
LUND UNIVERSITY

PO Box 117
221 00 Lund
+46 46-222 00 00

On Extending JGrafchart with Support for FMI for Co-Simulation

Theorin, Alfred; Johnsson, Charlotta

2014

Link to publication

Citation for published version (APA):
Theorin, A., & Johnsson, C. (2014). On Extending JGrafchart with Support for FMI for Co-Simulation. Paper
presented at 10th International Modelica Conference, Lund, Sweden.

Total number of authors:
2

General rights
Unless other specific re-use rights are stated the following general rights apply:
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors
and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.
 • Users may download and print one copy of any publication from the public portal for the purpose of private study
or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove
access to the work immediately and investigate your claim.

https://portal.research.lu.se/en/publications/50f066f9-0bc3-4530-87ab-2858989a075a


On Extending JGrafchart with
Support for FMI for Co-Simulation

Alfred Theorin Charlotta Johnsson
Department of Automatic Control, Lund University, Lund, Sweden

Abstract

Grafchart is a graphical programming language which
extends Sequential Function Charts (SFC), the PLC
standard languages for sequential, parallel, and gen-
eral state-transition oriented automation applications.
SFC is widely used and accepted for industrial au-
tomation. Grafchart adds higher level features to SFC
such as hierarchical structuring, reusable procedures,
and exception handling to make it convenient to im-
plement and maintain large applications.

Functional Mock-up Interface (FMI) is a standard to
combine dynamic system models for technical system
developed in various tools. Tools can export models as
Functional Mock-up Units (FMUs) which can be com-
bined with other FMUs to compose the whole system.

In this paper adding FMI for Co-Simulation sup-
port to JGrafchart, a free implementation of the
Grafchart language, is conceptually evaluated. It is
discussed how JGrafchart fits into the FMI for Co-
Simulation framework and potential ways to imple-
ment this are discussed. Keywords: Grafchart; FMI;
Co-Simulation; FMI for Co-Simulation; Modelica

1 Introduction

Grafchart is a graphical programming language which
extends Sequential Function Charts (SFC), one of the
IEC 61131-3 [1] PLC standard languages for sequen-
tial, parallel, and general state-transition oriented ap-
plications. SFC is supported by most large indus-
trial automation systems, for example 800xA by ABB,
SIMANTIC S7 by Siemens, RSLogix 5000 by Rock-
well Automation, DeltaV by Emerson, and CENTUM
CS by Yokogawa. SFC is widely used and accepted
for industrial automation, but is a low level program-
ming language and thus implementing larger appli-
cations in SFC is inconvenient. Grafchart adds high
level features such as hierarchical structuring, reusable
procedures, and exception handling which makes it
convenient to implement large applications that are

overviewable and maintainable [2].
Functional Mock-up Interface (FMI) is a recent

standard [3] which aims at combining dynamic system
models developed in various tools. Modelica [4], the
state of the art language to express dynamic behavior
of technical systems, promotes this standard and the
number of tools supporting FMI is growing rapidly. A
tool can export a model as a Functional Mock-up Unit
(FMU) which can then be combined with other FMUs
to compose the whole system. The FMI standard con-
sists of two parts, namely FMI for Model Exchange
and FMI for Co-Simulation. The difference is that for
FMI for Co-Simulation a FMU also includes an indi-
vidual solver to simulate its behavior.

In this paper adding FMI for Co-Simulation support
to JGrafchart, a free implementation of the Grafchart
language, is conceptually evaluated. In Section 2
FMI for Co-Simulation is described, in Section 3 the
Grafchart and JGrafchart basics are covered, and Sec-
tion 4 motivates the need to connect JGrafchart to FMI
for Co-Simulation and discusses possible ways to im-
plement this. Finally, future work is discussed in Sec-
tion 5.

2 FMI for Co-Simulation

FMI for Co-Simulation is a standard which enables
simulation of coupled technical systems with focus
on time-dependent problems. It is designed for both
standalone FMUs and FMUs which are FMI wrappers
for simulation tools.

