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Abstract

This paper treats propagation of transient waves in non-stationary media,
which has many applications in e.g. electromagnetics and acoustics. The un-
derlying hyperbolic equation is a general, homogeneous, linear, first order 2×2
system of equations. The coefficients in this system depend only on one spatial
coordinate and time. Furthermore, memory effects are modeled by integral
kernels, which, in addition to the spatial dependence, are functions of two dif-
ferent time coordinates. These integrals generalize the convolution integrals,
frequently used as a model for memory effects in the medium. Specifically, the
scattering problem for this system of equations is addressed. This problem is
solved by a generalization of the wave splitting concept, originally developed
for wave propagation in media which are invariant under time translations,
and by an imbedding or a Green functions technique. More explicitly, the
imbedding equation for the reflection kernel and the Green functions (propa-
gator kernels) equations are derived. Special attention is paid to the problem
of non-stationary characteristics. A few numerical examples illustrate this
problem.

1 Introduction and basic system of equations

In a recent paper [1], a new method of analyzing wave propagation in non-stationary
or time-varying media was suggested. This method is an extension of the well-
established methods of wave splitting, invariant imbedding and Green functions
techniques, see Refs. [3, 5, 6, 12, 16, 17] and [7]. Wave propagation in non-stationary
media has also been investigated with other methods, see, e.g. Refs. [13–15].

Non-stationary media are characterized by material parameters that are changing
with time. Relevant examples are found in, e.g. telecommunication problems, such
as fading and modulation problems, and in problems concerning moving media.
The analysis of the wave propagation phenomena in linear, non-stationary media
also serves as an indispensable tool for analyzing wave propagation in non-linear
media by means of linearization.

The investigation of wave propagation problems in non-stationary media leads
to hyperbolic partial differential equations (PDE) with coefficients varying both
in time and space. The purpose of this paper is to systematically investigate the
wave propagation problem in a general non-stationary medium. This paper presents
the theory of our techniques, subsequent papers will develop numerical solutions to
pertinent problems.

Investigations of wave propagation, some of which are mentioned in Section 2
below, suggest a generalized form of the dynamics of the wave fields. In the present
work, the parameters of the medium are assumed to vary in one spatial direction,
here taken to the z-direction, and time t. The basic equation is the following first
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Figure 1: Geometry of the problem.

order 2× 2 system of equations:

∂

∂z

(
u+(z, t)
u−(z, t)

)
=f(z, t)

(
−1 0
0 1

)
∂

∂t

(
u+(z, t)
u−(z, t)

)
+

(
α(z, t) β(z, t)
γ(z, t) δ(z, t)

) (
u+(z, t)
u−(z, t)

)

+

∫ t

−∞

(
A(z, t, t′) B(z, t, t′)
C(z, t, t′) D(z, t, t′)

) (
u+(z, t′)
u−(z, t′)

)
dt′

(1.1)
The reason for the ± superscript is described in the subsequent sections. The
slowness function f(z, t) is a notation for

f(z, t) =
1

c(z, t)
> 0

where c(z, t) is the wave (phase) velocity. In order to model also non-stationary
memory effects, integral terms have been included in the equation. These memory
effects are non-local in time. In the integrals, the variable t describes the current
time, whereas the variable t′ is an integral measure, relating to the starting time
of the excitation, see also Appendix B. The system (1.1) is therefore a strictly
hyperbolic system.

The positive function f(z, t) is a continuous, bounded function of the variables z
and t everywhere. Furthermore, it is assumed to be constant outside the slab (0, d){

f(z, t) = 1/c0 , z < 0

f(z, t) = 1/cd , z > d
(1.2)

and continuously differentiable, with bounded derivatives, in z and t everywhere
inside the slab, i.e. (z, t) ∈ (0, d) × (−∞,∞), see also Figure 1. This implies that
f(0, t) = 1/c0 and f(d, t) = 1/cd for all times t.

The functions α(z, t), β(z, t), γ(z, t) and δ(z, t) are equal to zero outside the
slab and they are continuous, bounded functions inside the slab (not necessarily
continuous at the edges of the slab).

The functions A(z, t, t′), B(z, t, t′), C(z, t, t′) and D(z, t, t′) are always zero out-
side of the slab (0, d). Due to causality, they vanish identically inside the slab
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provided t < t′. For simplicity, the functions A(z, t, t′), B(z, t, t′), C(z, t, t′) and
D(z, t, t′) are assumed continuous and bounded as functions of the variables z, t and
t′ in the region t > t′, 0 < z < d.

The assumptions described above can, of course, be relaxed and the results pre-
sented in this paper then hold for a larger class of parameters. However, the purpose
of this paper is not to formulate the results for the weakest set of assumptions pos-
sible, but to exploit the potential of the method for a set of physically reasonable
assumptions.

In the scattering application addressed in this paper, the incident wave is as-
sumed to impinge normally on a slab. Two different scattering problems can be
identified. In the direct scattering problem, the material parameters are known
and the goal is to calculate the response of a known incoming field. On the other
hand, the inverse problem assumes knowledge of the incident and the scattered field
(data collected exterior to the medium) and the problem is to infer information
about the material parameters. Both these problems can be investigated by the
methods presented in this paper. However, the main pertinence of the method is in
connection with applications to the direct scattering problem. Some aspects of the
non-stationary inverse scattering problem were analyzed in Ref [1].

After this introductory section, a few explicit examples of applications are given
in Section 2. The analysis of the non-stationary characteristic curves is found in Sec-
tion 3. The imbedding equation for the reflection kernel is derived in Section 4, and
the Green functions (propagator kernels) equations are derived in Section 5. Some
explicit simplifications and concluding remarks are given in Section 6 and Section 7,
respectively. Three appendices contain some technical mathematical details and
some numerical illustrations of characteristic traces.

2 Examples

This section contains a few examples of general interest to the formulation presented
in this paper. The underlying equations of the fields in all these examples are the
Maxwell equations. 


∇×E(r, t) = −∂B

∂t
(r, t)

∇×H(r, t) =
∂D

∂t
(r, t)

Here, E(r, t) and H(r, t) are the electric and the magnetic fields, respectively, and
B(r, t) the magnetic induction and D(r, t) the electric displacement field. All fields
are assumed to be quiescent before a fixed time. This property guarantees that all
fields vanish at t→ −∞.
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2.1 Electromagnetic waves in inhomogeneous and dispersive
media

To model wave propagation in a non-stationary, inhomogeneous, and dispersive
medium, the following constitutive relations are relevant [1]:


D(r, t) = ε0

(
ε(z)E(r, t) +

∫ t

−∞
χe(z, t, t

′)E(r, t′) dt′
)

B(r, t) = µ0H(r, t)

Here ε0ε(z) > 0 is the permittivity of the medium, and µ0 the permeability of
vacuum. The non-stationary dispersive effects are modeled by the susceptibility
kernel χe(z, t, t

