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Abstract

Using an exact circuit analogy for the scattering of vector spherical waves, it

is shown how the problem of determining the optimal scattering bounds for a

homogeneous sphere in its high-contrast limit is identical to the closely related,

and yet very di�erent problem of �nding the broadband tuning limits of the

spherical waves. Using integral relations similar to Fano's broadband match-

ing bounds, the optimal scattering limitations are determined by the static

response as well as the high-frequency asymptotics of the re�ection coe�cient.

The scattering view of the matching problem yields explicitly the necessary

low-frequency asymptotics of the re�ection coe�cient that is used with Fano's

broadband matching bounds for spherical waves, something that appears to

be non-trivial to derive from the classical network point of view.

1 Introduction

Integral identities based on the properties of Herglotz functions [4], or positive real
(PR) functions [35], constitute the basis for deriving Fano's broadband matching
bounds [8] and have been used recently to describe a series of new sum rules for the
scattering of electromagnetic waves [3, 4, 25, 26]. Hence, under the assumptions of
linearity, continuity, time-translational invariance and passivity, sum rules can be
derived from the analytic properties of the forward scattering dyadic, see e.g., [25,
26], and have also applications in antenna theory, see e.g., [11, 12, 24, 29, 30]. In [23],
similar relations are used to determine the ultimate thickness to bandwidth ratio of
radar absorbers. Limitations on the scattering of vector spherical waves have been
considered in [3].

The sum rules rely on the well-known connection between the transfer func-
tions of causal and passive systems and Herglotz functions, or positive real (PR)
functions, as well as the analytic properties of these functions, see e.g., [33, 35, 36].
Consequently, sum rules and limitations on arbitrary re�ection coe�cients stemming
from passive systems can be derived, as described in [4]. The procedure is reviewed
brie�y in this paper.

By using Fano's approach, optimum broadband tuning limits of the higher-order
spherical waves are considered in [29, 30], giving important physical insight into the
matching limitations for UWB antennas, see also [9, 14, 15, 18, 31, 32, 34]. Previously,
the Fano broadband matching bounds have been applied mainly to the lowest order
spherical waves, and there is hence a need to further develop analytical results as
an aid in the related numerical analysis. In [29, 30], it is conjectured that the low-
frequency asymptotics of the positive real function − log ρτl is of the form

− log(±ρτl) = 2
a

c0

s+ 2(−1)l(
a

c0

)2l+1cτls
2l+1 + · · · , (1.1)

where ρτl is the re�ection coe�cient corresponding to a TE (τ = 1) or TM (τ = 2)
spherical wave of order l, s the Laplace variable, a the radius of a circumscribing
sphere, c0 the speed of light in free space, and cτl constants to be determined from
network analysis and the circuit analogy of the spherical wave impedance.
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In this contribution, an exact circuit analogy for the scattering of spherical waves
is used similar to [6, 28], to show how the problem of determining the scattering lim-
itations for a homogeneous sphere in its high-contrast limit becomes identical to the
closely related, and yet very di�erent problem of �nding the broadband tuning lim-
its of the spherical waves [29, 30]. Furthermore, the scattering view of the matching
problem yields explicitly the necessary low-frequency asymptotics of the re�ection
coe�cient (1.1), i.e., the coe�cients cτl that are used with Fano's broadband match-
ing bounds for spherical waves. The coe�cients cτl are given by the equation (4.17)
in this paper. This is something that appears to be non-trivial to derive from the
classical network point of view.

Optimal limitations for the scattering of spherical waves is considered where the
geometry of the spherical object is known but the temporal dispersion is unknown.
A detailed study of the high-frequency asymptotics of the re�ection coe�cient is
performed including e.g., the Debye and the Lorentz dispersion models, and is given
in the Appendix. Using the integral relations derived in [4], which are similar to the
relations in the derivation of Fano's broadband matching bounds [8], the optimal
scattering limitations are determined by the static response as well as the high-
frequency asymptotics of the re�ection coe�cient. As with the Fano approach, the
integral relations yield a non-convex global optimization problem which in general
is di�cult to handle. As a numerical example, a relaxation of the Fano equations is
considered here which is easily solved, and which is especially useful in the regime
of Rayleigh scattering.

2 Limitations on passive re�ection coe�cients

This section reviews the general approach presented in [4] to �nd sum rules and phys-
ical limitations for re�ection coe�cients stemming from linear, continuous, time-
translational invariant, and passive physical systems. The approach, which is used
for the matching and scattering problems in the following sections, relies on the
well-known connection between the transfer functions of causal and passive systems
and Herglotz (or positive real) functions, as described in e.g., [4, 33, 35, 36]. A set of
integral identities for Herglotz functions was proved in [4]. Applied to a re�ection
coe�cient ρ, they give a set of sum rules. The sum rules relate integrals of ρ over
in�nite frequency intervals to the static and high-frequency properties of the system,
and so are much like Fano's matching equations. Physical limitations for the re�ec-
tion coe�cient are derived by considering �nite frequency intervals. The general
approach is presented in more detail in [4], where also all the necessary proofs are
given.

2.1 Herglotz functions and integral identities

Here the class of Herglotz functions is reviewed brie�y, and the integral identities
used to obtain sum rules and limitations for re�ection coe�cients are presented. A
Herglotz function h(z) is de�ned as an analytic function for z ∈ C+ = {z : Im z > 0}
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Figure 1: The cone {z : ϑ ≤ arg z ≤ π − ϑ} for some ϑ ∈ (0, π/2].

with the property that Imh(z) ≥ 0, cf., [4, 20]. It is assumed that h obeys the
symmetry

h(z) = −h∗(−z∗) (2.1)

where (·)∗ denotes the complex conjugate [4]. Herglotz functions stemming from re-
�ection coe�cients in real physical systems exhibit this symmetry property [33,
35, 36]. For all Herglotz functions it holds that limz→̂0 zh(z) = a−1 ≤ 0 and
limz→̂∞ h(z)/z = b1 ≥ 0. Throughout this paper, z→̂0 means |z| → 0 in the
cone ϑ ≤ arg z ≤ π − ϑ for any ϑ ∈ (0, π/2], and likewise for z→̂∞, see Figure 1.

It is assumed that the low- and high-frequency asymptotic expansions are given
by 

h(z) =
N∑
m=0

a2m−1z
2m−1 + o(z2N−1) as z→̂0

h(z) =
M∑
m=0

b1−2mz
1−2m + o(z1−2M) as z→̂∞,

(2.2)

where the little ordo notation o is de�ned as in [21], and M and N are non-negative
integers (or possibly in�nity), chosen so that all the coe�cients am and bm are real
valued, and hence that all the even indexed coe�cients are zero [4]. The asymptotic
expansions are clearly valid as z → 0 (z → ∞) for any argument in the case h is
analytic in a neighbourhood of the origin (in�nity).

