Electromagnetic waves> Mode analysis.

• Draw a circle with radius around 40 µm (cladding) and a circle with radius a = 4µm
(core).

• We define materials with the permittivity ε = n2 = 1.5032 in the core and ε = 1.52 in
the cladding. The conductivity is 0 and the relative permeability 1 in both materials.

• We let the frequency be f = 3e8/1.55e− 6 in Mode analysis.

• We add 1.5 in the Search for effective mode index at.

• Solve. We look at the power flow density and a surface array plot of the different
solutions that COMSOL has calculated.

• Under Plot 2D the different mode indices are given. There should be just two
modes with mode index between 1.5 and 1.503.

In figure 8.11 the electric field for the circular waveguide is depicted. The other mode
has the same mode index but with the electric field rotated 90◦ compared to the one in the
figure. In figure 8.12 we have exchanged the circle for an ellipse with half axes a = 5µm
and b = 3µm. In that case the two propagating modes do not have the same effective
mode indices and the electric fields are different. The mode indices COMSOL gives are
1.500543 for the mode with the electric field along the minor axis and 1.500544 for the
mode with the electric field along the major axis.

8.4.5 Dielectric resonators analyzed with FEM

A dielectric resonator is a piece of dielectric material. Placed in air, or vacuum, such a
piece has resonance frequencies. At these frequencies the electromagnetic field is confined
inside the dielectric piece. Outside the piece the field attenuates exponentially. Dielectric
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Figure 8.12: The electric fields the two modes for an elliptic optical fiber. COMSOL

gives the mode index 1.500543 for the mode to the left, i.e., with the electric field along

the minor axis and 1.500544 for the mode to the right, i.e., with the electric field along

the major axis.

Figure 8.13: The geometry in COMSOL for the cylindric dielectric resonator. Notice

that we only draw that half of the cylinders that are to the right of the symmetry line.

resonators are used as bandpassfilters with very high Q−values, i.e., they are very narrow
banded. The resonators are also used as resonating antennas and lately these dielectric
antennas have become quite popular. The dielectric resonators can be analyzed with FEM.
The resonant frequencies of a resonators are determined by the shape of the resonator and
the the permittivity of the material. As a rule of thumb the first resonant frequency occurs
when the diameter of the resonator is on the order of half of the wavelength in the material.
Below we describe how the resonance frequencies can be calculated using COMSOL for
a cylindric resonator with radius 1 mm and height 1 mm. It is quite time-consuming to
find and specify the resonances. Since we have an outer region there are resonances that
do not belong to the resonator and it is important that we disregard these. One way to
filter out all of the resonances that do not belong to the resonator is to do the calculations
with two different sizes of the outer region. Only the frequencies that do not change can
be resonances of the resonator. In the example below two different sizes were used.

First we do it by considering the axially symmetric resonances.

• We choose 2D axisymmetric>Electromagnetic waves>Eigenfrequency.
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Figure 8.14: The electric field of the lowest resonant frequency fr = 46.2 GHz for the

cylindric resonantor with ε = 10, radius a = 1 mm and heght h = 1 mm. The mode is a

TE-mode, i.e., the electric field is directed ion the azimuthal direction.

Figure 8.15: The electric field of the second lowest resonant TE-mode. The frequency

is fr = 75.7 GHz for the cylindric resonantor with ε = 10, radius a = 1 mm and heght

h = 1 mm.

• The axis r = 0 is the symmetry line. We draw an outer rectangle that defines the
computational domain and a smaller rectangle that is the resonator. This is done
as in figure 8.13. The outer rectangle is ten times as large as the resonator.

• Next the boundary conditions are chosen. The boundary lines on the axis r = 0 has
boundary condition axial symmetry and at the outer boundary lines we may use
scattering boundary condition, or perfect electric conductor. Notice that we do not
need to specify the boundary conditions between the outer and inner rectangle.

• In Material>+Material we specify the materials for the two regions. In this
example we let the outer region be air ε = 1 and the inner be a material with
ε = 10.

• In Study>Eigenfrequency we specify that COMSOL should find 6 frequencies
and that it should search for frequencies around 40 GHz. This a value that we have
to guess and we base our guess on that the radius should be approximately a half
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Figure 8.16: The magnetic field of the lowest resonant TM-mode. The frequency is

fr = 73.4 GHz for the cylindric resonator with ε = 10, radius a = 1 mm and heght h = 1

mm.

of a wavelength, i.e., λ ∼ 2 mm which gives f ∼ c0/(
√
ελ) ≈ 50 GHz. To be on the

safe side we start the search 10 GHz below this value.

• We solve and look at the different resonances. There are a number of resonances
that are resonances in the outer cylinder. The ones we are looking for should have
their electric field confined to the resonator. In figures 8.14 the electric field of the
lowest resonance is depicted. The frequency is 46.3 GHz. This mode has its electric
field directed in the azimuthal direction, i.e., E = E(rc, z)φ̂. In figure 8.15 the next
resonance is depicted. The frequency is 75.7 GHz. The lowest TM-mode is depicted
in 8.16.

Problems in Chapter 8

8.1 Prove that the boundary conditions

{
µ1n̂ ·H1 = µ2n̂ ·H2

ε1n̂ ·E1 = ε2n̂ ·E2
r on S

follow from the boundary conditions in section 8.2.2.

∗8.2 Determine the TE-modes in a planar waveguide 0 < y < b that for 0 < y < a is
filled with a dielctric material with permittivity ε and for a < y < b is filled with
air. Determine also the transcendental equation that determines the longitudinal
wavenumber.

8.3 Determine vm(ρ) and wm(ρ) in the cladding for a circular dielectric waveguide at
the cut-off frequency and show that these functions satisfy the Laplace equation
∇2
Tψ(ρ) = 0.

∗8.4 Show that there are no propagating modes in a circular waveguide when n2 > n1.
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a b2 2ǫ 0ǫ

ǫ 0

Figure 8.17: Geometry for problem 8.5.

∗8.5 A circular hollow waveguide with radius b, is for 0 < ρ < a filled with a dielectric
material with relative permittivity ε, see figure 8.17. Determine all axially symmetric
modes.
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Summary of chapter 8

Expressions for the fields in a circular dielectric
waveguide

{
vm(ρ, φ) = AJm(hρ) sinmφ

wm(ρ, φ) = BJm(hρ) cosmφ
ρ < a

{
vm(ρ, φ) = CKm(qρ) sinmφ

wm(ρ, φ) = DKm(qρ) cosmφ
ρ > a

C

A
=
D

B
=
Jm(ha)

Km(qa)

B

A
=
D

C
=
mkz
k0

(
1

h2a2
+

1

q2a2

)(
µ1J

′
m(ha)

haJm(ha)
+
µ2K

′
m(qa)

qaKm(qa)

)−1

h = k1t

q = −ik2t = |k2t|

TE- and TM-modes (m=0)

Cut-off frequencies (both cases)

f0n =
c0

2πa

x0n√
n2

1 − n2
2

where J0(x0n) = 0
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Characteristic equation for the TE-modes

A = 0, B 6= 0

J1(ha)

haJ0(ha)
= −µ2

µ1

K1(qa)

qaK0(qa)

Characteristic equation for the TM-modes

B = 0, A 6= 0

J1(ha)

haJ0(ha)
= −ε2

ε1

K1(qa)

qaK0(qa)

EH-modes (m > 0)