′).
The vector wave propagation problem is reduced to a scalar problem by assum-

ing that the electric field is transverse to the stratification of the medium, and,
furthermore, depends only on the coordinates (z, t). The dynamics of the fields is
cast into the form of (1.1) by the following non-unique wave splitting [6]:

(
u+(z, t)
u−(z, t)

)
=

1

2


1 − c0√

ε(z)
∂−1
t

1 c0√
ε(z)

∂−1
t


 (

E(z, t)
∂zE(z, t)

)

where the anti-derivative ∂−1
t is defined as

∂−1
t g(t) =

∫ t

−∞
g(t′) dt′

The coefficients of the dynamics, (1.1), in this example are


f(z, t) =
√

ε(z)/c0

α(z, t) = −γ(z, t) = −1

4

d

dz
ln ε(z)− 1

2c0

√
ε(z)

χe(z, t, t
′)|t′=t

β(z, t) = −δ(z, t) =
1

4

d

dz
ln ε(z)− 1

2c0

√
ε(z)

χe(z, t, t
′)|t′=t

A(z, t, t′) = B(z, t, t′) = −C(z, t, t′) = −D(z, t, t′) = − 1

2c0

√
ε(z)

∂χe
∂t

(z, t, t′)

Note that the regularity assumptions made on the susceptibility kernel χe(z, t, t
′)

in Ref [1] (continuously differentiable in z ∈ (0, L) and t′, and twice continuously
differentiable in t, t ≥ t′) are stronger than needed to meet the assumptions made on
the functions A(z, t, t′), B(z, t, t′), C(z, t, t′) and D(z, t, t′) in Section 1, and are not
needed if the splitting is made from Maxwell’s equations directly, see Section 2.3.

2.2 A generalized wave equation

An obvious extension of the results presented in Ref [1] concerning propagation
of electromagnetic waves in inhomogeneous and time-varying media is to allow the
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permittivity ε0ε to vary in time as well as in space. The relevant constitutive relations
in this example are {

D(r, t) = ε0ε(z, t)E(r, t)

B(r, t) = µ0H(r, t)

where the relative permittivity ε(z, t) > 0. This is a model of an inhomogeneous,
non-dispersive, non-stationary medium. For the sake of simplicity, the dispersive
memory terms in Section 2.1 are omitted. However, the more complex model, where
these memory terms are included, is straightforward to analyze.

With the usual assumption of an electric field E that is transverse to the z-axis
and that depends on z and t only, the wave equation is

∂2E

∂z2
(z, t)− ∂2(f 2E)

∂t2
(z, t) = 0 (2.1)

where
f(z, t) =

√
µ0ε0ε(z, t)

This equation is a special case of a more generalized wave equation

∂2u

∂z2
(z, t)− ∂2(f 2u)

∂t2
(z, t)

+A(z, t)
∂u

∂z
(z, t) + B(z, t)

∂u

∂t
(z, t) + C(z, t)u(z, t) = 0

(2.2)

which also has applications in, e.g. linear acoustics in media where the propagation
conditions change rapidly with time.

In order to see how equation (2.2) is related to the general hyperbolic wave
equation (1.1), the concept of wave splitting is introduced. The wave splitting can
be defined in several different ways. The definition adopted here renders a very
simple u±-dynamics for the wave equation in (2.1). Thus, proceeding formally, the
wave splitting is defined by the following transformation of the dependent variables:(

u+(z, t)
u−(z, t)

)
=

1

2

(
1 − 1

f(z,t)
∂−1
t

1 1
f(z,t)

∂−1
t

)(
u(z, t)
uz(z, t)

)

which generalizes the wave splitting introduced in Ref [6]. The new fields u±(z, t)
satisfy a first order 2 × 2 system of hyperbolic partial differential equations, which
is identical to the generalized u±-dynamics in (1.1). The explicit expressions of the
coefficients are



α(z, t) = −1

2

∂

∂z
ln f(z, t)− 3

2

∂f

∂t
(z, t)− 1

2
A(z, t) +

1

2

B(z, t)

f(z, t)

β(z, t) = +
1

2

∂

∂z
ln f(z, t)− 1

2

∂f

∂t
(z, t) +

1

2
A(z, t) +

1

2

B(z, t)

f(z, t)

γ(z, t) = +
1

2

∂

∂z
ln f(z, t) +

1

2

∂f

∂t
(z, t) +

1

2
A(z, t)− 1

2

B(z, t)

f(z, t)

δ(z, t) = −1

2

∂

∂z
ln f(z, t) +

3

2

∂f

∂t
(z, t)− 1

2
A(z, t)− 1

2

B(z, t)

f(z, t)
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Figure 2: Transmission line model.

and 


A(z, t, t′) =
1

2

1

f(z, t)

[
f(z, t′)

∂A
∂t′

(z, t′)− ∂B
∂t′

(z, t′) + C(z, t′)
]

B(z, t, t′) =
1

2

1

f(z, t)

[
−f(z, t′)

∂A
∂t′

(z, t′)− ∂B
∂t′

(z, t′) + C(z, t′)
]

C(z, t, t′) = −A(z, t, t′)

D(z, t, t′) = −B(z, t, t′)

2.3 Wave propagation on the transmission line

In this example, propagation of current-voltage waves on a transmission line is con-
sidered. The material of the transmission line, i.e. the conductors together with the
insulation, may vary in time as well as in space. In this model, memory effects are
permitted.

The equivalent circuit segment model of Figure 2 provides the basis of the deriva-
tion of the general transmission line equations. Here, R(z, t) and G(z, t) are the series
resistance and the shunt conductance per unit length of the transmission line, re-
spectively. The series inductance and the shunt capacitance per unit length, which
are denoted L(z, t) and C(z, t), respectively, are both assumed positive and finite.
The voltage v(z, t) and the current i(z, t) are related, respectively, to the magnetic
flux Φ(z, t) and the charge q(z, t) through


Φ(z, t) = L(z, t)i(z, t) +

∫ t

−∞
χm(z, t, t′)i(z, t′) dt′

q(z, t) = C(z, t)v(z, t) +

∫ t

−∞
χe(z, t, t

′)v(z, t′) dt′

The magnetic flux, Φ(z, t), and the electric charge, q(z, t), depend on the current
i(z, t) and the voltage v(z, t) at time t, respectively. In addition to these multi-
plicative terms, Φ and q are connected to the previous values of the currents and
voltages of the transmission line. The memory functions are modeled by the two
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Transmission line Maxwell’s equations
Parameter Symbol Parameter Symbol
Inductance L(z, t) Magnetic permeability µ(z, t)
Capacitance C(z, t) Electric permittivity ε(z, t)
Series resistance R(z, t) Magnetic conductivity σm(z, t)
Shunt resistance G(z, t) Electric conductivity σe(z, t)
Inductive susceptibility χm(z, t, t′) Magnetic susceptibility χm(z, t, t′)
Capacitive susceptibility χe(z, t, t

′) Electric susceptibility χe(z, t, t
′)

Table 2: Correspondence between the parameter symbols used and the material
properties relevant in the two main applicable problems.

integral terms with the kernel functions χm(z, t, t′) describing the inductive suscepti-
bility and χe(z, t, t

′) modeling the capacitive susceptibility. Simplifications occur in
a material that is invariant under time translations. In this case, the susceptibility
kernels are functions of the difference argument t − t′ rather than of t and t′. A
comparison between the pertinent parameter symbols used in this transmission line
application and the material properties of Section 2.1 is found in Table 2.

