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Abstract

In many cases it is desired to have both high capacity and small antennas in
wireless communication systems. Unfortunately, the antenna performance de-
teriorate when the antennas get electrically small. In this paper fundamental
limitations from antenna theory and broadband matching are used to analyze
the spectral efficiency of an arbitrary antenna inserted inside a sphere.

1 Introduction

The spectral efficiency of a wireless communication system is determined by the
properties of the channel that relates the transmitted and received signals. This
communication channel is in general very complicated and depends on the feeding
network, the antennas, and the wave propagation between the antennas. Recently,
the multiple-input multiple-output (MIMO) systems have received much interest
due to their ability to increase the spectral efficiency in wireless communication
systems [8, 21, 27]. The MIMO systems are based on the use of multiple anten-
nas at each end of the communication link in environments with rich multi-path
propagation.

In many cases it is desired to design systems that both have a high capacity and
a small physical size. Unfortunately, the antenna performance deteriorates when
the antenna gets electrically small [13, 27]. Fundamental limitations on this kind
of systems can be analyzed under various assumptions. The case with idealized
antennas, i.e., antennas that do not interact with the electromagnetic field, are,
e.g., discussed in [17, 19, 28]. In the planar case, a plane wave expansion shows that
the idealized antennas are correlated at distances less than half the wavelength λ,
giving a preferred antenna-array element spacing of approximately λ/2. Although,
also the volume case [19] can be analyzed with idealized antennas, it is preferable
to consider a model that includes the properties of the antennas. In this paper,
fundamental limitations on the capacity of an arbitrary antenna inserted inside a
sphere are analyzed.

To analyze the spectral efficiency of a volume, it is essential to relate three clas-
sical theories giving fundamental limitations in the disciplines information theory,
broadband matching, and antenna theory. In information theory, the Shannon the-
ory set fundamental limits of how coding can be used to increase the data rate over
a given communication channel, i.e., the capacity [24]. The capacity depends on the
number and gain of the orthogonal sub channels and their signal to noise ratio [21].
For the spectral efficiency of a volume, the interesting channel is the channel that
relates the signals on transmission lines to the electromagnetic wave field outside
the volume. Of course, this channel depends on the choice of antennas, matching,
transmission lines, and the statistics of the radio channel outside the volume. Here,
it is essential to consider the best possible antenna in the given volume as well as
the best possible matching to a transmission line. The classical theory of broadband
matching, shows how much power that can be transmitted between a transmission
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Figure 1: Block scheme of a wireless communication system. The output is y =
Hx + n, where the channel is decomposed into the parts H = HRHPHT and n is
the noise.

line and a given load [9], i.e., the antenna. The classical theory of radiation-Q uses
spherical vector modes to analyze the properties of a hypothetical antenna inside a
sphere [5, 13, 14]. An antenna with a high Q-factor has electromagnetic fields with
large amounts of stored energy around it, and, hence, typically low bandwidth and
high losses [13]. The mode expansion also gives a natural expression of the polar-
ization, angle, and spatial diversity that is utilized in MIMO systems [8, 21, 25, 27].

In this paper the spectral efficiency of a sphere is analyzed. In Section 2, a de-
composition of the communication channel into a transmitting antenna channel, a
wave propagation channel, and a receiving antenna channel is given. The antenna
channels relate the electrical signals on transmission lines to the electromagnetic
fields outside the antennas. The electromagnetic field is represented by spherical
vector waves. In Section 3, it is shown that a set of unpolarized uniformly dis-
tributed plane waves impinging on the antennas can be represented by a Rayleigh
channel in the spherical vector modes. In Section 4, the Fano theory is used to
get fundamental limitations on the matching network for low order spherical vector
modes and resonance circuits. The capacity of a Rayleigh fading antenna channel is
analyzed in Section 5. In Section 5.1, the MIMO cube and MIMO tetrahedron are
analyzed with the spherical vector modes.

2 Channel decomposition and spherical vector

mode representation

A MIMO–model for a communication system with Nx transmitting antennas and Ny

receiving antennas is considered, as depicted in Figure 1. Here, x is the transmitted
Nx × 1 signal, and y is the received Ny × 1 signal given by

y = Hx + n, (2.1)

where H is the complex Ny×Nx matrix, and n is complex Gaussian noise [20, 21, 27]
with covariance matrix σ2

vI. The totally transmitted power is P = trace{Rxx} where
Rxx is the covariance matrix for the input signal x.
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To separate the antenna properties from the properties of the wave propagation,
the communication channel is decomposed into a combination of a transmitting
antenna channel HT, a wave propagation channel HP, and a receiving antenna
channel HR, i.e., H = HRHPHT.

In particular, we can make the following assumptions. The communication dis-
tance is large enough so that there is no mutual coupling between the transmitting
and receiving antenna arrays. The transmitted electric field E(t)(r) can therefore
be expanded in outgoing spherical vector waves uτml(kr)

E(t)(r) = k
√

2η
∞∑
l=1

l∑
m=−l

2∑
τ=1

a
(t)
τmluτml

(
k(r − rt)

)
= k
√

2η
∑

α

a(t)
α uα

(
k(r − rt)

)
, for |r − rt| ≥ Rt (2.2)

where the propagation region is assumed to be source–free, a
(t)
τml = a

(t)
α are the expan-

sion coefficients, rt is the position of the transmitting antenna array, Rt the radius of
a sphere containing the antenna, k the wave number, and η the free space impedance.
To simplify the notation, the multi–index α = (τ,m, l) is used. Whenever necessary,
the multi–index α is ordered and identified with the number α = 2(l2+l−1+m)+τ ,
see also (5.7). The multi–poles are classified as either TE (τ = 1) or TM (τ = 2).
The azimuthal and radial dependencies are given by the m and l index, respectively.
The normalization with k

√
2η is used to give a power normalization of the expansion

coefficients, i.e., the totally radiated power is given by
∑

α |aα|2.
We assume that the transmitting antenna channel is given by a linear mapping

from the input signal x to the expansion coefficients a
(t)
α , and can therefore be

represented as
a(t) = HTx, (2.3)

where we employ a semi–infinite notation for the column vector a(t) = [a
(t)
α ] and the

matrix HT which has Nx columns.
We assume that the received electric field E(r)(r) can be expanded in incoming

spherical vector waves vα(kr)

E(r)(r) =
√

2η k
∑

α

a(r)
α vα

(
k(r − rr)

)
, for |r − rr| ≥ Rr, (2.4)

where a
(r)
α are the expansion coefficients, the multi–index α = (τ,m, l) is employed

as in (2.2), rr is the position of the receiving antenna array and Rr the radius of a
sphere containing the antenna. The incoming spherical vector waves vα(kr) have
the same basic features as the outgoing uα(kr) mentioned above.