The following integral identities have been derived in [4], and they are the starting
point to derive limitations on re�ection coe�cients:

2

π

∫ ∞
0

Imh(x)

x2p
dx = a2p−1 − b2p−1, for p = 1−M, 2−M, . . . , N. (2.3)

It should be noted that the integral identities in (2.3) do not apply in the case when
the largest possible integers N andM are N = M = 0 in (2.2). In case the imaginary
part Imh(x) is not regular on the real axis, the integral should be interpreted as

lim
ε→0+

lim
y→0+

2

π

∫
ε<|x|<ε−1

Imh(x+ iy)

x2p
dx = a2p−1 − b2p−1, (2.4)

for p = 1 −M, 2 −M, . . . , N , and where i denotes the imaginary unit, i2 = −1.
This is equivalent to interpreting (2.3) in the distributional sense [4]. Equation
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(2.3) is assumed to be replaced by (2.4) whenever necessary throughout this paper.
The identities (2.3) can be used to derive Fano's matching equations [8]. They
have also been used recently to derive a series of new sum rules for the scattering
of electromagnetic waves [3, 25, 26], with applications in antenna theory [11, 29, 30].
There are other applications for the identities (2.3) as well, see e.g., [5, 10, 13, 16, 23].

2.2 Limitations on passive re�ection coe�cients

Let ρ(ω) denote a re�ection coe�cient of a system where the re�ected signal u(ω)
is related to the incoming signal v(ω) as

u(ω) = ρ(ω)v(ω),

where ω is the angular frequency. It is assumed that the re�ection coe�cient is the
Fourier transform of a real valued convolution kernel ρr(t). The Fourier transform is
de�ned as ρ(ω) =

∫∞
−∞ ρr(t)e

iωt dt when ρr(t) is su�ciently regular, and it is otherwise
de�ned in the appropriate distributional sense [4, 36].

If ρ(ω) corresponds to a passive system, it is bounded with |ρ(ω)| ≤ 1. The
system is causal if the re�ection coe�cient corresponds to a causal convolution
kernel ρc

r(t) which vanishes for t < 0. It is a well-known result that the re�ection
coe�cient ρc(ω) of a passive and causal system is an analytic function bounded in
magnitude by one in the open upper half plane, i.e., ρc(ω+iσ) is analytic and |ρc(ω+
iσ)| ≤ 1 for σ > 0 [33, 35]. For a non-causal system (consider e.g., the scattering of
electromagnetic waves [3, 20]), introduce a time delay t0 so that eiωt0ρ(ω) corresponds
to a causal convolution kernel ρr(t−t0). The re�ection coe�cient ρ(ω+iσ) is thus an
analytic function for σ > 0, and it is bounded according to |e(iω−σ)t0ρ(ω + iσ)| ≤ 1.

A Herglotz function can be constructed by taking the complex logarithm of ρ [4].
It requires that the zeros of ρ are removed, which is done with a Blaschke-product [7].
The Herglotz function is therefore (with z = ω + iσ):

h(z) = −i log

(
eizt0ρ(z)

∏
n

1− z/z∗n
1− z/zn

)
, (2.5)

where the zeros zn of ρ in C+ are repeated according to their multiplicity. The
convolution kernel ρr(t) is real-valued, and so ρ(iσ) is real valued on the imaginary
axis with the symmetry ρ(z) = ρ∗(−z∗) for z ∈ C+. Without loss of generality it
may be assumed that ρ(iσ) > 0, in which case h(z) obeys the symmetry (2.1). If
ρ(iσ) < 0, consider the function −ρ(z) instead.

Suppose that the low-frequency asymptotics of−i log ρ(z) is given by−i log ρ(z) =∑N
m=0 a

(0)
2m−1z

2m−1+o(z2N−1) as z→̂0. The low-frequency asymptotics of h(z) is then

h(z) = zt0 +
N∑
m=0

a
(0)
2m−1z

2m−1 + o(z2N−1) +
∞∑

m=1,3,...

2

m

∑
n

Im

{
1

zmn

}
zm, as z→̂0.

(2.6)
Note that there are only odd indices m in the last summation above since the
complex zeros appear in symmetric pairs (zn,−z∗n).
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With p = 1, 2, . . . , N , the following relationships are now obtained from (2.3):

2

π

∫ ∞
0

1

ω2p
log |ρ(ω)|−1 dω =

{
δp1(t0 − b1) + a

(0)
2p−1 +

2

2p− 1

∑
n

Im

{
1

z2p−1
n

}}
.

(2.7)
Here δp1 denotes the Kronecker delta. Note that the term b1 ≥ 0 originates from
the high-frequency asymptotics.

Denote ρ0 = maxω |ρ(ω)| where the maximum is taken over the angular frequency
interval ω ∈ [ω0(1 − B

2
), ω0(1 + B

2
)], ω0 is the center angular frequency and B the

relative bandwidth (0 ≤ B ≤ 2). The integral identities (2.7) then yield the following
inequalities:

log ρ−1
0 B ≤ log ρ−1

0 Gp(B) ≤ ω2p−1
0

∫ ∞
0

1

ω2p
log |ρ(ω)|−1 dω

=
π

2

[
δp1t0ω

2p−1
0 + a

(0)
2p−1ω

2p−1
0 +

2

2p− 1

∑
n

Im

{(
ω0

zn

)2p−1
}]

, (2.8)

where it has been used that b1 ≥ 0. The factor Gp(B) is de�ned by

Gp(B) =

∫ 1+B/2

1−B/2

1

x2p
dx =

1

2p− 1

(1 + B
2

)2p−1 − (1− B
2

)2p−1

(1− B2

4
)2p−1

. (2.9)

Note that B ≤ Gp(B) for all 0 ≤ B ≤ 2, and Gp(B) ≈ B in the narrowband
approximation when B � 1.

2.3 Fano broadband matching bounds for spherical waves

The classical broadband matching bounds for lossless networks by Fano [8] are revis-
ited using the Herglotz function formulation and integral identities (2.3) and (2.7).
The Fano matching bounds are then used to formulate the problem of �nding the
broadband tuning limits of the wave impedance of the spherical waves as in [29, 30].

In circuit theory it is convenient to employ the Laplace variable s = −iz = jω+σ,
with j = −i. The Herglotz function h(z) then corresponds to a positive real (PR)
function g(s) = −ih(z) with the property that g(s) is analytic with Re g(s) ≥ 0 for
Re s = σ > 0, cf., [22, 36]. The symmetry (2.1) takes the form g(s) = g∗(s∗). The
low- and high-frequency asymptotics are given by

g(s) =
N∑
m=0

A2m−1s
2m−1 + o(s2N−1) as is→̂0

g(s) =
M∑
m=0

B1−2ms
1−2m + o(s1−2M) as is→̂∞,

(2.10)

where all coe�cients are real valued and the even indexed coe�cients are zero.
Furthermore, the PR function property implies that A−1 ≥ 0 and B1 ≥ 0. Note
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also that the mapping g(s) = −ih(is) implies the relations A2m−1 = (−1)m+1a2m−1

and B2m−1 = (−1)m+1b2m−1 for the coe�cients in (2.2) and (2.10). The following
integral identity now follows directly from (2.3):

2

π

∫ ∞
0

Re g(jω)

ω2p
dω = (−1)p+1 (A2p−1 −B2p−1) , for p = 1−M, 2−M, . . . , N.

