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Abstract 
Economic theory commonly distinguishes between different time horizons such as 
the short run and the long run, each with its own relationships and its own 
dynamics. Engle (1974) proposed a bandspectrum regression to estimate such 
models. This paper proposes a new estimator for non-stationary panel data 
models, a bandspectrum cointegration estimator. The bandspectrum cointegration 
estimator uses first differenced data to avoid spurious results. Such estimates are, 
however, less efficient than estimates from a model with non-stationary data. Still, 
simulation results in the paper show that the bandspectrum cointegration estimator 
is more efficient than common time domain estimators, for example VECM and 
OLS levels estimators, if the data generating process contains more than one time 
horizon. The BSCE furthermore identifies all horizons in the data generating 
process and estimates an individual parameter vector for each, a property that 
neither time domain estimator possesses.  
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1. Introduction 

It is well understood in economics that relationships between macroeconomic variables may 

vary across time horizons (see for example King and Watson 1996, and Ramsey and Lampart 
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1998). Englund et. al. (1992) suggested that macroeconomic variables should be studied at 

three horizons – short run shocks, medium run business cycle fluctuations and the long run 

equilibrium. Friedman and Kuznets (1954) make a similar decomposition of the economy into 

a temporary, quasi-permanent and permanent component. Understanding the economy at 

different horizons is important for both policy makers and the general public. For example, 

policies for the long run can cause short run disturbances in the economy, but by also 

considering the short run effects the policy maker can take appropriate actions to limit these 

temporary fluctuations. Furthermore, taking different dynamics into account can yield better 

forecast models and help the individual to smooth consumption over time (Ramsey 2002 and 

Crowley 2007).  

Engle (1974) proposed a bandspectrum regression for models with many time horizons. 

The bandspectrum regression is estimated in the frequency domain, because in the frequency 

domain the time horizons are associated with a particular frequency or band of frequencies. 

For example, the long run is represented by low frequencies around the zero frequency, while 

the short run is represented by higher frequencies. Instead of using all frequencies to estimate 

one model, the data is split into many frequency components and a separate model with 

different variables and different parameter values, is estimated for each horizon1. 

Many economic time series are non-stationary in the sense that they do not have a finite 

covariance matrix (Granger 1966, 1980). Regression models with non-stationary data can 

yield spurious results because standard testing procedures cannot be applied to them (see Yule 

1926 and Granger and Newbold 1974). A growing literature on how to estimate such models 

has thus emerged (see for example Engle and Granger 1987 and Johansen 1988, 1991). The 

long run information dominates the data generating process for a non-stationary time series 

(Granger and Joyeux 1980), and regression models with such data can therefore be interpreted 

as models of the long run. A sample with observations from just one individual, however, may 

contain too few long run observations to yield efficient parameter estimates. The cointegration 

literature has, for this and other reasons, widened to also consider panel data models. If it is 

possible to use the same model (with the same parameter values) for all individuals, pooling 

individuals increases the number of long run observations, and more efficient parameter 

estimates are therefore obtained.  

The bandspectrum regression that Engle proposed only considers models with stationary 

data, while Phillips (1991) and Robinson and Marinucci (1998) use the frequency domain to 

                                                 
1 It is naturally possible that some variables are included in both the short run and the long run model.  
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study non-stationary time series. However, Robinson and Marinucci only use the frequency 

domain to obtain more efficient parameter estimates of the long-run, and Phillips’ estimator 

only has two time horizons, the long run and the short run.  This paper therefore considers a 

new estimator, the Bandspectrum Cointegration Estimator (BSCE), which allows the 

estimation of models with many time horizons. The difference compared to the bandspectrum 

regression, proposed by Engle (1974), is that it is uses non-stationary panel data.  

The BSCE has three important properties; (i) it uses first differenced data to avoid 

spurious regressions, (ii) it pools individuals in a panel to increase the number of long run 

observations, and (iii) it uses the properties of the frequency domain to estimate a separate 

model for each time horizon.  

