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Abstract

In this paper we introduce an approach to analyze the interaction between

antennas and the propagation channel. We study both the antennas and the

propagation channel by means of the spherical vector wave mode expansion of

the electromagnetic �eld. Then we use the expansion coe�cients to study some

properties of general antennas in those �elds by means of the antenna scat-

tering matrix. The focus is on the spatio-polar characterization of antennas,

channels and their interactions. We provide closed form expressions for the

covariance of the �eld multi-modes as function of the Power Angle Spectrum

(PAS) and the channel cross-polarization ratio (XPR). A new interpretation of

the Mean E�ective Gains (MEG) of antennas is also provided. The maximum

MEG is obtained by conjugate mode matching between the antennas and the

channel; we also prove the (intuitive) results that the optimum decorrelation

of the antenna signals is obtained by the excitation of orthogonal spherical

vector modes.

1 Introduction

Space has been declared by many as the ��nal frontier" in wireless communications,
while others recognize its exploitation as just �important and fruitful". In any
case, its importance is without a doubt indisputable. Then, a natural question
is: How can we �squeeze" the last bit of information from the �Space"? In order
to answer this question and many others, we need to understand the fundamental
issues of the problem posed. In particular the physical properties of both antennas
and propagation channels. More precisely, here, we are interested in the interplay
between antennas and the radio propagation channel. Our �nal goal is to understand
the actual physical implications of the spatial and polarization selectivity of the
propagation channel on the communication link capacity.

In most practical situations the radio propagation channel is selective in both
space and polarization1, i.e., within some volume it is more likely to receive signals
from some directions rather than others as well as with some polarization rather
than others. This has, as we are going to see, a great impact on the modes excited
in the channel and therefore also on the antennas we should use in those channels.
Hence, it is important to study the properties of the �eld incident at the antenna in
order to understand the interaction between the antenna �eld the �eld of the waves
impinging at it.

There have been other papers aiming to describe the interaction between the an-
tennas and the channel in terms of multimode expansions [25], [26], [24], [23], [20],
[19], [13], [14]. However, these approaches are restricted to the scalar case, where
the polarization characteristics of the channel are omitted. This of course, does not
su�ce for the full understanding of the physics involved in the interaction between
the wireless communication channel and the antennas. The limitations of such an

1Selectivity in time is of course also of great relevance, but we are not going to deal with it
here, see [3] for further reference on channel properties.
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approach are detrimental to both the theoretical treatment of electromagnetic �elds,
since they are inherently vector �elds, and the practical applications, since polar-
ization diversity is gaining more and more importance for wireless communications
and requires proper modelling [21].

A natural way to express the polarization, angle, and spatial diversity inherent
to MIMO systems [28], [10], is by describing the properties of both antennas and
channels by means of the spherical vector wave expansion of the electromagnetic
�eld, which is a particular solution to Maxwell equations [17], [15]. This expansion
gives a condensed interpretation of the radiation properties of an antenna. Although
this mode expansion is in�nite, in practice, it is su�cient to consider a �nite set of
modes due to the high Q-factors (strong reactive near �eld), and hence high losses
and low bandwidth, associated with high order modes [5]. Moreover, the spherical
vector waves expansion and the scattering matrix representation of an antenna are
the cornerstone of the theory and practice of near-�eld antenna measurements [15].
This approach has also recently been successfully applied to the problem of the inter-
action of antennas with the radio channel, where as a �rst assumption an isotropic
unpolarized �eld2 was assumed for the incoming �eld [11]. It was shown there that
for the isotropic �eld3 the excited spherical modes are all of equal magnitude.

In this paper we model the �eld incident at the antenna by a mixed Gaussian
vector �eld consisting of an unpolarized stochastic component with non-isotropic
power angular spectra (PAS) and a deterministic (polarized) component. The power
imbalance of orthogonal polarizations is modelled by the channel cross-polarization
ratio (XPR). The Gaussianity of the �eld is de�ned with respect to the complex
vector �eld amplitudes of the incident �eld. We develop a model for the correlation
between the �eld components under these assumptions. We then use this model
to derive the statistical properties of the expansion coe�cients in spherical vector
modes for general Gaussian �elds and the properties of optimal antennas in those
�elds.

