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Bandspectrum Cointegration

Fredrik NG Andersson”
Department of Economics, Lund University

December 2, 2008

Abstract

Economic theory commonly distinguishes between different time horizons such as
the short run and the long run, each with its own relationships and its own
dynamics. Engle (1974) proposed a bandspectrum regression to estimate such
models. This paper proposes a new estimator for non-stationary panel data
models, a bandspectrum cointegration estimator. The bandspectrum cointegration
estimator uses first differenced data to avoid spurious results. Such estimates are,
however, less efficient than estimates from a model with non-stationary data. Still,
simulation results in the paper show that the bandspectrum cointegration estimator
is more efficient than common time domain estimators, for example VECM and
OLS levels estimators, if the data generating process contains more than one time
horizon. The BSCE furthermore identifies all horizons in the data generating
process and estimates an individual parameter vector for each, a property that
neither time domain estimator possesses.

JEL Classification: C14, C15, C23
Keywords. Cointegration; Bandspectrum Regression; Simulations; Wavelets;
Frequency domain

1. Introduction

It is well understood in economics that relationships between macroeconomic variables may

vary across time horizons (see for example King and Watson 1996, and Ramsey and Lampart
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1998). Englund et. al. (1992) suggested that macroeconomic variables should be studied at
three horizons — short run shocks, medium run business cycle fluctuations and the long run
equilibrium. Friedman and Kuznets (1954) make a similar decomposition of the economy into
a temporary, quasi-permanent and permanent component. Understanding the economy at
different horizons is important for both policy makers and the general public. For example,
policies for the long run can cause short run disturbances in the economy, but by also
considering the short run effects the policy maker can take appropriate actions to limit these
temporary fluctuations. Furthermore, taking different dynamics into account can yield better
forecast models and help the individual to smooth consumption over time (Ramsey 2002 and
Crowley 2007).

Engle (1974) proposed a bandspectrum regression for models with many time horizons.
The bandspectrum regression is estimated in the frequency domain, because in the frequency
domain the time horizons are associated with a particular frequency or band of frequencies.
For example, the long run is represented by low frequencies around the zero frequency, while
the short run is represented by higher frequencies. Instead of using all frequencies to estimate
one model, the data is split into many frequency components and a separate model with
different variables and different parameter values, is estimated for each horizon'.

Many economic time series are non-stationary in the sense that they do not have a finite
covariance matrix (Granger 1966, 1980). Regression models with non-stationary data can
yield spurious results because standard testing procedures cannot be applied to them (see Yule
1926 and Granger and Newbold 1974). A growing literature on how to estimate such models
has thus emerged (see for example Engle and Granger 1987 and Johansen 1988, 1991). The
long run information dominates the data generating process for a non-stationary time series
(Granger and Joyeux 1980), and regression models with such data can therefore be interpreted
as models of the long run. A sample with observations from just one individual, however, may
contain too few long run observations to yield efficient parameter estimates. The cointegration
literature has, for this and other reasons, widened to also consider panel data models. If it is
possible to use the same model (with the same parameter values) for all individuals, pooling
individuals increases the number of long run observations, and more efficient parameter
estimates are therefore obtained.

The bandspectrum regression that Engle proposed only considers models with stationary

data, while Phillips (1991) and Robinson and Marinucci (1998) use the frequency domain to

"It is naturally possible that some variables are included in both the short run and the long run model.



study non-stationary time series. However, Robinson and Marinucci only use the frequency
domain to obtain more efficient parameter estimates of the long-run, and Phillips’ estimator
only has two time horizons, the long run and the short run. This paper therefore considers a
new estimator, the Bandspectrum Cointegration Estimator (BSCE), which allows the
estimation of models with many time horizons. The difference compared to the bandspectrum
regression, proposed by Engle (1974), is that it is uses non-stationary panel data.

The BSCE has three important properties; (i) it uses first differenced data to avoid
spurious regressions, (ii) it pools individuals in a panel to increase the number of long run
observations, and (iii) it uses the properties of the frequency domain to estimate a separate
model for each time horizon.