Estimating models with first differenced data is usually avoided for two reasons. Firstly, 

empirical experience shows that it is difficult to obtain parameter estimates of the long run 

using first differenced data. Secondly, an estimator that uses first differenced data is less 

efficient than estimators that use the non-stationary levels data (Davidson and MacKinnon 

2004). We therefore study the small sample properties of the BSCE in a simulation study, and 

compare it to three common time domain estimators; the OLS levels estimator, OLS first 

difference estimator, and a Vector Error Correction Model (VECM). We also compare it to 

one frequency domain estimator; the Narrow Band Frequency Domain Least Squares 

(NBFDLS). Two properties are evaluated; the efficiency of the BSCE compared to the other 

estimators, and whether the BSCE identifies all the horizons in the data generating process. 

The simulation model divides the data generating process into three horizons – short run 

shocks, medium run business cycles and a long run cointegration relationship. The simulation 

results show that the BSCE accurately identifies, and estimates a separate parameter vector, 

for all three horizons; it is in fact the only estimator that identifies all horizons. Furthermore, 

the BSCE estimates of the cointegration vector are less biased and more efficient than the 

OLS level estimator, OLS first difference, the VECM and NBFDLS. The OLS and VECM 

estimators are however slightly more efficient than the BSCE when there is one common 

parameter vector (one horizon) for all frequencies.  

The rest of the paper is organized as follows; Section 2 presents the Bandspectrum 

Regression, Section 3 introduces the Bandspectrum Cointegration Estimator, Section 4 

discusses Fourier and wavelet transform, Section 5 contains the simulation results and Section 

6 concludes the paper.  

2. Bandspectrum Regression 
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Following, in spirit, Engle (1974), let xt be an infinite discrete time series with { },...2,1,0 ±±∈t . 

The Fourier transform of xt is 

( ) ∑
∞

−∞=

−=
t

fti
tx exfF π2 , (1) 

where the function ( )fFx is the Fourier transform pair, and 
2
1

2
1

≤≤− f . The inverse 

transform is 

( )∫
−

=
2/1

2/1

2 dfefFx fti
xt

π . (2) 

Let us first consider the regression model where there is only one horizon, 

ttt xy εβ += , (3) 

where εt is white noise with mean zero and variance 2
εσ . The OLS estimator of β is 

( ) yxxx TT 1ˆ −
=β , (4) 

Parcival’s theorem states that 
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−

∞

−∞=

=
2/1

2/1
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t

, (5) 

where ( )fFx  is the complex conjugate of ( )fFx  (Percival and Walden 2006). For a real 

valued function we can therefore write 
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−

∞

−∞=

∞

−∞=

===
2/1

2/1

22 dffFfFxxxx xx
T

tt
. (6) 

It naturally follows that 
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−
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2/1
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T , (7) 

and the OLS estimator, (2.4), can thus be written 
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Equation (2.8) can be rewritten as 

( ) ( ) ( )∫∫
−

−

−

−

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
==

2/1

2/1

12/1

2/1

1ˆ dffsdffsyxxx xyx
TTβ , (9) 

where 

( ) ( ) ( )fFfFfs xxx = , (10) 
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is the spectral density function for x, and  

( ) ( ) ( )fFfFfs yxxy = ,  (11) 

is the cross spectral density function for x and y. The cross spectral density for x and y is2, 3 

( ) ( )fsfs xxy β= , (12) 

(Brockwell and Davis, 1991). The OLS estimator can thus be written as 

( )

( )dffs

dffs

x

x

∫

∫

−

−= 2/1

2/1

2/1

2/1ˆ
β

β . (13) 

If x is independent of ε the Gauss-Markow theorem implies that the OLS estimator is the best 

linear unbiased estimator (BLUE) of β.  

Economic theory commonly suggest that the economy should be divided into different 

time horizons such as the short run, the medium run and the long run each with its own 

relationships and dynamics. The simple regression model, which only considers one horizon, 

is therefore inadequate. In the frequency domain each horizon is represented by its own 

frequency or band of frequencies. For example, the long run is represented by the low 

frequencies around the zero frequency and the short run by the highest frequency close 

to
2
1

=f . A more appropriate regression model with many time horizons is thus 

f
tf

f
t

f
t xy εβ +=   (14) 

for [ ]2/1,2/1−∈f  where4 

( ) ( )

( ) ( )
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t
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f
t
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y