Our paper aims at developing some insights into the physics involved in the wire-
less communication, and, in the process, provide criteria and methods for optimally
matching antennas to a given channel. The key contributions of our paper on the
latter aspect can be summarized as follows:

• we show that maximum Mean E�ective Gain (MEG) and the maximum re-
ceived (transmitted) power of an antenna is achieved by conjugate mode
matching

• we show that independent signals are achieved by eigenmode reception (trans-
mission) over the strongest multimodes.

Other relevant contributions are the following:

2The coherence matrix J of the �eld with orthogonal �eld components Eα and Eβ has elements
Jαβ = 〈EαE∗

β〉. We say then that the �eld is polarized when det(J)= 0 and that the �eld is
unpolarized when Jαβ = Jβα = 0.

3In this paper, an isotropic �eld is understood as a �eld where the AoAs (angle of arrivals) are
uniformly distributed over the sphere of unit radius.
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• we show that in a Gaussian electromagnetic �eld (the propagation channel)
each multimode coe�cient in the spherical vector wave expansion is a Gaussian
variate and as a consequence we prove that the envelope of each multimode
coe�cient in the spherical vector wave expansion is a Ricean variate.

• we derive closed-form expressions for the mode correlation matrix for arbitrary
PAS of incoming waves and for the normalized power of single modes in terms
of the PAS of incoming waves and the channel XPR.

The remainder of the paper is organized as follows. In Section 2, we give a brief
description of the statistical properties of the model used for the incident �eld. In
Section 3, we express the same in terms of the expansion coe�cients, where we also
provide closed form expressions for the elements of the spherical vector wave mode
correlation matrix. Section 4 describes the scattering matrix representation of the
joint antenna-channel properties, and we also derive some fundamental properties of
antennas such as Mean E�ective Gain. In Section 5, we provide simulation results
where we study the interaction between a Gaussian channel with Laplacian PAS
and patch and tripole antennas. The conclusions are summarized in Section 6.

2 Incident Field

The wireless communication channel is often modelled as the superposition of ran-
dom waves. Under certain conditions the envelope of the resulting signal is dis-
tributed according to the Rayleigh probability density function (pdf) while the
phases are uniformly distributed. This results in an unpolarized total �eld. More
speci�cally, Rayleigh fading may be seen as an ensemble of Gaussian random waves,
made up from superpositions of plane waves with random phases at each position in
space. The directions of arrivals (DoAs) are in general non-isotropically distributed
on the sphere of unit radius. Thus, the electric �eldE at position r, can be expressed
through the plane wave spectrum (PWS) representation

E
(
r
)

=

∫
Ẽ0(k̂)e−ikk̂·rdΩ, (2.1)

where the integral is taken over the sphere of unit radius, dΩ is the elementary solid
angle, Ẽ0(k̂) denotes the random complex PWS of the �eld E(r) at the observation
point in space r, k = 2π/λ is the wave number, k̂ is the unit wave vector in
the direction of the plane wave propagation, λ is the wave length, and the time
convention eiωt is assumed.

The more general Ricean fading model assumes a deterministic, and therefore
polarized, component in addition to the random component. In general, its ampli-
tude is larger than the amplitude of each the single unpolarized waves. In this case,
the PWS of the total �eld is given by the vector

Ẽ0(k̂) = Ẽpol(k̂) + Ẽunpol(k̂), (2.2)
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where Ẽpol(k̂) is the deterministic component while Ẽunpol(k̂) is the zero mean ran-

dom �eld component with 〈Ẽunpol(k̂)〉 = 0 and 〈.〉 denotes the ensemble average

see, e.g., [22], p.285). We model Ẽ0(k̂) as a stochastic process that assigns to every
observation ς of Ẽ0 the family of functions Ẽ0(k̂, ς). Hence, ς is the actual real-
ization (observation) of the random variable Ẽ0. Then, representing Ẽ0 through
orthogonal PWS �eld components Ẽ0α(k̂) and Ẽ0β(k̂), the average of the polariza-
tion components are

〈Ẽ0α(k̂)〉 = Epolα(k̂0)δ
2(k̂ − k̂0), (2.3)

for the Ẽ0α(k̂) component, where Epolα(k̂0) is one of the two orthogonal components

of the polarized �eld component that arrives from direction k̂0; a similar expression
applies to the Ẽ0β(k̂) component. The symbol δ2(k̂) = δ(θ)δ(φ)/ sin(θ) denotes the
Dirac-delta in spherical coordinates de�ned on the sphere of unit radius.