(2.11)
Let ρ(s) denote the re�ection coe�cient corresponding to an arbitrary impedance

function de�ned by a passive RLC network. Such an impedance function can always
be represented by a lossless two-port which is terminated in a pure resistance [8].
The appropriate PR function corresponding to (2.5) is given by

g(s) = − log

(
ρ(s)

∏
n

1 + s/s∗n
1− s/sn

)
, (2.12)

where sn are the zeros of ρ(s) with Re sn > 0. Note that the causality factor eizt0 is
not needed here, since the re�ection coe�cient corresponds to a causal convolution
kernel.

Suppose that the low-frequency asymptotics of − log ρ(s) is given by − log ρ(s) =∑M
m=0 A

(0)
2m−1s

2m−1 + o(s2M−1), as is→̂0. The low-frequency asymptotics of g(s) is
then given by

g(s) =
N∑
m=0

A
(0)
2m−1s

2m−1 + o(s2N−1)−
∞∑

m=1,3,...

2

m

∑
n

Re

{
1

smn

}
sm, as is→̂0. (2.13)

With p = 1, 2, . . . , N , the following relationships are now obtained from (2.11) (cf.,
[8]):

2

π

∫ ∞
0

1

ω2p
log |ρ(jω)|−1 dω = (−1)p+1

{
A

(0)
2p−1 − δp1B1 −

2

2p− 1

∑
n

Re

{
1

s2p−1
n

}}
.

(2.14)
Note that B1 = 0 if the circuit consists of only lumped elements, since ρ(s) is a ra-
tional function in this case. Furthermore, for rational functions ρ(s) the asymptotic
expansions (2.10) are valid as s→ 0 and s→∞, respectively.

Consider now the broadband matching problem as described in [8]. In Figure 2
is shown the cascade of two lossless and reciprocal two-ports N ′ and N ′′ with a
source at one side and a resistive termination at the other side. Let N ′ be the �xed
network and N ′′ the matching network. The re�ection and transmission coe�cients
for the overall two-port are denoted by ρ1, ρ2 and %. Since the overall two-port is
lossless with |ρ1|2 = 1− |%|2 = |ρ2|2, the optimal matching limitations for the input
port of interest with coe�cient ρ2 may be conveniently analyzed by considering the
opposite port with coe�cient ρ1, as depicted in Figure 2.

The re�ection coe�cient ρ1 for the overall two-port is given by

ρ1 = ρ′1 +
%′2ρ′′1

1− ρ′2ρ′′1
. (2.15)
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Without loss of generality, it may be assumed that ρ′1(0) = 1 (where s = 0). Fur-
thermore, it is also assumed that ρ′2(0)ρ′′1(0) = −1 so that there is no cancellation of
zeros at s = 0 in (2.15). This condition is easily achieved by choosing the appropriate
LC ladder structure for N ′′ if ρ′2(0) is known, cf., also [8].

Suppose that the transmission coe�cient %′ has a zero of order N at s = 0.
This implies that ρ′1(s)ρ′1(−s) = 1 − %′(s)%′(−s) = 1 +O(s2N), where the big ordo
notation O is de�ned as in [21]. Suppose further that the low-frequency asymptotics

of ρ′1 is given by − log ρ′1(s) =
∑∞

m=0A
(0)′
m sm as s→ 0. Hence,

− log ρ′1(s)− log ρ′1(−s) =
∞∑
m=0

A(0)′
m sm +

∞∑
m=0

A(0)′
m (−1)msm = O(s2N), as s→ 0,

(2.16)

implying that A
(0)
m = A

(0)′
m = 0 for m = 0, 2, . . . , 2N − 2. Furthermore, from (2.15)

follows that ∂m

∂sm
log ρ1|s=0 = ∂m

∂sm
log ρ′1|s=0 for 0 ≤ m ≤ 2N − 1, and hence the

invariance of the Taylor coe�cients A
(0)
m = A

(0)′
m for m = 1, 3, . . . , 2N − 1. Thus,

(2.14) can now be applied with A
(0)
2p−1 = A

(0)′
2p−1 for p = 1, 2, . . . , N . These are the

original Fano matching equations formulated in [8].
Consider now the problem of �nding the optimum broadband tuning limits of the

wave impedance of the spherical waves, as described in e.g., [29, 30]. Hence, consider
the matching problem of an outgoing TEl (τ = 1) or TMl (τ = 2) spherical wave
of order l. As was shown by Chu [6], the wave impedance of the spherical waves
as seen at a spherical boundary can be represented by a �nite LC high-pass ladder
network terminated in a �xed resistance, cf., Figure 3. The impedance Zτl is the
normalized wave impedance as seen at a spherical boundary of radius a, i.e., at the
left (antenna) side of the equivalent circuit in Figure 3. The input impedance used
in the Fano analysis is the impedance Z1,τ l as seen from the opposite, right-hand
side of the equivalent circuit when it is correctly terminated in a pure resistance.
The corresponding re�ection coe�cient is given by ρ1,τ l = (Z1,τ l − 1)/(Z1,τ l + 1).

It has been conjectured [29, 30] that the low-frequency asymptotics of − log ρ1,τ l

is of the form

− log(±ρ1,τ l) = A
(0)
1 s+ A

(0)
2l+1s

2l+1 +O(s2l+2), as s→ 0 (2.17)

where  A
(0)
1 = 2

a

c0

A
(0)
2l+1 = 2(−1)l(

a

c0

)2l+1cτl
(2.18)

and where cτl is a constant determined from network analysis.
The conjecture (2.18) may be veri�ed by using the equivalent circuits for a �xed

order l = 1, 2, . . .. However, from a network (N ′) analysis point of view, it seem
to be non-trivial to prove it for general order l. In the next two sections, it is
shown that the conjecture (2.18) is true and an explicit expression for A

(0)
2l+1 is given

by showing that the matching problem is equivalent to the problem of �nding the
optimal scattering limitations for a homogeneous sphere in its high-contrast limit,
i.e., in the limit as the permittivity or the permeability tends to in�nity.
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Figure 2: Cascade of two reciprocal two-ports N ′ and N ′′. Here, ρ1, ρ2 and %
denote the overall scattering parameters.

 
 
 
 
 
 
 
 
 
 
 
 

Source

1

Matching
Network

a
c0

1
l

a
c0

1
3

a
c0

1
2l−1

a
c0

1Zτl
-

Z1,τl
�

Figure 3: Matching network and equivalent circuit for the impedance of a TMl

wave at a spherical boundary of radius a. The circuit is drawn for a TMl wave of
odd order l.