Cut-off frequencies:

fEHmn =
c0

2πa

xmn√
n2

1 − n2
2

, Jm(xmn) = 0

Characteristic equation:

Jm+1(ha)

haJm(ha)
=

K ′m(qa)

2qaKm(qa)

µ1ε2 + µ2ε1
µ1ε1

+
m

(ha)2

−
[(

K ′m(qa)

2qaKm(qa)

µ1ε2 − µ2ε1
µ1ε1

)2

+

(
mkz
k1

)2( 1

q2a2
+

1

h2a2

)2
]1/2
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HE-modes (m > 0)

Cut-off frequencies m = 1

f1n =
c0

2πa

x1n√
n2

1 − n2
2

, whereJ1(x1n) = 0

Cut-off frequencies m > 1

fmn =
c0

2πa

xmn√
n2

1 − n2
2

where

xmn
Jm(xmn)

Jm−1(xmn)
= (m− 1)

n2
1 + n2

2

n2
2

Characteristic equation

Jm+1(ha)

haJm(ha)
=

K ′m(qa)

2qaKm(qa)

µ1ε2 + µ2ε1
µ1ε1

+
m

(ha)2

+

[(
K ′m(qa)

2qaKm(qa)

µ1ε2 − µ2ε1
µ1ε1

)2

+

(
mkz
k1

)2( 1

q2a2
+

1

h2a2

)2
]1/2

Effective index of refraction

ne = kz/k0, n1 < ne < n2

Dispersion

D = Dm +Dv

Dm = − λ
c0

d2n1

dλ2

Dv = − λ
c0

d2ne
dλ2
|n1,n2konst.
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Appendix A

Bessel functions

In wave propagation problems the Bessel differential equation often appears, especially
in problems showing axial or spherical symmetries. This appendix collects some useful
and important results for the solution of the Bessel differential equation. Moreover, the
modified Bessel functions and the spherical Bessel and Hankel functions are presented.
Additional results and some of the derivations are found in eg., Ref. 3.

A.1 Bessel and Hankel functions

The Bessel differential equation is

z2 d
2

dz2
Zn(z) + z

d

dz
Zn(z) + (z2 − n2)Zn(z) = 0 (A.1)

where n is assumed integer1.
There exist two linearly independent solutions to this differential equation. One is

regular at the origin, z = 0, and this solution is the Bessel function Jn(z) of order n.
The argument z is a complex number. These solutions are often called cylindrical Bessel
function of order n, which stresses the affinity to problems with the axial symmetry. The
Bessel functions Jn(z) are defined real-valued for a real argument z. An everywhere in the
complex z-plane convergent power series is

Jn(z) =
∞∑

k=0

(−1)k

k!(n+ k)!

(z
2

)n+2k
(A.2)

We notice immediately that Jn(z) is an even function for even n and odd for odd n, i.e.,

Jn(−z) = (−1)nJn(z)

A commonly used integral representation of the Bessel functions is

Jn(z) =
1

π

∫ π

0
cos (z sin t− nt) dt =

1

2π

∫ 2π

0
eiz cos tein(t− 1

2
π) dt (A.3)

1A more general definition with eg., complex-valued n is also possible, but the expressions and
the results often differ.
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Root j

Order n 1 2 3 4

0 2.405 5.520 8.654 11.79

1 3.832 7.016 10.17 13.32

2 5.136 8.417 11.62 14.80

3 6.380 9.761 13.01 16.22

4 7.588 11.06 14.37 17.62

Table A.1: Table of the roots ξnj to Jn(z).

From this integral representation, we see that the Bessel functions for positive and negative
integer orders, n, are related to each other.

J−n(z) = (−1)nJn(z)

The power series representation in (A.2) implies that for small arguments we have

Jn(z) =
1

n!

(z
2

)n
+O(zn+2)

For large arguments hold (−π < arg z < π)

Jn(z) =

(
2

πz

)1/2 {
Pn(z) cos

(
z − nπ

2
− π

4

)
−Qn(z) sin

(
z − nπ

2
− π

4

)}

where the functions Pn(z) and Qn(z) have the following asymptotic expansions (ν = 4n2)




Pn(z) ∼ 1− (ν − 1)(ν − 9)

2!(8z)2
+

(ν − 1)(ν − 9)(ν − 25)(ν − 49)

4!(8z)4
− . . .

Qn(z) ∼ ν − 1

8z
− (ν − 1)(ν − 9)(ν − 25)

3!(8z)3
+ . . .

(A.4)

The roots of the Bessel function Jn(z) are all real, and the first roots, ξnj , are listed in
Table A.1. The derivative of the Bessel function Jn(z) has also only real roots, ηnj , and
the first ones are listed in Table A.2. Larger roots (larger j values) are asymptotically
given by

ξnj = jπ +

(
n− 1

2

)
π

2
, ηnj = jπ +

(
n− 3

2

)
π

2

Another, linearly independent solution to the Bessel differential equation, which is real-
valued for real arguments, is the Neumann function2 Nn(z). The power series expansion
is

Nn(z) =
2

π

(
ln
(z

2

)
+ γ − 1

2

n∑

k=1

1

k

)
Jn(z)

− 1

π

∞∑

k=0

(−1)k
(
z
2

)n+2k

k!(n+ k)!

k∑

l=1

(
1

l
+

1

l + n

)

− 1

π

n−1∑

k=0

(n− k − 1)!

k!

(z
2

)−n+2k

2These solutions are also called Bessel functions of the second kind.
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Root j

Order n 1 2 3 4

0 3.832 7.016 10.17 13.32

1 1.841 5.331 8.536 11.71

2 3.054 6.706 9.970 13.17

3 4.201 8.015 11.34 14.59

4 5.317 9.282 12.68 15.96

Table A.2: Table of the roots ηnj to J ′n(z).

where the Euler constant γ = 0.577 215 66 . . ., and where all sums are dined as zero if
the summation index exceeds the upper summation limit. This solution is singular at the
origin z = 0. For small arguments the dominant contribution is

N0(z) =
2

π

(
ln
(z

2

)
+ γ
)

+O(z2)

Nn(z) = −(n− 1)!

π

(z
2

)−n
+ . . .

For large arguments the Neumann function has an asymptotic expansion (−π < arg z < π)

Nn(z) =

(
2

πz

)1/2 (
Pn(z) sin

(
z − nπ

2
− π

4

)
+Qn(z) cos

(
z − nπ

2
− π

4

))

where the functions Pn(z) and Qn(z) are given by (A.4).
In the solution of scattering problems, linear combinations of Bessel and Neumann

functions, i.e., the Hankel functions, H
(1)
n (z) and H

(2)
n (z) of the first and the second kind,

respectively, are natural3. These are defined as

H(1)
n (z) = Jn(z) + iNn(z)

H(2)
n (z) = Jn(z)− iNn(z)

The Hankel functions of the first and second kind have integral representations

H(1)
n (z) =

2

iπ
e−inπ

2

∫ ∞

0
eiz cosh s coshns ds, 0 < arg z < π

H(2)
n (z) =

2i

π
einπ

2

∫ ∞

0
e−iz cosh s coshns ds, −π < arg z < 0

For large argumens, the Hankel functions have asymptotic expansions

H(1)
n (z) =

(
2

πz

)1/2

ei(z−nπ2 −
π
4 ) (Pn(z) + iQn(z)) , −π < arg z < 2π

H(2)
n (z) =

(
2

πz

)1/2

e−i(z−nπ2 −
π
4 ) (Pn(z)− iQn(z)) , −2π < arg z < π

(A.5)