We postulate the following correlation model for the PWS, which is an extension
of the model in [4], [18], [9]:

1. The phases of the co-polarized PWS components are uncorrelated for di�erent

DoAs, k̂ and k̂
′
. This is the random PWS �eld for which the two orthogo-

nal components, Ẽunpolα(k̂) and Ẽunpolα(k̂
′
) or Ẽunpolβ(k̂) and Ẽunpolβ(k̂

′
) are

uncorrelated.

2. The phases of the cross-polarized PWS are uncorrelated for di�erent DoAs, k̂

and k̂
′
, with the exception of one �xed direction k̂0. This is the deterministic

PWS �eld component, for which the two orthogonal components Ẽpolα(k̂) and

Ẽpolβ(k̂
′
) or Ẽpolβ(k̂) and Ẽpolα(k̂

′
) are correlated.

Therefore, if Ẽ0α(k̂) and Ẽ0β(k̂), are the complex PWS components of the ran-
dom electric �eld in two orthogonal polarizations, then

〈Ẽα(k̂)Ẽ∗β(k̂
′
)〉 = Epol,α(k̂0)E

∗
pol,β(k̂0)δ

2(k̂ − k̂0)δ
2(k̂
′ − k̂0)

+〈|Eunpol,α(k̂
′
)|2〉δ2(k̂ − k̂′)δαβ, (2.4)

where δαβ, denotes the Kronecker-delta function and the asterisk (.)∗denotes complex
conjugate.

The above stated conditions de�ne both the auto- and cross-correlation proper-
ties of the random PWS �eld E0, i.e., the second order properties of the modelled

stochastic �eld, at di�erent DoAs k̂ and k̂
′
. It is worthwhile to note that the physical

meaning of the cross-correlation of the incoming �eld evaluated at di�erent DoAs
de�ned in (2.4), relies on the assumption that the vector �eld components them-
selves are described by Gaussian stochastic processes in the direction of arrivals. It
should be observed that (2.4) is independent from the choice of coordinate system.
However, in practice, it is often convenient to de�ne the directional properties of
both the antenna and the propagation channel in some speci�c coordinate system.

Hence, the PAS of the unpolarized �eld component along θ̂ or φ̂, which are the
two orthogonal orientations in the spherical coordinate system are de�ned according
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to the de�nition given in [18]. The PAS depends upon the directions of arrival Ω,
where Ω is used interchangeably to denote the set of spherical coordinates (θ, φ) and
the solid angle and describe the DoA de�ned by the vector k̂ expressed in the same
system. Commonly, the PASs of �eld components along θ̂ and φ̂ are denoted Pθ(Ω)
and Pφ(Ω), respectively. Then, the PAS of the unpolarized �eld component is given
by

〈|Eunpol,θ(Ω)|2〉 =
ηk2

2π
Punpol,θpθ(Ω), (2.5)

where k is the wave number of the incoming plane wave, η is the free-space impedance4,
Punpol,θ is the power that would be received by an isotropic antenna polarized along

θ̂ a similar expression applies for the component along φ̂, 〈|Eunpol,φ(Ω)|2〉. The pdfs
pθ(Ω) and pφ(Ω) satisfy the normalization

∫
pα(Ω)dΩ = 1, where α stands for either

θ or φ.
Similarly, the PAS of the polarized �eld component along θ̂ and φ̂ in spherical

coordinates is

〈|Epol,θ(Ω)|2〉 =
ηk2

2π
Ppol,θδ

2(Ω− Ω0), (2.6)

where Ppol,θ is the average power that would be received by an isotropic antenna

polarized along θ̂ at the incidence direction, Ω0, of the polarized, deterministic
component where δ2(Ω) = δ(θ)δ(φ)/ sin(θ) is the Dirac-delta; a similar expression
applies for the component along φ̂, 〈|Epol,φ(Ω)|2〉.