The Kirchhoff current and voltage relations are now applied to the circuit mesh
of Figure 2. In the limit ∆z → 0, the two general transmission line equations are
obtained. They are represented in the following matrix form:(

0 C(z, t)
L(z, t) 0

)
∂

∂t

(
i(z, t)
v(z, t)

)
+

∂

∂z

(
i(z, t)
v(z, t)

)
= B

(
i(z, t)
v(z, t)

)
(2.3)

where the operator matrix B is given by

B =


 0 −G(z, t)− ∂C

∂t
(z, t)− ∂

∂t

∫ t

−∞ χe(z, t, t
′) • dt′

−R(z, t)− ∂L
∂t

(z, t)− ∂
∂t

∫ t

−∞ χm(z, t, t′) • dt′ 0




where the symbol • denotes the place holder for the operand.
This system of equations is easily transformed into the general first order 2× 2

system of hyperbolic equations, (1.1). The following wave splitting diagonalizes the
system (2.3): (

u+(z, t)
u−(z, t)

)
=

1

2


1

√
C(z,t)
L(z,t)

1 −
√

C(z,t)
L(z,t)


 (

i(z, t)
v(z, t)

)
(2.4)
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The explicit expressions of the coefficients are:


f(z, t) =
√

L(z, t)C(z, t)

α(z, t) =
1

2
[+h1(z, t) + h2(z, t)− h3(z, t)− h4(z, t)]

β(z, t) =
1

2
[−h1(z, t)− h2(z, t) + h3(z, t)− h4(z, t)]

γ(z, t) =
1

2
[+h1(z, t)− h2(z, t)− h3(z, t) + h4(z, t)]

δ(z, t) =
1

2
[−h1(z, t) + h2(z, t) + h3(z, t) + h4(z, t)]

(2.5)

and 


A(z, t, t′) = −1

2

[
∂χe
∂t

(z, t, t′)

√
L(z, t′)

C(z, t′)
+

√
C(z, t)

L(z, t)

∂χm
∂t

(z, t, t′)

]

B(z, t, t′) =
1

2

[
∂χe
∂t

(z, t, t′)

√
L(z, t′)

C(z, t′)
−

√
C(z, t)

L(z, t)

∂χm
∂t

(z, t, t′)

]

C(z, t, t′) = −B(z, t, t′)

D(z, t, t′) = −A(z, t, t′)

(2.6)

where the functions h1(z, t), h2(z, t), h3(z, t) and h4(z, t) are given by


h1(z, t) =
1

2

√
L(z, t)C(z, t)

∂

∂t
ln

C(z, t)

L(z, t)

h2(z, t) =
1

2

∂

∂z
ln

C(z, t)

L(z, t)

h3(z, t) =

√
L(z, t)

C(z, t)

[
G(z, t) +

∂C

∂t
(z, t) + χe(z, t, t

′)|t′=t
]

h4(z, t) =

√
C(z, t)

L(z, t)

[
R(z, t) +

∂L

∂t
(z, t) + χm(z, t, t′)|t′=t

]

The regularity requirements of the coefficients stated in Section 1 are met if
R(z, t) and G(z, t) are continuous functions, and C(z, t) and L(z, t) continuously
differentiable in both z and t. Moreover, the functions χe(z, t, t

′) and χm(z, t, t′) are
assumed continuous in z and t′ and continuously differentiable in t.

The next two sections contain the main equations for the solution of the scatter-
ing problem in inhomogeneous, non-stationary, dispersive media. Specifically, the
imbedding equation and the Green functions equations are derived.

3 Characteristic curves

One of the major differences between the treatment of the problems in this paper
and earlier work is that the characteristics of equation (1.1) are non-stationary in
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time. This complicates many of the formulae when compared to those applicable to
media which admit time translation symmetries. When the slowness is independent
of time but the dynamics is non-stationary, there is still a lack of invariance under
time translation due to lower-order terms. In this case some simplifications can be
made. This is evidenced by comparing the imbedding equation (4.2) of Section 4,
the Green functions equations (5.3) and (5.4) of Section 5, and equations (4.3), (5.2)
and (5,3) of Ref [1].

In Ref [1], as the slowness was not a function of time, it was quite easy to make
a transformation into travel time coordinates to straighten the characteristic curves.
In the more general situation considered here, such a transformation is more difficult
to perform and implies that a problem of almost the same complexity as the original
problem has to be solved. No transformation to straighten the characteristic curves
is therefore made in this paper. Thus, the examination of the properties of the
characteristic traces of (1.1) is appropriate. In Appendix A some of the properties
of the transformation to straighten the characteristic curves are outlined.

The characteristic traces for the u+-equation satisfy

dτ+

dζ
= f(ζ, τ+(ζ)) (3.1)

with an initial condition (the curve passes through the point (z, t))

τ+(z) = t (3.2)

The superscript plus has been used on the characteristic with positive slope; traces
with negative slope appear in later sections and will have superscript minus.

The existence of a unique, locally defined, solution of the initial value problem in
(3.1) and (3.2) is guaranteed by the assumption of f in Section 1 [4, 9]. To emphasize
the dependence of the initial conditions, the solution is written in the form

τ+ = τ+(ζ; z, t) (3.3)

where (ζ, τ+(ζ; z, t)) describes a curve in R2 passing through (z, t) and ζ being a
parameter.

Figure 3 shows the system of coordinates (ζ, τ+). The position of the physical
slab coincides with the interval (0, d) of the ζ-axis. The assumptions of the slowness
f ensure that a locally defined flow has been defined [2]. Maximal extension of this
flow up to any point, at which it becomes undefined, is ensured. This is a property
that depends purely of the slowness f . This flow forms a group with respect to the
parameter ζ and as such it has a unique inverse and unit element. For the purposes
of this paper, the form of the solution formally represented by equation (3.3) suffices.
The inverse elements are:

τ+(ζ; z, τ+(z; ζ, t)) = t, τ+(z; ζ, τ+(ζ; z, t)) = t

and the unit element can be written as

τ+(z; z, t) = t
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0 d

ζ

(z, t)

τ+

τ+ = τ+(ζ; z, t)

(0, τ+(0; z, t))

Figure 3: The characteristic of the u+-equation.

One other formula obtained from elementary calculus that is needed in the sequel
is

∂τ+

∂t
(ζ; z, t)|t=τ+(z;ζ,t) =

(
∂τ+

∂t
(z; ζ, t)

)−1

or its dual
∂τ+

∂t
(z; ζ, t)|t=τ+(ζ;z,t) =

(
∂τ+

∂t
(ζ; z, t)

)−1

In this paper, of particular importance is the case of ζ = 0.
From the presumptions of the function f(z, t) given in Section 1 and from equa-

tion (3.1), it is clear, that the derivative dτ+

dζ
is a continuous function in ζ. Further-

more, these presumptions also guarantee that the partial derivatives ∂τ+

∂z
and ∂τ+

∂t

exist [9].
Also note, that if (z, t) is a point on the characteristic curve, so is (ζ ′, τ+(ζ ′; z, t)).

