
LUND UNIVERSITY

PO Box 117
221 00 Lund
+46 46-222 00 00

Controller Synthesis for Hardware Accelerator Design

Jiang, Hongtu; Öwall, Viktor

2002

Link to publication

Citation for published version (APA):
Jiang, H., & Öwall, V. (2002). Controller Synthesis for Hardware Accelerator Design. Paper presented at
Swedish System-on-Chip Conference 2002 (SSoCC 02), Falkenberg, Sweden.

Total number of authors:
2

General rights
Unless other specific re-use rights are stated the following general rights apply:
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors
and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.
 • Users may download and print one copy of any publication from the public portal for the purpose of private study
or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove
access to the work immediately and investigate your claim.

https://portal.research.lu.se/en/publications/fdf7e2c9-f3cc-4fa4-a964-f1d84f035dcb


Controller Synthesis for Hardware Accelerator Design

Hongtu Jiang and Viktor Öwall

Digital ASIC Group, Department of Electroscience, Lund University

Abstract

Efficient CAD tools are desired to reduce the increas-
ing design efforts when algorithms implemented on
ASICs are getting more complicated. For micropro-
grammed accelerator design, a control unit synthe-
sizer is of great importance since the manual design
of a controller for a complicated task requires sub-
stantial effort. While a hardware specific implemen-
tation results in higher performance or lower power
consumption than a programmable solution, flexibil-
ity might be crucial. Therefore, in the future it is de-
sirable to have on chip control units to be more or less
programmable. The goal of the project is to develop
design methodologies for such a design environment.
Those methodologies should be implemented into a
tool to reduce design time and allow flexibility of the
design process.

1 Introduction

For the last two decades, the tremendous growth in
the area of microelectronics technology has enabled
more complicated circuit design in both analog and
digital domains. Building a whole system on a sin-
gle chip seems to be right at hand. On the other
hand, increased complexity along with the desire for
high performance, low cost and increased pressure on
design time has constantly called for more powerful
CAD tools. Currently design tools at physical and
logical level are widely available and extensively used
in the industry. More and more research work is con-
ducted on the behavioral and architectural levels[1].

When a system is to be implemented on hardware
today, it is usually composed of several components:
general purpose processors, memories, hardware ac-
celerators, etc. as shown in figure 1. Together with
software they will comprise an embedded system[2, 3].

General

Processor


core


Programmable

Accelerator


Dist.

MEM


Main

Memory


Hardware

mapped


Accelerator


Figure 1: embedded system

In such architectures, a general-purpose proces-
sor core can always be used to implement control-
intensive functions and system I/O, while the
computation-intensive tasks are left to hardware ac-
celerators for improvement of the calculation capac-
ity. Controller structures are used as well within
controller-datapath type of accelerator for the con-
trol of datapath modules and communication with
”outside” components like processors, memories, and
other accelerators, etc. Manual design of such con-
trollers can be achieved by writing corresponding
VHDL specifications which is synthesized by CAD
tools as long as the design task remains relatively
simple. However, with the increased complexity of
integration, where more functions are expected to be
added, such design could encounter great difficulty.
To bridge this gap, some kind of design automation
is needed to reduce the design effort and shorten the
time to market.

2 COMA

A previous synthesis tool called COMA[4] was de-
veloped to attack those problems. In order to au-
tomatically synthesize a controller, COMA requires
two specifications: the behavioral description of the

Page 1



Address Processors
Controller with 

Line
15AP

Processor Processor Processor Processor
Core

1 2 3 4
Core Core Core

Kernel

Size - 8 bits

1 2 3 14
Line Line Line Line

Input
8 bits

6 bits

External Control

LoopFlag
Handling

AP

Data Out - 4x8 bits

6 bits
Pixel

R/W

Kernel RAM Address
Control

Microprogram
Memory

Line Buffer Addresses Line Buffers

Figure 2: Block diagram of the processor

processor architecture defining the available set of mi-
cro operations and the microprogram containing the
algorithm with additional declarations such as mem-
ories. The parser generator YACC has been used to
construct the parsers of the behavioral description
and the program. A C-like input syntax is in use
to provide easy programming and the high readabil-
ity. A range of controller architectures are available
for the designers to choose for the implementation of
the controllers. The output is given in the form of a
complete controller with module descriptions and in-
terconnection specifications. Additionally, command
files to run logic generators, memory generators, and
datapath compiler are created.