The wave propagation channel HP contains the properties of the geometrical
and electrical features between the transmitting antenna and the receiving antenna.
In particular, the channel HP represents the mapping from the transmitted electric
field E(t)(r) to the received electric field E(r)(r), or equivalently, the mapping from
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the expansion coefficients a
(t)
α to a

(r)
α . We assume that this mapping is linear, and

can therefore be represented as

a(r) = HPa(t), (2.5)

where the matrix HP is (countably) infinite–dimensional in both rows and columns.
In practice however, and as we will see later, this matrix can be considered finite
and represents as many modes that are practically relevant. The bandwidth of
higher order modes will ultimately tend to zero as the corresponding Q–factors tend
to infinity, and these modes will therefore not contribute to the capacity of the
communication channel.

We assume that the receiving antenna channel is given by a linear mapping from
the expansion coefficients a

(r)
α to the received signal y, and can hence be represented

as
y = HRa(r), (2.6)

where the semi–infinite matrix HR has Ny rows. Finally, the received signal y is
corrupted by white Gaussian noise (2.1).

3 The Rayleigh fading antenna channel

The Rayleigh channel is most naturally defined as a channel with uncorrelated
and zero mean entries having complex Gaussian distribution and the amplitudes
thus being Rayleigh distributed [20–22, 27], i.e., H = Hw, where E {Hw} = 0 and
E {Hw|ijH∗

w|mn} = δimδjn. However, it is also customary to derive this property
from the assumption that a large number of independent and uniformly distributed
scattered waves are incident on the receiver, see e.g., [16]. Here, it is shown that
a set of unpolarized uniformly distributed plane waves impinging on the antennas
can be represented by a Rayleigh channel in the spherical modes.

Consider the channel from the transmitted signals to the received spherical vector
modes, i.e., HPHT. Suppose that the received electric field (2.4) is given by

E(r)(r) =
Ns∑

n=1

snEne−ikk̂n·(r−rr), for |r − rr| ≥ Rr (3.1)

consisting of a number of uniformly distributed and independent scattered plane
wave components. Here sn represents the complex signal amplitudes, En random
field strengths, and the time convention eiωt is used.

It is assumed that for each fixed direction k̂n, the field En has zero-mean complex
Gaussian components with the variance E2

0 , i.e., En = E0(φ1û1 + φ2û2), where û1

and û2 are two orthogonal unit vectors that are perpendicular to k̂n and φi have
variance 1. This means that the polarization of En is uniformly distributed over the
Poincare sphere, i.e., unpolarized, with the Stokes parameter E2

0 = E {|En|2}. The
average power flux is given by E2

0/(2η). It is furthermore assumed that the incident
directions k̂n are uniformly distributed over the unit sphere.
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The wave propagation channel HP can be decomposed into two parts HP =
HAHB where HB represents the mapping from a

(t)
α to sn coefficients, and HA rep-

resents the mapping from sn coefficients to a
(r)
α . Thus,

a(r) = HAs (3.2)

where the mapping (3.2) is defined by the expansion of plane waves in incoming
spherical vector waves

a(r)
α =

1√
2η k

NA∑
n=1

2πi1−τ−lA∗
α(k̂n) ·Ensn (3.3)

and we can conclude that

HA|αn =
2π√
2η k

i1−τ−lA∗
α(k̂n) ·En. (3.4)

The channel HA is a random channel. With the assumption above of uniformly
distributed unpolarized waves, the expectation of each channel element is zero, i.e.,
E {HA|αn} = 0. The expectation of the channel product elements HA|αnH

∗
A|α′n′ can

be written

E {HA|αnH
∗
A|α′n′} =

2π2

ηk2
il

′−l+τ ′−τE
{

A∗
α(k̂n) ·EnAα′(k̂n′) ·E∗

n′

}
=

2π2

ηk2
il

′−l+τ ′−τEk̂

{
A∗

α(k̂n) · EE {EnE
∗
n′} ·Aα′(k̂n′)

}
. (3.5)

The expectation over the polarization is

EeE
{

E∗
nẼn′

}
= E

{
|En|2

}
I2×2δnn′ = E2

0I2×2δnn′ , (3.6)

where I2×2 denotes the 2 by 2 identity dyad. The expectation over the incident
angles is hence

E {HA|αnH
∗
A|α′n′} =

2π2E2
0

ηk2
il

′−l+τ ′−τEk̂

{
A∗

α(k̂n) ·Aα′(k̂n)
}

δnn′

=
πE2

0

2ηk2
il

′−l+τ ′−τδnn′

∫
Ω

A∗
α(r̂) ·Aα′(r̂) dΩ =

πE2
0

2ηk2
δαα′δnn′ (3.7)

Here, it is essential to normalize the SNR to the total power of the electromagnetic
wave that impinges on the sphere. Although the power of a plane wave is infinite
any finite mode expansion represents a finite amount of power. It is also necessary to
consider the distribution of the average amplitude as a function of frequency. Here,
we assume that the amplitude decay is proportional to the propagation distance in
wavelengths, i.e., E0/k is constant. This can be interpreted as a power normalization
with respect to the The plane wave is normalized with respect to the power flux
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through the cross section of the sphere with radius λ/(2π) = k−1. To simplify the
notation, the average power per plane wave is defined as