3These also called Bessel functions of the third kind.
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where the functions Pn(z) and Qn(z) are given by (A.4).
Solutions to the Bessel differential equation of different order are related to each

other by recursion relations. Some of the more important ones are (n = 0, 1, 2, . . . ,m =
0, 1, 2, . . .)4

Zn−1(z)− Zn+1(z) = 2Z ′n(z)

Zn−1(z) + Zn+1(z) =
2n

z
Zn(z)

Zn+1(z) =
n

z
Zn(z)− Z ′n(z)

Z ′n(z) = Zn−1(z)− n

z
Zn(z)

(
d

z dz

)m
[znZn(z)] = zn−mZn−m(z)

(
d

z dz

)m [
z−nZn(z)

]
= (−1)mz−n−mZn+m(z)

Here Zn(z) is a fixed arbitrary linear combination of Jn(x), Nn(x), H
(1)
n (x) or H

(2)
n (x).

Specifically, we have
J1(z) = −J ′0(z)

which is frequently used in the analysis in this textbook.
Some useful indefinite integrals with solutions to the Bessel differential equation, which

are often used in the text, are (n = 0, 1, 2, . . .)

∫
xn+1Zn(x) dx = xn+1Zn+1(x) = −xn+1

(
Z ′n(x)− n

x
Zn(x)

)

∫
x−n+1Zn(x) dx = −x−n+1Zn−1(x) = −x−n+1

(
Z ′n(x) +

n

x
Zn(x)

)

∫
x (Zn(x))2 dx =

x2

2

[
(Zn(x))2 − Zn−1(x)Zn+1(x)

]

=
x2

2

(
Z ′n(x)

)2
+

1

2
(x2 − n2) (Zn(x))2

As above, Zn(x) is an arbitrary linear combination of Jn(x), Nn(x), H
(1)
n (x) or H

(2)
n (x).

Some additional — more complex —but useful determined integrals are (n = 0, 1, 2, . . . ,m =
0, 1, 2, . . .)

∫ [
(α2 − β2)x− m2 − n2

x

]
Zm(αx)Yn(βx) dx = βxZm(αx)Yn−1(βx)

− αxZm−1(αx)Yn(βx) + (m− n)Zm(αx)Ym(βx)
∫
xZm(αx)Ym(βx) dx =

βxZm(αx)Ym−1(βx)− αxZm−1(αx)Ym(βx)

α2 − β2

∫
Zm(αx)Yn(αx)

x
dx = αx

Zm−1(αx)Yn(αx)− Zm(αx)Yn−1(αx)

m2 − n2
− Zm(αx)Yn(αx)

m+ n

4These recursion relations hold for non-integer values of n, t.ex. n = 1/2. The index m, however,
must be an integer.
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Here, Zn(αx) and Yn(βx) is an arbitrary linear combination of Jn(x), Nn(x), H
(1)
n (x) or

H
(2)
n (x).

For Bessel functions, Jn(z), Neumann functions, Nn(z), and Hankel functions, H
(1)
n (z)

or H
(2)
n (z), we have for a complex argument z

{
Jn(z∗) = (Jn(z))∗

Nn(z∗) = (Nn(z))∗





H(1)
n (z∗) =

(
H(2)
n (z)

)∗

H(2)
n (z∗) =

(
H(1)
n (z)

)∗

The Graf addition theorem for Bessel functions is useful. Let Zn(x) be any linear

combination of Jn(x), Nn(x), H
(1)
n (x) and H

(2)
n (x). The Graf addition theorem is

Zn(w)

(
cosnφ
sinnφ

)
=

∞∑

k=−∞
Zn+k(u)Jk(v)

(
cos kα
sin kα

)
,

∣∣ve±iα
∣∣ < |u|

where w is
w =

√
u2 + v2 − 2uv cosα

A.1.1 Useful integrals

Some integrals related to Bessel functions used in this book are derived in this subsection.
We start with the integral representation for integer order n, (A.3)

∫ 2π

0
eiz cosφeinφ dφ = 2πinJn(z)

From this we easily conclude by a simple change of variables that

∫ 2π

0
eiz cos(φ−α)einφ dφ = einα

∫ 2π−α

−α
eiz cosψeinψ dψ = 2πinJn(z)einα

This integral is a function of the variables z and α.
In scattering problems the following integral is often encountered:

I(τ , ρ) =

∫ 2π

0
φ̂ eiρ·τ einφ dφ =

∫ 2π

0
φ̂ eiρτ cos(φ−α)einφ dφ

where the position vector in the x-y-plane is denoted ρ = x̂ρ cosφ + ŷρ sinφ and τ =
x̂τ cosα+ ŷτ sinα. This integral can be rewritten as

I(τ , ρ) =
1

iρ
ẑ ×∇τ

∫ 2π

0
eiρτ cos(φ−α)einφ dφ

where the nabla-operator in the τ variable is denoted ∇τ , and where we used

ẑ ×∇τ eiρ·τ = iẑ × ρeiρ·τ = iρẑ × ρ̂eiρ·τ = iρφ̂eiρ·τ

From this we infer

I(τ , ρ) =
2πin−1

ρ
ẑ ×∇τJn(ρτ)einα = 2πin−1ẑ ×

(
τ̂J ′n(ρτ)einα + inα̂

Jn(ρτ)

ρτ
einα

)
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A.2 Modified Bessel functions

The modified Bessel’s differential equation is

z2 d
2

dz2
Zn(z) + z

d

dz
Zn(z)− (z2 + n2)Zn(z) = 0

where n is assumed to be a positive integer. A comparison with Bessel’s differential
equation in seaction A.1 shows that the solutions to the modified Bessel’s equation are
Bessel functions with argument iz. It is suitable to introduce a notation for the two
independent solutions to the Bessel’s modified differential equations:

In(z) = i−nJn(iz)

Kn(z) =
in+1π

2
H(1)
n (iz)

The factors multiplying the Bessel- and Hankel functions in the right hand sides make
both In(z) and Kn(z) real for real arguments z. The function In(z) is regular (finite) at
z = 0, while Kn(z) is singular when z → 0.

From the properties of the Bessel functions it is seen that In(z) is an even function for
even n and an odd function for odd n, i.e.,

In(−z) = (−1)nIn(z)

and
I−n(z) = (−1)nIn(z)

This result can also be obtained from the power series expansion of In(z) around z = 0.

In(z) =
∞∑

k=0

1

k!(n+ k)!

(z
2

)n+2k

The corresponding power series expansion of Kn(z) around z = 0 is

Kn(z) = (−1)n+1

(
ln
(z

2

)
+ γ − 1

2

n∑

k=1

1

k

)
In(z)

+ (−1)n
1

2

∞∑

k=0

(
z
2

)n+2k

k!(n+ k)!

k∑

l=1

(
1

l
+

1

l + n

)

+
1

2

n−1∑

k=0

(−1)k
(n− k − 1)!

k!

(z
2

)−n+2k

where Euler’s constant is γ = 0.577 215 66 . . ., and where all sums are defined to be zero if
the upper summation limit is smaller than the lower summation index. From these power
series expansions it is seen that the dominating contributions for small arguments are

In(z) =
1

n!