Ricean channels are characterized by the Ricean K-factor, which is de�ned as
the ratio of the power in the deterministic component to the power of the stochastic
component of the received signals. Here, we follow the same formalism and de�ne
the e�ective Ricean K-factor as the ratio of the power in the polarized component
to the power in the unpolarized component

K =
Ppol

Punpol

=
χunpolKθ +Kφ

χunpol + 1
, (2.7)

where Ppol = Ppol,θ + Ppol,φ, Punpol = Punpol,θ + Punpol,φ, Kθ =
Ppol,θ

Punpol,θ
and Kφ =

Ppol,φ

Punpol,φ
are the K-factors of �eld components in the direction of θ̂ or φ̂, respectively.

χunpol =
Punpol,θ

Punpol,φ
is the XPR of the unpolarized �eld component. The e�ective Ricean

factor is a measure of the power in the polarized component relative to the power
of the unpolarized component.

The �e�ective" cross-polarization ratio of the channel XPR of the total �eld is
de�ned as the ratio between the power in the θ̂ polarization to the power in the φ̂
polarization

χ =
Ppol,θ + Punpol,θ

Ppol,φ + Punpol,φ

= χunpol
Kθ + 1

Kφ + 1
. (2.8)

The fundamental statistical properties of the Gaussian vector �eld can then be
summarized by the following quantities:

4We also use η to denote radiation e�ciency.
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• PAS of the �eld at two orthogonal polarizations, Pθ(Ω) and Pφ(Ω)

• XPR of the channel, χ

• Ricean K-factor

The PAS of the unpolarized �eld plays a key role in propagation modelling since it
describes, together with the power of the polarized component, the polarization- and
spatial selectivity of the channel. Models of the PAS are usually derived by extensive
measurements and re�ect an average behavior of the propagation channel. They are
usually used in both link and system level simulations of communications systems
exploiting smart antennas or in general MIMO antenna systems [21]. However,
they also �nd their use in computations of the mean e�ective gain of antennas
(MEG), which is a measure of the performance of antennas in di�erent propagation
environments [27]. Below it is shown to be a fundamental measure of the antenna-
channel interaction.

3 Spherical vector wave expansion of the incident

�eld

The �eld impinging on an antenna can be modelled by the spherical vector wave
expansion formalism. Hence, the total incident �eld is expanded in regular spherical
vector waves vτml(kr) [17], [15]

E = k
√

2η
∞∑
l=1

l∑
m=−l

2∑
τ=1

fτmlvτml(kr), (3.1)

for |r| ≥ a, where a is the radius of a sphere circumscribing the antenna and fτml
are the expansion coe�cients corresponding to multi-poles or modes described by
indices (τ,m, l). Whenever necessary, the multi�index ι is identi�ed with the ordered
number ι = 2(l2 + l − 1 + m) + τ . Hence, the expansion coe�cients fι can be
represented by the vector f . The multi�poles are classi�ed as either TE (τ = 1) or
TM (τ = 2). The azimuthal and radial dependencies are given by the m and l index,
respectively. The factor k

√
2η is used to power normalize the expansion coe�cients.

The regular spherical vector waves vτml(kr) are brie�y described in Appendix A.
The plane wave expansion coe�cients in regular spherical vector waves can then

be expressed as the sum of the polarized and unpolarized components

fι = fpol
ι + funpol

ι , (3.2)

where the expansion coe�cients for the polarized �eld component are given by

fpol
ι =

4π(−i)l−τ+1

k
√

2η
Epol(k̂0) ·A∗ι (k̂0), (3.3)
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where we have used (2.3). For the unpolarized �eld component expansion coe�cients
are

funpol
ι =

4π(−i)l−τ+1

k
√

2η

∫
Ẽunpol(k̂) ·A∗ι (k̂)dΩ, (3.4)

where the functions Aι(r̂) are the spherical vector harmonics, see Appendix A.
Clearly the expansion coe�cients are obtained as a linear combination of indi-

vidual plane waves.

3.1 Statistical properties of mode expansion coe�cients

Now, since the incident �eld is assumed to be a random �eld, we are interested in
characterizing the statistics of the multimode expansion coe�cients, fι, which are
summarized in the following propositions.