P

Ns

=
E2

0π

2ηk2
(3.8)

In conclusion, the fundamental Rayleigh channel HA defined in (3.1) though (3.3)

has complex Gaussian entries, i.e., HA =
√

P
Ns

Hw. The trace of the covariance

matrix for the signal s is normalized as trace{Rss} = Ns.
The received signal is hence given by

y =

√
P

Ns

HRHws + n =

√
P

Ns

HRHwHBHTx + n

=

√
P

Ns

HRHwR
1/2
T x + n, (3.9)

where R
1/2
T is the correlation matrix [21] on the transmitter side. It is also observed

that HR can be interpreted as the square of the correlation matrix on the receiver
side, i.e., HR = R

1/2
R .

Naturally the received power is much smaller than transmitted power in wireless
communication systems. In the analysis of the receiving channel HR the channel
model from random plane waves s to y in (3.9) is used. This is equivalent to the
assumption of an uncorrelated channel on the transmitter side RT = I, see also
Theorem B.1. This gives the channel

y =

√
P

Ns

HRHws + n. (3.10)

It is noted that this channel model is independent of frequency as well as of the size
of the receiving sphere.

A SVD of the receiving channel, HR = UΣ′VH, gives

ỹ = UHy =

√
P

Ns

Σ′VHHws + UHn. (3.11)

To simplify this channel model, we first observe that VHHw is a semi-infinite
Rayleigh matrix with Ns columns. Secondly, we let Σ denote the Ny ×Ny diagonal
matrix containing the singular values of the semi-infinite matrix Σ′. Finally, the
infinite matrix product in Σ′VHHw is replaced by a finite matrix product between
Σ and a finite Rayleigh matrix. This gives the equivalent channel

ỹ =

√
P

Ns

ΣHws + ñ, (3.12)

where Σ and Hw are an Ny ×Ny diagonal matrix containing the singular values of
HR and an Ny ×Ns Rayleigh matrix, respectively.
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Since the channel is random the corresponding information rate is a random
variable. The capacity of these fading channels are commonly analyzed with the
ergodic capacity and the outage capacity [21]. In this section, we do not consider
the bandwidth of the system and hence use the capacity (efficiency) with the unit
b/s/Hz as commonly used in MIMO literature. To avoid confusion with the capac-
ity in b/s, we either give the units or use the word capacity efficiency whenever
necessary.

The ergodic capacity (in b/s/Hz) of the channel (3.12) is given by

C = E
{

max
Rss

log2 det

(
I +

P

N0Ns

ΣHwRssH
H
wΣ

)}
(3.13)

where Σ and Hw are the diagonal matrix containing the singular values of HR and
an Ny × Ns Rayleigh channel, respectively. The correlation matrix Rss is given by
the water-filling solution [21].

The case of an idealized antenna connecting each spherical vector mode to one
port gives Ny uncorrelated sub-channels Σ = INy×Ny . The ergodic capacity, in b/s,
is given by the ergodic capacity of the Hw channel, i.e.,

C = E
{

max
Rss

log2 det

(
I +

P

N0Ns

HwRssH
H
w

)}
(3.14)

The properties of this Hw MIMO channel is analyzed in many papers, see e.g.,
[21, 27]. A lower bound on the ergodic capacity is given by

C ≥ R log2

(
1 +

P

N0Ns

exp
( 1

R

R∑
j=1

R′∑
p=1

1

p
− γ
))

(3.15)

where R = min(Ny, Ns), R′ = max(Ny, Ns), and γ = 0.577... the Euler’s con-
stant [21]. Here, it it seen that the capacity efficiency of an antenna that connects
each spherical vector mode to one port increases rapidly with the number of ports as
long as the SNR is sufficiently high. It is also observed that the capacity efficiency
is independent of the radius of the antenna. Since the number of spherical modes is
infinite the number of spatial channels is also infinite irrespectively of the size of the
volume. Obviously, this is unrealistic. To circumvent this problem the capacity has
to be considered, i.e., the capacity in b/s. The interpretation of the capacity (3.13)
can be simplified by assuming an SNR, sufficiently high so that the identity matrix
in (3.13) can be neglected. This gives

C ≈ E
{

log2 det

(
P

N0Ns

HwRssH
H
w

)}
+ log2 det

(
Σ2
)
. (3.16)

The second term can be interpreted as the loss in ergodic capacity due to the antenna
channel at a high SNR. The correlation loss is given by

∆C = log2 det
(
Σ2

R

)
= log2

Ny∏
m=1

σ2
m =

Ny∑
m=1

log2 σ2
m (3.17)

Since the receiving antenna channel has a total power gain ‖Σ‖2
F ≤ Ny the correla-

tion detΣ ≤ 1 and hence ∆C ≤ 0.



8

matching

network

transmission

line

antenna EM field

ZAZ0 Γ

x

at

Figure 2: The transmitting (and receiving) antenna channel HT is the map from
the electrical signals x on the transmission line to the radiated electromagnetic field
outside the antenna, here represented by the spherical vector modes at.
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Figure 3: Circuit models of simple antennas. The resistor models the radiation
part. The capacitor and inductor model the parts that stores the electric field and
magnetic field, respectively. The inductance and capacitance of the lowest order
modes are given by a/c0, where a and c0 are the sphere radius and speed of light,
respectively.