Thus τ+ = τ+(ζ; z, t) and τ+ = τ+(ζ; ζ ′, τ+(ζ ′; z, t)) are two equivalent representa-
tions of the same characteristic curve.

Integration of equation (3.1) along the characteristic yields an expression for the
function τ+:

τ+(ζ2; z, t)− τ+(ζ1; z, t) =

∫ ζ2

ζ1

f(ζ ′, τ+(ζ ′; z, t)) dζ ′ (3.4)

which specifies the time needed for the u+-wave to move from position ζ1 to position
ζ2 along the characteristic passing through (z, t).

An additional relation for the u+-characteristics, needed for the derivations in
Section 5, is now derived. In (3.4), let ζ2 = ζ and ζ1 = z, and differentiate the
equation with respect to z and t. This shows that the function

φ(ζ; z, t) =
∂τ+

∂z
(ζ; z, t) + f(z, t)

∂τ+

∂t
(ζ; z, t)
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is a solution to the uniquely solvable homogeneous Volterra equation of the second
kind

φ(ζ; z, t) +

∫ z

ζ

∂f

∂τ+
(ζ ′, τ+(ζ ′; z, t))φ(ζ ′; z, t) dζ ′ = 0

which therefore must only have the trivial solution. Thus, the following identity
holds:

∂τ+

∂z
(ζ; z, t) + f(z, t)

∂τ+

∂t
(ζ; z, t) = 0 (3.5)

The interpretation of this conservation equation states the obvious result that as
(z, t) varies along one particular characteristic trace, for fixed ζ, τ+ is invariant.
Another more simple proof of (3.5) is to use the fact that τ+ = τ+(ζ; z, t) and τ+ =
τ+(ζ; ζ ′, τ+(ζ ′; z, t)) are two equivalent representations of the same characteristic
curve. Differentiation wrt ζ ′ then gives the identity (3.5).

Some explicit examples of characteristic curves are found in Appendix C.

4 Imbedding equation

The two split fields, u±(z, t), introduced in a previous section, are interrelated. This
is because when the wave propagates through a medium, in which the properties are
changing, the u±-waves are related through a scattering operator. This operator is
represented by a time integral, which can be derived from Duhamel’s integral, see
Appendix B. The result is

u−(z, t) =

∫ t

−∞
R(z, t, t′)u+(z, t′) dt′ (4.1)

Here, the kernel R(z, t, t′), which is the reflection kernel of a subsection (z, d) of the
total slab (0, d), is identical to the one used in Ref [1]. By causality, R(z, t, t′) = 0,
t < t′.

The reflection kernel, R(z, t, t′), satisfies a partial differential equation, which de-
scribes the variation in R(z, t, t′) as the coordinates z, t and t′ vary. This equation,
the imbedding equation, is derived by differentiating (4.1) and the use of the dy-
namics (1.1). This operation yields the imbedding equation for the reflection kernel
R(z, t, t′), valid in the domain 0 < z < d, t > t′.

∂R

∂z
(z, t, t′)− f(z, t)

∂R

∂t
(z, t, t′) +

∂R

∂t′
(z, t, t′)f(z, t′) = C(z, t, t′)

+ δ(z, t)R(z, t, t′) + R(z, t, t′)

[
−∂f(z, t′)

∂t′
− α(z, t′)

]

−
∫ t

t′
R(z, t, t′′)β(z, t′′)R(z, t′′, t′) dt′′

−
∫ t

t′
R(z, t, t′′)A(z, t′′, t′) dt′′ +

∫ t

t′
D(z, t, t′′)R(z, t′′, t′) dt′′

−
∫ t

t′

{∫ t′′

t′
R(z, t, t′′)B(z, t′′, t′′′)R(z, t′′′, t′) dt′′′

}
dt′′

(4.2)
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The initial condition of the reflection kernel R(z, t, t′) is

R(z, t, t′)|t′=t = −1

2

γ(z, t)

f(z, t)
(4.3)

and the boundary condition at z = d, t > t′ is

R(d, t, t′) = 0

The Cauchy problem of the imbedding equation, (4.2), with data specified on the
plane parameterized by r = (z, t, t), see (4.3), is well-posed. This is a consequence
of the non-vanishing functional determinant [10, p. 26]

J =

∣∣∣∣∣∣
1 0 0
0 1 1
1 −f(z, t) f(z, t)

∣∣∣∣∣∣ = 2f(z, t) �= 0

The functional differential equation for the reflection kernel R(z, t, t′) can be
solved numerically given the material parameters. This implies that the solution to
the direct scattering problem, i.e. the determination of the reflected fields, can be
computed through (4.1). The inverse problem, i.e. the determination of the material
parameters, given the reflection kernel R(z, t, t′), can also be approached through
(4.2). This problem will be addressed in another paper.

4.1 Discontinuity of the reflection kernel

The solution of the imbedding equation, R(z, t, t′), is continuous everywhere except
across the surface t′ = h(z, t), where R(z, t, t′) has a possible jump discontinuity.
This finite jump discontinuity is introduced by the possible jump discontinuity in
γ(z, t) at z = d, i.e. if γ(d−, t) = limz→d−0 γ(z, t) �= 0, see (4.3). The normal to the
surface t′ = h(z, t), i.e. (hz, ht,−1) satisfies the characteristic equation

∂h

∂z
(z, t)− f(z, t)

∂h

∂t
(z, t) = f(z, h(z, t))

and, due to (4.3), the surface contains the line r = (d, t, t), i.e. t = h(d, t).
The vector field describing the characteristic traces is (1,−f(z, t), f(z, t′)) and

it lies on a hyper-surface. The projection of this vector field onto the (z, t)-plane is
described by

dτ−

dζ
= −f(ζ, τ−(ζ)) (4.4)

so that this curve, on planes t′=constant, has representation (ζ, τ−(ζ; z, t), t′). To
emphasize the dependence of the initial conditions, the solution to (4.4) has been
written in the form

τ− = τ−(ζ; z, t)

Similarly, the projection of the vector field onto the (z, t′)-plane is described by equa-
tion (3.1) and this curve on planes t=constant has representation (ζ, t, τ+(ζ; z, t′)).
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All curves of interest here, will originate from the line r = (d, t, t), so that a char-
acteristic trace, Γ, emanating from this line has parametric form

Γ : r(z, t) = (z, τ−(z; d, t), τ+(z; d, t))

As mentioned previously, the R kernel has a possible initial jump discontinuity
on the (d, t, t)-line, in the direction of increasing t, of size

[R]Γ(z=d) =
1

2

γ(d, t)

f(d, t)
(4.5)

The bracket notation used here, denotes the finite jump discontinuity of the reflection
kernel R, with respect to positive t-direction. This discontinuity propagates along
the characteristic as

d[R]

dz

∣∣∣∣
Γ

=
(
δ(z, τ−(z; d, t))− ∂f

∂t′
(z, t′)|t′=τ+(z;d,t) − α(z, τ+(z; d, t))

)
[R]Γ

which upon integrating from d to z, and with use of (4.5), yields

[R]Γ =
1

2

γ(d, t)

f(d, t)
exp

{∫ z

d

(
δ(z′, τ−(z′; d, t))− ∂f

∂t′
(z′, t′)|t′=τ+(z′;d,t)

− α(z′, τ+(z′; d, t))
)
dz′

}

5 Green functions

The relationship between the split fields u± in Section 4 was evaluated at a specific
z-value and the reflection kernel R(z, t, t′) was interpreted as the reflection kernel
for a subslab (z, d) of the physical slab (0, d). This interpretation was performed by
the use of an imbedding argument.