(z
2

)n
+O(zn+2)

and 



K0(z) = −
(

ln
(z

2

)
+ γ
)

+O(z2)

Kn(z) =
(n− 1)!

2

(z
2

)−n
+ . . . , n 6= 0

(A.6)
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For large arguments

In(z) =
ez√
2πz

Pn(z), −π
2
< arg z <

π

2

and

Kn(z) =

√
π

2z
e−zQn(z), −3π

2
< arg z <

3π

2

where the functions Pn(z) and Qn(z) have the following asymptotic expansions (ν = 4n2):




Pn(z) ∼ 1− ν − 1

8z
+

(ν − 1)(ν − 9)

2!(8z)2
− (ν − 1)(ν − 9)(ν − 25)

3!(8z)3
+ . . .

Qn(z) ∼ 1 +
ν − 1

8z
+

(ν − 1)(ν − 9)

2!(8z)2
+

(ν − 1)(ν − 9)(ν − 25)

3!(8z)3
+ . . .

There are recursion relations that relate modified Bessel functions of differnet order.
For In(z), n = 0, 1, 2, . . ., the most important relations are (m = 0, 1, 2, . . .)5

In−1(z) + In+1(z) = 2I ′n(z)

In−1(z)− In+1(z) =
2n

z
In(z)

In+1(z) = I ′n(z)− n

z
In(z)

I ′n(z) = In−1(z)− n

z
In(z)

(
d

z dz

)m
[znIn(z)] = zn−mIn−m(z)

(
d

z dz

)m [
z−nIn(z)

]
= z−n−mIn+m(z)

och fr Kn(z) r motsvarande (n = 0, 1, 2, . . . ,m = 0, 1, 2, . . .)5

Kn−1(z) +Kn+1(z) = −2K ′n(z)

Kn+1(z)−Kn−1(z) =
2n

z
Kn(z)

Kn+1(z) =
n

z
Kn(z)−K ′n(z)

K ′n(z) = −Kn−1(z)− n

z
Kn(z)

(
d

z dz

)m
[znKn(z)] = (−1)mzn−mKn−m(z)

(
d

z dz

)m [
z−nKn(z)

]
= (−1)mz−n−mKn+m(z)

A.3 Spherical Bessel and Hankel functions

The spherical Bessel and Hankel functions show up in scattering problems, especially when
we express a solution in the spherical coordinate system (r, θ, φ).

5These recursion formulas are also valid for non-integer values of n, eg., n = 1/2. It is required
that m is a non-negative integer.
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The spherical Bessel differential equation is

z2 d
2

dz2
Zn(z) + 2z

d

dz
Zn(z) + (z2 − n(n+ 1))Zn(z) = 0

where n is assumed to be a non-negative integer and the argument z a complex number.
A solution to this differential equation is the spherical Bessel functions jn(z), which

are defined by the power series expansion6

jn(z) = 2nzn
∞∑

k=0

(−1)k(k + n)!

k!(2k + 2n+ 1)!
z2k (A.7)

This solution is real-valued for real arguments, it is regular at the origin, z = 0, and its
power series is absolutely convergent in the entire complex plane. From the power series,
we also conclude that jn(z) is an even function for even integers n and an odd function
for odd n, i.e.,

jn(−z) = (−1)njn(z)

The other, linearly independent solution, which is real-valued for real arguments, is
the spherical Neumann function nn(z). Its power series is

nn(z) =
(−1)n+12nπ1/2

zn+1

∞∑

k=0

(−1)k

k!(k − n− 1/2)!

(z
2

)2k
=

(−1)n+1

2nzn+1

∞∑

k=0

(−1)k(k − n)!

k!(2k − 2n)!
z2k

We see that this solution is singular at the origin z = 0.
In scattering problems, we often use linear combinations of the spherical Bessel and

Neumann functions. These are the spherical Hankel functions, h
(1)
n (z) and h

(2)
n (z) of the

first and second kind, respectively. These are defined as

h(1)
n (z) = jn(z) + inn(z)

h(2)
n (z) = jn(z)− inn(z)

The spherical Bessel, Neumann, and Hankel functions for l = 0 are





j0(z) =
sin z

z

n0(z) = −cos z

z





h
(1)
0 (z) = − i

z
eiz

h
(2)
0 (z) =

i

z
e−iz

and for l = 1 they are





j1(z) =
sin z

z2
− cos z

z

n1(z) = −cos z

z2
− sin z

z





h
(1)
1 (z) = eiz

(
−1

z
− i

z2

)

h
(2)
1 (z) = e−iz

(
−1

z
+

i

z2

)

6Between the spherical Bessel function, jl(z), and the cylindrical Bessel function, Jn(z), see
Appendix A.1, there is a relation

jl(z) =
( π

2z

)1/2
Jl+1/2(z)

Also between the other type of solutions to the spherical Bessel equation and the corresponding
solutions to the cylindrical Bessel equation, (A.1), there are similar relations.
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The roots of the spherical Hankel functions play an important role in the interpreta-
tion of scattering contributions. These are the SEM-poles (Singular Expansion Method).

Specifically, the only root in the finite complex plane of h
(1)
1 (z) is z = −i, and the roots

in the finite complex plane of (zh
(1)
1 (z))′ are z = (±

√
3− i)/2.

From the power series representation in (A.7) we obtain for small arguments

jn(z) =
2nn!zn

(2n+ 1)!
+O(zn+2)

and

nn(z) = − (2n)!

2nn!zn+1
+ . . .

Specifically, for l = 1





j1(z) ≈ z

3
, as z → 0

h
(1)
1 (z) ≈ 1

iz2
, as z → 0





(zj1(z))′

z
≈ 2

3
, as z → 0

(zh
(1)
1 (z))′

z
≈ − 1

iz3
, as z → 0

An alternative expansion of the spherical Bessel and Neumann functions in finite
trigonometric series are:





jn(z) =
1

z

{
pn(z) sin

(
z − nπ

2

)
+ qn(z) cos

(
z − nπ

2

)}

nn(z) =
1

z

{
qn(z) sin

(
z − nπ

2

)
− pn(z) cos

(
z − nπ

2

)} (A.8)

The explicit for of the finite sums are





pn(z) =

[n/2]∑

k=0

(−1)k
(n+ 2k)!

(2k)!(n− 2k)!

1

(2z)2k
= 1− bn

z2
+O

(
z−4
)

qn(z) =

[(n−1)/2]∑

k=0

(−1)k
(n+ 2k + 1)!

(2k + 1)!(n− 2k − 1)!

1

(2z)2k+1
=
an
z

+O
(
z−3
)

(A.9)

where [·] denotes the integer part of the argument, and where an = (n + 1)n/2 and
bn = (n + 2)(n + 1)n(n − 1)/8. Note that these series are finite and that the series, by
definition, is zero if the upper limit of summation is negative.

For the spherical Hankel functions we have





h(1)
n (z) =

eiz−i(n+1)π/2

z

n∑

k=0

(n+ k)!

k!(n− k)!

1

(−2iz)k
=

eiz−i(n+1)π/2

z
(pn(z) + iqn(z))

h(2)
n (z) =

e−iz+i(n+1)π/2

z

n∑

k=0

(n+ k)!

k!(n− k)!