4 Limitations on the antenna channel

The antenna channels connect the electrical signals on the transmission line with the
radiated electromagnetic waves outside the antenna. This channel is in general very
complex. Here, the case where each transmission line is connected to a spherical
wave with a lossless matching network is considered, see Figure 2. From the input
signal, the antenna can be modeled with a lumped circuit model. The spherical
vector modes have a circuit equivalent representing the impedance of the modes [5,
14]. The equivalent circuits of the lowest order modes, i.e., the TMm1 and TEm1

for m = −1, 0, 1, are shown in Figure 3. The resistance R, capacitance C, and
inductance L are the circuit equivalents of the radiated field, the stored electric field,
and the stored magnetic field, respectively. The higher order modes are given by a
ladder network [5, 14]. These circuits can be interpreted as high-pass filters. The
Fano theory is used to get fundamental limitations on the matching network [9, 26].

The Fano theory uses Taylor expansions of the reflection coefficient around the
zeros of the transmission coefficient to get a set of integral relations for the reflec-
tion coefficient. Here, we assume that transmission line has unit impedance. The
transmission coefficient of the TMm1 and TEm1 modes has a double zero at s = 0.
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The corresponding reflection coefficient is

Γ1(s) =
1

1 + 2sa
c0

+ 2s2a2

c20

(4.1)

without zeros λoi but with the two poles

λp1,2 =
−1± i

2a
c0

=

(
a

c0

(−1∓ i)

)−1

. (4.2)

The coefficients of the Taylor series around s = 0 give the two integral relations

2

π

∫ ∞

0

ω−2 ln
1

|Γ(iω)|
dω =

∑
i

λ−1
oi − λ−1

pi − 2λ−1
ri =

(
2a

c0

− 2
∑

i

λ−1
ri

)
(4.3)

and

2

π

∫ ∞

0

ω−4 ln
1

|Γ(iω)|
dω = −1

3

∑
i

λ−3
oi − λ−3

pi − 2λ−3
ri =

(
4a3

3c3
0

+
2

3

∑
i

λ−3
ri

)
, (4.4)

where the coefficients λri have a positive real-valued part. It is noted that it is enough
to consider one coefficient λr or a complex conjugated pair [9]. Assuming a constant
reflection factor 2 ln 1

|Γ| = πK, over the bandwidth 1−B/2 ≤ ω/ω0 ≤ 1 + B/2 gives

K
B

1−B2/4
= 2k0a− 2

ω0

λr

(4.5)

and

K
B + B3/12

(1−B2/4)3
=

4(k0a)3

3
+

2

3

ω3
0

λ3
r

(4.6)

where k0 = ω0/c0. These equations are solved with respect to B and λr, in Figure 4,
the solution B is depicted for a SWR of 2, i.e., |Γ| = 1/3. For the narrow bandwidth
case B � 1 the equalities can be combined as

KB ≤ 4(k0a)3

3
+

2

24
(2k0a−KB)3 =

4(k0a)3

3
+

2

24

(
8(k0a)3 − 12(k0a)2KB + 6k0a(KB)2 − (KB)3

)
≤ 2(k0a)3. (4.7)

This gives the asymptotic bandwidth

B ≤ π

ln |Γ|−1
(k0a)3 for B � 1, (4.8)

see also Figure 4.
In theory, the equivalent circuits can be used to derive a Fano bandwidth for any

TMmn or TEmn mode. However, this is rather tedious due to the complex structure
of these higher order modes together with the non-linearity of the Fano theory.
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Figure 4: Fano fractional bandwidth as function of the sphere radius k0a for a
SWR of 2.

Moreover, it is known that it is advantageous to mix the TE and TM modes in high
bandwidth systems [14]. Instead of using the analytic expression of the impedance
it is common to use the Q-factor (quality factor, antenna Q or radiation Q) to get
an estimate of the bandwidth. Since, there is an extensive literature on the Q-factor
for antennas, see e.g., [5, 6, 10, 12–14, 18], only some of the results are given here.
The Q of the antenna is defined as the quotient between the power stored in the
reactive field and the radiated power [5, 14]

Q =
2ω max(WM, WE)

P
, (4.9)

where ω is the angular frequency, WM stored magnetic energy, WE stored electric
energy, and P the dissipated power. At the resonance frequency, there are equal
amounts of stored electric energy and stored magnetic energy, i.e., WE = WM.
The Q-factor is related to the bandwidth of the corresponding resonance circuit as
∆f/f0 ≈ Q−1 for Q � 1. The Q-factor can either be determined by the equivalent
circuits [5, 14] or by an analytic expression functions [6]. The Q of the TMlm or
TElm mode is given by

Ql = ka−
(

(ka)3

2
+ (l + 1)ka

)(
j2l + y2

l

)
− (ka)3

2

(
j2l+1 + y2

l+1

)
+

2l + 3

2
(ka)2 (jljl+1 + ylyl+1) , (4.10)

where jl and yl are the spherical Bessel and Neumann functions, respectively [6].
The Q-factor depends only on the l-index and there are 2(2l + 1) modes for each l
index, see Figure 5a. The six lowest order modes have Q = (ka)−3 + (ka)−1. By
combination of one TEm1 mode and one TMm1 mode the Q-factor is reduced to
Q = (ka)−3/2 + (ka)−1.

At and around the resonance frequency, ω0 = 2πf0, the antenna model is given
by a resonance circuit, see Figure 3. The impedance of the antenna is only matched



11

0.2 0.4 0.6 0.8 1 1.2 1.4
10

0

10
1

10
2

10
3

10
4

l=1, 6 modes

l=2, 10 modes

l=3, 14 modes

l=4, 18 modes

a) b)

0.2 0.4 0.6 0.8 1 1.2 1.4
10

-4

10
 -3

10
 -2

10
-1

10
0

1

2

3

4

5

kaka

Q jTj
2

Figure 5: a) Q-factor as a function of the sphere radius ka. b) transmission
coefficient |T |2 in (4.19) as a function of ka for bandwidths of 5%, 10%, and 20%.

to the feeding network at the resonance frequency. For frequencies around the
resonance frequency, the radiated power is given by Prad = |T |2Pin = (1 − |Γ|2)Pin.
The transmission coefficient of the RCL circuits in Figure 3, is

tRCL(s) =
1

1 + Q
2

(
ω0

s
+ s

ω0

) . (4.11)