In contrast to the analysis presented in the previous section, this section contains
an analysis of the relationship between the exterior excitation u+(0, t) and the inter-
nal fields u±(z, t) of the physical slab (0, d). The operator that maps the excitation
u+(0, d) to the internal fields u±(z, t) has an integral representation. This represen-
tation leads to the definition of the Green functions G±(z, t, t′) of the propagation
problem.

From Duhamel’s integral, see Appendix B, an explicit mapping of the excitation
u+(0, t) to the internal fields u±(z, t) can be obtained. For convenience this mapping
is evaluated at two different times. The basic difference between the two definitions
in Eqs. (5.1) and (5.2), is that in (5.1), the time coordinate t is evaluated at the
field position z, while in (5.2), it is evaluated at the left end point of the slab, z = 0.
Both of them are needed to derive the equations in this section. The expressions
τ+(0; z, t) and τ+(z; 0, t) denote specific points along the relevant characteristics of
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the wave front, see Section 3. The expressions are


u+(z, t) =u+(0, τ+(0; z, t))p(z, τ+(0; z, t))

+

∫ τ+(0;z,t)

−∞
G+(z, τ+(0; z, t), t′)p(z, t′)u+(0, t′) dt′

u−(z, t) =

∫ τ+(0;z,t)

−∞
G−(z, τ+(0; z, t), t′)p(z, t′)u+(0, t′) dt′

(5.1)

or evaluated at time τ+(z; 0, t) (use the fact that τ+(0; z, τ+(z; 0, t)) = t)


u+(z, τ+(z; 0, t)) =u+(0, t)p(z, t) +

∫ t

−∞
G+(z, t, t′)p(z, t′)u+(0, t′) dt′

u−(z, τ+(z; 0, t)) =

∫ t

−∞
G−(z, t, t′)p(z, t′)u+(0, t′) dt′

(5.2)

where the attenuation factor is defined as

p(z, t) = exp

{∫ z

0

α(ζ, τ+(ζ; 0, t)) dζ

}

In this formula, the integration of the function α is performed along the character-
istics of the first equation in (1.1), see Section 3 for more details on characteristic
curves in non-stationary media and Appendix B for details on the propagation of
finite jump discontinuities along characteristic curves. By causality, the Green func-
tions G±(z, t, t′) = 0 for t′ > t.

The Green functions equations are derived by performing the calculation of

∂

∂z

(
u+

u−

)

in two different ways. The first way is obtained through explicit differentiation
of the definition of the Green functions in (5.2), and the second way is obtained
by using the general dynamics, (1.1). In both cases repeated use of the definition
of the Green functions, (5.2), and the general dynamics, (1.1), is necessary. The
comparison between these two expressions leads to the following Green functions
equations, 0 < z < d, t > t′:

∂G+

∂z
(z, t, t′)− α(z, τ+(z; 0, t))G+(z, t, t′) + G+(z, t, t′)α(z, τ+(z; 0, t′))

− β(z, τ+(z; 0, t))G−(z, t, t′)− A(z, τ+(z; 0, t), τ+(z; 0, t′))
∂τ+

∂t′
(z; 0, t′)

−
∫ t

t′
A(z, τ+(z; 0, t), τ+(z; 0, t′′))

∂τ+

∂t′′
(z; 0, t′′)G+(z, t′′, t′) dt′′

−
∫ t

t′
B(z, τ+(z; 0, t), τ+(z; 0, t′′))

∂τ+

∂t′′
(z; 0, t′′)G−(z, t′′, t′) dt′′ = 0

(5.3)
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and

∂G−

∂z
(z, t, t′)− 2f(z, τ+(z; 0, t))

(
∂τ+

∂t
(z; 0, t)

)−1
∂G−

∂t
(z, t, t′)

− δ(z, τ+(z; 0, t))G−(z, t, t′) + G−(z, t, t′)α(z, τ+(z; 0, t′))

− γ(z, τ+(z; 0, t))G+(z, t, t′)− C(z, τ+(z; 0, t), τ+(z; 0, t′))
∂τ+

∂t′
(z; 0, t′)

−
∫ t

t′
C(z, τ+(z; 0, t), τ+(z; 0, t′′))

∂τ+

∂t′′
(z; 0, t′′)G+(z, t′′, t′) dt′′

−
∫ t

t′
D(z, τ+(z; 0, t), τ+(z; 0, t′′))

∂τ+

∂t′′
(z; 0, t′′)G−(z, t′′, t′) dt′′ = 0

(5.4)

with the initial condition

G−(z, t, t′)
∣∣
t′=t

= −1

2

γ(z, τ+(z; 0, t))

f(z, τ+(z; 0, t))

∂τ+

∂t
(z; 0, t) (5.5)

The initial condition on G+(z, t, t′)|t′=t is obtained by integrating (5.3), i.e.

G+(z, t, t′)
∣∣
t′=t

= −1

2

∫ z

0

[β(z′, τ+(z′; 0, t))γ(z′, τ+(z′; 0, t))

f(z′, τ+(z′; 0, t))

− 2A(z′, τ+(z′; 0, t), τ+(z′; 0, t))
]∂τ+

∂t
(z′; 0, t) dz′

(5.6)

These differential equations for the Green functions generalize those given in,
e.g. Refs. [1, 11, 12]. Note that the Green functions G±(z, t, t′) = 0 for t′ > t.

From the definition of the Green functions G±(z, t, t′), (5.2), and the definition
of the reflection kernel R(z, t, t′), (4.1), at z = 0, the following boundary conditions
of G± at z = 0 and z = d are obtained for all times:


G+(0, t, t′) = 0

G−(d, t, t′) = 0

G−(0, t, t′) = R(0, t, t′)

The last boundary condition is a special case of a more general interrelationship
between the Green functions G±(z, t, t′) and the reflection kernel R(z, t, t′). Specifi-
cally, from the definition of the Green functions G±(z, t, t′), (5.2), and the reflection
kernel R(z, t, t′), (4.1), it is straightforward to obtain for 0 ≤ z ≤ d, t > t′

G−(z, t, t′) =R(z, τ+(z; 0, t), τ+(z; 0, t′))
∂τ+

∂t′
(z; 0, t′)

+

∫ t

t′
R(z, τ+(z; 0, t), τ+(z; 0, t′′))

∂τ+

∂t′′
(z; 0, t′′)G+(z, t′′, t′) dt′′

Notice, that
∂τ+

∂t
(ζ; z, t)

∣∣∣∣
ζ=z

= 1
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This identity is easily obtained by letting ζ2 = ζ and ζ1 = z in (3.4) and differenti-
ating with respect to t and finally letting ζ = z.