1

(2iz)k
=

e−iz+i(n+1)π/2

z
(pn(z)− iqn(z))

(A.10)
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In scattering problems another combination of spherical Bessel and Hankel functions oc-
curs, i.e.,





(zjn(z))′

z
=

1

z

{
Pn(z) sin

(
z − nπ

2

)
+Qn(z) cos

(
z − nπ

2

)}

(
zh

(1)
n (z)

)′

z
=

eiz−i(n+1)π/2

z
(Pn(z) + iQn(z))

(
zh

(2)
n (z)

)′

z
=

e−iz+i(n+1)π/2

z
(Pn(z)− iQn(z))

(A.11)

where 



Pn(z) = p′n(z)− qn(z) = −an
z

+O
(
z−3
)

Qn(z) = q′n(z) + pn(z) = 1− an + bn
z2

+O
(
z−4
) (A.12)

Between different solutions of spherical Bessel functions there are recursion relations.
The most important ones are (n = 0, 1, 2, . . . ,m = 0, 1, 2, . . .)





fn−1(z) + fn+1(z) =
2n+ 1

z
fn(z)

nfn−1(z)− (n+ 1)fn+1(z) = (2n+ 1)f ′n(z)

nfn(z)− zfn+1(z) = zf ′n(z)
(

d

z dz

)m [
zn+1fn(z)

]
= zn−m+1fn−m(z)

(
d

z dz

)m [
z−nfn(z)

]
= (−1)mz−n−mfn+m(z)

(A.13)

Here fn(z) is a spherical Bessel function, jn(z), a spherical Neumann function, nn(z), or

the Hankel functions h
(1)
n (z) or h

(2)
n (z). Useful, especially in the analysis of scattering by

vector spherical waves, is also:

(zfn(z))′

z
=
fn(z)

z
+f ′n(z) =

(n+ 1)fn−1(z)− nfn+1(z)

2n+ 1
=

(n+ 1)fn(z)

z
−fn+1(z) (A.14)

The Wronskian relation for jn(z) and nn(z) is

jn(z)n′n(z)− j′n(z)nn(z) =
1

z2
(A.15)

and for jn(z) and h
(1)
n (z) it is

jn(z)h(1)
n

′
(z)− j′n(z)h(1)

n (z) =
i

z2
(A.16)



Appendix B

∇ in curvilinear coordinate
systems

In this appendix some important expressions with the ∇-operator in two curvilinear co-
ordinate systems, cylindrical and spherical, are collected. For completeness we start with
the Cartesian coordinate system.

B.1 Cartesian coordinate system

The Cartesian coordinates (x, y, z) is the most basic coordinate system. The gradient and
the Laplace-operator of a scalar field ψ(x, y, z) in this coordinate system are

∇ψ = x̂
∂ψ

∂x
+ ŷ

∂ψ

∂y
+ ẑ

∂ψ

∂z

∇2ψ =
∂2ψ

∂x2
+
∂2ψ

∂y2
+
∂2ψ

∂z2

The divergence, the curl, and the Laplace-operator of a vector field A(x, y, z) =
x̂Ax(x, y, z) + ŷAy(x, y, z) + ẑAz(x, y, z) are

∇ ·A =
∂Ax
∂x

+
∂Ay
∂y

+
∂Az
∂z

∇×A = x̂

(
∂Az
∂y
− ∂Ay

∂z

)
+ ŷ

(
∂Ax
∂z
− ∂Az

∂x

)
+ ẑ

(
∂Ay
∂x
− ∂Ax

∂y

)

∇2A = x̂∇2Ax + ŷ∇2Ay + ẑ∇2Az
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B.2 Circular cylindrical (polar) coordinate sys-

tem

We now treat the first curvilinear coordinate system, and start with the circular cylindrical
coordinate system (ρ, φ, z) defined by





ρ =
√
x2 + y2

φ =





arccos x√
x2+y2

y ≥ 0

2π − arccos x√
x2+y2

y < 0

z = z

The gradient and the Laplace-operator of a scalar field ψ(ρ, φ, z) in this coordinate system
are

∇ψ = ρ̂
∂ψ

∂ρ
+ φ̂

1

ρ

∂ψ

∂φ
+ ẑ

∂ψ

∂z

∇2ψ =
1

ρ

∂

∂ρ

(
ρ
∂ψ

∂ρ

)
+

1

ρ2

∂2ψ

∂φ2
+
∂2ψ

∂z2

The divergence, the curl, and the Laplace-operator of a vector fieldA(ρ, φ, z) = ρ̂Aρ(ρ, φ, z)+

φ̂Aφ(ρ, φ, z) + ẑAz(ρ, φ, z) are

∇ ·A =
1

ρ

∂

∂ρ
(ρAρ) +

1

ρ

∂Aφ
∂φ

+
∂Az
∂z

∇×A = ρ̂

(
1

ρ

∂Az
∂φ
− ∂Aφ

∂z

)
+ φ̂

(
∂Aρ
∂z
− ∂Az

∂ρ

)
+ ẑ

1

ρ

(
∂

∂ρ
(ρAφ)− ∂Aρ

∂φ

)

∇2A = ρ̂

(
∇2Aρ −

Aρ
ρ2
− 2

ρ2

∂Aφ
∂φ

)
+ φ̂

(
∇2Aφ −

Aφ
ρ2

+
2

ρ2

∂Aρ
∂φ

)
+ ẑ∇2Az

B.3 Spherical coordinates system

The spherical coordinate system (r, θ, φ) (polar angle θ and the azimuth angle φ) is defined
by 




r =
√
x2 + y2 + z2

θ = arccos z√
x2+y2+z2

φ =





arccos x√
x2+y2

y ≥ 0

2π − arccos x√
x2+y2

y < 0

The gradient and the Laplace-operator of a scalar field ψ(r, θ, φ) in this coordinate system
are

∇ψ = r̂
∂ψ

∂r
+ θ̂

1

r

∂ψ

∂θ
+ φ̂

1

r sin θ

∂ψ

∂φ

∇2ψ =
1

r2

∂

∂r

(
r2∂ψ

∂r

)
+

1

r2 sin θ

∂

∂θ

(
sin θ

∂ψ

∂θ

)
+

1

r2 sin2 θ

∂2ψ

∂φ2

=
1

r

∂2

∂r2
(rψ) +

1

r2 sin θ

∂

∂θ

(
sin θ

∂ψ

∂θ

)
+

1

r2 sin2 θ

∂2ψ

∂φ2
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and the divergence, the curl, and the Laplace-operator of a vector field A(r, θ, φ) =
r̂Ar(r, θ, φ) + θ̂Aθ(r, θ, φ) + φ̂Aφ(r, θ, φ) are

∇ ·A =
1

r2

∂

∂r

(
r2Ar

)
+

1

r sin θ

∂

∂θ
(sin θAθ) +

1

r sin θ

∂Aφ
∂φ

∇×A = r̂
1

r sin θ

(
∂

∂θ
(sin θAφ)− ∂Aθ

∂φ

)

+ θ̂
1

r

(
1

sin θ

∂Ar
∂φ
− ∂

∂r
(rAφ)

)
+ φ̂

1

r

(
∂

∂r
(rAθ)−

∂Ar
∂θ

)

∇2A = r̂

(
∇2Ar −

2Ar
r2
− 2

r2

∂Aθ
∂θ
− 2 cot θ

r2
Aθ −

2

r2 sin θ

∂Aφ
∂φ

)

+ θ̂

(
∇2Aθ −

Aθ

r2 sin2 θ
+

2

r2

∂Ar
∂θ
− 2 cos θ

r2 sin2 θ

∂Aφ
∂φ

)

+ φ̂

(
∇2Aφ −

Aφ

r2 sin2 θ
+

2

r2 sin θ

∂Ar
∂φ

+
2 cos θ

r2 sin2 θ

∂Aθ
∂φ

)
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Appendix C

Units and constants

The explicit form of the equations in electromagnetism varies depending on the system of
units that we use. The SI-system is the one that is used in most literature nowadays, and
this textbook is no exception. The relevant constant in the SI-system that is used in the
text is collected in this appendix.