Estimating models with first differenced data is usually avoided for two reasons. Firstly,
empirical experience shows that it is difficult to obtain parameter estimates of the long run
using first differenced data. Secondly, an estimator that uses first differenced data is less
efficient than estimators that use the non-stationary levels data (Davidson and MacKinnon
2004). We therefore study the small sample properties of the BSCE in a simulation study, and
compare it to three common time domain estimators; the OLS levels estimator, OLS first
difference estimator, and a Vector Error Correction Model (VECM). We also compare it to
one frequency domain estimator; the Narrow Band Frequency Domain Least Squares
(NBFDLS). Two properties are evaluated; the efficiency of the BSCE compared to the other
estimators, and whether the BSCE identifies all the horizons in the data generating process.

The simulation model divides the data generating process into three horizons — short run
shocks, medium run business cycles and a long run cointegration relationship. The simulation
results show that the BSCE accurately identifies, and estimates a separate parameter vector,
for all three horizons; it is in fact the only estimator that identifies all horizons. Furthermore,
the BSCE estimates of the cointegration vector are less biased and more efficient than the
OLS level estimator, OLS first difference, the VECM and NBFDLS. The OLS and VECM
estimators are however slightly more efficient than the BSCE when there is one common
parameter vector (one horizon) for all frequencies.

The rest of the paper is organized as follows; Section 2 presents the Bandspectrum
Regression, Section 3 introduces the Bandspectrum Cointegration Estimator, Section 4
discusses Fourier and wavelet transform, Section 5 contains the simulation results and Section

6 concludes the paper.

2. Bandspectrum Regression



Following, in spirit, Engle (1974), let x, be an infinite discrete time series with¢ € {O,J_rl,iZ,...}.

The Fourier transform of x; is

= the_n’ﬁ R (1)
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where the functionF.(f)is the Fourier transform pair, and _ES f<=. The inverse
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transform is

1/2
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Let us first consider the regression model where there is only one horizon,
yo=xp+é, (3)

where & is white noise with mean zero and variance O'j . The OLS estimator of fis

A
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Parcival’s theorem states that
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wherein f ) is the complex conjugate of F. ( f ) (Percival and Walden 2006). For a real

valued function we can therefore write
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It naturally follows that
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and the OLS estimator, (2.4), can thus be written
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Equation (2.8) can be rewritten as

1/2 Ly

B="x) ( s (f)dfj [s.(df, 9)

-1/2 -1/2

where

s.(f)=F.()F.(f), (10)



is the spectral density function for x, and

s, (F)=F.(F)F,(f), (11)

is the cross spectral density function for x and y. The cross spectral density for x and y is* >
s, (f)=Bs.(f), (12)

(Brockwell and Davis, 1991). The OLS estimator can thus be written as

1/2

B s
B = 17/12/2 : (13)
[s.(rur

-1/2
If x is independent of ¢ the Gauss-Markow theorem implies that the OLS estimator is the best
linear unbiased estimator (BLUE) of /.

Economic theory commonly suggest that the economy should be divided into different
time horizons such as the short run, the medium run and the long run each with its own
relationships and dynamics. The simple regression model, which only considers one horizon,
is therefore inadequate. In the frequency domain each horizon is represented by its own
frequency or band of frequencies. For example, the long run is represented by the low

frequencies around the zero frequency and the short run by the highest frequency close

1 : . : . . .
to | f | = 5 A more appropriate regression model with many time horizons is thus

v/ =xlp, +el (14)
for f e[-1/2,1/2] where®

V= () 1 )
¥ = E () 4 F, (- e 5
gl =F.(f)e”™ +F.(-f)e"™™

It is possible that 3, = . for some|f],

f | €[0,1/2], this means that the time horizon is

represented not by an individual frequency but by a wider band of frequencies.

® Assuming that x and ¢ are orthogonal, and that we have infinite many observations such that s (r)=o.

Otherwise s (7)= s (r)+s (1)
3 Equation (12) assumes that the data generating process is given by Equation (2.3). Let y, - b A ; » in this case
o Ui

we have that; s (/)= £ peoos (7).

Jj=—0

* The negative frequencies are a mirroring of the positive frequencies for a real valued process (see Percival and

Walden 2006).



Consider what happens when the estimator (8) is used on the model (14). We now get

jof )

T
-1/2 (x x)

The OLS estimate is therefore a weighted average of the individual parameter vectors for the

df (16)

different frequencies, where the weights depend of the relative importance of each frequency

in the data generating process of x.

3. Bandspectrum Cointegration

A common class of time series in economics are time series that do not have a finite
covariance matrix, so called non-stationary time series (see Granger 1966 and 1980).
Regression models with non-stationary data can cause spurious results because standard

testing procedures cannot be applied to them.