πfti
y

f
t

efFefF

efFefFx

efFefFy

22

22

22

−+=

−+=

−+=

εεε

 (15) 

It is possible that 'ff ββ = for some [ ]2/1,0, ' ∈ff , this means that the time horizon is 

represented not by an individual frequency but by a wider band of frequencies.  
                                                 
2 Assuming that x and ε are orthogonal, and that we have infinite many observations such that ( ) 0=fxs ε . 

Otherwise ( ) ( ) ( )fsfsfs
xxyx ε

β +=  

3 Equation (12) assumes that the data generating process is given by Equation (2.3). Let ∑
∞

−∞= −=
j jtxjty β , in this case 

we have that; ( ) ( )fxs
j

ejfys fji∑
∞

−∞=
= − πβ 2 .  

4 The negative frequencies are a mirroring of the positive frequencies for a real valued process (see Percival and 

Walden 2006). 
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Consider what happens when the estimator (8) is used on the model (14). We now get 

( )
( )∫

−

=
2/1

2/1

ˆ df
xx

fs
T
xfβ

β  (16) 

The OLS estimate is therefore a weighted average of the individual parameter vectors for the 

different frequencies, where the weights depend of the relative importance of each frequency 

in the data generating process of x.  

3. Bandspectrum Cointegration 

A common class of time series in economics are time series that do not have a finite 

covariance matrix, so called non-stationary time series (see Granger 1966 and 1980). 

Regression models with non-stationary data can cause spurious results because standard 

testing procedures cannot be applied to them.  

Let xt be an I(d) process where d is the integration order, tυ  is I(0) and ( )2,0 iid υσ . The 

data generating process for xt is given by 

( ) tt
d xZ υ=−1  (17) 

where Z is the back shift operator, (Granger and Joyeux 1980), and the spectral density 

function for x is 

( )
( )( )dx

f
fs

π

συ

2

2

sin4
=  (18) 

(see Brockwell and Davis 1991). The auto-covariance function, [ ]htt xxE + , is given by 

( ) ( )∫
−

=
2/1

2/1

2 dfefsh fhi
x

πγ  (19) 

Note that xt does not have a finite covariance matrix if 5.0≥d . It is the zero frequency which 

is causing the non-stationarity, as is evident from (18) and (19); all other frequencies have a 

finite covariance matrix. This result has important implications for the OLS estimator in (8). 

The zero frequency component dominates all other frequency components if d≥0.5. If the data 

generating process is given by (14) the estimated parameter vector converges in probability to 

β0 which represents the long run cointegration relationship. An OLS estimator using non-

stationary data is therefore an estimator of the long run.  

Taking the first difference of a fractionally differenced time series, as in equation (17), 

reduces the integration order by one. The first difference of x is hence stationary if x is 

integrated I(d) with 5.15.0 <≤ d . Problems such as spurious regressions that emerge with 
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non-stationary time series can therefore be avoided by using first differenced data instead of 

levels. There are, however, two disadvantages with using first differenced data. Firstly, such 

estimates are less efficient than estimates using non-stationary levels data, and secondly 

empirical experience show that it is difficult to estimate long run relationships using first 

differenced data.  

The second problem is probably caused by a true data generating process with many time 

horizons, i.e. a data generating process given by (14) and not (3). It is common for the short 

run to be represented by a wider band of frequencies in the frequency domain than the long 

run. For example assume that the data generating process contains two horizons; business 

cycle fluctuations and the long run. The business cycle lasts for say four years and the sample 

consists of yearly data. In this case the business cycle would be represented by, 

approximately, the frequencies 1/8 to 1/2 and the long run by the frequencies 0 to 1/8. The 

low frequencies around the zero frequency do not dominate the data generating process for a 

stationary time series. For an I(0) process, for example, the spectrum is flat. Because the 

business cycle is represented by the greater part of the spectrum (75% of all frequencies) these 

will have a larger effect on the OLS estimate than the low frequencies.  

Some cointegration models in the time domain, for example, Vector Error Correction 

models (VECM)5, mix levels and first differences to estimate the short run and long run 

simultaneously. The long run is estimated when the data is in levels while the short run is 

estimated using first differenced data. This only works, however, for two horizons, and only 

when the short run is represented by a relatively wider band of frequencies than the long run.  