The speed of light in vacuum c0 has the value (exact value)

c0 = 299 792 458 m/s

µ0 and ε0 denote the permeability and the permittivity of vacuum, respectively. Their
exact values are

µ0 = 4π · 10−7 N/A2

ε0 =
1

c2
0µ0

F/m

Approximative values of these constants are

µ0 ≈ 12.566 370 614 · 10−7 N/A2

ε0 ≈ 8.854 187 817 · 10−12 F/m

The wave impedance of vacuum is denoted

η0 =

√
µ0

ε0
= c0µ0 = 299 792 458 · 4π · 10−7 Ω ≈ 376.730 314 Ω

The charge of the electron, −e, and its mass, m, have the values

e ≈ 1.602 177 33 · 10−19 C

m ≈ 9.109 389 8 · 10−31 kg

e/m ≈ 1.758 819 63 · 1011 C/kg
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Appendix D

Notation

Appropriate notion leads to a more easy understood, systematic, and structured text,
and, in the same token, implies a tendency of making less errors and slips. Most of the
notation is explained at the place in the text were they are introduced, but some more
general notion that is often used is collected in this appendix.

• Vector-valued quantities (mostly in R3) is denoted in slanted bold face, eg., a and
b, and vectors of unit length have a “hat” or caret (̂ ) over a symbol, eg., x̂ and ρ̂.

• The (Euclidean) scalar product between two vectors, a and b, is denoted in the
usual standard way by a dot (·), i.e., a · b. If the vectors are complex-valued the
appropriate scalar product is a∗ ·b, where the star ∗ denotes the complex conjugate
of the vector. For complex-valued functions (L2(Ω)-functions defined on a domain
Ω) the scalar product is defined in the standard way

(f, g) =

∫∫∫

Ω

f(r)g∗(r) dv

• We make a distinction between a vector a and its representation in components in a
specific coordinate system, and denote the components as a column vector or with
brackets around the vector, i.e.,

[a] =



ax
ay
az




where
a = x̂ax + ŷay + ẑaz

• Linear vector-valued transformations (dyadics) are denoted in bold roman fonts,
eg., A. A linear transformation A acting on a vector field a gives a new vector field
b and we use the notation

b = A · a
In a specific coordinate system the linear transformation A is represented by a 3×3
matrix [A], where we again use brackets around A to emphasize that we refer to its
components. The components of the vector b is then

[b] = [A] · [a]
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or 

bx
by
bz


 =



Axx Axy Axz
Ayx Ayy Ayz
Azx Azy Azz





ax
ay
az




• The unity and the null dyadics in n dimensions are denoted In and 0n respectively,
and the corresponding matrix representations are denoted [I]n and [0]n, respectively.
In three dimensions we have

[I]3 =




1 0 0
0 1 0
0 0 1


 [0]3 =




0 0 0
0 0 0
0 0 0




or in two dimensions

[I]2 =

(
1 0
0 1

)
[0]2 =

(
0 0
0 0

)

• The dyadic J (matrix [J]) performs a rotation of a projection on the x-y-plane
followed by a rotation of π/2 in the x-y-plane,

[J] =

(
0 −1
1 0

)

• The transpose of a matrix is denoted by a superscript (t) and the Hermitian of a
matrix with the superscript dagger (†), i.e.,

Atij = Aji

A†ij = A∗ji

• We use the symbols o and O defined by





f(x) = o (g(x)) , x→ a ⇔ lim
x→a

f(x)

g(x)
= 0

f(x) = O (g(x)) , x→ a ⇔ f(x)

g(x)
bounded in a neighborhood of a

• The symbol denotes the end of an example.

• The real and the imaginary part of a complex number z = x+ iy are denoted Re z
and Im z, respectively, dvs.

Re z = x =
1

2
(z + z∗)

Im z = y =
1

2i
(z − z∗)

A star (∗) is used to denote the complex conjugate of a complex number, i.e., z∗ =
x− iy.
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• The real and imaginary part of a dyadic can also be defined in terms of its Hermitian
transpose. We adopt

Re A =
1

2
(A + A†)

Im A =
1

2i
(A−A†)

where the dagger (†) denotes the Hermitian transpose. We see that the real and
imaginary parts satisfy

Re A = Re A

Im A† = Im A

We see that Re A and Im A are both Hermitian dyadics and that

A = Re A + i Im A

• The Heaviside’s step function, H(t), is defined in the usual way as

H(t) =

{
0, t < 0

1, t ≥ 0

• The Kronecker’s delta (function) symbol, δij , is defined as

δij =

{
1, i = j

0, i 6= j

• The cylindrical coordinate system (ρ, φ, z) is defined by




ρ =
√
x2 + y2

φ =





arccos x√
x2+y2

y ≥ 0

2π − arccos x√
x2+y2

y < 0

z = z

The domain of the coordinates are ρ ∈ [0,∞), φ ∈ [0, 2π), and z ∈ (−∞,∞).

• The spherical coordinate system (r, θ, φ) is defined as





r =
√
x2 + y2 + z2

θ = arccos
z√

x2 + y2 + z2

φ =





arccos x√
x2+y2

y ≥ 0

2π − arccos x√
x2+y2

y < 0

The domain of the coordinates are r ∈ [0,∞), θ ∈ [0, π], and φ ∈ [0, 2π).
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Answers

1.1

1.2

1.3

2.1

3.1 a) V = V0e
jπ/4 b) v(t) = V0 cos(ωt− π/4)

3.2

3.3

3.6 L = 0,24µH/m C = 95 pF/m R = 50 mΩ/m G = 20 · 10−6 S/m

3.7 a) V0 b) 0 c)
2

5
V0 d)

2

5
V0 e)

16

25
V0

3.8 a) α = 0.014m−1 b) 125 dB/km

3.9 Z0 = 60 Ω β = 5,5 · 10−3 rad/m

3.10 ` = 0.265 m Z0 = 134 Ω

3.11 Γ = 0,5 SWR = 3

3.12 Rb = 150 Ω or Rb = 17 Ω

3.13 Z(0) = (120− j60) Ω

3.14 a) v(t) =





0 t < 2L/v
V0

3
t ≥ 2L/v

b) Zin = 2R

3.15 x = 3λ/8 or x = 7λ/8

3.16 a) β` = 0.5 arctan 2 ≈ 0.55 and β` = 0.5(arctan 2 + π) ≈ 2.12

b) Z(0) = 2.61R and Z(0) = 0.38R

4.1

AT =∇T × (∇T × F T ) +∇T
∂

∂z
Fz −

∂2

∂z2
F T

=∇T (∇T · F T )−∇2
TF T +∇T

∂

∂z
Fz −

∂2

∂z2
F T

Az =
∂

∂z
(∇T · F T )−∇2

TFz

217



218 Answers

5.3 TM-modes:




vmn(ρ, φ) = Cmn {Jm(ζmnρ/a)Nm(ζmn)− Jm(ζmn)Nm(ζmnρ/a)}︸ ︷︷ ︸
Zmn(ζmnρ/a)

(
cosmφ
sinmφ

)

ktmn = ζmn/a

where {ζmn}∞n=1 are the solutions to, m = 0, 1, 2, 3, . . .