Let x; be an I(d) process where d is the integration order, v, is I(0) and 11d (0, O'Uz). The
data generating process for x; is given by
(1-2)"x, =v, (17)
where Z is the back shift operator, (Granger and Joyeux 1980), and the spectral density
function for x is

2
O

f):m (18)

(see Brockwell and Davis 1991). The auto-covariance function, E[x,x,,,], is given by

1/2

y()=[s.(f)e"df (19)

-1/2

Note that x; does not have a finite covariance matrix if |d | > 0.5. It is the zero frequency which

is causing the non-stationarity, as is evident from (18) and (19); all other frequencies have a
finite covariance matrix. This result has important implications for the OLS estimator in (8).
The zero frequency component dominates all other frequency components if @>0.5. If the data
generating process is given by (14) the estimated parameter vector converges in probability to
So which represents the long run cointegration relationship. An OLS estimator using non-
stationary data is therefore an estimator of the long run.

Taking the first difference of a fractionally differenced time series, as in equation (17),
reduces the integration order by one. The first difference of x is hence stationary if x is

integrated I(d) with0.5 <d <1.5. Problems such as spurious regressions that emerge with



non-stationary time series can therefore be avoided by using first differenced data instead of
levels. There are, however, two disadvantages with using first differenced data. Firstly, such
estimates are less efficient than estimates using non-stationary levels data, and secondly
empirical experience show that it is difficult to estimate long run relationships using first
differenced data.

The second problem is probably caused by a true data generating process with many time
horizons, i.e. a data generating process given by (14) and not (3). It is common for the short
run to be represented by a wider band of frequencies in the frequency domain than the long
run. For example assume that the data generating process contains two horizons; business
cycle fluctuations and the long run. The business cycle lasts for say four years and the sample
consists of yearly data. In this case the business cycle would be represented by,
approximately, the frequencies 1/8 to 1/2 and the long run by the frequencies 0 to 1/8. The
low frequencies around the zero frequency do not dominate the data generating process for a
stationary time series. For an 1(0) process, for example, the spectrum is flat. Because the
business cycle is represented by the greater part of the spectrum (75% of all frequencies) these
will have a larger effect on the OLS estimate than the low frequencies.

Some cointegration models in the time domain, for example, Vector Error Correction
models (VECM)’, mix levels and first differences to estimate the short run and long run
simultaneously. The long run is estimated when the data is in levels while the short run is
estimated using first differenced data. This only works, however, for two horizons, and only
when the short run is represented by a relatively wider band of frequencies than the long run.

Engle (1974) proposed a bandspectrum regression for models with many horizons that is
estimated in the frequency domain. Each horizon is relatively easily identified in the
frequency domain, because they are represented by their own set of frequencies, and it is
therefore straightforward to estimate a separate model for each horizon in this domain.
Phillips (1991) and Robinson and Marinucci (1998) have studied frequency based estimators
of the cointegration vector. However they do not fully explore the properties of the frequency
domain to model more than, at the most, two time horizons.

We therefore introduce the Bandspectrum Cointegration Estimator (BSCE). The
difference between the BSCE and the bandspectrum regression is that the BSCE uses non-
stationary panel data. The panel is used to pool individuals such that the number of long run

observations is increased. The BSCE, like the bandspectrum regression, is estimated in the

> The VECM model is specified in Tables 4 and 7.



frequency domain since it is relatively easier to identify the various horizons in this domain
compared to the time domain. Unlike the bandspectrum regression, however, the BSCE takes
the first difference of all time series before they are transformed to the frequency domain. As
long as the time series are integrated I(d) where 0.5 <d <1.5, taking the first difference
generates a new stationary time series which can be used without the risk of obtaining
spurious results.
The BSCE is based on the following estimation procedure;
1. Test the integration order of the time series. If the time series are stationary
Engle’s bandspectrum regression can be used.
il. If the time series are non-stationary, take first difference and transform the first
differenced data to the frequency domain.
iil. Estimate the model for each individual frequency or frequency band, and test
whether one parameter vector applies to many frequencies.
iv. If the same parameter applies to many frequencies, combine these into one
frequency component and redo the regressions. The parameter estimates are more

efficient if they are estimated using a frequency band that is as wide as possible.