A co-simulation is executed from a given start-
ing time to a stop time which is not necessarily pre-
specified. There is an FMI master which coordinates
the co-simulation and there are FMU slaves, each cor-
responding to one model or subsystem. Each slave
has a pre-specified set of inputs and outputs which are
known by the master. The master is responsible for
initialization of the slaves and for handling the cou-
pling between them by getting and setting their inputs
and outputs.



The co-simulation is executed for one time inter-
val at a time, known as a communication step, dur-
ing which each slave executes independently. Between
the communication steps are the communication points
where the master communicates the inputs and out-
puts between the slaves. Slaves can specify their de-
sired communication step size and the communication
step size may also vary during the co-simulation pro-
vided that all slaves support this. A communication
step may also fail. Then a new communication step
of different size may be attempted if all slaves support
redoing communication steps. It is the master which
decides the communication steps and what to do when
one fails.

The standard does not define an FMI master algo-
rithm, and the level of sophistication is decided by the
one who implements the master. What the standard
does define is the API, a set of slave capabilities, and
rules for how these may be used.

An FMU is described by an XML metadata file
which primarily contains the inputs and outputs and
co-simulation capabilities such as support for redoing
communication steps and support for variable commu-
nication step size.

3 Grafchart

Grafchart has the same graphical syntax as SFC with
steps and transitions, where steps represent the pos-
sible application states and transitions represent the
change of application state. Associated with the steps
are actions which specify what to do. Associated with
each transition is a Boolean guard condition. It is a
state machine related language which has been devel-
oped particularly with automation in mind and with
focus on scalability.

A part of a running Grafchart application is shown
in Figure 1. Here two steps are connected by a transi-
tion and there are two variables, namely var and cond.
In the left part of the figure, the upper step has just
been activated which involved executing its S action,
thus setting var to 7. An active step is indicated by
a black dot, known as a token. The upper step will
remain active until the guard condition of the transi-
tion becomes true, that is, until cond gets the value 4.
When the guard condition becomes true, shown in the
right part of the figure, the upper step is deactivated
and the lower step is activated which means that var
is set to 12.

Steps also have additional properties, namely x, t,
and s. x is true if the step is active and false if the step

S var = 7; 

S var = 12; 

cond == 4 

var: 7 

S var = 7; 

S var = 12; 

cond == 4 

var: 12 

cond: 1 cond: 4 

Figure 1: A piece of a running Grafchart application.
The left part shows one application state and the right
part shows a later application state.

is inactive. t is how many scan cycles the step has
been active since the previous activation if the step is
active. For inactive steps t is 0. s works the same as t
but counts seconds instead of scan cycles.

Grafchart supports basic SFC functionality such as
alternative and parallel paths, see Figure 2. At any
time only one alternative path may contain active
steps. On the other hand, parallel paths are executed
in parallel and will contain active steps at the same
time. To create alternative paths a step is connected to
several transitions. To create parallel paths a Parallel
Split is added to split the execution. A Parallel Join
is used to merge the execution again when the parallel
paths are completed.

b !b

c d

fe

g

Parallel Split

Parallel Join

Parallel paths

Alternative paths

Figure 2: A Grafchart application showing how to ex-
press alternative and parallel paths.



In Figure 1 only the S action type is used. S actions
are executed on step activatation. SFC also supports
several other action types (action qualifiers) which
have other semantics. Grafchart supports fewer ac-
tion types. However, these are more general and can,
among other things, be used to implement the seman-
tics of all action types of SFC. The main action types
in Grafchart are S (executed on step activation), P (ex-
ecuted periodically while step is active), X (executed
on step deactivation), and N (sets a boolean variable to
true (false) on step activation (deactivation)).

Additional constructs such as hierarchical structur-
ing, reusable procedures, and exception handling have
been added in Grafchart which makes it convenient
to implement large applications that are overviewable
and maintainable [2].

With reusable components, code duplication is
avoided. Reusable code can be put in a Grafchart Pro-
cedure which can then be called from any number of
Procedure Steps and Process Steps, see Figure 3. The
difference between Procedure Steps and Process Steps
is that Procedure Steps wait for the call to complete
before the application can proceed while Process Steps
do not.

Procedure

ProcedureStep

ProcessStep

b

c

Figure 3: A Procedure can be called from Procedure
Steps and Process Steps. Each Procedure Step and
Process Step specify which Procedure to call when ac-
tivated.