It has a single zero at the origin and a single zero at infinity. The corresponding
reflection coefficient is

ΓRCL(s) =
1 + (s/ω0)

2

1 + (s/ω0)2 + 2s
ω0Q

(4.12)

with the zeros and poles

λo1,2 = ±iω0 and λp1,2 =
ω0

Q

(
−1± i

√
Q2 − 1

)
, (4.13)

respectively. The Fano theory gives the integral relations

2

π

∫ ∞

0

1

ω2
ln

1

|Γ(iω)|
dω =

∑
i

λ−1
oi − λ−1

pi − 2λ−1
ri =

2

ω0Q
− 2

∑
i

λ−1
ri (4.14)

and
2

π

∫ ∞

0

ln
1

|Γ(iω)|
dω =

∑
i

λoi − λpi − 2λri = 2
ω0

Q
− 2

∑
i

λri (4.15)

by Taylor expansions around s = 0 and s = ∞, respectively. Assume that the
matched reflection coefficient is constant over its bandwidth, i.e., 2

π
ln 1

|Γ| = K, to
get

B

1−B2/4
K =

2

Q
− 2

∑
i

ω0

λri

and BK =
2

Q
− 2

∑
i

λri

ω0

, (4.16)

where the coefficients λri have a positive real-valued part. By considering one com-
plex conjugated pair, λr1 = λ∗r2 it is seen that the first relation gives an inequality
which yields the least upper bound for K as

K ≤ 2

BQ

(
1− B2

4

)
. (4.17)
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Hence, the reflection coefficient and fractional bandwidth are bounded as

|Γ| ≥ e−
π

QB
(1−B2/4) and B ≤

√
Q2K2 + 4−QK ≈ π

Q ln |Γ|−1
, (4.18)

respectively. The corresponding transmission coefficient is bounded as

|T |2 = 1− |Γ|2 ≤ 1− e−
2π
QB

(1−B2/4), (4.19)

see also Figure 5b. In Figure 4, the Fano fractional bandwidth for the TMm1 and
TEm1 modes with a SWR of 2 are compared with the narrow-band approximation
B � 1 and the Q-factor approximation. In the figure, it is seen that both approx-
imations are good for small k0a. The Q-factor over estimates the bandwidth for
large k0a.

5 Capacity of a sphere in a Rayleigh channel

In this Section, we analyze how the fundamental limitations derived in Section 4
affect the capacity of a sphere. We use the signal model (3.12) over a fixed bandwidth
∆f . The ergodic capacity, in b/s, is given by

C∆f = E
{

max
Rss

∫ f2

f1

log2 det

(
I +

Ptot

N0Ns∆f
ΣHwRssH

H
wΣH

)
df

}
, (5.1)

where Ptot/(Ns∆f) is the average power per plane wave and Hz. The matrix Rss

is given by the space–frequency water-filling solution (A.10). The communication
scheme can, e.g., be the OFDM, see Appendix A and [3, 4, 23]. To simplify the
analysis, we consider the capacity efficiency over a bandwidth B, i.e.,

CB = E
{

max
Rss

log2 det

(
I +

P

N0Ns

ΣHwRssH
H
wΣH

)}
, (5.2)

where P = Ptot/∆f is the power density. The matrix Rss is given by the water-filling
solution [21, 27]a and, hence, C∆f ≥ CB∆f = CBBf0.

In contrary to the fixed frequency case (3.15) where the singular values could be
chosen to unity in the uncorrelated case, the singular values in (5.1) are limited by
the required bandwidth. The Fano limit (4.18) on the reflection factor shows that
the singular values are bounded by

σ2
m = 1− |Γm|2 = 1− e−

2π
QmB

(1−B2/4), (5.3)

where Qm is the Q-factor of port number m. Here, one observes that the singular
values σ2

m are small if the product between the Q-factor and the fractional bandwidth
is large. The classical bandwidth definition of VSWR = 2 corresponds to a singular
value σ2

m = 8/9.
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Figure 6: Capacity efficiency CBJ of an idealized mode coupled antenna as a func-
tion of the radius ka for the bandwidths 5%, 10%, and 20% estimated with (5.5).
a) the capacity efficiency. b) the capacity efficency of each mode.

We consider the case with no channel knowledge, Rss = I. The Jensen inequality
can be used to estimate the capacity [29], i.e.,

CB ≤ CBJ = log2 det

(
I +

PΣE
{
HwHH

w

}
ΣH

N0Ns

)
=

Ny∑
m=1

log2

(
1 +

P

N0

σ2
m

)
. (5.4)

The upper bound CBJ, in b/s/Hz, is deterministic and depends only on the proper-
ties of the receiving antenna channel and the SNR. For the case of a large number of
uncorrelated incident waves, i.e., Ns large, the inequality (5.4) becomes an equality
since HwRssH

H
w = HwHH

w → NsINy×Ny as Ns → ∞. Observe that estimate (5.4) is
not good for Ny > Ns, it overestimates by the capacity by giving same results as for
Ny � Ns. With the Fano estimate, (5.3), of the singular values, we get

CBJ =

Ny∑
m=1

log2

(
1 +

P

N0

(
1− e

− 2π
QmB

“
1−B2

4

”))
(5.5)

as an expression of the capacity efficiency over a bandwidth B. Here, we observe
that the capacity is limited by the product QnB.