Engle (1974) proposed a bandspectrum regression for models with many horizons that is 

estimated in the frequency domain. Each horizon is relatively easily identified in the 

frequency domain, because they are represented by their own set of frequencies, and it is 

therefore straightforward to estimate a separate model for each horizon in this domain. 

Phillips (1991) and Robinson and Marinucci (1998) have studied frequency based estimators 

of the cointegration vector. However they do not fully explore the properties of the frequency 

domain to model more than, at the most, two time horizons.   

We therefore introduce the Bandspectrum Cointegration Estimator (BSCE). The 

difference between the BSCE and the bandspectrum regression is that the BSCE uses non-

stationary panel data. The panel is used to pool individuals such that the number of long run 

observations is increased. The BSCE, like the bandspectrum regression, is estimated in the 

                                                 
5 The VECM model is specified in Tables 4 and 7. 
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frequency domain since it is relatively easier to identify the various horizons in this domain 

compared to the time domain. Unlike the bandspectrum regression, however, the BSCE takes 

the first difference of all time series before they are transformed to the frequency domain. As 

long as the time series are integrated I(d) where 5.15.0 <≤ d , taking the first difference 

generates a new stationary time series which can be used without the risk of obtaining 

spurious results.  

The BSCE is based on the following estimation procedure; 

i. Test the integration order of the time series. If the time series are stationary 

Engle’s bandspectrum regression can be used.  

ii. If the time series are non-stationary, take first difference and transform the first 

differenced data to the frequency domain.  

iii. Estimate the model for each individual frequency or frequency band, and test 

whether one parameter vector applies to many frequencies.  

iv. If the same parameter applies to many frequencies, combine these into one 

frequency component and redo the regressions. The parameter estimates are more 

efficient if they are estimated using a frequency band that is as wide as possible.  

4. Fourier and Wavelet Analysis 

It is easier to estimate models with many horizons in the frequency domain than in the time 

domain, because each horizon is represented by its own frequency or set of frequencies. To 

transform a time series to the frequency domain the Fourier transform is often used, but this is 

not the only transform that can be employed. An alternative to the Fourier transform is the 

wavelet transform. The difference between the Fourier transform and the wavelet transform is 

that the latter combines time and frequency resolution while the Fourier transform only 

contains frequency resolution6. The combination of time and frequency resolution is important 

when the time series contains non-recurring events such as outliers or structural breaks. The 

lack of time resolution can otherwise cause the transform to misrepresent the time series in the 

frequency domain.  

                                                 
6 The wavelet transform transforms a time series to the wavelet domain and not to the frequency domain. The 

difference is that the wavelet domain combines time and frequency resolution. Since the wavelet transform 

coefficients contain frequency resolution this presentation will refrain from calling it the wavelet domain and 

only refer to the frequency domain for simplicity. The reader should, however, be aware of the differences, see 

Percival and Walden (2006).   

8



 

It is not uncommon for the economy to go through different regimes over time, for 

example due to changes in institutions or policy. The combination of time and frequency 

resolution is therefore important. Time resolution can be introduced into the Fourier transform 

by using a windowed Fourier transform, which is based on transforming a smaller sub-sample 

instead of using the entire sample. The transform is obtained by setting a window in the time 

domain and letting it slide along the time axis. The time series is transformed one window at a 

time instead of transforming the entire time series all at once. The time series only has to be 

stationary within each window, but can be non-stationary between windows. This method is 

sensitive to the size of the window, and many different window sizes have to be used to test 

the robustness of the transform. This increases the complexity of the analysis.  

The wavelet basis functions form a complete orthonormal transform and they are, 

furthermore, local in time, which means that they start at a given point in time and end at a 

given point in time. The sine and cosine functions, which the Fourier analysis uses, oscillate 

along the time axis to infinity and are hence global. Let W be a (T×T) matrix which contains 

the wavelet basis functions (for more information about the basis functions see Percival and 

Walden 2006). The wavelet transform coefficients can be obtained through 

xw W= , (20) 

where x is a (T×1) vector which contains the time series xt, t=1,..T. Since the wavelet 

functions form an orthonormal basis the inverse wavelet transform is given by the transpose 

of the transform matrix such that 

wx TW=  (21) 