Proposition 1. In a multipath propagation environment characterized by a mixed
�eld with both a random Gaussian, unpolarized, �eld component and one determinis-
tic, polarized, �eld component, the correlation matrix of expansion coe�cients of the
total received �eld in regular spherical vector waves is given by the sum of the mode
correlation matrices corresponding to the polarized and the unpolarized components,
respectively

Rf = fpolf
H
pol + 〈funpolf

H
unpol〉 (3.5)

where fpol and funpol are the vectors with elements f
pol
ι and funpol

ι , respectively. The
elements of the correlation matrices are given by,

Rιι′ = Rpol
ιι′ +Runpol

ιι′ , (3.6)

where Rpol
ιι′ denotes the mode cross-correlation of the polarized deterministic compo-

nent given by

Rpol
ιι′ = 4π(−i)l−l

′−τ+τ ′ . . . (3.7)

. . . (P0θA
∗
ι,θ(Ω0)Aι′,θ(Ω0)

+2 Re
{√

P0θP0φA
∗
ι,θ(Ω0)Aι′,φ(Ω0)e

iψ
}

+P0φA
∗
ι,φ(Ω0)Aι′,φ(Ω0)),

where Re denotes real part. In (3.7) we have used that
∣∣EθE∗φ∣∣ = ηk2

2π

√
P0θP0φ and

that ψ is a phase angle that depends on the polarization, e.g., ψ = 0, for a linearly
polarized wave and ψ = ±π

2
for circularly polarized waves. Runpol

ιι′ denotes the cross-
mode correlation corresponding to the unpolarized component given by

Runpol
ιι′ = 4π(−i)l−l

′−τ+τ ′ . . . (3.8)

. . .

∫
Pθpθ(Ω)A∗ι,θ(Ω)Aι′,θ(Ω)

+Pφpφ(Ω)A∗ι,φ(Ω)Aι′,φ(Ω)dΩ,

where we have used the de�nition of the PAS of the incoming waves at two perpen-
dicular polarizations (2.6). The derivation is given in Appendix B.�
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Lemma 3.1. In a multipath propagation environment characterized by a mixed �eld
with both random Gaussian, unpolarized, �eld components and one deterministic,
polarized, �eld component, the expansion coe�cients of the total received �eld in
regular spherical vector waves, fι, are Gaussian variates with mean

〈fι〉 =
4π(−i)l−τ+1

k
√

2η
〈E0(k̂0) ·A∗ι 〉 = fpol

ι , (3.9)

and variance
〈|fι|2〉 =

∣∣fpol
ι

∣∣2 + 〈
∣∣funpol
ι

∣∣2〉, (3.10)

where the mode powers of the polarized component are given by

P pol
ι =

∣∣fpol
ι

∣∣2 (3.11)

= 4π(
√
P0θ |Aι,θ(Ω0)|+

√
P0φ |Aιφ(Ω0)|)2,

and the mode powers of the unpolarized component are given by

P unpol
ι = 〈

∣∣funpol
ι

∣∣2〉 (3.12)

= 4π

∫
Pθpθ(Ω) |Aι,θ(Ω)|2

+Pφpφ(Ω) |Aιφ(Ω)|2 dΩ.

Hence, the second moments, i.e., the mode powers, are given by

Pι = P pol
ι + P unpol

ι . (3.13)

as shown in Appendix C.�

Remark 1. In a multipath propagation environment characterized by a mixed �eld
with both random Gaussian, unpolarized, �eld components and one deterministic,
polarized, �eld component, the envelope of the expansion coe�cients of the total
received �eld in regular spherical vector waves, |fι|, are Ricean variates with K-factor

Kι =
P pol
ι

P unpol
ι

. (3.14)

This result follows directly from Lemma 1.�

It is now clear that the power of the mode with index ι corresponding to the
polarized component depends upon both the AoA and the power of incoming waves
from that direction at each polarization (3.11). Similarly, the power of the mode
with index ι corresponding to the unpolarized component depends upon both the
distribution of AoA and the average power at each polarization (3.12). The physical
meaning is straightforward, the mode power is the power that would be received on
average by an ideal antenna able to receive only the mode with index ι.