3 Optimal limitations for scattering of vector spher-

ical waves

Consider the scattering of vector spherical waves which is associated with an isotropic
and homogeneous sphere of radius a, and with relative permeability and permittiv-
ity µ and ε, respectively. The refractive index is n = (µε)1/2 and the relative wave
impedance η = (µ/ε)1/2. The exterior of the sphere is free space, and c0 and η0 are
the speed of light and the wave impedance of free space, respectively. For conve-
nience, introduce the angular wave number Re{k} = ω/c0. Allow k to take values
in the upper-half plane, so that k corresponds to z/c0 in Section 2.2. Let (r, θ, φ)
denote the spherical coordinates and r = rr̂ the corresponding radius vector.

3.1 Exterior of the sphere

The electric and magnetic �elds outside the sphere, i.e., for r ≥ a, are given by

E(r) =
∞∑
l=1

l∑
m=−l

2∑
τ=1

a
(1)
τmlu

(1)
τml(kr) + a

(2)
τmlu

(2)
τml(kr) (3.1)

H(r) =
1

iη0

∞∑
l=1

l∑
m=−l

2∑
τ=1

a
(1)
τmlu

(1)
τ̄ml(kr) + a

(2)
τmlu

(2)
τ̄ml(kr) (3.2)

where u
(1)
τml(kr) and u

(2)
τml(kr) are outgoing and incoming vector spherical waves,

respectively, see e.g., [2, 17, 19], and a
(j)
τml the corresponding multipole coe�cients.

Here τ = 1 corresponds to transverse electric (TE) waves, τ = 2 corresponds to
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transverse magnetic (TM) waves, and τ̄ = 3− τ denotes the complimentary index.
The other indices are l = 1, 2, . . . , and m = −l,−l + 1, . . . , l, where l denotes the
order of the spherical wave. The vector spherical waves are given by

u
(j)
1ml(kr) = h

(j)
l (kr)A1ml(r̂) (3.3)

u
(j)
2ml(kr) =

(krh
(j)
l (kr))′

kr
A2ml(r̂) +

√
l(l + 1)

h
(j)
l (kr)

kr
A3ml(r̂) (3.4)

where Aτml(r̂) are the vector spherical harmonics and h
(j)
l (x) the spherical Hankel

functions of the jth kind, j = 1, 2, and order l, see e.g., [2, 17, 19]. Here, (·)′ denotes
di�erentiation with respect to the argument kr. The vector spherical harmonics
Aτml(r̂) are given by

A1ml(r̂) =
1√

l(l + 1)
∇× (rYml(r̂))

A2ml(r̂) = r̂ ×A1ml(r̂)
A3ml(r̂) = r̂Yml(r̂)

(3.5)

where Yml(r̂) are the scalar spherical harmonics given by

Yml(θ, φ) = (−1)m
√

2l + 1

4π

√
(l −m)!

(l +m)!
Pm
l (cos θ)eimφ, (3.6)

and where Pm
l (x) are the Associated Legendre functions, see e.g., [2]. The vector

spherical harmonics Aτml(r̂) are orthonormal on the unit sphere and have the di-
rectional properties r̂ ·Aτml(r̂) = 0 for τ = 1, 2 and r̂ ×A3ml(r̂) = 0.

3.2 Interior of the sphere and scattering coe�cients

The electric and magnetic �elds inside the sphere for r ≤ a are given by

E(r) =
∞∑
l=1

l∑
m=−l

2∑
τ=1

bτmlvτml(knr) (3.7)

H(r) =
1

iη0η

∞∑
l=1

l∑
m=−l

2∑
τ=1

bτmlvτ̄ml(knr) (3.8)

where vτml(knr) are regular vector spherical waves, and bτml the corresponding
multipole coe�cients. The regular vector spherical waves are de�ned by

v1ml(knr) = jl(knr)A1ml(r̂) (3.9)

v2ml(knr) =
(knrjl(knr))

′

knr
A2ml(r̂) +

√
l(l + 1)

jl(knr)

knr
A3ml(r̂) (3.10)

where jl(x) are the spherical Bessel functions of order l, see e.g., [2, 17, 19]. Here,
(·)′ denotes di�erentiation with respect to the argument knr.
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Continuity of the tangential �elds Et and Ht in (3.1), (3.2), (3.7) and (3.8) for

r = a yields the following solution for the re�ection coe�cient de�ned by a
(1)
τml =

ρτla
(2)
τml:

ρτl(k) =
−h

(2)
l (ka) (knajl(kna))′ + ντ (k)jl(kna)

(
kah

(2)
l (ka)

)′
h

(1)
l (ka) (knajl(kna))′ − ντ (k)jl(kna)

(
kah

(1)
l (ka)

)′ (3.11)

where ν1 = µ and ν2 = ε, cf., [27]. It is assumed that ντ (k) can be represented by an
asymptotic series at k = 0. It has been shown that ρτl = e−i2kaρc

τl, where ρ
c
τl is the

transform of a causal kernel, see [3]. It can be expected that ρc
τl(k) = o(k) as k→̂∞,

which means that b1 = 0 for the Herglotz function corresponding to (2.5). A detailed
study of the high-frequency asymptotics of the re�ection coe�cient has been per-
formed in the Appendix, including e.g., the Debye and Lorentz dispersion models,
and it asserts this expectation for these material models. The low-frequency asymp-
totics is obtained from a Taylor series expansion yielding ρτl(k) ∼ 1 + i2(ka)2l+1cτl,
or

−i log ρτl(k) ∼ a
(0)
2l+1k

2l+1 = 2(ka)2l+1cτl, as k → 0, (3.12)

where

cτl =
22l(l + 1)!l!

(2l + 1)!(2l)!

ντ (0)− 1

l + 1 + ντ (0)l
(3.13)

and ντ (0) is the static response. The symbol ∼ denotes asymptotic equivalence and
is de�ned in e.g., [21]. Note that the low-frequency asymptotics of the TM (TE)
wave re�ection is independent of µ(0) (ε(0)).

3.3 Optimization formulation

The following inequalities are obtained from (2.8) and (3.12), where p = 1, 2 . . . , l+1,

a
(0)
2l+1 = 2a2l+1cτl/c

2l+1
0 and t0 = 2a/c0:

G1

π
log |ρ0|−1 ≤ k0a+

∑
n Im

{(
k0
kn

)}
Gl′+1

π
log |ρ0|−1 ≤ 1

2l′+1

∑
n Im

{(
k0
kn

)2l′+1
}
, l′ = 1, 2, . . . , l − 1

Gl+1

π
log |ρ0|−1 ≤ cτl(k0a)2l+1 + 1

2l+1

∑
n Im

{(
k0
kn

)2l+1
} (3.14)

where Gl is de�ned by (2.9), k0 = ω0/c0 and kn = zn/c0. Note that exactly the same
relations are obtained by using (2.14) and (2.18) and the substitution s = −ikc0.