The transform matrix and the vector with transform coefficients can be partitioned into 

different scales j=1,..,J. This implies that the transform matrix can be decomposed as 

⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=
−

J

J

J

V
W
W

W
W

W
1

2

1

, (22) 

where jW  is a (T/2j×T) matrix and jV is (1×T). The vector with transform coefficients can 

accordingly be decomposed as 
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⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
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⎡

=
−

J

J

J

v
w

w

w
w

w
1

2

1

, (23) 

where wj is a vector with T/2j transform coefficients. The individual scales are interesting 

because the wavelet basis functions can be interpreted as representing a band pass filters. The 

transform coefficients at scale j can therefore be interpreted as representing the time series x at 

frequency7  

⎥⎦
⎤

⎢⎣
⎡

+ jj 2
1,

2
1

1 . (24) 

The transform matrix VJ can be interpreted as a low pass filter while the transform 

matrixes, jW , are high pass filters. vJ, which is called the scaling coefficient, thus represents 

the time series at frequency  

⎥⎦
⎤

⎢⎣
⎡

+12
1,

0
1

j . (25) 

Besides representing a particular frequency the individual transform coefficients within a 

given scale also represents parts of the time series at given points in time. The individual 

transform coefficients within a scale is the difference between two (weighted) averages of the 

time series x. The wavelet transform coefficients thus both contains both time and frequency 

resolution. However, it is not possible to obtain time resolution and maintain the same 

detailed frequency resolution that the Fourier transform contains. The wavelet transform thus 

contains less detailed frequency information than the Fourier transform, but in addition it also 

contains time resolution, which the Fourier transform does not.  

The combination of time and frequency resolution, and the properties of the wavelet basis 

functions, makes the wavelet transform ideal to study non-stationary time series. It can be 

shown that the wavelet filter can de-correlate non-stationary time series (see Tewkin and Kim 

1992, and Craigmile et.al 2005). This implies that we can decompose non-stationary time 

series and use the transform coefficients to represent the time series at different frequencies. 

The ODFT cannot decompose a non-stationary time series into frequencies components and 

requires that the time series are stationary (see Brockwell and Davis 1991 and Phillips 1999).   
                                                 
7 We only need to consider a unit interval of frequencies, and for a real valued time series we only need to 

consider half of that interval. For more information see Brockwell and Davis (1991)  
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In this paper we use the DWT when we simulate the non-stationary time series in Section 

5 and both the DWT and the ODFT when we estimate the BSCE. BSCE uses stationary first 

differenced data and the ODFT can thus be applied to transform the time series data to the 

frequency domain, but it can not be used in the first step of the simulations.  

For more information about the DWT see, for example, Percival and Walden (2006) and 

Crowley (2007) and for more information about the frequency domain see Brockwell and 

Davis (1991). 

5. Simulations 

In this section the small sample properties of the BSCE are evaluated and compared to 

common time domain estimators – the OLS levels estimator, OLS first difference estimator 

and the VECM. It is also compared to the frequency domain estimator NBFDLS, which uses 

levels data. 

Two sets of simulations are carried out; one where there are three horizons and one where 

there is just one horizon. The number of long run observations is limited in a small sample 

from just one individual, and we therefore use a panel data model where we pool five 

individuals8.  

5.1 Simulations with Three Horizons 

The first set of simulations uses a bi-variate fixed effects panel data model. Following, in 

spirit, Englund et al (1992) and Friedman and Kuznets (1954) the data generating process 

contains three components, a short run shock component, a medium run business cycle 

component and a long run cointegration relationship. To simulate the time series the following 

procedure is used; 

i. Letting i denote the individual and t denote time, we simulated xit as a random walk 

in the time domain 

                 ititit xx η+= −1  (26) 

where the shocks, ηit, are independent and distributed ( )1,0N . Since xit follows a 

random walk, it is a non-stationary I(1) process. 

