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QRS Detection for Pacemakers in a Noisy Environment Using
a Time Lagged Artificial Neural Network

J. Neves Rodrigues, V. Owall, and L. S6rmmo

Department of Electroscience, Lund University
Box 118, SE-221 00 Lund
Sweden

ABSTRACT

A time lagged feedforward artificial neural network (TLFN) is
used to detect QRS complexes for pacemakers in a noisy
environment. The TLFN reduces the influence of lower
frequencies in the invasive electrogram (EG) signals, such as the
P and T waves. The TLFN output is then subjected to matched
filtering with a dynamically updated impulse response. Detector
performance is studied by means of databases containing
electrograms and noise such that different types of noise and
interferences from electronic appliances are added to the
electrograms. Results show that the detector performs well in
many different noisy environments by considerably improving
the signal-to-noise ratio (SNR).

1. INTRODUCTION

The electromagnetic radiation due to electronic appliances has
increased dramatically during the last decades, e.g., from
electronic household devices or electronic article surveillance
systems. Pacemakers of today may suffer a considerable
degradation in performance under such circumstances. In
particular, the number of falsely detected QRS complexes will
increase due to a poor SNR and cause the pacemaker to switch to
permanent pacing, regardless of the heart rate of the patient. Such
a mode shortens the lifetime of the pacemaker due to a higher
power dissipation. Another drawback for the patient is that this
mode may cause hypertrophy of the heart in the long run.

Current pacemaker detectors typically include a bandpass filter in
combination with a fixed threshold procedure for finding the
cardiac events. Unfortunately, the “optimal™ passband differs not
only from patient to patient but may change over time within the
same patient. If the electrogram is heavily corrupted with noise,
detection performance will drop even further. Hence, robustness
against electromagnetic radiation becomes a major design
constraint for algorithms to be implemented in a pacemaker. A
major motivation for our research is therefore to find such robust
algorithms that are suitable for an implementation in low power
digital ASIC.

2. METHODS

To overcome the problem of defining a suitable filter passband, a
TLFN is applied as an adaptive filter [1], [2]. Additionally, a
dynamically updated matched filter is used in order to maximize
the QRS amplitude in a noisy environment. Finally, an adaptive
threshold is used to decide whether or not a QRS has occurred
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and, eventually, to cause an update of the template for the
matched filter, as shown in Figure I. Without any QRS complex
detection within a certain time range, the pulse generator is
alerted to send out an artificial pacing impulse.

3. THEORY

The TLFN is a supervised network which acts like a one-step
predictor of the current sample using the immediately preceding
samples (“whitening filter”) [2]. The over-all behavior of the
network is primarily to predict lower frequencies contained in the
electrogram. The occurrence of a QRS complex, which is
associated with a higher frequency content, implies that the
prediction error will suddenly increase, and, accordingly, indicate
the presence of a QRS.

The TLFN consists of a forward and a backward pass, as shown
in Figure 2. In the forward pass, the stimulus (input) is
propagated rightwards through the entire network in order to
produce a prediction. The error between such a prediction and
the desired response is then propagated backwards in order to
update the synaptic weights. This procedure is referred to as the
training of the network. All the free adjustable synaptic weights,
w(n), are updated in order to minimize the error with a least mean

square (LMS) algorithm [1].
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Figure 1. Block diagram of the detection algorithm.

3.1 Forward pass

The applied TLEN has M input nodes, according to M preceding
samples for the prediction, L nodes in a hidden layer and
(M+2)L+1 synaptic weights, w(n), as shown in Figure 2. Each
node is consists of a summation point, an externally applied bias
connected to an input fixed at +1, and a nonlinear activation or
threshold function ¢. The most common applied activation
function also used in this network, is the hyperbolic tangent
function, which is a graceful balance between linear and
nonlinear behavior [1].
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Figure 2. The Time Lagged Feedforward Neural
Network

The output vector v’ of the summation nodes in the hidden layer
is calculated as
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with M=4 and L=3. Thereafter, the output v'"' is further
processed with the nonlinear activation function according to

y Vo = g(v‘“uu), (2)
which is the output of the hidden layer. Such an output of the
hidden layer, according to (2), is propagated further to the next
layer. Since the network only has one hidden layer the next layer
is the output layer. The output layer consists of a single node.
Thus the response of the network is calculated as

’(7'1.):W‘2>[1 y‘“}]. 3)

2
v,
As shown in (3) the output of the network is the weighted and
summed response of the hidden layer.

3.2 Back-propagation pass

In the back-propagation pass all the synaptic weights, w(n), are
updated with the well known back-propagation algorithm [I].
The objective of the back-propagation algorithm is to train the
network. This is done in order to minimize the deviation of the
response to the desired prediction. Such a deviation (error) is
defined as

C(’I'I,):.’E(’!I)—'U{Z)(N). “)

All the errors are squared and summed according to
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where the set of C=1 includes all the neurons in the output layer.
The error function is minimized with the use of the LMS
algorithm [1] as
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The correction Awj; applied to the synaptic weights is performed
with the delta rule according to
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where 77 is the learning rate. The negative sign in (7) is due to the
gradient descent in weight space. Inserting (6) in (7) yields

A'wﬂ. o = 9c; o )g’(‘ul «n >)yl. o, 8)

where ¢~ is the time derivative of the activation function. The
learning speed is accelerated with the addition of a fraction, ¢ of
the previous weight update to the current update. Moreover, the
use of a momentum term « is a possibility to overcome the
problem of getting stuck in a local minima. The weight updates
for the hidden layer and the output layer are calculated according
to -

Aw, cny=c cn )\;'( von v),l/, o+ aldw, (n=1) (9
and

A'urh.(m =nc; Oy o> + aAwA,(n -1). 10)

Finally, all the free adjustable synaptic weights, w(n), in the
network are updated by adding (9) and (10) to the corresponding
weights.