For the idealized antenna connecting one spherical vector mode to one port,
the explicit representation of the Q-factors can be used to calculate (5.5). The
capacity CBJ as a function of the sphere radius is depicted in Figure 6a for the
bandwidths 5%, 10%, and 20%, an SNR of P/N0 = 1, and an infinite number of
antenna ports Ny = ∞. As see in the figure, the capacity efficiency decreases with
increased bandwidth. The capacity, in b/s, increases due to the multiplication with
the bandwidth. It is also seen that the capacity increases rapidly with the size of the
sphere. This is due the increased spatial diversity of the idealized antenna as seen
in Figure 6b, where the capacity efficiency of each subchannel is shown. Only the
first 6 modes, corresponding to l = 1, are used for a small sphere. For these modes
it is also known that it is advantageous to combine the TEm1 and TMm1 modes
since this doubles the radiation resistance and hence gives approximately half the
Q-factor. For a larger sphere higher order modes can be used.
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Figure 7: The capacity C∆fJ as a function of the bandwidth for different Q-factors.
The bandwidths related to |Γ| = 1/3 are indicated by the stars. a) the capacity in
b/s with fixed total power Ptot/(N0f0) = 0.01. b) the capacity efficiency (in b/s/Hz)
with fixed power density P/N0 = 0.01.

It is also interesting to consider how the capacity, in b/s, for a fixed volume
depends on the bandwidth. In this case it is natural to consider the total power
Ptot = P∆f as fixed, this gives

C∆fJ = Bf0

Ny∑
m=1

log2

(
1 +

Ptot

N0f0B

(
1− e

− 2π
QmB

“
1−B2

4

”))
. (5.6)

The capacity (b/s) divided by the center frequency in (5.6) is plotted in Figure 7 for
the scaled signal to noise ratio Ptot/(N0f0) = 0.01. Three regions can by identified in
the figure. For sufficiently small fractional bandwidths BNy, the capacity increases
approximately linearly with BNy. This is the region where MIMO systems have
a large advantage, i.e., the capacity increases almost linearly with the number of
spatial channels Ny. For larger bandwidths the power in each channel gets small
and the capacity is limited by the SNR.

5.1 MIMO cube and MIMO tetrahedron

To illustrate the antenna channel some simple idealized MIMO antennas are con-
sidered. The tripole antenna is probably the simplest MIMO antenna. It consists of
three orthogonal electric dipoles and three orthogonal magnetic dipoles [2, 7], i.e.,
the first six modes, l = 1, m = −1, 0, 1, and τ = 1, 2. To avoid the problem of feed-
ing both electric and magnetic dipoles, a MIMO cube [1] or a MIMO tetrahedron
can be used, see Figure 8.

The MIMO tetrahedron consists of six electric dipoles centered on the edges of
a tetrahedron. This gives a maximum of six ports for the antenna, i.e., Nx = 6 in
transmission mode and Ny = 6 in receive mode. The transmitting antenna channel
HT can be determined by a projection of the far-field patterns of each dipole on the
spherical vector modes. The transmitter is assumed be matched at the considered
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a) b)

Figure 8: Illustration of MIMO antennas. a) a MIMO tetrahedron, i.e., a tetrahe-
dron with an electrical dipole on each edge. b) a MIMO cube, i.e., a cube with an
electrical dipole on each edge.

frequency and to conserve power. This gives a total channel gain ‖HT‖2
F = 6. For a

mismatched transmitter, the total channel gain is less than 6. Reciprocity gives the
corresponding receiving channel as HR = HH

T, where HR is a semi-infinite matrix
with 6 rows. In Figure 9a, the mode representation of the MIMO tetrahedron with
a side length of 0.3 wavelengths is depicted, i.e., the rows of HR. The amplitude
of bar number α correspond to the magnitude of mode number α, where the modes
are numbered as α = 2(l2 + l − 1 + m) + τ , i.e.,

α
l
m
τ

 =


1 2 3 4 5 6 7 8 ...
1 1 1 1 1 1 2 2 ...
−1 −1 0 0 1 1 −2 −2 ...
1 2 1 2 1 2 1 2 ...

 (5.7)

As seen by the mode representation, both electric dipoles (τ = 2) and magnetic
dipoles (τ = 1) are included in the representation. It is also observed that each
dipoles excites several modes and that the amplitude decreases for large values of
the l index.

The singular value decomposition is used to rewrite the radiation channel into a
sum of orthogonal channels HR = UΣVH. The mode excitations of the subchannels
are given by the orthogonal semi-infinit matrix V of the SVD. In Figure 9b, the or-
thogonal channel, i.e., the ΣVH, is depicted. Here, it is observed that the first three
singular values σ1,2,3 correspond to three orthogonal dipoles plus a small contribu-
tion from higher order modes. The next three singular values σ4,5,6 correspond to
the three orthogonal magnetic dipoles plus a small contribution from higher order
modes.

In Figure 10a, the magnitude, log2 σ2
i , of the singular values are potted as a

function of the size of the tetrahedron. The log2 scale is used for a direct comparison
with the loss in ergodic capacity. Here, it is seen that the electric dipoles dominate
the radiation field if the tetrahedron is small, e.g., the side less than 0.2 wavelengths.
As the size of the tetrahedron increases the influence of the magnetic dipoles also
increases. For a side length of 0.5 wavelengths the contribution from the electric
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Figure 9: Mode representation of the MIMO tetrahedron with size 0.3λ for the first
30 modes, where (5.7) is used to order the modes. a) The mode representation for
each dipole, i.e., each graph represents one column of HT and the mode numbers
represent the rows of HR. b) The mode representation of the orthogonal channels
i.e., the rows and columns of ΣVH. The first three and last three channels are
dominated by electrical dipoles (odd modes) and magnetic dipoles (even modes),
respectively.

dipoles and the magnetic dipoles are of the same magnitude. Observe, that there
are only two different singular values, i.e., σ1 = σ2 = σ3 and σ4 = σ5 = σ6.

To determine the capacity of the MIMO tetrahedron in a Rayleigh channel (3.12)
is used. In Figure 10b, the ergodic capacity for the SNR values of 100, 10, 1, 0.1, and
0.01 (simulated over 1000 realizations) is compared between the MIMO tetrahedron
(solid lines), high SNR approximation (dashed lines), and the uncorrelated cases
(dotted lines). In the figure, it is seen that the high SNR approximation is accurate
for large antennas and a SNR above 1. The corresponding average number of used
channels is shown in Figure 10c.