The narrowband model is now assumed, i.e., let Gp = B in (3.14). Note also
that in general, B ≤ Gp. Hence, the assumption Gp = B will simplify the analysis
below without loss of generality. Let k0/kn = αn − iβn = rne−iθn , where βn > 0,
rn > 0 and 0 < θn < π, and let f = B

π
log |ρ0|−1. The optimum solution to

the inequalities in (3.14) can then be formulated as the solution to the following
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constrained optimization problem:

max f
−
∑

n Im {αn − iβn}+ f ≤ k0a

− 1
2l′+1

∑
n Im

{
(αn − iβn)2l′+1

}
+ f ≤ 0, l′ = 1, 2, . . . , l − 1

− 1
2l+1

∑
n Im

{
(αn − iβn)2l+1

}
+ f ≤ cτl(k0a)2l+1

f ≥ 0, βn ≥ 0

(3.15)

where the variables are (f, {αn}, {βn}). The second constraint above is ignored when
l = 1. Note that βn = 0 is equivalent to removing the corresponding zeros from the
summations above.

The solution to the optimization problem (3.15) de�nes the Fano limit1 for the
re�ection coe�cient of the spherical waves, i.e., |ρ0| ≥ ρFano = e−πf/B. When l = 1,
it is su�cient to use one single zero, and the solution can be uniquely obtained
from a 2 × 2 non-linear system of equations, see [8]. However, when l > 1 the
numerical solution to the non-convex optimization problem (3.15) will in general
require a global optimization routine and an exhaustive search. Furhermore, for
l > 1 the optimal number of zeros is not known. A straightforward relaxation of the
narrowband Fano equations (3.15) is considered in Section 5 below.

4 Exact circuit analogy for the scattering of a ho-

mogeneous sphere

Recursive relationships for the spherical Hankel functions can be used to obtain an
exact circuit analogy for the scattering of spherical waves as described below, cf.,
also [6, 28].

The spherical Hankel functions h
(j)
l (z) satisfy the following initial relations:

(zh
(1)
0 (z))′

z
= ih

(1)
0 (z)

−h
(1)
1 (z) = ih

(1)
0 (z)

(
1− 1

iz

)
,


(zh

(2)
0 (z))′

z
= −ih

(2)
0 (z)

−h
(2)
1 (z) = −ih

(2)
0 (z)

(
1 +

1

iz

)
,

(4.1)

and the recursive relations
(zh

(j)
l (z))′

zil
=

h
(j)
l−1(z)

il
+

l

−iz

−h
(j)
l (z)

il+1

h
(j)
l+1(z)

il+2
=

h
(j)
l−1(z)

il
+

2l + 1

−iz

−h
(j)
l (z)

il+1

(4.2)

for j = 1, 2 and l = 1, 2, . . ., see e.g., [2, 17, 19].

1The term Fano limit is used here even though the scattering problem is di�erent from the
matching problem. This is motivated by the equivalence of these problems as discussed in this
paper.
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Figure 4: The two dual electric circuits with termination representing spherical
Hankel functions of the �rst kind h

(1)
l (z), i.e., outgoing waves outside a sphere of

radius a.

There are two possible dual circuits associated with the recursions in (4.1) and
(4.2), cf., Figure 4. For circuit a), de�ne

(zh
(j)
l (z))′

zil
=

{
ηI

(j)
l (z) l = 0, 2, 4, . . .

−V (j)
l (z) l = 1, 3, 5, . . .

(4.3)

and

−h
(j)
l (z)

il+1
=

{
V

(j)
l (z) l = 0, 2, 4, . . .

−ηI(j)
l (z) l = 1, 3, 5, . . .

(4.4)

where Vl(z) and Il(z) represent voltages and currents, respectively.
Let z = κn, where κ = ka and n = (µε)1/2. By introducing the normalized

Laplace variable S = −iκ = sa/c0 and employing the de�nitions in (4.3) and (4.4),
the following initial relations for Vl(z) and Il(z) corresponding to (4.1) are obtained: ηI

(1)
0 (z) = V

(1)
0 (z)

I
(1)
1 (z) = I

(1)
0 (z) + V

(1)
0 (z)

1

Sµ
,

 ηI
(2)
0 (z) = −V (2)

0 (z)

I
(2)
1 (z) = I

(2)
0 (z) + V

(2)
0 (z)

1

Sµ
,

(4.5)

and the recursive relations corresponding to (4.2) are given by

V
(j)
l (z) = V

(j)
l−1(z) +

1

Sε1
l

I
(j)
l (z) l = 1, 3, 5, . . .

I
(j)
l (z) = I

(j)
l−1(z) +

1

Sµ1
l

V
(j)
l (z) l = 2, 4, 6, . . .

V
(j)
l+1(z) = V

(j)
l−1(z) +

1

Sε 1
2l+1

I
(j)
l (z) l = 1, 3, 5, . . .

I
(j)
l+1(z) = I

(j)
l−1(z) +

1

Sµ 1
2l+1

V
(j)
l (z) l = 2, 4, 6, . . .

(4.6)

where j = 1, 2. The dual circuit b) is obtained by interchanging Vl ↔ ηIl, or
equivalently, by simultaneously interchanging Vl ↔ Il and µ↔ ε.
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Figure 5: Electric circuit analogy for TM and TE waves of odd and even order,
corresponding to spherical Hankel functions of the �rst kind h

(1)
l (z), i.e., outgoing

waves outside a sphere of radius a.

4.1 Exterior of the sphere

Consider now the free space exterior of the sphere where r ≥ a and z = κ =
ka (µ = ε = η = n = 1). In Figure 4 is shown the two dual electric circuits

with termination representing spherical Hankel functions of the �rst kind h
(1)
l (z),

corresponding to outgoing vector spherical waves. There are four di�erent circuits
representing the TM and TE waves of odd and even order, as depicted in Figure 5.
In Figure 6 is shown the excitation with a Hankel function generator for the two dual
electric circuits representing spherical Hankel functions of the second kind h

(2)
l (z),

corresponding to incoming vector spherical waves.
From the �eld de�nition (3.1) and (3.2) and the circuit (and its dual) de�nition

(4.3) and (4.4), the tangential �elds Et,ml and Ht,ml (spherical wave indices m, l for
τ = 1, 2) outside the sphere are given by Et,ml = ∓il+1A1ml

(
a

(1)
1mlV

(1)
l + a

(2)
1mlV

(2)
l

)
± ilA2ml

(
a

(1)
2mlV

(1)
l + a

(2)
2mlV

(2)
l

)
η0Ht,ml = ∓ilA1ml

(
a

(1)
2mlI

(1)
l + a

(2)
2mlI

(2)
l

)
∓ il+1A2ml

(
a

(1)
1mlI

(1)
l + a

(2)
1mlI

(2)
l

)
(4.7)

where the arguments r, r̂ and z = κ have been suppressed for simplicity, and the
upper and lower signs refer to even and odd orders, respectively. The normalized
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Figure 6: Excitation with a Hankel function generator for the two dual electric
circuits representing spherical Hankel functions of the second kind h

(2)
l (z), i.e., in-

coming waves outside a sphere of radius a.