For completeness, an alternative definition of the Green function equations is
given. 



u+(z, t) =u+(0, τ+(0; z, t))p(z, τ+(0; z, t))

+

∫ τ+(0;z,t)

−∞
g+(z, t, t′)p(z, t′)u+(0, t′) dt′

u−(z, t) =

∫ τ+(0;z,t)

−∞
g−(z, t, t′)p(z, t′)u+(0, t′) dt′

(5.7)

These Green functions may be more suitable for numerical computation, and the
use of the transformation

G±(z, t, t′) = g±(z, τ+(z; 0, t), t′) (5.8)

enables equations (5.3) and (5.4) to be transformed into

∂g+

∂z
(z, t, t′) + f(z, t)

∂g+

∂t
(z, t, t′)− α(z, t)g+(z, t, t′) + g+(z, t, t′)α(z, τ+(z; 0, t′))

− β(z, t)g−(z, t, t′)− A(z, t, τ+(z; 0, t′))
∂τ+

∂t′
(z; 0, t′)

−
∫ t

τ+(z;0,t′)
A(z, t, t′′)g+(z, t′′, t′) dt′′ −

∫ t

τ+(z;0,t′)
B(z, t, t′′)g−(z, t′′, t′) dt′′ = 0

and

∂g−

∂z
(z, t, t′)− f(z, t)

∂g−

∂t
(z, t, t′)− δ(z, t)g−(z, t, t′) + g−(z, t, t′)α(z, τ+(z; 0, t′))

− γ(z, t)g+(z, t, t′)− C(z, t, τ+(z; 0, t′))
∂τ+

∂t′
(z; 0, t′)

−
∫ t

τ+(z;0,t′)
C(z, t, t′′)g+(z, t′′, t′) dt′′ −

∫ t

τ+(z;0,t′)
D(z, t, t′′)g−(z, t′′, t′) dt′′ = 0

with the initial condition

g−(z, t, t′)
∣∣
t′=τ+(0;z,t)

= −1

2

γ(z, t)

f(z, t)

(
∂τ+

∂t
(0; z, t)

)−1

The initial condition on g+(z, t, t′)|t′=τ+(0;z,t) is obtained from the transformation

(5.8) and the initial condition for G+(z, t, t′)|t′=t in (5.6).
The relation between the reflection kernel and this alternative definition of the

Green functions reads

g−(z, t, t′) = R(z, t, τ+(z; 0, t′))
∂τ+

∂t′
(z; 0, t′) +

∫ t

τ+(z;0,t′)
R(z, t, t′′)g+(z, t′′, t′) dt′′



17

5.1 Propagation of discontinuities

The solutions of the first order system of PDE’s (5.3) and (5.4) are continuous along
the characteristic curves associated with the system, but may be discontinuous across
these curves.

From (5.3) it is seen that the characteristic traces are t=constant for G+ and as
G+(0, t, t′) is continuous for all t and t′, it follows G+ is continuous throughout its
domain of definition. However, examination of the initial condition (5.5) shows that
any discontinuity in the functions γ and f will be propagated along the characteristic
curves described by (5.4). The conditions imposed on these functions in Section 1
ensure G−(z, t, t) is continuous except possibly at z = d. The initial value for G−

has the jump discontinuity in the direction of increasing t.

[
G−

]
(d, t, t) =

1

2

γ(d, τ+(d; 0, t))

f(d, τ+(d; 0, t))

∂τ+

∂t
(d; 0, t)

This jump in G− will propagate along the characteristic curves of G−.
The characteristic traces for G−(z, t, t′) are independent of the third parameter

t′ and can be described by an equation η = η(ζ; z, t). The notation used here is
similar to that used in equation (3.3). The function η satisfies the equation

dη

dζ
(ζ; z, t) = −2f(ζ, τ+(ζ; 0, η(ζ; z, t)))

∂τ+

∂t
(0; ζ, t)|t=τ+(ζ;0,η(ζ;z,t))

The discontinuity propagates along the curve Υ emanating from the line (d, t, t)
and where Υ has parametric form

Υ : r(z, t) = (z, η(z; d, t), t)

It follows that the equation describing the propagation of the discontinuity in G− is

d[G−]

dz

∣∣∣∣
Υ

=
(
δ(z, τ+(z; 0, η(ζ; d, t)))− α(z, τ+(z; 0, t))

) [
G−

]
Υ

Integrating this equation from d to z yields

[
G−

]
Υ

=
[
G−

]
Υ(z=d)

exp
{∫ z

d

(
δ(z′, τ+(z′; 0, η(z′; d, t)))− α(z′, τ+(z′; 0, t))

)
dz′

}

The discontinuous behavior of g− can be found from the relationship between
g− and G−, see (5.8), namely

g−(z, τ+(z; 0, t), t′) = G−(z, t, t′)

with the substitution t→ η(z; d, t), and use of the identity (z = d)

τ+(ζ; 0, η(ζ; z, t)) = τ−(ζ; z, τ+(z; 0, t))

the appropriate expression for [g−] is found.



18

6 Explicit expressions

In this section, the theory presented in the previous sections is illustrated by the
examples from Section 2.

In Section 2.1, propagation of electromagnetic waves in non-stationary, inho-
mogeneous, dispersive media was considered. A detailed analysis of the imbedding
equation and the Green function equations for this example was presented in Ref [1],
and the reader is referred to this paper for more details.