                                                 
8 We also considered using just one individual, but all estimators had problems estimating the cointegration 

vector in the case when the data generating process contained three time horizons. 
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ii. The second step is to transform xit to the frequency domain9. This is achieved by 

using the discrete wavelet transform and the Daubechie (6) wavelet. Due to the de-

correlating property of the Daubechie wavelets for non-stationary time series, it is 

possible to decompose the time series on a frequency basis without miss-

representation.  

iii. Once xit has been transformed we generate ify in the frequency domain, where f 

denotes frequency, using the following data generating process10; 

⎪
⎪
⎪

⎩

⎪⎪
⎪

⎨

⎧

⎟
⎠
⎞

⎢⎣
⎡∈+

⎟
⎠
⎞

⎢⎣
⎡∈+

⎥⎦
⎤

⎢⎣
⎡∈

=

64
1,0

8
1,

64
15.0

2
1,

8
1

fvx

fx

f

y

ifif

ifif

if

if ε

ε

 (27) 

where  

iififv λε +=  (28) 

The residuals εit are drawn from a normal distribution and are independently 

distributed ( )2,0 iN σ  with ( )5.1,5.0~2 Uiσ . The individual fixed effects follow a 

uniform distribution; ( )4,0~ Uiλ . Each individual is independent of the others.  

iv. Once yif has been generated it is transformed to the time domain using the inverse 

discrete wavelet transform.  

v. The OLS levels, OLS first difference and the VECM models are now estimated in 

the time domain. The non-stationary levels data is transformed to the frequency 

domain so we can estimate the NBFDLS. Finally we take the first differences of 

all x and y in the time domain to enable us to use the BSCE. 

The data generating process we used in the simulations has the following interpretation; in the 

short run, there is no correlation between xit and yit because they are both affected by 

uncorrelated shocks. In the medium run (the business cycle) there is a relationship but it is 

weaker than the long run relationship. If the model was specified on quarterly data, the first 1-

                                                 
9 We are actually transforming into the wavelet domain, which contains both frequency and time resolution. 

Because we use the frequency resolution of the transform coefficients in the simulations we call this the 

frequency domain for the sake of simplicity.  
10 The negative frequencies have the same data generating process as the positive frequencies since xit is a real 

valued time series. 
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4 quarters are the short run, the following 4-32 quarters represents the business cycle, and the 

remaining 32 quarters and beyond is the long run.  

The number of observations for each individual was first set to T=25611 and then to 

T=512. For one individual there are eight long run observations when T=256 and sixteen 

when T=512. We use five individuals in the panel – we also estimated panels with fewer 

individuals and found that increasing the number of individuals from one to three improved 

the results for all estimators, but there were no significant gains for any estimator when the 

panel contained more than three indidividuals, but to be on the conservative side we use five 

individuals in the simulations. In total there are therefore 40 long run observations when 

T=256 and 80 when T=512. 

The number of observations per individual (T=256 and T=512) was determined by the 

fact that the discrete wavelet transform which requires 2J observations to transform the data, 

where J is an integer. If the number of observations in an empirical analysis does not equal to 

2J, it is always possible to pad the data by adding observations (for example the mean) until 

the restriction is met. Because the discrete wavelet transform contains time resolution it is 

possible to remove those transform coefficients that are affected by the data padding once the 

time series have been transformed. The use of data padding therefore has no effect on the 

regression results, and was therefore ignored in this study.12, 13  

5.2 Simulation Results 

5.2.1 Simulation Results – Three Horizons 

Each set of simulations (T=256, T=512) was repeated 5000 times. The average parameter 

estimates and their empirical standard deviations are presented in Table1 for the BSCE. Table 

2 shows the bandspectrum regression that has been applied to the non-stationary levels data, 
                                                 
11 To simulate the time series we set T=4096 and then use 256 and 512 of these observations. This is done to 

avoid problems with boundary coefficients. 
12 When the time series were simulated we used the Daubechie (6) wavelet due to its de-correlating property for 

non-stationary time series. Because the BSCE is estimated on first differenced data we do not need this property 

when we employ the BSCE. We therefore used the Daubechie (4) for this estimator because the Daubechie (6) 

wavelet generates more boundary coefficients than the Daubechie (4) wavelet. 
13 In these simulations the DWT-BSCE is estimated with a Daubechie (4) wavelet. When his is used some 

wavelet transform coefficients are affected by boundary conditions. These are removed from the estimation (see 

Percival and Walden 2006) so as not affect the estimation results. It implies that the BSCE is estimated on 6 long 

run observations when T=256 and 14 when T=512 for each individual. The BSCE is therefore estimated on fewer 

observations than the OLS levels, OLS first difference, VECM and Frequency Domain Least Squares estimators.  
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the parameter estimate for the frequency band 0 to 1/64 in this table represents the NBFDLS. 