3.1 Execution Model

Grafchart has a well defined execution model which
ensures sufficiently deterministic execution behavior.
A transition is enabled when all immediately preced-
ing steps are active. An enabled transition is fireable if

its condition is true. Firing a transition involves deacti-
vating the immediately preceding steps and activating
the immediately succeeding steps.

Grafchart applications are, like SFC, executed pe-
riodically, one scan cycle at a time. The execution
model of a scan cycle is described by the following
sequence:

1. Read inputs.
2. Mark fireable transitions.
3. Remove mark for conflicting transitions of lower

priority.
4. Fire marked transitions.
5. Update step properties t and s.
6. Execute P actions.
7. Mark variables subject to N actions.
8. Update marked variables.
9. Sleep until the start of the next scan cycle.

The execution model has the property that an acti-
vated step always remains active for at least one scan
cycle. Note that the execution model does not give a
completely deterministic execution. For example the
firing order of transitions affects which step’s S and X
actions are executed first. Another example is which
step’s P actions are executed first. The application is
not allowed to depend on the execution order in these
cases.

3.2 JGrafchart

JGrafchart is a free Java based integrated development
environment for the Grafchart programming language
which can be downloaded from http://www.control.
lth.se/Research/tools/grafchart.html. It is a research
tool used in for example the EU/GROWTH project
CHEM for control in process industry [5], the EU
FP7 project ROSETTA for robotic assembly [6], and a
master’s thesis for modeling of avionics systems [7].

3.2.1 Inputs and Outputs

JGrafchart can be connected to external environments
through a multitude of customizable input/output (I/O)
integration capabilities and can thus be used to control
external real and simulated processes. This is used in
education, for example in laboratory exercises on se-
quential and batch control, and to control real indus-
trial processes.

One I/O possibility in JGrafchart is the CustomIO,
that is, the I/O elements Digital In, Digital Out, Ana-
log In, and Analog Out as well as inverted variants

http://www.control.lth.se/Research/tools/grafchart.html
http://www.control.lth.se/Research/tools/grafchart.html


for the Digital In/Out. At the beginning of each scan
cycle each In I/O is read from the external environ-
ment. An Out I/O is written to the external environ-
ment whenever assigned. How the I/O interact with
the external environment depends on the chosen I/O
implementation. A custom I/O implementation is cre-
ated by implementing a set of Java interfaces. With a
custom implementation it is possible to communicate
with practically any external environment. However,
it is limited to Boolean and Real values.

There is also generic support for communicating
with Devices Profile for Web Services (DPWS) de-
vices using the DPWS4J toolkit [8]. Devices and their
supported operations are automatically discovered and
can be called directly.

Another I/O possibility is the SocketIO elements.
JGrafchart then connects to a TCP server and commu-
nicates Boolean, Real, Integer, and String values over
a socket with the message protocol: <identifier>
’|’ <value> ’\n’. The TCP server is responsi-
ble for the interaction with the external environment.
SocketIO is often powerful enough to allow creation of
external adapters to other communication protocols. It
has for example been used to integrate JGrafchart with
a multitude of tools and protocols, among others pro-
totypes for Simulink [7], DPWS [9], LabComm, and
OPC UA support.

It would be useful to also support code genera-
tion to be able to export JGrafchart applications as
FMUs. Code generation has previously been added to
JGrafchart [10, 11] but, due to the current JGrafchart
code base design, the results have been limited and
fragile.

Currently JGrafchart only supports interpreted exe-
cution. To execute an application it must first be com-
piled. The compiler checks if the application is valid
and prepares it for execution by attaching additional
data. Applications are then executed directly in an in-
terpreted manner using the same Java instances as the
editor. JGrafchart is currently being split into three
standalone parts, namely editor, compiler, and execu-
tor. This makes it possible to add robust code genera-
tion capabilities.

4 JGrafchart with FMI Support

4.1 Motivation

In one of our laboratory exercises, JGrafchart is used
to control both a simulated and a real batch tank.
The simulated process is implemented as a simpli-

fied model in Java. It is also possible to implement
simulations of simple processes directly in JGrafchart
[12]. However, there is much potential for improve-
ment in terms of effort for specifying the simulated
model, quality of the models, support for inspect-
ing simulation results, and time required to simu-
late, especially for more complicated physical sys-
tems. Extending JGrafchart with support for FMI for
Co-Simulation gives more and better opportunities to
connect JGrafchart to other tools.