The generalized wave equation, (2.2), in Section 2.2, and the transmission line
equations, (2.3), in Section 2.3 imply no significant simplifications of the results
in Sections 4 and 5. However, the less complex wave equation, (2.1), offers some
simplifications. Accordingly, the wave equation (2.1) has an imbedding equation

∂R

∂z
(z, t, t′)− f(z, t)

∂R

∂t
(z, t, t′) +

∂R

∂t′
(z, t, t′)f(z, t′) =

+ δ(z, t)R(z, t, t′) + R(z, t, t′)

[
−∂f

∂t′
(z, t′)− α(z, t′)

]

−
∫ t

t′
R(z, t, t′′)β(z, t′′)R(z, t′′, t′) dt′′

and Green functions equations

∂G+

∂z
(z, t, t′)− α(z, τ+(z; 0, t))G+(z, t, t′)

+ G+(z, t, t′)α(z, τ+(z; 0, t′))− β(z, τ+(z; 0, t))G−(z, t, t′) = 0

and
∂G−

∂z
(z, t, t′)− 2f(z, τ+(z; 0, t))

(
∂τ+

∂t
(z; 0, t)

)−1
∂G−

∂t
(z, t, t′)

− δ(z, τ+(z; 0, t))G−(z, t, t′) + G−(z, t, t′)α(z, τ+(z; 0, t′))

− γ(z, τ+(z; 0, t))G+(z, t, t′) = 0

with 


α(z, t) = −1

2

∂

∂z
ln f(z, t)− 3

2

∂f

∂t
(z, t)

β(z, t) = +
1

2

∂

∂z
ln f(z, t)− 1

2

∂f

∂t
(z, t)

γ(z, t) = +
1

2

∂

∂z
ln f(z, t) +

1

2

∂f

∂t
(z, t)

δ(z, t) = −1

2

∂

∂z
ln f(z, t) +

3

2

∂f

∂t
(z, t)

7 Conclusions

This paper contains a detailed analysis of wave propagation of transient waves in
media, which properties are changing in space and time—non-stationary media.
The underlying dynamics of the wave propagation problem is a general, linear,
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homogeneous, non-stationary, first order 2×2 system of hyperbolic equations. A new
wave splitting is introduced, which is a generalization of the well established wave
splitting in media that have time translation symmetries. The scattering problem is
solved by an imbedding or a Green functions technique. Specifically, the imbedding
equation for the reflection kernel is derived. This equation is a non-linear, hyperbolic
equation in one space and two time variables. Furthermore, the Green functions
equations are derived. They constitute a system of linear, hyperbolic equations in
one space and two time variables. The characteristic curves of the dynamics are
discussed in some detail, and a few numerical illustrations give the typical behavior
of the non-stationary properties of these characteristic curves.
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Appendix A Straightening the characteristics

To illustrate how the characteristic of (1.1) may be straightened, consider

∂u±

∂z
(z, t)± f(z, t)

∂u±

∂t
(z, t) = F±(z, t, u+, u−) (A.1)

where f(z, t) > 0 in the domain of interest.
Introduce the diffeomorphic transformation of the independent variables{

z = z(x, s)

t = t(x, s)

with the associated inverse functions{
x = x(z, t)

s = s(z, t)

The PDE (A.1) can then be written in terms of the new independent variables
as (

∂x

∂z
± f

∂x

∂t

)
∂u±

∂x
+

(
∂s

∂z
± f

∂s

∂t

)
∂u±

∂s
= G±(x, s, u+, u−)

It is easily seen, to straighten the characteristics of the transformed equation, a
necessary condition is 


∂x

∂z
+ f

∂x

∂t
= a

(
∂s

∂z
+ f

∂s

∂t

)
∂x

∂z
− f

∂x

∂t
= b

(
∂s

∂z
− f

∂s

∂t

) (A.2)
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provided

f 2

(
∂s

∂t

)2

−
(
∂s

∂z

)2

�= 0 (A.3)

In this expression a and b are non-zero constants. The only way to violate this
condition is if either: x− as=constant, or x− bs=constant.

The constants a and b cannot be equal if the transformation is to be diffeo-
morphic. For convenience, choose a = 1, b = −1, so converting the system (A.2)
to

∂

∂z

(
x
s

)
=

(
0 f
f 0

)
∂

∂t

(
x
s

)
which can be converted by diagonalization to the uncoupled system

∂

∂z

(
v1

v2

)
=

(
−f 0
0 f

)
∂

∂t

(
v1

v2

)

where (
v1

v2

)
=

1

2

(
−1 1
1 1

) (
x
s

)
,

(
x
s

)
=

(
−1 1
1 1

) (
v1

v2

)
A convenient set of initial conditions for x and s is

x(z, 0) =

∫ z

0

f(z′, 0) dz′

s(z, 0) = 0

This initial value problem for the hyperbolic system has a unique solution, which
means that the characteristics can always be straightened. In fact, these initial
conditions imply that (A.3) is always satisfied, since f(z, t) > 0.

In the special case that f = f(z) then the solution of these systems yields
x(z, t) =

∫ z

0

f(z′) dz′

s(z, t) = t

This is the well known travel time transformation.

Appendix B Duhamel’s integral

The derivation of the imbedding equation in Section 4 and the Green functions
equations in Section 5 relies on a result that is obtained from Duhamel’s integral
[8]. Since the basic first order 2 × 2 system of equations, (1.1), has coefficients
varying both in space and time, a slight modification of the standard result is needed.
Therefore, it is of interest here to give a few of the intermediate steps leading to the
relation (4.1), which defines the reflection kernel R(z, t, t′), and to equation (5.2)
defining the Green functions G±(z, t, t′).

In order to cover both the definition of the reflection kernel and the definition
of the Green functions, a sub-section (z0, d) of the physical slab (0, d) is considered.
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Figure 4: The geometry used in Appendix B.

The full slab (0, d) is therefore imbedded in a one-parameter family of sub-slabs
(z0, d), where the left end of the slab z0 varies between 0 and d, see Figure 4.

The basic dynamics of the problem is given by (1.1).

∂

∂z

(
u+(z, t)
u−(z, t)

)
=f(z, t)

(
−1 0
0 1

)
∂

∂t

(
u+(z, t)
u−(z, t)

)
+

(
α(z, t) β(z, t)
γ(z, t) δ(z, t)

) (
u+(z, t)
u−(z, t)

)

+

∫ t

−∞

(
A(z, t, t′) B(z, t, t′)
C(z, t, t′) D(z, t, t′)

) (
u+(z, t′)
u−(z, t′)

)
dt′

(B.1)
The domain of interest in this appendix is z0 < z < d, t > 0.

Problem 1.

A specific solution to equation (B.1) is now considered. This solution satisfies the
following mixed initial-boundary value (t′ > 0):


u±(z, 0) = 0 , z0 < z < d

u+(z0, t) = H(t− t′) , t > 0

u−(d, t) = 0 , t > 0

The boundary condition at z = d shows that there are no sources in the region to
the right of the slab, z > d.

The solution to this problem, which is assumed to be unique, depends on the
parameters z0 ∈ (0, d) and t′ > 0, and the solution is denoted U±(z, t; z0, t

′), i.e.

u±(z, t) = U±(z, t; z0, t
′)

Causality implies that U±(z, t; z0, t
′) = 0 for t′ > τ+(z0; z, t), or stated equivalently,

t < τ+(z; z0, t
′). The variable t′ denotes the starting time of the excitation at the

left boundary z0 of the sub-slab (z0, d). If the medium is invariant under time
translations, the solution is only a function of z and z0, and the difference t− t′.

The solutions U±(z, t; z0, t
′) are continuously differentiable everywhere, except

along the characteristics of the u+-equation, see Section 3. With the method of
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characteristics, it is straightforward to show that U− is continuous at the leading
edge, while U+ has a finite jump discontinuity there. The leading edge is defined
as the characteristic curve in the (z, t)-plane passing through the point (z0, t

′), i.e.
t = τ+(z; z0, t

′), z0 < z < d. The explicit values at the leading edge are:
U+(z, t; z0, τ

+(z0; z, t)) = exp

{∫ z

z0

α(ζ, τ+(ζ; z, t)) dζ

}
U−(z, t; z0, τ

+(z0; z, t)) = 0

Problem 2.