However there is still a lot of work to do regarding
controller synthesis and ways of improving the per-
formance and increasing the possibilities provided by
the tools. Examples are: improving the state cod-
ing, implementation of other algorithms for encoding
of control signals, further improvement of input and
output format, etc.

3 Current work

Over the years, design environment has been subject
to many changes and hardware description language,
like VHDL, has become an actual standard that is
widely accepted among the circuit design community.
Hardware synthesis designed using such languages are
now supported by most CAD tool providers. Since
COMA was developed for use in an old design en-
vironment, the output format as well as some other
features were found to be outdated. Therefore, many

modifications are under development in order to make
it fully integrated into a present design environment.
Improvements, for instance, adding VHDL support
and FPGAs as prototypes are being made.

3.1 Controller synthesis for image

processing application

One of the applications being developed is the
controller synthesis for an image convolution
processor[5]. In this application, a customized pro-
cessor for real time image processing is designed
to increase the performance of an instrument for
automated cereal grain quality assessment. The
performed image processing is a two-dimensional
convolution[6, 7] of the image with a 15*15 kernel
function in order to detect certain features of the im-
age, such as outline, color, lines, etc. Since image
convolution requires an extensive amount of calcu-
lation capacity and a corresponding amount of data
transfers, a tailored architecture with a streamlined
dataflow was developed, to achieve the desired filter-
ing which are hard to implement with standard pro-
cessors in real time. The block diagram of the pro-
cessor architecture is shown in figure 2. The image is
scanned from the upper left corner of the image, first
horizontally and then vertically, and one convolution
is completed when the kernel has reached the lower
right corner of the image. Since each pixel except the
extreme corner pixels is used in several calculations,
the pipelined memory bank is implemented to store
successive pixel values allowing each value to be read
only once, thus reducing the input datarate. The de-
signed circuit has four processor cores containing the

Page 2



-1Z -1Z

-1Z

-1Z -1Z

-1Z

-1Z

Line 1 Line 2 Line 15

0

Register
Load

Clear

Pipelining

Output/8 bits

kernel kernel
6 bits

kernel

Pixel/6 bits

Control

12 bits

13 bits

15 bits

19 bits

Figure 3: schematic diagram of the processor core.

kernel functions and performs one of the four convo-
lutions in parallel. A schematic diagram of the pro-
cessor core is given in figure 3. Each processor core
contains 15 multipliers with adjoining RAM for the
kernel function meaning that one column of the ker-
nel, 15 pixels, can be calculated in parallel. The cal-
culated values are added in a tree structure of adders
and pipeline registers and stored in accumulator. In
the tree structure, the number of bits increases to
avoid overflow in the adders.

The processor was designed for a clock frequency
of 20 MHz resulting in >2G arithmetic operations/s.
For the time being, VHDL specification for the pro-
cessor core has been developed and the synthesized
netlists with Synopsis are completed for later use of
constructing the whole design.

3.2 Controller design

The processor cores require a very simple controller
with only a single control signal while the line buffers
and the kernel RAMs require extensive address calcu-
lations and loop control. Therefore, a controller syn-
thesizer was used to synthesize a complete controller
dedicated to this algorithm from a microprogram.

Currently, a controller architecture with incremen-
tal circuitry, decision handling part is under devel-
opment, as shown in Figure 4. In this architecture,
the branch address calculation within the same block
of codes is performed by the hardware incrementer
while at the end of a block a non-incremental branch
address is calculated by the control logic and a select
branch signal, also referred to as end of block signal, is
set. An address processing unit is also used together

with controllers to handle the memories for storing
both the coefficients and temporarily computed val-
ues.