4. Fourier and Wavelet Analysis

It is easier to estimate models with many horizons in the frequency domain than in the time
domain, because each horizon is represented by its own frequency or set of frequencies. To
transform a time series to the frequency domain the Fourier transform is often used, but this is
not the only transform that can be employed. An alternative to the Fourier transform is the
wavelet transform. The difference between the Fourier transform and the wavelet transform is
that the latter combines time and frequency resolution while the Fourier transform only
contains frequency resolution’. The combination of time and frequency resolution is important
when the time series contains non-recurring events such as outliers or structural breaks. The
lack of time resolution can otherwise cause the transform to misrepresent the time series in the

frequency domain.

® The wavelet transform transforms a time series to the wavelet domain and not to the frequency domain. The
difference is that the wavelet domain combines time and frequency resolution. Since the wavelet transform
coefficients contain frequency resolution this presentation will refrain from calling it the wavelet domain and
only refer to the frequency domain for simplicity. The reader should, however, be aware of the differences, see

Percival and Walden (2006).



It is not uncommon for the economy to go through different regimes over time, for
example due to changes in institutions or policy. The combination of time and frequency
resolution is therefore important. Time resolution can be introduced into the Fourier transform
by using a windowed Fourier transform, which is based on transforming a smaller sub-sample
instead of using the entire sample. The transform is obtained by setting a window in the time
domain and letting it slide along the time axis. The time series is transformed one window at a
time instead of transforming the entire time series all at once. The time series only has to be
stationary within each window, but can be non-stationary between windows. This method is
sensitive to the size of the window, and many different window sizes have to be used to test
the robustness of the transform. This increases the complexity of the analysis.

The wavelet basis functions form a complete orthonormal transform and they are,
furthermore, local in time, which means that they start at a given point in time and end at a
given point in time. The sine and cosine functions, which the Fourier analysis uses, oscillate
along the time axis to infinity and are hence global. Let % be a (TxT) matrix which contains
the wavelet basis functions (for more information about the basis functions see Percival and
Walden 2006). The wavelet transform coefficients can be obtained through
w=%x, (20)
where x is a (Tx1) vector which contains the time series x, =1,..7. Since the wavelet
functions form an orthonormal basis the inverse wavelet transform is given by the transpose
of the transform matrix such that
x=w"w 21)
The transform matrix and the vector with transform coefficients can be partitioned into

different scales j=1,..,J. This implies that the transform matrix can be decomposed as

W = , (22)

where %, is a (T/2'T) matrix and?,is (1xT). The vector with transform coefficients can

accordingly be decomposed as



W= : (23)

where w; is a vector with T/2' transform coefficients. The individual scales are interesting
because the wavelet basis functions can be interpreted as representing a band pass filters. The
transform coefficients at scale j can therefore be interpreted as representing the time series x at

frequency’

1 1
o) i
The transform matrix 7, can be interpreted as a low pass filter while the transform

matrixes, %, are high pass filters. v, which is called the scaling coefficient, thus represents

the time series at frequency

I 1
p) o5

Besides representing a particular frequency the individual transform coefficients within a

given scale also represents parts of the time series at given points in time. The individual
transform coefficients within a scale is the difference between two (weighted) averages of the
time series x. The wavelet transform coefficients thus both contains both time and frequency
resolution. However, it is not possible to obtain time resolution and maintain the same
detailed frequency resolution that the Fourier transform contains. The wavelet transform thus
contains less detailed frequency information than the Fourier transform, but in addition it also
contains time resolution, which the Fourier transform does not.

The combination of time and frequency resolution, and the properties of the wavelet basis
functions, makes the wavelet transform ideal to study non-stationary time series. It can be
shown that the wavelet filter can de-correlate non-stationary time series (see Tewkin and Kim
1992, and Craigmile et.al 2005). This implies that we can decompose non-stationary time
series and use the transform coefficients to represent the time series at different frequencies.
The ODFT cannot decompose a non-stationary time series into frequencies components and

requires that the time series are stationary (see Brockwell and Davis 1991 and Phillips 1999).

7 We only need to consider a unit interval of frequencies, and for a real valued time series we only need to

consider half of that interval. For more information see Brockwell and Davis (1991)
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In this paper we use the DWT when we simulate the non-stationary time series in Section
5 and both the DWT and the ODFT when we estimate the BSCE. BSCE uses stationary first
differenced data and the ODFT can thus be applied to transform the time series data to the
frequency domain, but it can not be used in the first step of the simulations.

For more information about the DWT see, for example, Percival and Walden (2006) and
Crowley (2007) and for more information about the frequency domain see Brockwell and

Davis (1991).