In the special case when only the unpolarized �eld component is present, it
follows from (3.12) that the mode cross-correlation is given by Rιι′ = Runpol

ιι′ . Hence,
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the mode power is P unpol
ι = Runpol

ιι . Further, for the isotropic model we arrive at,
Rιι′ = 2πδmm′δll′ , where we have used the orthogonality properties of the spherical
harmonics and used the following normalization for the power densities, Pθ = Pφ =
1
2
.
For the analysis, in this paper, of the antenna-channel interaction, the working

assumption is that the incident �eld is an �nite sum of plane waves. It is, however,
well known that a plane has in�nite power, but, for all practical applications the
total received power as well as the number of useful multimodes is �nite. Indeed, all
practical antennas can be de�ned by a �nite set of spherical vector wave expansion
coe�cients [15], [16]. Moreover, for electrically small antennas according to the
Chu-Fano theory, only the lower order expansion coe�cients are of interest, since
the in�uence of higher order modes is negligible [5], [8].

Now, from the orthogonality property of the spherical vector harmonics we obtain
that the total available power is given by

PE =
1

4
〈‖f‖2〉 =

1

4
tr(Rf ) (3.15)

=
∞∑
ι=1

P pol
ι + P unpol

ι ,

where PE = Ppol + Punpol. The factor 4 is introduced to take into account that f is
obtained for regular waves, while we are only interested in the power of the incoming
waves.

We can further normalize the total �eld power to the unity5, PE = 1, and then
we can rewrite the relative mode power in the following way

Pι =
P pol
ι + P unpol

ι

Ppol + Punpol

. (3.16)

Hence, after some algebraic manipulations the mode power can be expressed as

Pι =
4π

1 + χ

∫
χ |Aι,θ(Ω)|2 pθ(Ω)

1 +Kθ

(3.17)

+
|Aι,φ(Ω)|2 pφ(Ω)

1 +Kφ

dΩ

+
4π

1 + χ

(√
χKθ

1 +Kθ

|Aι,θ(Ω0)|+

√
Kφ

1 +Kφ

|Aι,φ(Ω0)|

)2

.

Equation (3.17) corresponds to the mean e�ective gain (MEG) [2], with the
di�erence that instead of the partial gains we have the absolute values of the com-
ponents of the spherical vector harmonics, 4π |Aι,θ|2 and 4π |Aι,φ|2, respectively. The
physical meaning of the mode power in a Gaussian �eld becomes apparent. Indeed,

5Here it is important to observe the normalization of the total multi-pole power,∑2
τ=1

∑l
m=−l

∑L
l=1 Pτml =

L(L+2)
4π ,which directly follows from the addition theorem of spherical

vector waves in Appendix A.
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the mode power corresponds to the mode "link gain" between the multi-poles and
the source to the incoming �eld. Hence, by exciting the appropriate modes the
quality of the communication link is maximized.

4 Scattering matrix of an antenna and optimal an-

tenna communication performance in fading chan-

nels

In the previous section we showed that the expansion coe�cients into spherical
vector waves are also Gaussian variates as a result of the model used for the incident
�eld. In this section we present the link between the incident �eld and the antenna
with the purpose of investigating its properties in random �elds.

All of the properties of anN -port antenna as transmitting, receiving or scattering
device are contained in the scattering matrix [15]. The scattering matrix of an
antenna relates the incoming signals, v and waves, a, with the outgoing signals, w
and waves b. The scattering matrix is given by(

ΓN×N RN×∞

T∞×N S∞×∞

)(
vN×1

a∞×1

)
=

(
wN×1

b∞×1

)
, (4.1)

where Γ is the matrix containing the complex antenna re�ection coe�cients, R is
the matrix containing the antenna receiving coe�cients, T is the matrix containing
the antenna transmitting coe�cients and S is the matrix containing the antenna
scattering coe�cients.

The total electric �eld associated with the antenna is here expanded in incoming,
u
(1)
τml(kr), and outgoing, u

(2)
τml(kr), spherical vector waves or modes [15]

E = k
√

2η
∞∑
l=1

l∑
m=−l

2∑
τ=1

aτmlu
(1)
τml(kr) + bτmlu

(2)
τml(kr), (4.2)

where aτml (incoming waves a) and bτml (outgoing waves b) are the corresponding
multipole coe�cients. A brief description of the spherical vector waves is given in
Appendix A.