Table 3 presents the results for the OLS levels and OLS first difference estimators. The 

VECM results are given in Table 4. 

Both the DWT-BSCE14 and the ODFT-BSCE find that there are three different parameter 

vectors when using the testing procedure described at the end of Section 3. The DWT-BSCE 

parameter estimates are less biased, however, and more efficient than the ODFT-BSCE 

estimates. For example, the true cointegration parameter (long run) is 1. The DWT-BSCE 

estimates are 0.989 (T=256) and 0.992 (T=512) while the ODFT-BSCE estimates are 0.955 

and 0.945 respectively. The standard deviations are 0.018 and 0.007 for the DWT-BSCE and 

0.060 and 0.032 for the ODFT-BSCE.  

The differences between the DWT-BSCE and the ODFT-BSCE are even greater for the 

medium run results. The DWT-BSCE parameter estimates are 0.501 and 0.503 depending on 

the sample size, compared to the true value of 0.5. The corresponding parameter estimates 

from the ODFT-BSCE are 0.429 and 0.431, these estimates are also less efficient than the 

DWT-BSCE estimates. There is no appreciable difference for the short run results, however.  

In Table 2, the DWT and the ODFT are applied to the levels data instead of the first 

differenced data. The long run results from the ODFT in Table 2 represent NBFDLS. The loss 

of time resolution is noticeable for the ODFT, which therefore contains relatively larger biases 

than the DWT for the cointegration parameter estimate. The ODFT is furthermore, not 

capable of distinguishing between the other horizons (short-run and medium-run). The DWT 

identifies all three horizons, but the parameter estimates for the medium run is biased.  

An interesting result of the simulations is that the OLS levels estimator, in Table 3, has a 

relatively large bias. The estimated common parameter vector should converge in probability 

to the cointegration parameter due to the non-stationarity of the data, but there are too few 

long run observations for this to happen. The cointegration parameter estimate has a bias of -

0.061 and 031.0− respectively compared to the true value, which is greater than the bias for 

the DWT-BSCE. The parameter estimates are furthermore less efficient than the DWT-BSCE 

estimates despite the fact that the OLS levels estimates use non-stationary levels data, while 

the BSCE is estimated using first differenced data.  

The VECM estimates of the cointegration vector in Table 4 are slightly less biased and 

more efficient than the OLS levels estimates, but inferior to the DWT-BSCE. The bias of the 

                                                 
14 DWT-BSCE denotes the bandspectrum cointegration estimator using a DWT, and ODFT-BSCE the estimator 

using the ODFT.  
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VECM cointegration parameter estimate is -0.033 and -0.015 and the respective standard 

deviations are 0.021 and 0.009. The other parameters from the VECM regression represent the 

shorter horizons, which, however, are difficult to interpret in relation to the true data 

generating process. If the data generating process had contained just two horizons these 

parameters would have represented the short run, but now they represent a mixture of the 

short run and the medium run. 

The parameter estimates from the OLS first difference estimator are 0.136 and 0.138. The 

theoretical parameter value for these estimates can be obtained from equation (16), and is 

0.141. The OLS estimator, converges, as expected, to the theoretical value, but contains no 

relevant information about either horizon.  

Introducing more than one horizon into the data generating process obviously creates 

problems for the usual time domain estimators, as is evident from the results. The parameter 

estimates are biased and less efficient than for the DWT-BSCE. Figures 1-8 plots the 

empirical distribution of the respective parameter estimates. Figures 1 and 2; Panel A shows 

the distribution of the DWT/ODFT-BSCE cointegration vector estimates and Panel B the 

medium run parameter estimates for T=256, and Figures 5 and 6 for T=512. These estimates 

appear to have a symmetric distribution. Similar figures for the OLS levels and VECM 

estimators are given in Figures 3 and 4 for T=256 and 7 and 8 for T=512. As is apparent in the 

figures, the distributions of these estimates are skewed to the left. An estimate of the skewness 

is given in Table 8; the skewness of the OLS levels estimator is about -1.25 and for the 

VECM cointegration parameter estimates about -1.5. This skewness is a result of two effects; 

the small sample, and the fact that the medium run and short run parameters are smaller than 

the long run parameter. There is also a slight skewness for the cointegration vector for the 

DWT-BSCE (about -0.25) and ODFT-BSCE (about -0.35) but no skewness for the medium 

and short run parameter estimates.  