5. Simulations

In this section the small sample properties of the BSCE are evaluated and compared to
common time domain estimators — the OLS levels estimator, OLS first difference estimator
and the VECM. It is also compared to the frequency domain estimator NBFDLS, which uses
levels data.

Two sets of simulations are carried out; one where there are three horizons and one where
there is just one horizon. The number of long run observations is limited in a small sample
from just one individual, and we therefore use a panel data model where we pool five

individuals®.
5.1 Simulations with Three Horizons

The first set of simulations uses a bi-variate fixed effects panel data model. Following, in
spirit, Englund ef a/ (1992) and Friedman and Kuznets (1954) the data generating process
contains three components, a short run shock component, a medium run business cycle
component and a long run cointegration relationship. To simulate the time series the following
procedure is used;
1. Letting i denote the individual and ¢ denote time, we simulated x;; as a random walk
in the time domain
X, =X, +1, (26)
where the shocks, 7, are independent and distributed N (0,1). Since x;; follows a

random walk, it is a non-stationary I(1) process.

¥ We also considered using just one individual, but all estimators had problems estimating the cointegration

vector in the case when the data generating process contained three time horizons.
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ii.

iii.

1v.

The second step is to transform x;; to the frequency domain’. This is achieved by
using the discrete wavelet transform and the Daubechie (6) wavelet. Due to the de-
correlating property of the Daubechie wavelets for non-stationary time series, it is
possible to decompose the time series on a frequency basis without miss-
representation.

Once x;; has been transformed we generate y, in the frequency domain, where f

denotes frequency, using the following data generating process'’;

6 el53]
vy, =40.5x, +5, |f|e [é,éj (27)
x,+v, |fle [O, éj
where
vy =&y + 4 (28)

The residuals ¢, are drawn from a normal distribution and are independently
distributed N(0,67) with o ~U(0.5,1.5). The individual fixed effects follow a
uniform distribution; 4, ~ U(0,4). Each individual is independent of the others.

Once y;r has been generated it is transformed to the time domain using the inverse
discrete wavelet transform.

The OLS levels, OLS first difference and the VECM models are now estimated in
the time domain. The non-stationary levels data is transformed to the frequency
domain so we can estimate the NBFDLS. Finally we take the first differences of

all x and y in the time domain to enable us to use the BSCE.

The data generating process we used in the simulations has the following interpretation; in the
short run, there is no correlation between x; and y;, because they are both affected by
uncorrelated shocks. In the medium run (the business cycle) there is a relationship but it is

weaker than the long run relationship. If the model was specified on quarterly data, the first 1-

® We are actually transforming into the wavelet domain, which contains both frequency and time resolution.
Because we use the frequency resolution of the transform coefficients in the simulations we call this the
frequency domain for the sake of simplicity.

1 The negative frequencies have the same data generating process as the positive frequencies since x;, is a real

valued time series.
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4 quarters are the short run, the following 4-32 quarters represents the business cycle, and the
remaining 32 quarters and beyond is the long run.

The number of observations for each individual was first set to 7=256'' and then to
7=512. For one individual there are eight long run observations when 7=256 and sixteen
when 7=512. We use five individuals in the panel — we also estimated panels with fewer
individuals and found that increasing the number of individuals from one to three improved
the results for all estimators, but there were no significant gains for any estimator when the
panel contained more than three indidividuals, but to be on the conservative side we use five
individuals in the simulations. In total there are therefore 40 long run observations when
7=256 and 80 when 7=512.

The number of observations per individual (7=256 and 7=512) was determined by the
fact that the discrete wavelet transform which requires 2’ observations to transform the data,
where J is an integer. If the number of observations in an empirical analysis does not equal to
27, it is always possible to pad the data by adding observations (for example the mean) until
the restriction is met. Because the discrete wavelet transform contains time resolution it is
possible to remove those transform coefficients that are affected by the data padding once the
time series have been transformed. The use of data padding therefore has no effect on the

. . . . 12. 13
regression results, and was therefore ignored in this study. =

5.2 Simulation Results
5.2.1 Simulation Results — Three Horizons

Each set of simulations (7=256, 7=512) was repeated 5000 times. The average parameter
estimates and their empirical standard deviations are presented in Tablel for the BSCE. Table

2 shows the bandspectrum regression that has been applied to the non-stationary levels data,

" To simulate the time series we set 7=4096 and then use 256 and 512 of these observations. This is done to
avoid problems with boundary coefficients.