Zmn(ζmnb/a) = Jm(ζmnb/a)Nm(ζmn)− Jm(ζmn)Nm(ζmnb/a) = 0

and the normalization constant Cmn is determined by (εm = 2− δm,0)

C−2
mn =

2π

εm

∫ b

a
Z2
mn(ζmnρ/a)ρdρ =

π

εm

{
b2
(
Z ′mn(ζmnb/a)

)2 − a2
(
Z ′mn(ζmn)

)2}

TE-modes:





wmn(ρ, φ) = Dmn

{
Jm(γmnρ/a)N ′m(γmn)− J ′m(γmn)Nm(γmnρ/a)

}
︸ ︷︷ ︸

Ymn(γmnρ/a)

(
cosmφ
sinmφ

)

ktmn = γmn/a

where {γmn}∞n=1 are the solutions to, m = 0, 1, 2, 3, . . .

Y ′mn(γmnb/a) = J ′m(γmnb/a)N ′m(γmn)− J ′m(γmn)N ′m(γmnb/a) = 0

and the normalization constant Dmn is determined by

D−2
mn =

2π

εm

∫ b

a
Y 2
mn(γmnρ/a)ρdρ

=
πa2

εmγ2
mn

{
(γ2
mnb

2/a2 −m2) (Ymn(γmnb/a))2 − (γ2
mn −m2) (Ymn(γmn))2

}

TEM-mode:

∇Tψ(ρ, φ) = ρ̂
1

ρ

1

2π ln a
b

5.4 TM-modes:



vmn(ρ, φ) = CmnJm/2(ζmnρ/a) sin

m

2
φ, m = 1, 2, 3, . . .

ktmn = ζmn/a

where {ζmn}∞n=1 are the solutions to, m = 1, 2, 3, . . .

Jm/2(ζmn) = 0

and the normalization constant Cmn is determined by

C−2
mn =

πa2

ζ2
mn

∫ ζmn

0

(
Jm/2(x)

)2
x dx
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TE-modes:



wmn(ρ, φ) = DmnJm/2(γmnρ/a) cos

m

2
φ, m = 0, 1, 2, . . .

ktmn = γmn/a

where {γmn}∞n=1 are the solution to, m = 0, 1, 2, . . .

J ′m/2(γmn) = 0

and the normalization constant Dmn is determined by

D−2
mn =

πa2

γ2
mn

∫ γmn

0

(
Jm/2(x)

)2
x dx

The lowest cut-off frequency is given by the smallest solution to

J ′1/2(x) = 0 ⇔ sinx− 2x cosx = 0

vilken är x ≈ 1.166. The lowest cut-off frequency is decreased approximately 37%.

5.5 a) Pr/Pi = 6.1 · 10−3

b) Pr = 0 for the frequency f =
c0

√
b2 + a2

2ab

√
ε+ 1

ε
= 7.65 GHz

Comment: the incident TM-mode can be split up in two plane wave. At the frequency
7.65 GHz the incident angle for these waves is the Brewster angle.

5.6 a) TM01, TE11 and TE21

b) α =
ωµ0σ

2(ω2µ0ε0ε− kt2nj)1/2
=

ση

2(1− (fc/f)2)1/2

where η = η0/
√
ε = 120π/

√
εΩ is the wave impedance in the material, f is

the frequency and fcis the cut-off frequency. Since ε = 3, σ = 10−11 and
fc = cktnj/(2π) = 1.7 GHz we get

α =
1.1 10−9

(1− (1.7 109/f)2)1/2
Np/m

The attenuation in dB/km is 20 log(E(0km)/E(1km)) = α 8.7 103 dB/km with
α in Np/m.

5.7 a) x0 = 4 cm

b) Pr/Pi = 0

c) Pr/Pi = 0

5.8 TE-modes:
Hz = AnjJ2n(β2njρ) cos(2nφ) exp(ikznjz)

where kz
2
nj = (ω/c0)2 − (kt2nj)

2 and J ′2n(kt2njR) = 0

TM-modes:
Ez = Bn,jJ2n(kt2n,jρ) sin(2nφ) exp(ikznjz)

where kz
2
nj = (ω/c0)2 − (kt2nj)

2 and J2n(kt2njR) = 0.

5.10 a) Half of the power in 2 half in 3. No power in 4. The fields are directed in the
same direction in ports 2 and 3.
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b) Half of the power in 2 half in 3. No power in 1. The fields are directed in
opposite directions in ports 2 and 3.

6.3 a)

Q =
ω101µ0abd(a2 + d2)

2RS(2b(a3 + d3) + ad(a2 + d2))

där ω101 = c
√

(π/a)2 + (π/d)2.

b) The resonance frequency is 8,38 GHz and Q=9900.

c) The resonance frequency is 0,838 GHz and Q=31300.

6.4 The resonance wavenumbers (TE or TM) are given by k2
nml =

(
2π

λnml

)2

= (n2 +

m2 + l2)
(π
a

)2
where a = 1 m. Now λnml > λ = 500 nm. This means that the n,m, l

have to satisfy

n2 +m2 + l2 ≤
(

2a

λ

)2

= 16 · 1012

Only positive n,m, l are allowed. The total number of combinations n,m, l that
satisfies this relation equals the volume of a quarter of a sphere with radius 4 · 106

units. This means that there are
1

4
· 4
3
π(4 ·106)3 resonances. Since there are both TE

and TM modes this should be multiplied by two. The total number is then 1.34·1020.

7.2

a(0, t− L/c0) = H(t)−H(t− t0) +

t∫

t−min(t,t0)

P (−L, t′) dt′

where P (−L, t) =





c0ktL
I1(kt

√
2c0Lt− c2

0t
2)√

2c0Lt− c2
0t

2
, when t < 2L/c0

c0ktL
J1(kt

√
−2c0Lt+ c2

0t
2)√

−2c0Lt+ c2
0t

2
, when t > 2L/c0

8.2

Hz =




Hn cos(ktny)eikznz, d̊a 0 < y < a

Hn
cos(ktna) cos(kt

′
n(b− y))

cos(kt
′
n(b− a))

eikznz, d̊a a < y < b

where ktn, kt
′
n and kzn are given by

kt
2
n = (ω/c0)2ε− kz2

n

kt
′
n

2
= (ω/c0)2 − kz2

n

ktn tan(kt
′
n(b− a)) = −kt′n tan(ktna)

8.3

vm = AJm

(
k0

√
n2

1 − n2
2

)(
a

ρ

)m
sinmφ

wm = −n2AJm

(
k0

√
n2

1 − n2
2

)(
a

ρ

)m
cosmφ
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8.5

H =An(ẑJ0(ktnρ) + ρ̂i
kzn
ktn

J ′0(ktnρ)) exp(ikznz), 0 < ρ < a

H =Bn(ẑ(J0(kt
′
nρ)− J ′0(kt

′
nb)

Y ′0(kt
′
nb)

Y0(kt
′
nρ))