In order to analyze the interaction of the antenna with a random propagation
channel we �rst determine the transmission matrix as a projection of the far-�eld
of the antenna on the spherical vector harmonics, Aτml, in transmitting regime.
Hence, the far-�eld F n(r̂) of port n is given by

F n(r̂) = k
√

2η
∞∑
l=1

l∑
m=−l

2∑
τ=1

il+2−τTτml,nAτml(r̂)vn, (4.3)

where Aτml(r̂) is de�ned in Appendix A, r̂ is the unitary spatial coordinate and vn
is the signal incident on port n with corresponding power normalization, ‖v‖2 = 1.
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Further, applying the orthogonality properties of spherical vector harmonics, we
obtain the transmission coe�cients of the antenna

Tτml,nvn =
i−l−2+τ

k
√

2η

∫
A∗τml(r̂) · F n(r̂)dΩ. (4.4)

Evoking the Lorentz reciprocity theorem we arrive at the matrix containing the
receiving coe�cients [15]

Rn,τml = (−1)mTτ(−m)l,n. (4.5)

Since we are interested in the receiving regime we set, v = 0 for the incoming
signals. Then, from the scattering matrix we can now infer the relationship between
the outgoing signals and the incoming waves for a lossless N -port antenna

w = Ra, (4.6)

where a, is a vector containing the expansion coe�cients of incoming waves.
It is worthwhile to note that, even if the treatment focuses on the receiver regime

of the antenna, the exposed theory applies also to the transmission regime due to
the reciprocity conditions (4.5). Furthermore, in the previous sections we studied
the spherical vector wave expansion of Gaussian �elds, more exactly we studied the
model of the superposition of plane waves for the incident �eld at a spherical volume.
The expansion coe�cients aι, are related to the expansion coe�cients fι, of regular
waves, with multipole index ι, as 2aι = fι, and therefore PE = ‖a‖2F = 1

4
‖f‖2F .

This result follows from the properties of the spherical vector wave functions and
the fact that the outgoing an incoming waves carry the same power in free space
(empty minimal sphere), i.e., ‖a‖2F = ‖b‖2F , where the scattering matrix S = I.

Expressions (4.3)-(4.6) can readily be used for the analysis of the interaction
between an N -port antenna system with the far-�eld radiation patterns, F n(r̂) and
a random propagation channel denoted by a. These relationships enable the eval-
uation of communication performance of multiple antennas in a given propagation
channel. Also, they constitute a tool for evaluating communication performance
bounds of generic antennas in the context of Gaussian channels as we will show in
Section 4. A.

The scattering matrix formalism is valid for any signals w, v and waves a, b,
including waves that can be modelled by random variables, while the antenna ma-
trices Γ, R, T and S are deterministic in general. In the following we show some
results applicable for general propagation channels and antennas modelled by the
scattering matrix.

Next we present some results for optimal antennas in a general channel but
also in multimode Gaussian channels described in Sec. 3. We are looking at the
link communication performance of an antenna in Gaussian �eld generated by a
transmitting device, which has propagated through the channel. We assume that
the receiving and transmitting antennas are separated at a su�cient distance so
that no mutual coupling occurs. We analyze both the total link power and the
cross-correlation between signal received at di�erent antenna ports.
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4.1 Maximum received power

In wireless communications the link quality is of great importance for the successful
transmission of information. Link quality is directly connected to link gain, which in
turn, among other parameters, depends on path gain, antenna characteristics and
transmitted power. The following proposition summarizes the general conditions
under which we can increase link communication power in terms of transmission
and reception coe�cients of �eld multimodes.