12 When the time series were simulated we used the Daubechie (6) wavelet due to its de-correlating property for
non-stationary time series. Because the BSCE is estimated on first differenced data we do not need this property
when we employ the BSCE. We therefore used the Daubechie (4) for this estimator because the Daubechie (6)
wavelet generates more boundary coefficients than the Daubechie (4) wavelet.

B In these simulations the DWT-BSCE is estimated with a Daubechie (4) wavelet. When his is used some
wavelet transform coefficients are affected by boundary conditions. These are removed from the estimation (see
Percival and Walden 2006) so as not affect the estimation results. It implies that the BSCE is estimated on 6 long
run observations when 7=256 and 14 when 7=512 for each individual. The BSCE is therefore estimated on fewer

observations than the OLS levels, OLS first difference, VECM and Frequency Domain Least Squares estimators.
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the parameter estimate for the frequency band 0 to 1/64 in this table represents the NBFDLS.
Table 3 presents the results for the OLS levels and OLS first difference estimators. The
VECM results are given in Table 4.

Both the DWT-BSCE'* and the ODFT-BSCE find that there are three different parameter
vectors when using the testing procedure described at the end of Section 3. The DWT-BSCE
parameter estimates are less biased, however, and more efficient than the ODFT-BSCE
estimates. For example, the true cointegration parameter (long run) is 1. The DWT-BSCE
estimates are 0.989 (7=256) and 0.992 (7=512) while the ODFT-BSCE estimates are 0.955
and 0.945 respectively. The standard deviations are 0.018 and 0.007 for the DWT-BSCE and
0.060 and 0.032 for the ODFT-BSCE.

The differences between the DWT-BSCE and the ODFT-BSCE are even greater for the
medium run results. The DWT-BSCE parameter estimates are 0.501 and 0.503 depending on
the sample size, compared to the true value of 0.5. The corresponding parameter estimates
from the ODFT-BSCE are 0.429 and 0.431, these estimates are also less efficient than the
DWT-BSCE estimates. There is no appreciable difference for the short run results, however.

In Table 2, the DWT and the ODFT are applied to the levels data instead of the first
differenced data. The long run results from the ODFT in Table 2 represent NBFDLS. The loss
of time resolution is noticeable for the ODFT, which therefore contains relatively larger biases
than the DWT for the cointegration parameter estimate. The ODFT is furthermore, not
capable of distinguishing between the other horizons (short-run and medium-run). The DWT
identifies all three horizons, but the parameter estimates for the medium run is biased.

An interesting result of the simulations is that the OLS levels estimator, in Table 3, has a
relatively large bias. The estimated common parameter vector should converge in probability
to the cointegration parameter due to the non-stationarity of the data, but there are too few
long run observations for this to happen. The cointegration parameter estimate has a bias of -
0.061 and —0.031respectively compared to the true value, which is greater than the bias for
the DWT-BSCE. The parameter estimates are furthermore less efficient than the DWT-BSCE
estimates despite the fact that the OLS levels estimates use non-stationary levels data, while
the BSCE is estimated using first differenced data.

The VECM estimates of the cointegration vector in Table 4 are slightly less biased and
more efficient than the OLS levels estimates, but inferior to the DWT-BSCE. The bias of the

" DWT-BSCE denotes the bandspectrum cointegration estimator using a DWT, and ODFT-BSCE the estimator
using the ODFT.
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VECM cointegration parameter estimate is -0.033 and -0.015 and the respective standard
deviations are 0.021 and 0.009. The other parameters from the VECM regression represent the
shorter horizons, which, however, are difficult to interpret in relation to the true data
generating process. If the data generating process had contained just two horizons these
parameters would have represented the short run, but now they represent a mixture of the
short run and the medium run.

The parameter estimates from the OLS first difference estimator are 0.136 and 0.138. The
theoretical parameter value for these estimates can be obtained from equation (16), and is
0.141. The OLS estimator, converges, as expected, to the theoretical value, but contains no
relevant information about either horizon.