3.3 Matched Filtering

A matched filter is applied to the TLFN output to improve the
SNR, see Figure 1. Assuming that the input signal is corrupted
with white noise, it is well-known that the impulse response,
h(n), of the matched filter is a time-reversed replica of the event
to be detected, i.e., the QRS complex, see Figure 3b. Such a
template, /(n), is generated automatically by monitoring the
output of the TLEN. The output of the matched filter is obtained
from a template with the length of twenty, (the sampling rate for
the EG sample rate is 250 Hz) and then propagated further to the
adaptive threshold function.
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Such a threshold function uses the peak amplitude of the
previous detected QRS complex in order to adapt the threshold.
In the case of a detection, the template for the matched filter is
updated according to

henoy = Bh(n —1) + (1 — Bhcno, (11)

where S in (11) is an update factor.

3.4 Signal and Noise Databases

The electrogram database contains 110 signals from different
patients. The signals were recorded during pacemaker
implantation in several hospitals using a digital mini disc (MD)
unit at the input of a pacemaker. The pacemaker electrode is
placed either in the right or the left atrium. A typical signal for a
healthy person that was recorded at the end of the electrode is
shown in Figure 3a. It can be seen that the P and T wave are
inherently lower frequencies and the QRS has a higher frequency
content.

The noise database has two different types of signals, endogenic
and exogenic interferences. The endogenic signals are
myopotentials caused by muscle contractions of the human body.
The exogenic interferences are caused by sources such as a hand
drill, hand mixer or electronic article surveillance (EAS) systems.

4. RESULTS

The performance of the detector is evaluated by adding different
types of noise to the electrogram. However, for the first analysis
an EG, which is not easy to classify, is filtered without adding
any interference, see Figure 4a. The EG is heavily disturbed and
represents a signal in which it is even visually difficult to find the
QRS complexes. The signal in Figure 4a is passed through the
TLFN in order to suppress the P and T waves and the output is
shown in Figure 4b. Figure 4c shows the output of the matched
filter. which is almost noise-free, and the QRS complexes can
now easily be detected with the adaptive threshold function. The
adaptive amplitude threshold function is set to 66% of the
previous QRS amplitude. The crosses in Figure 4c indicate the
detected QRS complexes. The true number of QRS’s in the
observed time period is 323, however, the detector found 324
events; two false alarms resulted and one QRS remained
undetected.

In order to explore the detection performance in a very noise
environment two different type of interferences were added to
noise-free signals. The electrograms have been disturbed during
two minutes. The first interference added to an EG is obtained
from an electronic article surveillance system (EAS) as shown in
Figure 5. In order to define a noise level, the standard deviation
of a QRS template and the interference are equalized. In Figure
5a the noise-free EG is plotted, and Figure 5b shows the same
EG but with added EAS interference. The output of the TLFN
and the matched filter is shown in is in Figure 5c¢ and Figure 5d,
respectively. It can be seen that the SNR is significantly
improved with the matched filter. The QRS’s can be easily
detected with the adaptive threshold. For the time period of
interest 132 QRS out of 136 are detected, without any false
detections.

The next signal contains noise from a hand drill, see Figure 6. As
shown in Figure 6d, the performance of the matched filter is not
as good as in the previous example. Although the SNR is
improved, the noise is not as well suppressed as in Figure 5. The
true number of QRS’s complexes is 120, however, 126 events
were detected. Among these 126 detections, eight were falsely
detected (one of these is pointed out in Figure 6 with the arrow),
and two QRS’s complexes were missed. A false detection is due
to a peak that exceeds the threshold in a certain time period
where a QRS complex is expected.
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Figure 3 a) The noise-free EG from patient #3, with the
P, QRS and T wave, respectively, b) a template /2(n) used
for the matched filter.

_2 i i 1 1 1 i 1 i 1
25 255 26 265 27 275 28 28 2 295 3

1 T T T T T T T T T

-1 L 1 i 1 ! L 4 L L
25 25 26 265 27 275 28 28 2 29 3
0.05 T T T T T T T T T 4

¢)
o
-

-0.05 1 s 1 i L L I L I
25 255 26 265 27 275 28 28 29 29 -3

discrete time (n) . o*

Figure 4 a) noise-free EG from patient #33, b) output of
the TLFN, c¢) output of matched filter with indicated
detections
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5. CONCLUSIONS

The presented adaptive filter structure is tested on different
patients with various types of noise and interferences. The filter
adapts to different patients and their inherently time-varying EG
properties. Hence, the filter performance does not depend on the
particular properties of a patient. It is shown that the detector
structure performs well in filtering out "physiological noise", i.e.,
the P and T wave. Moreover, the degradation in filtering
performance is limited even if the EG is heavily interfered from
external sources such as an EAS or a hand drill. Thus, detection
performance is achievable even though the EG is heavily
interfered. These results will finally lead to an implementation of
the filter and detector structure in a low power digital ASIC
suitable for the next generation of pacemakers.
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Figure 5 a) Noisefree EG from patient #3a, b) EG interfered with
a noise from an EAS, c) output of the TLFN, d) signal after the
matched filtering with indicated detections.
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Figure 6 a) Noisefree EG from patient #10a, b) EG
interfered with a noise from a hand drill, ¢) output of the
TLEN, d) signal after the matched filtering with indicated
detections. :
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