+ iρ̂
kzn
kt
′
n

(J ′0(kt
′
nρ)− J ′0(kt

′
nb)

Y ′0(kt
′
nb)

Y ′0(kt
′
nρ))) exp(ikznz), a < ρ < b

where

Bn = An
J0(ktna)Y0(kt

′
nb)

J0(kt
′
na)Y ′0(kt

′
nb)− J ′0(kt

′
nb)Y0(kt

′
na)

kt
2
n =

(
ω

c0

)2

− kz2
n

kt
′
n

2
=

(
ω

c0

)2

ε− kz2
n

and kzn are given by the transcendental equation

ktnJ0(ktna)(J ′0(kt
′
na)Y ′0(kt

′
nb)− J ′0(kt

′
nb)Y

′
0(kt

′
na))

= kt
′
nJ
′
0(γja)(J0(kt

′
na)Y ′0(kt

′
nb)− J ′0(kt

′
nb)Y0(kt

′
na))
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Index

Q-value for cavity, 136–140

Addition theorem
Bessel functions, 197

Ampère’s (generalized) law, 1
Attenuation, 183
Attenuation coefficient, 118
Average

temporal, 35

Bessel function
modifierade, 198–199
spherical, 199

Bessel functions, 166, 193–197
Boundary conditions, 7

dielectric waveguide, 165
hollow wave guide, 93
hollow waveguide, 91
perfectly conducting medium, 8

Cascaded waveguides, 134
Causality, 14
Cavity

circular cylindric, 139
Characteristic equatio, 168
Charge density

surface charge density, 6
Circular cylindrical cavity, 139
Clausius-Mossotti’s law, 23
Cole-Cole plot, 33
Conductivity, 17–20, 25, 32
Conservation of charge, 2

time harmonic fields, 31
Constitutive relations, 3, 14–20, 26

classification, 26
conductivity model, 20
different formulation, 13
dispersion model, 19
permeability, 32
permittivity, 32
time harmonic field, 32–33

Current density, 1, 2
surface current density, 6

Cut-off frequencies
dielectric waveguides, 171

Cut-off frequency
dielectric waveguide, 169, 170, 172,

179

Debye’s model
frequency domain, 33
time domain, 20–22

Dielectric waveguide, 187
circular, 165–171
optical fiber, 173–187

Dielectric waveguides, 161
Dispersion, 15, 181

chromatic, 181
dispersion parameter, 181
material, 181
multi mode, 181
waveguide, 181

Dispersion curves, 178
Drude’s model, 25, 34

Effective index of refraction, 181
Electric field, 1
Electric flux density, 1

Faraday’s law of induction, 1

Gauss law, 2
Graf’s addition theorem, 197

Hankel function
spherical, 199

Hankel functions, 193–197
Heaviside functionen, 156
Hybrid modes, 169

Index of refraction, 164
Invariance under time translation, 14
Isotropic media, 14–20

223
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Kaskadkoppling, 134

Linear material, 14
Linearly polarized modes, 175–180
Longitudinal wave number, 87, 99
Lorentz’ model

frequency domain, 33
time domain, 22–26

Lorentz’s force, 2
Lorenz-Lorentz’ law, 23

Magnetic field, 1
Magnetic flux density, 1
Magnetization, 3

induced, 3
permanent, 3

Material dispersion, 100, 181
Maxwell equations, 1, 2

time harmonic fields, 31
weak solutions, 6

Mode, 99
Mode matching method, 129–134
Mode power, 116
Modifierade Bessel function, 198–199
Multi mode dipsersion, 181

Neumann function
spherical, 199

Neumann functions, 193–197

Ohm’s law, 17, 32
Optical fiber, 173–181

cladding, 164
core, 164

Optical response, 16

Permeability, 32
Permittivity, 32
Phase velocity, 181
Plasma frequency, 24
Polarization, 3

induced, 3
permanent, 3

Power
modes, 116

Power flow, 116–120
LP-modes, 179–180

Poynting’s theorem, 9, 35
time harmonic fields, 35

Poynting’s vector, 9
Propagatorkrna, 156

Relaxation model
frequency domain, 33
time domain, 20–22

Relaxation time, 21
Resonance cavities, 134–140
Resonance model

frequency domain, 33
time domain, 22–26

SEM-poles, 201
Singel mode fiber, 161
Singelmodfiber, 170
Single mode fiber, 173
Skin depth, 121
Spherical Bessel function, 199
Spherical Hankel function, 199
Spherical Neumann function, 199
Surface charge density, 6
Surface current density, 6
Susceptibility function, 16

The conductivity model, 20
The dispersion model, 19
Time average, 35
Time harmonic fields, 29–30

condition for real field, 30
Transient fields, 155–157
Transmission-lines, 37
Transverse wave number, 96
Transverse wavenumber, 88

Wave impedance
relative, 103
vacuum, 86

Wave number
longitudinal, 87, 99
transverse, 88, 96

Wavefront, 156
Waveguide dispersion, 100, 181
Waveguide modes

EH-mode, 168
EH-modes, 172
HE-mode, 168
HE-modes, 171
LP-modes, 175–180
TE- and TM-modes, 172–173
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TEM-modes, 101–103
Waveguide moeds

HE-modes, 169
Waveguidemodes

EH-modes, 171
Waveguides

closed, 91
hollow, 91
open, 91







Relations between basis vectors

Cylindrical coordinates (ρ, φ, z) Spherical coordinates (r, θ, φ)





ρ =
√
x2 + y2

φ =





arccos x√
x2+y2

y ≥ 0

2π − arccos x√
x2+y2

y < 0

z = z





r =
√
x2 + y2 + z2

θ = arccos z√
x2+y2+z2

φ =





arccos x√
x2+y2

y ≥ 0

2π − arccos x√
x2+y2

y < 0

(r, θ, φ) −→ (x, y, z)




r̂ = x̂ sin θ cosφ + ŷ sin θ sinφ+ ẑ cos θ

θ̂ = x̂ cos θ cosφ+ ŷ cos θ sinφ− ẑ sin θ

φ̂ = − x̂ sinφ + ŷ cosφ

(x, y, z) −→ (r, θ, φ)



x̂ = r̂ sin θ cosφ+ θ̂ cos θ cosφ− φ̂ sinφ

ŷ = r̂ sin θ sinφ + θ̂ cos θ sinφ+ φ̂ cosφ

ẑ = r̂ cos θ − θ̂ sin θ

(ρ, φ, z) −→ (x, y, z)



ρ̂ = x̂ cosφ+ ŷ sinφ = ( x̂x+ ŷy)/

√
x2 + y2

φ̂ = − x̂ sinφ+ ŷ cosφ = (− x̂y + ŷx)/
√
x2 + y2

ẑ = ẑ

(x, y, z) −→ (ρ, φ, z)



x̂ = ρ̂ cosφ− φ̂ sinφ

ŷ = ρ̂ sinφ+ φ̂ cosφ
ẑ = ẑ

(r, θ, φ) −→ (ρ, φ, z)




r̂ = ρ̂ sin θ + ẑ cos θ

θ̂ = ρ̂ cos θ − ẑ sin θ

φ̂ = φ̂

(ρ, φ, z) −→ (r, θ, φ)



ρ̂ = r̂ sin θ + θ̂ cos θ

φ̂ = φ̂

ẑ = r̂ cos θ − θ̂ sin θ