Introducing more than one horizon into the data generating process obviously creates
problems for the usual time domain estimators, as is evident from the results. The parameter
estimates are biased and less efficient than for the DWT-BSCE. Figures 1-8 plots the
empirical distribution of the respective parameter estimates. Figures 1 and 2; Panel A shows
the distribution of the DWT/ODFT-BSCE cointegration vector estimates and Panel B the
medium run parameter estimates for 7=256, and Figures 5 and 6 for 7=512. These estimates
appear to have a symmetric distribution. Similar figures for the OLS levels and VECM
estimators are given in Figures 3 and 4 for 7=256 and 7 and 8 for 7=512. As is apparent in the
figures, the distributions of these estimates are skewed to the left. An estimate of the skewness
is given in Table 8; the skewness of the OLS levels estimator is about -1.25 and for the
VECM cointegration parameter estimates about -1.5. This skewness is a result of two effects;
the small sample, and the fact that the medium run and short run parameters are smaller than
the long run parameter. There is also a slight skewness for the cointegration vector for the
DWT-BSCE (about -0.25) and ODFT-BSCE (about -0.35) but no skewness for the medium

and short run parameter estimates.

5.2.2 Simulation Results - Common Parameter Vector

To see how the BSCE works when there is only one horizon we can let the true data
generating process be given by equation (3). Table 5 presents the results when there is one
common parameter vector for all frequencies for the BSCE, Table 6 for the OLS estimators,
and Table 7 the VECM estimators.

All the estimators are unbiased, but the OLS levels estimator is the most efficient; it has a
standard deviation of 0.006 (7=256) and 0.003 (7=512). The DWT-BSCE is slightly less
efficient 0.015 and 0.007, but the differences are very small. The OLS first difference
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estimator is also unbiased but inefficient, the standard deviations are 0.037 and 0.028
respectively.

It is interesting to note, however, that the loss off efficiency is relatively small for the
OLS first difference estimator compared to the OLS levels estimator. It is also interesting that
the adjustment parameter in the VECM model, «; is equal to -1. This implies that there are no
persistent deviations from the equilibrium cointegration relationship. The adjustment
parameter was much smaller when the data generating process also contained a medium and a
short run vector, ;=-0.257 (7=256). This result indicates that we may infer that the true data
generating process contains more than one horizon when the adjustment parameter is smaller
than 1 in absolute value. The same conclusion may be drawn when the OLS first difference
estimator and the OLS levels estimator yield significantly different parameter estimates.
When either of the above two results is obtained in an empirical analysis, the BSCE may be

the right estimator to consider.

6. Conclusions

Economic theory commonly distinguishes between different time horizons, each with its own
dynamics and relationships. Engle (1974) proposed a bandspectrum regression for such
models when the data is stationary. This paper considers a Bandspectrum Cointegration
Estimator for models with non-stationary panel data. The BSCE estimates the model in the
frequency domain using first differenced data to avoid problems with spurious results.

We evaluate the small sample properties of the BSCE in a simulation study by comparing
it to common time domain and frequency domain estimators — OLS levels estimator, OLS
first difference, VECM and NBFDLS. The results of the simulations show that the BSCE
successfully identifies all the horizons in the data and estimates a separate parameter vector
for each. We also find that the BSCE estimates of the cointegration vector are less biased and
more efficient than the estimates from any of the other estimators when the data generating
process contains three time horizons. All estimators are unbiased when there is only one time
horizon, and the BSCE is, as expected, slightly less efficient than estimators that use non-

stationary levels data. This loss of efficiency is very small, however.
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Table4: ThreeHorizons—VECM?

Ay, = al(yt—l _ﬂxt—l)+}/1Ayt—l + 7,8, + VA, + A,
Ax, = aZ(yt—l _ﬂxt—1)+75Ayz—1 VAV, YA+ Y AX

7=256 7=512
Parameter | Parameter Estimate Std. dev. Parameter Std. dev.
Estimate
a; -0.257 0.059 -0.242 0.039
o 0.300 0.043 0.295 0.031
yij 0.967 0.021 0.985 0.009
Vi -0.565 0.058 -0.578 0.039
2 -0.259 0.038 -0.265 0.026
% 0.124 0.062 0.133 0.042
V4 0.115 0.056 0.119 0.039
75 -0.117 0.041 -0.113 0.029
1% -0.012 0.031 -0.010 0.021
% 0.143 0.037 0.142 0.026
7 0.103 0.037 0.104 0.026
Note:

1. The theoretical parameter estimate for the cointegration relationship (f) is 1. The other

parameter estimates represent a mixture of the short and the medium run.
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Figure4: VECM T=256, |
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Figure5: DWT - BSCE T=512, |

Panel A: Cointegration
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Figure8: VECM T=512, =5
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