There is also a need to efficiently develop and test
JGrafchart control applications before using them to
control the real system. This may save a lot of time as
many industrial systems have slow dynamics and run-
ning a simple test on the real system could take days.
With a good model of the system the development time
could be considerably reduced, and the quality of the
control application will be higher as there is less resis-
tance in the development process. Industrial systems
are often dangerous and running a proper simulation
first could be essential for safety reasons. For the batch
tank in our laboratory exercise, the simulated process
is 10 times as fast as the real process. Special code is
required to add support for this which both makes it
fragile and susceptible to errors as it is possible to run
the control application in the wrong mode, for exam-
ple in simulation mode against the real system. With
a simulation environment that does not run according
to wall clock time, it can be run faster and without the
special code.

It is also important to verify that the system be-
haves properly when controlled by a JGrafchart appli-
cation. JGrafchart executes periodically and only sees
the sampled behavior. When controlling a continuous
system, the behavior between the sampling points may
also be of interest. Also, currently JGrafchart appli-
cations are always executed according to wall clock
time. With a large or complex simulated system the
JGrafchart application might execute faster than the
rest of the system can be simulated.

Support for state machines were introduced in Mod-
elica 3.3 [13] providing a proper way to implement
hierarchical state machines directly in Modelica. On
one hand, JGrafchart does not provide the mutual hier-
archical structuring propery with data flow that Mod-
elica state machines do [13], but on the other hand it
supports powerful high level language features such as
object orientation, hierarchical structuring, code reuse,
and exception handling. Additionally it is based on an
industrial automation language.



4.2 Integration

JGrafchart supports the data types Real, Integer,
Boolean, and String which correspond to the FMI data
types fmiReal, fmiBoolean, fmiInteger, and fmiString.
Both variables, lists (arrays), and I/O in JGrafchart use
only these data types. The state of a JGrafchart appli-
cation is described by the variable, list, and I/O val-
ues as well as which steps are active, how long they
have been active, and currently active procedure calls.
The number of simultaneous procedure calls and the
list sizes are not limited and there are no semantics to
limit this. However, there are no list I/O and proce-
dures are not allowed to contain I/O so this is not an
issue for FMI for Co-Simulation.

As the I/O in the JGrafchart application are the
means of connecting it to external components, these
would ideally be the FMU inputs and outputs. The
mapping for CustomIO and SocketIO is straightfor-
ward. DPWS on the other hand is based on method
calls instead of data and need some configuration to
be able to expose the methods as data instead. Thus it
is best to exclude DPWS, at least during prototyping.

JGrafchart applications are executed periodically,
one scan cycle at a time, as described in Section 3.1.
The execution can be modeled as discrete events at
the beginning of each scan cycle. During the rest of
the scan cycle nothing happens. Ideally, there would
be communication points just before and just after
the beginning of each scan cycle. With a sufficiently
small communication step size this should work fine
for all JGrafchart applications, regardless of scan cycle
time. This could be requested by setting the stepSize
attribute of the DefaultExperiment element in the
FMU XML.

JGrafchart applications are currently always exe-
cuted according to wall clock time and it is not possi-
ble to get and set the execution state as there has been
no need for this before. However, it should be possible
to extend JGrafchart with the possibility to get and set
the current execution state to support redoing commu-
nication steps.

4.3 Architecture

This section discusses various ways to connect a
JGrafchart application to an FMI master.

4.3.1 Hardware-in-the-loop

The simplest way is to consider the JGrafchart applica-
tion as a hardware-in-the-loop, see Figure 4. Then the

JGrafchart application executes as usual, with the FMI
master getting and setting its I/O. As discussed before,
the co-simulation must then be able to keep up with
and synchronize with JGrafchart’s wall clock time ex-
ecution. The main advantage with this approach is that
no modifications to JGrafchart are necessary, it would
be sufficient to create an FMU compatible CustomIO
or TCP server for SocketIO. This is a suitable approach
for FMU integration prototyping but it does not im-
prove matters for systems with slow dynamics.