5.2.2 Simulation Results - Common Parameter Vector  

To see how the BSCE works when there is only one horizon we can let the true data 

generating process be given by equation (3). Table 5 presents the results when there is one 

common parameter vector for all frequencies for the BSCE, Table 6 for the OLS estimators, 

and Table 7 the VECM estimators.  

All the estimators are unbiased, but the OLS levels estimator is the most efficient; it has a 

standard deviation of 0.006 (T=256) and 0.003 (T=512). The DWT-BSCE is slightly less 

efficient 0.015 and 0.007, but the differences are very small. The OLS first difference 
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estimator is also unbiased but inefficient, the standard deviations are 0.037 and 0.028 

respectively.  

It is interesting to note, however, that the loss off efficiency is relatively small for the 

OLS first difference estimator compared to the OLS levels estimator. It is also interesting that 

the adjustment parameter in the VECM model, α1 is equal to -1. This implies that there are no 

persistent deviations from the equilibrium cointegration relationship. The adjustment 

parameter was much smaller when the data generating process also contained a medium and a 

short run vector, α1=-0.257 (T=256). This result indicates that we may infer that the true data 

generating process contains more than one horizon when the adjustment parameter is smaller 

than 1 in absolute value. The same conclusion may be drawn when the OLS first difference 

estimator and the OLS levels estimator yield significantly different parameter estimates. 

When either of the above two results is obtained in an empirical analysis, the BSCE may be 

the right estimator to consider.  

6. Conclusions 

Economic theory commonly distinguishes between different time horizons, each with its own 

dynamics and relationships. Engle (1974) proposed a bandspectrum regression for such 

models when the data is stationary. This paper considers a Bandspectrum Cointegration 

Estimator for models with non-stationary panel data. The BSCE estimates the model in the 

frequency domain using first differenced data to avoid problems with spurious results.  

We evaluate the small sample properties of the BSCE in a simulation study by comparing 

it to common time domain and frequency domain estimators – OLS levels estimator, OLS 

first difference, VECM and NBFDLS. The results of the simulations show that the BSCE 

successfully identifies all the horizons in the data and estimates a separate parameter vector 

for each. We also find that the BSCE estimates of the cointegration vector are less biased and 

more efficient than the estimates from any of the other estimators when the data generating 

process contains three time horizons. All estimators are unbiased when there is only one time 

horizon, and the BSCE is, as expected, slightly less efficient than estimators that use non-

stationary levels data. This loss of efficiency is very small, however.  
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Table 4: Three Horizons – VECM1 

( )
( ) 28172615112

24132211111

−−−−−−

−−−−−−

Δ+Δ+Δ+Δ+−=Δ
Δ+Δ+Δ+Δ+−=Δ

ttttttt

ttttttt

xxyyxyx
xxyyxyy

γγγγβα
γγγγβα

 

 T=256 T=512 

Parameter Parameter Estimate Std. dev. 
Parameter 

Estimate 
Std. dev. 

α1 -0.257 0.059 -0.242 0.039 

α2 0.300 0.043 0.295 0.031 

β 0.967 0.021 0.985 0.009 

γ1 -0.565 0.058 -0.578 0.039 

γ2 -0.259 0.038 -0.265 0.026 

γ3 0.124 0.062 0.133 0.042 

γ4 0.115 0.056 0.119 0.039 

γ5 -0.117 0.041 -0.113 0.029 

γ6 -0.012 0.031 -0.010 0.021 

γ7 0.143 0.037 0.142 0.026 

γ8 0.103 0.037 0.104 0.026 

Note: 

1. The theoretical parameter estimate for the cointegration relationship (β) is 1. The other 

parameter estimates represent a mixture of the short and the medium run.  
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