TE and TM wave impedances Z
(j)
τl (z) are given by

Z
(j)
1l (z) =

V
(j)
l (z)

I
(j)
l (z)

= iη
zh

(j)
l (z)

(zh
(j)
l (z))′

Z
(j)
2l (z) =

V
(j)
l (z)

I
(j)
l (z)

= −iη
(zh

(j)
l (z))′

zh
(j)
l (z)

(4.8)

where j = 1, 2 correspond to the outgoing and incoming waves, respectively.

4.2 Interior of the sphere

Next, consider the interior of the sphere where r ≤ a, z = κn = kan and n = (µε)1/2.
In Figure 7 is shown the two dual electric circuits with termination representing
spherical Hankel functions of the second kind h

(2)
l (z), corresponding to incoming

vector spherical waves. The circuit de�nitions (4.3) and (4.4) and recursions (4.5)
and (4.6) are the same, but the circuit interpretation is di�erent with an opposite

direction for I
(j)
l (z) and a sign change of µ and ε. These changes correspond precisely

to the symmetry of the incoming and outgoing wave impedances

Z
(2)
τl (z) = −Z(1)

τl (−z) (4.9)

de�ned in (4.8). The four di�erent circuits representing odd and even TM and TE
waves in Figure 5 are changed accordingly. In Figure 8 is shown the excitation with
a Hankel function generator for the two dual electric circuits representing spherical
Hankel functions of the �rst kind h

(1)
l (z), corresponding to outgoing vector spher-

ical waves. The circuit elements with impedances Sµ and 1/Sε are regarded as
�generalized� inductors and capacitors in case the material is dispersive. However,
these circuit elements behave asymptotically as �true� inductors and capacitors in
the low-frequency limit. Hence, Sµ ∼ Sµ(0) and 1/Sε ∼ 1/Sε(0) when S → 0.

From the �eld de�nition (3.7) and (3.8) and the circuit (and its dual) de�nition
(4.3) and (4.4), the tangential �elds Et,ml and Ht,ml (spherical wave indices m, l for
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Figure 7: The two dual electric circuits with termination representing spherical
Hankel functions of the second kind h

(2)
l (z), i.e., incoming waves inside a sphere of

radius a.
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τ = 1, 2) inside the sphere are given by
Et,ml = ∓il+1A1ml

b1ml

2

(
V

(1)
l + V

(2)
l

)
± ilA2ml

b2ml

2

(
V

(1)
l + V

(2)
l

)
η0Ht,ml = ∓ilA1ml

b2ml

2

(
I

(1)
l + I

(2)
l

)
∓ il+1A2ml

b1ml

2

(
I

(1)
l + I

(2)
l

) (4.10)

where the arguments r, r̂ and z = κn have been suppressed for simplicity, and the
upper and lower signs refer to even and odd orders, respectively. The normalized
TE and TM wave impedances Z

(j)
τl are given by (4.8) with z = κn.

4.3 Exact circuit analogy for the scattering

The scattering problem in Section 3 can now be interpreted by using an exact
(equivalent) circuit analogy where the exterior and the interior tangential �elds (4.7)
and (4.10) are perfectly matched as depicted in Figure 9. An independent exterior
generator is used to generate the incoming waves, and a dependent interior generator
is used to create the outgoing waves and hence the Bessel functions (obtained as
the superposition of the two kinds of Hankel functions) within the sphere, see also
[28]. The dependent interior generator and its internal resistance correspond to a
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Figure 9: Scattering model with Hankel function generators and matching. The
interior generator is dependent, creating Bessel functions corresponding to standing
waves within the sphere. The circuits are drawn for TMl waves. The TEl waves are
similar.

re�ection coe�cient

Γ (κn) =
V

(1)
0 (κn)

V
(2)

0 (κn)
= (−1)τ+lei2κn. (4.11)

Note that in the equivalent circuit analogy depicted in Figure 9, the voltage and
current constituents V

(j)
l and I

(j)
l with j = 1, 2, correspond to a wave splitting with

respect to the generator or termination impedance η, cf., also Figures 6 and 8.
The circuit problem, and hence the scattering problem, has a unique solution

through the scattering (S-matrix) relations{
a

(1)
τmlV

(1)
0 (κ) = ρc

1,τ la
(2)
τmlV

(2)
0 (κ) + %c

2,τ l
1
2
bτmlV

(1)
0 (κn)

1
2
bτmlV

(2)
0 (κn) = %c

1,τ la
(2)
τmlV

(2)
0 (κ) + ρc

2,τ l
1
2
bτmlV

(1)
0 (κn)

(4.12)

where (ρc
1,τ l, %

c
1,τ l, ρ

c
2,τ l, %

c
2,τ l) are the scattering parameters of the equivalent circuit

representing the exterior as well as the interior of the sphere. Here, a
(2)
τml is the

amplitude of the incoming wave and (4.12) can be solved for the amplitudes of the

outgoing wave a
(1)
τml and the Bessel function (standing wave) amplitude bτml. The

overall re�ection coe�cient ρc
τl for the equivalent circuit is given by

ρc
τl =

V
(1)

0 (κ)a
(1)
τml

V
(2)

0 (κ)a
(2)
τml

= (−1)τ+lei2κρτl (4.13)

where ρτl is the re�ection coe�cent given by (3.11).
Note that the presence of the negative circuit elements in Figure 9 is consistent

with the fact that the wave impedance Z
(2)
τl for incoming waves at r = a is anticausal,

cf., (4.8) and (4.9). However, note also that the overall equivalent circuit is causal
due to the delay factor in (4.13) above.

The low-frequency asymptotics of the function−i log
{

(−1)τ+lρc
τl

}
corresponding

to (4.13) is given by

−i log
{

(−1)τ+lρc
τl

}
∼ 2κ+ 2κ2l+1cτl (4.14)
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where cτl is given by (3.13). The high-frequency asymptotics is

−i log
{

(−1)τ+lρc
τl(κ)

}
= −i log

{
ei2κρτl(κ)

}
= κb1c0/a+ o(κ) (4.15)

as κ→∞, where b1 ≥ 0. Furthermore, it is expected that b1 = 0 for many material
models as discussed in Section 3.2.