FMI 
CustomIO 
SocketIO 

Hardware-in-the-loop 

Figure 4: Overview of connecting JGrafchart as a
hardware-in-the-loop.

4.3.2 Generic FMI Wrapper

Another approach is to implement a generic FMI
wrapper for JGrafchart and extend JGrafchart with
support for external clocks, see Figure 5. It is a
small effort to add this feature. The same FMI wrap-
per would be possible to use with all JGrafchart ap-
plication but the wrapper would expose different in-
puts and outputs to the FMI master depending on the
JGrafchart application. This approach only requires
slightly more effort than the hardware-in-the-loop ap-
proach and gives more benefits as the co-simulation no
longer executes according to wall clock time. For this
approach it is suitable to also add support for play-
back and to be able to inspect individual scan cycles
of the JGrafchart application during the co-simulation.
To add these features should only be a moderate ef-
fort, it could be as simple as trace printouts or as ad-
vanced as interactive scan cycle stepping. Compared
to the hardware-in-the-loop case, the main drawback
is that modifications to JGrafchart are required. How-
ever, these additions are great additions in general and
are not solely useful for FMI for Co-Simulation. For
example they open up possibilities for integration with
other tools and improves JGrafchart’s debugging capa-
bilities.

FMI 
CustomIO 
SocketIO 

Figure 5: Overview of connecting JGrafchart with a
generic FMI wrapper.



4.3.3 Standalone FMU

The last approach discussed in this paper is to gener-
ate a standalone FMU for a JGrafchart application, see
Figure 6. The FMU is then self-contained and does not
rely on JGrafchart running in parallel. This is a clean
and portable approach but requires the most effort and
might make it harder to inspect the co-simulation re-
sults. Until the JGrafchart compiler is standalone, the
implementation would also be fragile.

FMI CodeGen 

Figure 6: Overview of using code generation to create
a standalone JGrafchart FMU.

A hybrid approach is to use a generic FMI wrapper
with both JGrafchart and the JGrafchart application
embedded as additional FMU resources, see Figure 7.
Then the FMU is standalone but no code generation
is required. The main drawback with this approach is
that the FMUs would be roughly 20 MB larger.

FMI Export 

Figure 7: Overview of exporting a standalone FMU
with integrated JGrafchart and JGrafchart application.

4.4 Implementation

The FMI API is defined for C and FMUs are dis-
tributed with C source code and/or binary executables
for supported platforms. JGrafchart is written in Java
and is platform independent. However, the FMU it-
self can be implemented in any language which is able
to interact with C code, that is, practically any lan-
guage. There are language specific wrappers for FMI,
for example PyFMI for Python [14] and JFMI for Java
[15] which uses JNA [16] to interface with native code.
Which language is chosen is less important and up to
the one who implements the FMU. However, the Cus-
tomIO implementation must be written in Java.

5 Future Work

Extending JGrafchart to support FMI for Co-
Simulation is only conceptual so far. It looks promis-

ing and there are several alternative ways that it could
be implemented.

The next step is to implement a prototype to verify
that it works in practice. A suitable first attempt would
be a hardware-in-the-loop approach using an unmod-
ified version of JGrafchart and utilizing its CustomIO
and/or SocketIO capabilities. However, this does not
improve matters for slow systems. A desirable future
solution would either be the Generic FMI Wrapper or
the Standalone FMU.

Acknowledgements

The authors are members of the LCCC Linnaeus Cen-
ter and the eLLIIT Excellence Center at Lund Univer-
sity.

References

[1] IEC. IEC 61131-3: Programmable controllers –
Part 3: Programming Languages. Tech. rep. In-
ternational Electrotechnical Commission, 1993.

[2] Alfred Theorin. Adapting Grafchart for In-
dustrial Automation. Licentiate Thesis ISRN
LUTFD2/TFRT--3260--SE. Department of Au-
tomatic Control, Lund University, Sweden,
2013-05.

[3] FMI Development Group. Functional Mock-
up Interface for Model Exchange and Co-
Simulation – 2.0 Release Candidate 1. Tech.
rep. Modelica Association, 2013-10.

[4] Modelica Association. Modelica. URL: https://
www.modelica.org/ (visited on 2013-12-08).