The MIMO cube consists of 12 electric dipoles centered on the edges of a cube.
In [1], it is shown that the MIMO cube has 12 independent channels if the cube is
sufficiently large. This is also observed in Figure 10d where gain of each channel is
plotted as a function of the radius of the smallest sphere containing the dipoles. In
the figure, it is seen that a small cube is dominated by first three channels. The
ergodic capacity and the number of used channels as a function of the sphere radius
are shown in Figure 10 e and f, respectively.

6 Conclusions

The analysis of the spectral efficiency in this paper reveals that it is important to
consider a model that incorporates the properties of the antennas and the matching
network. As shown in (3.15), the ergodic capacity at a fixed frequency, i.e., capacity
in b/s/Hz, is independent of the size of the sphere. This means that, at least in
theory, it would be possible to design small antenna with high spatial diversity. The
drawback of small antennas such as being narrow band and lossy are well known [13,
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Figure 11: The baseband MIMO–OFDM system.

27]. These drawbacks are naturally included in the analysis by consideration of the
capacity over a bandwidth, i.e., capacity in b/s.

The analysis is based on several assumptions. The Rayleigh type channel is
widely used in the literature and it is also used here due to its simple closed form
solutions. However, it is probably to simple for a realistic MIMO channel model.
The use of spherical vector modes to model an arbitrary antenna is standard in
antenna theory. Here, we assume that each mode or a simple linear combination
of modes are connected to one port by a lossless matching network. This lets us
use the Fano theory to relate the bandwidth to the reflection coefficient of the
system. It is well known that resistive loading of the antenna can be used to trade
efficiency for bandwidth. Hence, it would be desired to use a Fano-type theory for
lossy matching networks. Moreover, it would be interesting to include an arbitrary
multi-port matching network.
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Appendix A Channel capacity and MIMO–OFDM

communication

The MIMO signal model in (2.1) can represent many communication schemes, see
e.g., [11, 23]. However, in our view, the most fundamental as well as the most
technically straightforward is the MIMO–OFDM communication scheme which is
briefly outlined below, see also [3, 4, 23]. We use the OFDM framework together
with a limiting argument to derive an expression for the optimum channel capacity,
and we emphasize that the OFDM strategy is a practical means of approximating
this optimum capacity. We will later use the general expression for channel capacity
to derive upper bounds for the capacity of a channel decomposition.



19

The baseband, discrete–time MIMO–OFDM system consisting of N transmitting
and M receiving antennas is depicted in Figure 11. Here xn(t) and ym(t) denote
the transmitted and received antenna signals, respectively, and hmn(t) denotes the
impulse response connecting the transmitting antenna n to the receiving antenna
m. The bandwidth of the channel is ∆f , the symbol time for each channel use is
T = 1

∆f
and the symbol rate fs = 1/T is thus equal to the Nyquist rate ∆f .

Let the total delay spread of the multi–path channel be denoted τd. Given
that the cyclic prefix CP > τdfs, linear convolution becomes identical with circular
convolution over the entire DFT–frame [3], and we have

ym(t) =
Nx∑
n=1

hmn(t)⊗ xn(t) + nm(t), (A.1)

for t ∈ [0, NDFT−1
fs

] where NDFT is the size of the DFT and m = 1, . . . , Ny. Here nm(t)

is assumed to be samples of complex Gaussian noise [20] with constant spectral
density N0 [W/Hz] over the entire bandwidth [−W, W ]. The sampled noise nm(t)
is uncorrelated due to the Nyquist–sampling, and the variance is σ2

v = BN0. The
sensor noise nm(t) is also assumed to be uncorrelated over the different sensors
m. We assume that the discrete–time channel impulse response is scaled such that
hmn(t) = Thc

mn(t) so that hmn(k) = hc
mn( k

NDFT
fs) where hmn(k) is the DFT of

hmn(t), and hc
mn(t) is the corresponding continuous–time channel impulse response

with frequency function hc
mn(f).

Taking the DFT of (A.1), we obtain

ym(k) =
Nx∑
n=1

hmn(k)xn(k) + vm(k), (A.2)

for k ∈ [0, NDFT − 1], which can be written in matrix form as

y(k) = H(k)x(k) + v(k), (A.3)

where y(k) is Ny × 1, x(k) is Nx × 1, v(k) is Ny × 1, and H(k) is Ny ×Nx.
Next, we assume that the DFT’s y(k), x(k), and v(k) are scaled with the

factor 1√
NDFT

so that time averages become equal to frequency averages. Hence,

E {|vm(t)|2} = E {|vm(k)|2} = σ2
v = BN0. The correlation matrix of the noise vec-

tor v(k) is thus given by E
{
v(k)vH(k)

}
= σ2

vI. Note that since the noise vm(t) is
Gaussian and uncorrelated over time, the noise vm(k) is also Gaussian and uncor-
related over frequency. Hence, (A.2) represents NDFT independent communication
channels. The DFT has accomplished an orthogonalization over frequency.

The orthogonalization over space is accomplished by the singular value decom-
position (SVD) of the channel matrix H(k)

H(k) = U(k)Σ(k)VH(k) (A.4)

where U(k) and V(k) contain the left and right singular vectors, respectively, Σ(k)
contain the singular values σi(k) for i = 1, . . . , r(k) and r(k) is the rank of the chan-
nel. By defining ỹ(k) = UH(k)y(k), x̃(k) = VH(k)x(k), and ṽ(k) = UH(k)v(k) we
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obtain the diagonalized system

ỹ(k) = Σ(k)x̃(k) + ṽ(k) (A.5)

where the correlation matrix of ṽ(k) is E
{
ṽ(k)ṽH(k)

}
= E

{
v(k)vH(k)

}
= σ2

vI.
Hence, the noise term ṽm(k) is complex Gaussian and uncorrelated over both fre-
quency and space. The system in (A.5) therefore represents r(k) independent com-
munication channels for each frequency bin k.