Note that the circuit elements corresponding to the interior in Figure 9 behave
as Sµ ∼ Sµ(0) and 1/Sε ∼ 1/Sε(0) when S = −iκ → 0. Note also that the low-
frequency asymptotics of the TM (TE) re�ection coe�cient ρτl, i.e., the coe�cient
cτl, is independent of µ(0) (ε(0)). Hence, when considering the high-contrast limit
of the low-frequency asymptotics (4.14) in the TM (TE) case, the limit ε(0) →
∞ (µ(0) → ∞) may be carried out using ε(0) = µ(0) → ∞. In this limit, the
circuit elements with impedances Sµ(0) and 1/Sε(0) behave as open and short
circuits, respectively. Further, the low-frequency asymptotics of (4.11) is Γ (κn) ∼
(−1)τ+l as κ → 0. Hence, the high-contrast limit of the low-frequency asymptotics
in (4.14) may be obtained equivalently by using the exterior circuit with open or
short termination as depicted in Figure 10. This means that the low-frequency
asymptotics of ρ1,τ l according to the conjecture (2.17) and (2.18) is identical to
(4.14) with −iκ = s a

c0
, and hence

− log
{

(−1)τ+lρ1,τ l

}
∼ 2

a

c0

s+ 2(−1)l(
a

c0

)2l+1cτls
2l+1 (4.16)

where

cτl =
22l(l + 1)!(l − 1)!

(2l + 1)!(2l)!
(4.17)

is the high-contrast limit of (3.13) when ντ (0)→∞. Note that the exterior circuit
has a transmission zero of order l+1 at S = 0 and the term 2κ2l+1cτl of the re�ection
coe�cient ρ1,τ l is therefore invariant to whether the circuit is terminated with a short,
open or match, cf., (2.15). Note also the interesting distinguishing feature that the
integral identity (2.14) contains no causality term t0 as in (2.7), instead this term

t0 = 2a/c0 appears in the low-frequency asymptotics of − log {ρ1,τ l} as A(0)
1 in (2.17)

and (4.16).
In conclusion, the optimal Fano matching problem for the exterior circuit as

described in Section 2.3 is equivalent to the problem of determining the optimal
limitations for scattering of spherical waves in the high-contrast limit as described
in Section 3.3. An exact expression for the low-frequency asymptotics of − log {ρ1,τ l}
is given by (4.16) and (4.17). The exact expression agree perfectly with the numerical
results given in [29].

5 Numerical example: relaxation of the Fano equa-

tions

As a numerical example, a relaxation of the narrowband Fano equations (3.15) is
considered below. To solve (3.15) for l ≥ 2, one has to resort to global optimization
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Figure 10: Interpretation of the scattering model in the high-contrast limit, ε(0) =
µ(0)→∞. The exterior circuit is drawn for TMl waves. The TEl waves are similar.

and computationally expensive numerical experiments. Hence, a straightforward
relaxation yielding an upper bound on the objective function f may be useful.

In order to relax the constraints in (3.15), consider the minimization of the ex-

pression − 1
2l+1

∑
n Im

{
(αn − iβn)2l+1

}
= 1

2l+1

∑
n β

2l+1
n

sin(θn(2l+1))

sin2l+1 θn
when βn is �xed.

This implies the stationarity condition ∂
∂αn

Im
{

(αn − iβn)2l+1
}

= 0 yielding the

solutions, (rn, θn) =
(

βn
sin(m π

2l
)
,m π

2l

)
where m = 1, . . . , 2l − 1. Hence, by choosing

−dl = min
1≤m≤2l−1

1

2l + 1

sin(m π
2l

(2l + 1))

sin2l+1(m π
2l

)
(5.1)

where dl > 0, and by employing
(∑N

n=1 βn

)2l+1

≥
∑N

n=1 β
2l+1
n , a relaxation of (3.15)

valid for all N is given by
max f
β + f ≤ k0a
−dl′β2l′+1 + f ≤ 0, l′ = 1, . . . , l − 1
−dlβ2l+1 + f ≤ cτl(k0a)2l+1

f ≥ 0, β ≥ 0

(5.2)

where there are two variables (f, β). The solution to (5.2) yields an upper bound
for the corresponding Fano limit in the variable f . Hence, |ρ0| ≥ ρFano ≥ e−πf/B.
When l = 1, the relaxation becomes tight and the solution to (5.2) is identical to
the Fano limit (l = 1 ⇒ θn = π/2). Furthermore, for l = 1 there is a transition
point where the second constraint becomes inactive and hence f = k0a for k0a ≥√

1/cτ1. To solve (5.2) for l ≥ 2, it is noted that the �rst (linear) constraint is
always active. Since the polynomial constraints are monotonic in β for β ≥ 0,
the optimum solution is found as the minimum of f over the l constraint subsets
corresponding to a 2 × 2 non-linear system of equations containing the �rst linear
constraint β+ f = k0a. Note that each such constraint subset has a unique solution
for β ≥ 0. The asymptotic solution to (5.2) when k0a→ 0 is given by

f = (dl + cτl)(k0a)2l+1 +O
(
(k0a)2l+3

)
. (5.3)
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Figure 11: Upper Fano limit f as a function of k0a for l = 1, 2, . . . , 5. Graphs a
and b show log f for ντ (0) = 1 and ντ (0) = 100, respectively. The dashed lines show
the asymptotic upper bounds (dl + cτl)(k0a)2l+1 in the narrowband approximation
where Gl = B.

For l ≥ 2, the asymptotic solution to (5.2) when k0a→∞ is governed by the lowest
index l′ = 1 and is hence given by the solution to the �rst two constraints, i.e., the
real valued root of f = (k0a− f)3/3. In Figure 11 is shown the upper Fano limit f
as a function of k0a for l = 1, 2, . . . , 5 and ντ (0) = 1, 100, respectively.

6 Summary

Optimal limitations for the scattering of vector spherical waves is considered where
the geometry of the object is known but the temporal dispersion is unknown. Using
integral relations similar to the derivation of Fano's broadband matching bounds, the
optimal scattering limitations are determined by the static response as well as the
high-frequency asymptotics of the re�ection coe�cient. Using an exact circuit anal-
ogy for the scattering of spherical waves, it is shown how the problem of determining
the optimal scattering bounds for a homogeneous sphere in its high-contrast limit
becomes identical to the closely related, and yet very di�erent problem of �nding the
broadband tuning limits of the spherical waves. Furthermore, the scattering view
of the matching problem yields explicitly the necessary low frequency asymptotics
of the re�ection coe�cient that is used with Fano's broadband matching bounds for
spherical waves, something that appears to be non-trivial to derive from the classical
network point of view.