[5] Karl-Erik Årzén, Rasmus Olsson, and Johan
Åkesson. “Grafchart for Procedural Opera-
tor Support Tasks”. In: Proceedings of the
15th IFAC World Congress, Barcelona, Spain.
2002-07.

[6] Andreas Stolt. Robotic Assembly and Con-
tact Force Control. Licentiate Thesis ISRN
LUTFD2/TFRT--3256--SE. Department of Au-
tomatic Control, Lund University, Sweden,
2012-12.

[7] Anna Benktson and Sofia Dahlberg. Modeling
of Avionics Systems using JGrafchart and True-
Time. Master’s Thesis ISRN LUTFD2/TFRT--
5907--SE. Department of Automatic Control,
Lund University, Sweden, 2012.

https://www.modelica.org/
https://www.modelica.org/


[8] SOA4D Forge. DPWS4J Core. URL: https : / /
forge . soa4d . org / projects / dpws4j/ (visited on
2013-12-07).

[9] Alfred Theorin, Lisa Ollinger, and Charlotta
Johnsson. “Service-oriented Process Control
with Grafchart and the Devices Profile for Web
Services”. In: Service Orientation in Holonic
and Multi Agent Manufacturing and Robotics.
Ed. by Theodor Borangiu, Andre Thomas, and
Damien Trentesaux. Vol. 472. Studies in Com-
putational Intelligence. Springer Berlin Heidel-
berg, 2013-01, pp. 213–228. ISBN: 978-3-642-
35851-7. DOI: 10 . 1007 / 978 - 3 - 642 - 35852 -
4_14. URL: http://dx.doi.org/10.1007/978-3-
642-35852-4_14.

[10] Isolde Dressler. Code Generation from
JGrafchart to Modelica. Master’s Thesis ISRN
LUTFD2/TFRT--5726--SE. Department of
Automatic Control, Lund University, Sweden,
2004-03.

[11] Ana Llorente. Code Generation from
JGrafchart to ATMEL AVR. Master’s Thesis
ISRN LUTFD2/TFRT--5749--SE. Depart-
ment of Automatic Control, Lund University,
Sweden, 2005-01.

[12] Alfred Theorin and Charlotta Johnsson. “An In-
teractive PID Learning Module for Educational
Purposes”. In: Submitted to The 19th World
Congress of the International Federation of Au-
tomatic Control (IFAC). 2014-08.

[13] Hilding Elmqvist et al. “State Machines in
Modelica”. In: Proceedings of 9th Interna-
tional Modelica Conference, Munich, Germany,
September. 2012, pp. 3–5.

[14] JModelica.org. PyFMI. URL: http : / / www .
jmodelica . org / page / 4924 (visited on
2013-12-08).

[15] The Regents of the University of California.
JFMI - A Java Wrapper for the Functional
Mock-up Interface. URL: http: / /ptolemy.eecs .
berkeley.edu/ java/ jfmi / index .htm (visited on
2013-12-08).

[16] Todd Fast, Timothy Wall, Liang Chen. Java Na-
tive Access (JNA). URL: https : / / github . com /
twall/jna (visited on 2013-12-08).

https://forge.soa4d.org/projects/dpws4j/
https://forge.soa4d.org/projects/dpws4j/
http://dx.doi.org/10.1007/978-3-642-35852-4_14
http://dx.doi.org/10.1007/978-3-642-35852-4_14
http://dx.doi.org/10.1007/978-3-642-35852-4_14
http://dx.doi.org/10.1007/978-3-642-35852-4_14
http://www.jmodelica.org/page/4924
http://www.jmodelica.org/page/4924
http://ptolemy.eecs.berkeley.edu/java/jfmi/index.htm
http://ptolemy.eecs.berkeley.edu/java/jfmi/index.htm
https://github.com/twall/jna
https://github.com/twall/jna

	Introduction
	FMI for Co-Simulation
	Grafchart
	Execution Model
	JGrafchart
	Inputs and Outputs


	JGrafchart with FMI Support
	Motivation
	Integration
	Architecture
	Hardware-in-the-loop
	Generic FMI Wrapper
	Standalone FMU

	Implementation

	Future Work