Synthesizable VHDL specifications of the whole
controllers are expected within a short time. Com-
bined with VHDL code for processor cores and mem-
ory banks, targeting FPGAs prototypes will be avail-
able. However the synthesis work of controllers will
not be restricted to this application. In the future
more architectures are within interests and supposed
to be available in VHDL as well.

4 Future work

In modern circuit design, design cost and design risk
has been a major concern among the companies mak-
ing ASICs. In previous design fashions, if new func-
tions are needed, the hardware has to change accord-
ingly, which would take considerable time for the de-
sign, verification and fabrication. But if a design is
made a programmable platform, which means provid-
ing user programmability, the users can often provide
functionality equal to that of a hardware by just writ-
ting new lines of code for a programmable processor
without any change of the circuits. In recent years,
this has already become a hot topic among network-
ing and wireless communication system designs [8].
Today, however, there is still in short of EDA tools
that support for designing these programmable plat-
forms.

On the other hand, the level of programmablity
should be taken as a trade off between flexibility and
performance-the most flexible processors like Pen-
tium suffers from relatively lower performance and
higher power consumption when dealing with real

Control 
logic


R

E

G


+


R

E

G


Flag Handling

& Loop Control


Evaluate


Control

Signals


Onchip

External


Figure 4: Controller Architecture with incremental
circuitry

Page 3



time signal processing while on the other hand hard-
wared implementation of algorithms like accelerators
has no flexibility after fabrication. The possible so-
lutions seem to be somewhere in between and sup-
posed to be different for variant applications. So in
the future, how trade offs should be made for various
systems is probably one of the major concerns in the
later design of controller synthesis tools.

Other issues under consideration includes the func-
tionality to be added to the controllers for supporting
communications with ”outside” components, this will
comprise the consideration of both a generalized de-
scription of such communications and how such spec-
ification is transformed into hardware and software
modules.

5 Conclusion

Controller synthesis tools are powerful for the design
of controller/datapath systems. It can reduce design
effort and design time substantially. In future de-
signs, programmability is expected to be one of the
major concerns since a sustainable platform is desired
nowadays to ameliorate design risk and design cost.
At the same time, the level of programmability should
be taken as a trade off between performance and flex-
ibility.

References

[1] P. Eles, K. Kuchcinski, and Z. Peng, System Syn-

thesis with VHDL, Kluwer Academic Publishers,
1998.

[2] S. Edwards, L. Lavagno, E. A. Lee and A.
Sangiovanni-Vincentelli, “Design of embedded
systems: formal models, validation, and synthe-
sis,” Proceedings of IEEE, vol. 85, no. 3, March
1997

[3] M. Chiodo, P. Giusto, A. Jurecska, H. C.
Hsieh, A. Sangiovanni-Vincentelli, L. Lavagno,
“Hardware-software codesign of embedded sys-
tems ,” IEEE Micro , Volume: 14 Issue: 4 , Aug.
1994.

[4] V. Öwall, Synthesis of Controllers from a Range

of Controller Architectures, Ph.D. Thesis, Depart-
ment of Applied Electronics, Lund University,
Dec 1994

[5] V. Öwall, M. Torkelson, and Egelberg, “A Custom
Image Convolution DSP with a Sustained Calcu-
lation Capacity of > 1 GMAC/s and Low I/O

Bandwidth”,The Journal of VLSI Signal Process-

ing, 23(2): 335-350; Nov 1999.

[6] J. S. Lim, Two Dimensional Signal and Image

Processing. Prentice Hall, 1990

[7] W. K. Pratt, Digital Image Processing., John Wi-
ley & Son, Inc., second edition, 1991.

[8] K. Keutzer, “Bright Future for Programmable
Processors”, IEEE Design & Test of Computers,
vol. 18, issue. 6, PP. 7 -8, Nov.-Dec. 2001.

Page 4