As with the Fano approach, the integral relations yield a non-convex global
optimization problem which in general is quite di�cult to handle. As a numerical
example, a relaxation of the Fano equations is considered which is easily solved and
which is especially useful in the regime of Rayleigh scattering.
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Appendix A High-frequency asymptotics of scat-

tering coe�cients

To �nd the dominant behavior of the re�ection coe�cients ρτl in (3.11) for high
frequencies, the asymptotic behavior of the spherical Bessel and Hankel functions
are needed. For large arguments the spherical Hankel functions behave as [1]

h
(1)
l (z) = (−i)l+1 eiz

z

(
1 + i

al
z
− bl
z2

+O(z−3)

)
h

(2)
l (z) = il+1 e−iz

z

(
1− i

al
z
− bl
z2

+O(z−3)

)
(
zh

(1)
l (z)

)′
= (−i)l+1eiz

(
i− al

z
− i

al + bl
z2

+O(z−3)

)
(
zh

(2)
l (z)

)′
= il+1e−iz

(
−i− al

z
+ i

al + bl
z2

+O(z−3)

)
(A.1)

as z →∞, where z is complex valued, al = (l+1)l/2 and bl = (l+2)(l+1)l(l−1)/8,
and the big ordo notation O is de�ed as in [21]. Moreover, as z →∞ the spherical
Bessel functions behave as [1]

jl(z) =
1

z

{(
1− bl

z2
+O(z−4)

)
sin

(
z − lπ

2

)
+
(al
z

+O(z−3)
)

cos

(
z − lπ

2

)}
(zjl(z))′ =

(
1− al + bl

z2
+O(z−4)

)
cos

(
z − lπ

2

)
−
(al
z

+O(z−3)
)

sin

(
z − lπ

2

)
.

(A.2)
To �nd the high-frequency behavior of (3.11), special care must be taken to

separate the exponential behavior of ka and the algebraic behavior of ka. To this
end, expand the material parameters as a power series at in�nity, i.e., ντ = α0 +

iα1

κ
+
α2

κ2
+O

(
κ−3
)

κn = κ
(
β0 + iβ1

κ
+ β2

κ2
+ iβ3

κ3
+O (κ−4)

)
= β0κ+ iβ1 + β2

κ
+ iβ3

κ2
+O (κ−3)

(A.3)
where κ = ka, κ → ∞, and where α0, α1, α2 ∈ R and β0, β1, β2, β3 ∈ R. The
last power series includes the Debye and the Lorentz dispersion models [19]. In
particular, the Debye dispersion model (with real valued and positive parameters
ε∞, εs and τ) is given by

ε(κ) = ε∞ +
εs − ε∞
1− iκτ

= ε∞ + i
εs − ε∞
κτ

+
εs − ε∞
κ2τ 2

+O(κ−3) (A.4)

and the Lorentz dispersion model (with real valued and positive parameters ε∞, κp,
κ0 and ς)

ε(κ) = ε∞ −
κ2

p

κ2 − κ2
0 + iκς

= ε∞ −
κ2

p

κ2
+ i

κ2
pς

κ3
+O(κ−4) (A.5)
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as κ → ∞, which also motivates the assumption of real-valued coe�cients in the
expansion. If α1 or β1 is non-zero, then ντ corresponds e�ectively to a Debye model
or a conductivity model. If both are zero, the model is of Lorentz' type. These
expansions imply

sin

(
κn− lπ

2

)
= sin

(
β0κ− lπ

2
+ iβ1 + β2

κ
+ iβ3

κ2
+O(κ−3)

)
= A sin

(
β0κ− lπ

2
+ iβ1

)
+B cos

(
β0κ− lπ

2
+ iβ1

)
cos

(
κn− lπ

2

)
= cos

(
β0κ− lπ

2
+ iβ1 + β2

κ
+ iβ3

κ2
+O(κ−3)

)
= A cos

(
β0κ− lπ

2
+ iβ1

)
−B sin

(
β0κ− lπ

2
+ iβ1

)
(A.6)

where {
A = cos

(
β2
κ

+ iβ3
κ2

+O(κ−3)
)

= 1− β2
2

2κ2
+O(κ−3)

B = sin
(
β2
κ

+ iβ3
κ2

+O(κ−3)
)

= β2
κ

+ iβ3
κ2

+O(κ−3).
(A.7)

The quantities ρτl are now studied. Introduce the appropriate numerator Nl and
denominator Dl such that

ρτl = −e−2iκ(−1)l+1ρc
τl = e−2i(κ−lπ/2)ρc

τl = e−2i(κ−lπ/2)Nl

Dl

(A.8)

where the numerator Nl is

Nl =

(
1− i

al
κ
− bl
κ2

+O(κ−3)

)
(κnjl(κn))′

− ντκ
(
−i− al

κ
+ i

al + bl
κ2

+O(κ−3)

)
jl(κn) (A.9)

and the denominator is

Dl =

(
1 + i

al
κ
− bl
κ2

+O(κ−3)

)
(κnjl(κn))′

− ντκ
(

i− al
κ
− i

al + bl
κ2

+O(κ−3)

)
jl(κn). (A.10)

Moreover, as ka = κ→∞ the power series expansions de�ned above yield after
some algebra

Nl =
(

1 + i
α0(al+β0β2)−alβ2

0

β2
0κ

+O(κ−2)
)

cos(β0κ− lπ
2

+ iβ1)

+i
(
α0

β0
− i (α0−1)alβ0+α0β1−β0(α1+β0β2)

β2
0κ

+O(κ−2)
)

sin(β0κ− lπ
2

+ iβ1)

Dl =
(

1− i
α0(al+β0β2)−alβ2

0

β2
0κ

+O(κ−2)
)

cos(β0κ− lπ
2

+ iβ1)

−i
(
α0

β0
+ i (α0−1)alβ0−α0β1+β0(α1−β0β2)

β2
0κ

+O(κ−2)
)

sin(β0κ− lπ
2

+ iβ1).

(A.11)
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For simplicity, assume that there is no optical response i.e., α0 = β0 = 1. Then
(A.11) implies as κ→∞

Nl = ei(κ− lπ
2

+iβ1) (1 + iβ2κ
−1 +O(κ−2))

+ ((β1 − α1)κ−1 +O(κ−2)) sin(κ− lπ
2

+ iβ1)

Dl = e−i(κ− lπ
2

+iβ1) (1− iβ2κ
−1 +O(κ−2))

− ((β1 − α1)κ−1 +O(κ−2)) sin(κ− lπ
2

+ iβ1).

(A.12)

Along the real axis all the exponential terms contribute, and the quotient is

ρc
τl = ei2(κ− lπ

2
+iβ1)

(
1 + i2β2κ

−1 + (β1 − α1)κ−1 sin(2κ− lπ + i2β1) +O(κ−2)
)
.

(A.13)
In the upper half-plane as κ→̂∞, the term ei2κ is exponentially small and the

main contribution comes from terms of the form e−i2κ. Therefore, the dominant
contribution is given by

ρc
τl = ei2(κ− lπ

2
+iβ1)

[
1 + i2β2κ

−1 + (β1 − α1)κ−1 sin(2κ− lπ + i2β1)

+O(κ−2) sin(κ− lπ

2
+ iβ1)e−i(κ− lπ

2
+iβ1) +O(κ−2)

]
= i

β1 − α1

2ka
+O((ka)−2) (A.14)

where κ = ka has been inserted.
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