Neglecting the cyclic prefix for a moment, and considering the OFDM frames
consisting of NDFT samples during NDFTT seconds, the total channel capacity for
the system in (A.5) is given by

Ctot =
1

NDFTT

NDFT−1∑
k=0

r(k)∑
i=1

log2

(
1 + Pi(k)

σ2
i (k)

BN0

)
[bits/sec] (A.6)

where Pi(k) = E{|x̃i(k)|2} is chosen as the optimum space–frequency water-filling
solution

Pi(k) =
(
ξ − BN0

σ2
i (k)

)+
(A.7)

and ξ is chosen to satisfy the maximum power constraint

1

NDFT

NDFT−1∑
k=0

r(k)∑
i=1

Pi(k) = P. (A.8)

The total power P is in [W] and the quantity Pi(k)
NDFT

is in [W/bin].
By letting the cyclic prefix be of fixed length, and by taking the limit of (A.6),

(A.7) and (A.8) as NDFT →∞, we get the optimum channel capacity over a band-
width of B = 2W . Hence, let fk = k

NDFT
fs → f , 1

NDFTT
= df , r(k) → r(f),

TPi(k) → Pi(f) and σi(k) = σi(fk) → σi(f) where σi(f) denotes the singular values
of the continuous–time channel. The optimum channel capacity is then

Ctot =

∫ W

−W

r(f)∑
i=1

log2

(
1 + Pi(f)

σ2
i (f)

N0

)
df [bits/sec] (A.9)

where Pi(f) is chosen as the optimum space–frequency water-filling solution

Pi(f) = (η − N0

σ2
i (f)

)+ (A.10)

and η is chosen to satisfy the maximum power constraint∫ W

−W

r(f)∑
i=1

Pi(f) df = P. (A.11)

The total power P is in [W] and the quantity Pi(f) is in [W/Hz]. For a random
channel the information rate of the channel is random. The ergodic capacity of the
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channel is the ensemble average over the channel, i.e.,

Ctot = E


∫ W

−W

r(f)∑
i=1

log2

(
1 + Pi(f)

σ2
i (f)

N0

)
df

 . (A.12)

Appendix B An inequality for the singular values

of matrix products

Theorem B.1. Let C(H(f)) denote the capacity of a frequency dependent channel
as defined by (A.9) through (A.11) where σi(f) denotes the singular values of the
channel H(f). The capacity of the channel decomposition

H(f) =
n∏

k=1

Hk(f) (B.1)

is then bounded by

C (H(f)) ≤ min
k∈{1,...,n}

C

(
Hk(f)

∏
j 6=k

‖Hj(f)‖

)
. (B.2)

2

Proof: Let σi(Hk(f)) denote the singular values of the subchannel Hk(f). Re-
peated use of the inequalities σi(AB) ≤ σi(A)‖B‖ and σi(AB) ≤ σi(B)‖A‖ for the
product of matrices (see appendix A) yields the inequality

σi(H1(f) · · ·Hk(f) · · ·Hn(f)) ≤ σi(Hk(f))
∏
j 6=k

‖Hj(f)‖. (B.3)

or

σi(H(f)) ≤ σi

(
Hk(f)

∏
j 6=k

‖Hj(f)‖

)
. (B.4)

Let Pi(f) denote the optimum power strategy to obtain the capacity on left side
of (B.2). The inequality (B.2) then follows immediately from (B.4), the definition
of capacity (A.9) through (A.11) and the monotonicity of the logarithm function.2

Theorem B.2. Let A and B be m × p and p × n matrices, respectively, and let
q = min{m,n, p}. Let r be the rank of the matrix AB where r ≤ q. Let σi(A) denote
the singular values of the matrix A in decreasing order, i.e. σ1(A) ≥ σ2(A) ≥ ... ≥ 0,
and let σi(B) and σi(AB) be similarly defined. Then the following inequality hold

σi+j−1(AB) ≤ σi(A)σj(B), 1 ≤ i, j ≤ r, i + j − 1 ≤ r (B.5)

and in particular

σi(AB) ≤ σi(A)σ1(B) = σi(A)‖B‖, 1 ≤ i ≤ r (B.6)

σj(AB) ≤ σ1(A)σj(B) = σj(B)‖A‖, 1 ≤ j ≤ r (B.7)
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where ‖ · ‖ denotes the matrix norm (maximum singular value). 2

Proof: The proof of the theorem is given in [15] for the case where m = n and
r ≤ min{m, p}. Here, we show the more general result by employing the theorem
in [15] in which A and BT have the same dimension. By extending with zeros the
rows and columns of a general m× p matrix A and by examining its singular value
decomposition, it is readily verified that

σi(

[
A
0

]
) = σi(A), 1 ≤ i ≤ r (B.8)

σi(
[

A 0
]
) = σi(A), 1 ≤ i ≤ r (B.9)

where 0 is a zero matrix of suitable dimension and r is the rank of A. Using this
result, and the above mentioned theorem in [15], we can establish the following
inequality for m ≥ n

σi+j−1(AB) = σi+j−1(A
[

B 0
]
) ≤ σi(A)σj(

[
B 0

]
) = σi(A)σj(B) (B.10)

where the zero matrix is chosen such that
[

B 0
]

is p×m. The inequality is valid
for i ≤ r, j ≤ r and i+ j−1 ≤ r where r is the rank of AB. This shows the validity
of (B.5).

For m ≤ n we get

σi+j−1(AB) = σi+j−1(

[
A
0

]
B) ≤ σi(

[
A
0

]
)σj(B) = σi(A)σj(B) (B.11)

where the zero matrix is chosen such that

[
A
0

]
is n × p. The inequality is valid

for i ≤ r, j ≤ r and i + j − 1 ≤ r where r is the rank of AB. Again, this shows the
validity of (B.5). 2
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