Consider now the solution of equation (B.1) subject to the mixed initial-boundary
value (t′ > 0) 


u±(z, 0) = 0 , z0 < z < d

u+(z0, t) = g(t) , t > 0

u−(d, t) = 0 , t > 0

(B.2)

Again, the boundary condition at z = d shows that there are no sources in the region
to the right of the slab, z > d. Here, g(t) is an arbitrary continuously differentiable
function, which for t > 0 can be approximated from below by the piecewise constant
function

g1(t) = g(0)H(t) +
∞∑
k=1

[g(k∆t′)− g((k − 1)∆t′)]H(t− k∆t′)

Due to the linearity of the equations (B.1), superposition is used to find the
solution of the approximate boundary value g1(t). In the limit, ∆t′ → 0, the result
is

u±(z, t) = u+(z0, 0)U±(z, t; z0, 0) +

∫ τ+(z0;z,t)

0

∂u+

∂t′
(z0, t

′)U±(z, t; z0, t
′) dt′

where the causality of the solutions U±(z, t; z0, t
′) has been used to truncate the

infinite integration range, and furthermore, the substitution g(t) = u+(z0, t) for
t > 0 has been made. It is easy to verify that the expressions u±(z, t) satisfy the
given mixed initial-boundary value problem, with the use of (3.5) and the fact that
U−(z, t; z0, τ

+(z0; z, t)) = 0. Integration by parts now shows that the unique solution
of the mixed boundary value problem (B.1) and (B.2) is



u+(z, t) = u+(z0, τ
+(z0; z, t))U

+(z, t; z0, τ
+(z0; z, t))

−
∫ τ+(z0;z,t)

0

u+(z0, t
′)
∂U+

∂t′
(z, t; z0, t

′) dt′

u−(z, t) = −
∫ τ+(z0;z,t)

0

u+(z0, t
′)
∂U−

∂t′
(z, t; z0, t

′) dt′

(B.3)

These equations now offer two possibilities, namely to define the reflection kernel
R(z0, t, t

′) of the sub-slab (z0, d), and the Green functions G±(z, t, t′) of the full slab
(0, d).
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Figure 5: The velocity profile c(z, t) = 1/ (1 + z(d− z)t), where d = 2.

For the definition of the reflection kernel use the second equation in (B.3) and
let z = z0. Define the reflection kernel

R(z0, t, t
′) = −∂U−

∂t′
(z0, t; z0, t

′)

The relation between the u±-waves at the left end point of the sub-slab is (the
subscript on z0 is dropped):

u−(z, t) =

∫ t

−∞
R(z, t, t′)u+(z, t′) dt′

which is identical to (4.1).
In the definition of the Green functions G±(z, t, t′), let z0 = 0 in (B.3). The

result is


u+(z, t) =u+(0, τ+(0; z, t))p(z, τ+(0; z, t))−
∫ τ+(0;z,t)

0

u+(0, t′)
∂U+

∂t′
(z, t; 0, t′) dt′

u−(z, t) =−
∫ τ+(0;z,t)

0

u+(0, t′)
∂U−

∂t′
(z, t; 0, t′) dt′

where

p(z, t) = exp

{∫ z

0

α(ζ, τ+(ζ; 0, t)) dζ

}
It is convenient to introduce an extra factor p(z, t′) in the definition of the Green

functions. Therefore, the definition of G±(z, t, t′) is

− ∂

∂t′
U+(z, t; 0, t′) = p(z, t′)G+(z, τ+(0; z, t), t′)

− ∂

∂t′
U−(z, t; 0, t′) = p(z, t′)G−(z, τ+(0; z, t), t′)
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Figure 6: A set of characteristics for the case, f(z, t) = 1 + z(d− z)t, where d = 2.

Appendix C Examples on characteristics of the

u+-equation

The explicit form of the function f determines whether a closed form expression can
be found for the characteristics in (3.1) or not. In most cases this is not possible.
In this section, the theory of the characteristics is illustrated with an analytic and
a numerical example.
Analytic example: The function f(z, t) has to be consistent with the bound-
ary conditions, (1.2), given in Section 1, and simple enough to permit closed form
solutions of (3.1). Thus, for τ+ ≥ 0 and 0 ≤ ζ ≤ d let

f(ζ, τ+) =
1

v0

[
1 + aζ(d− ζ)τ+

]
Here d is the thickness of the slab, v0 is a constant and a a parameter. Outside the
slab, i.e. for ζ < 0 or ζ > d, and everywhere for τ+ < 0, let

f(ζ, τ+) =
1

v0

Figure 5 shows the velocity profile c(z, t) inside the slab (d = 2), surrounded by a
medium with the constant wave velocity v0 = 1, and a = 1. A set of characteristics
for this case is illustrated in Figure 6.

If f is inserted into equation (3.1), a linear first order ordinary differential equa-
tion in τ+(ζ) is obtained. This equation is easily solvable after multiplication with
the integrating factor eg(ζ) where

g(ζ) =
1

v0

a(−1

2
dζ2 +

1

3
ζ3)

The explicit form of the characteristic curve passing through the point (z, t) is

τ+(ζ; z, t) = teg(z)e−g(ζ) +
1

v0

e−g(ζ)
∫ ζ

z

eg(ζ
′) dζ ′
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Figure 7: The velocity profile c(z, t) for the example in (C.1) for d = 5.

Specifically, the solution at ζ = 0 is

τ+(0; z, t) = teg(z) − 1

v0

∫ z

0

eg(ζ
′) dζ ′

and the solution at z starting at (0, t) is

τ+(z; 0, t) = te−g(z) +
1

v0

e−g(z)
∫ z

0

eg(ζ
′) dζ ′

Differentiation with respect to t and z gives

∂τ+(ζ; z, t)

∂t
= eg(z)e−g(ζ)

and
∂τ+(ζ; z, t)

∂z
= tg′(z)eg(z)e−g(ζ) − 1

v0

eg(z)e−g(ζ) = −f(z, t)eg(z)e−g(ζ)

and (3.5) is satisfied.
Numerical example: In Figures 7 and 8, the phase velocity and a set of charac-
teristics, respectively, for a non-linear case are depicted. The phase velocity of the
non-stationary medium in this example is

f(z, t) =




1 , z < 0

1 + z(d− z) (1.1 + sin t) , 0 < z < d

1 , z > d

(C.1)

These curves have been obtained by numerical integration.
Note that the flow depicted by Figures 6 and 8 illustrates a flow field that is non-

area preserving, i.e. the flow field has non-zero divergence (compressible). Compare
this with Figure 9 for which f(z, t) = f(z) and so the flow field is area preserving.
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Figure 8: A set of characteristics for the example in (C.1) for d = 5.
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