Proposition 2. The optimal "instantaneous" power of the outgoing signals, ‖w‖2,
of an N-port antenna in a random �eld, a, is

max ‖w‖2F = 4π
N∑
n=1

ηn ‖a‖2F . (4.7)

The optimal value is achieved for matched transmission (reception) coe�cients,

Rn,ι =
√

4πηneiϕn
a∗ι
‖a‖F

, (4.8)

where ηn is the radiation e�ciency of port n and ϕn is an arbitrary phase. The
derivation is given in Appendix D.�

The physical interpretation is straightforward: the received power (or similarly
the transmitted power due to reciprocity) is maximized if the incoming (outgo-
ing) waves are conjugate matched by the receiver (transmitter) coe�cients. This
of course requires the knowledge of each realization of the incoming �eld. It is
worthwhile to notice that in practice, when a speci�c geometry, physically realizable
materials and matching networks are considered, the number of multimodes that
could possibly be excited is not arbitrary. As we mentioned earlier, higher modes
will su�er from losses that depend on the ratio between the radius of the minimum
sphere enclosing the antenna to the radiation wavelength. Hence, for electrically
small antennas only low order multipoles are of interest [5], [12].

Proposition 3. The average of the optimal power of the outgoing signals, ‖w‖2, of
an N-port antenna in a random �eld, a is

〈max ‖w‖2F 〉 = 4π〈‖a‖2F 〉
N∑
n=1

ηn = 4πPE

N∑
n=1

ηn. (4.9)

This result follows directly from Proposition 2.�

Equation (4.9) gives the average of the maximized received power, which is in
general di�erent from the maximum average power, i.e., 〈max ‖w‖2F 〉 6= max〈‖w‖2F 〉.

In many practical situations we would like to assess the communication perfor-
mance of antennas, or in general any radiating device, in actual multipath prop-
agation channels, e.g., testing the communication performance of mobile handsets
in wireless networks. A parameter that actually takes into account both the an-
tenna and the channel is the MEG [27]. Here, we present a de�nition based on the
spherical vector wave expansion.
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De�nition 4.1. Let an antenna be described by the scattering matrix (4.1), then
we de�ne the Mean E�ective Gain (MEG) of the antenna as the ratio of the average
power of the outgoing signals, 〈‖w‖2F 〉, to the average power of the incoming waves,
〈‖a‖2F 〉

Ge =
〈‖w‖2F 〉
〈‖a‖2F 〉

. (4.10)

�

Proposition 4. The MEG of an N-port antenna in a random �eld, a, is upper
bounded by

Ge ≤ 4π
N∑
n=1

ηn, (4.11)

where equality is achieved by conjugate mode matching. The result follows directly
from Proposition 3.�

This result corroborates a similar result shown in [2].

4.2 Minimum correlation

In the previous section we studied the conditions that provide maximum power
for the output waves. In this section we instead focus on the cross-correlation
characteristics of the output waves.

Consider the following correlation de�nition

Rw = RRaR
H , (4.12)

where Rw = 〈wwH〉 is the correlation matrix of outgoing waves of dimensions
N ×N and Ra = 〈aaH〉 is the mode correlation with dimensions ∞×∞.

It is known that in order to maximize the diversity gain of a system with mul-
tiples antennas, the received signals, w, at the di�erent antenna ports, should be
uncorrelated [21]. Hence, Rw must be diagonal. Proposition 5 summarizes the
general conditions under which we can achieve this diagonalization.

Proposition 5. The correlation matrix of the outgoing signals, w, of an N-port
antenna in a random �eld, a, is diagonalized as,

Rw =
4π

N
Λa,N

N∑
n=1

ηn, (4.13)

by the reception matrix,

R =eiϕ

(
4π

N

N∑
n=1

ηn

) 1
2

UH
a,N , (4.14)

where Λa,N is diagonal matrix containing the N strongest and distinct eigenval-
ues of Ra, and Ua,N is the matrix containing the corresponding eigenvectors. The
derivation is given in Appendix E.�
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The physical interpretation of Proposition 8 is that in order to diagonalize the
correlation matrix of the received signals, Rw, and at the same time obtain the
largest possible power, then the columns of the receiving matrix R should be chosen
so that they equal the eigenvectors of the matrixRa corresponding to itsN strongest
and distinct eigenvalues.

Remark 2. The received power of the minimum correlation N-port antenna in a
random �eld, a, is therefore

〈‖w‖2F 〉 =
4π

N

N∑
n=1

ηntrΛa,N . (4.15)

�

5 Numerical examples

It is well understood that the same antenna performs di�erently depending on the op-
erating environment, i.e., an antenna that is good in one propagation environments
might not operate equally well in other environments. Therefore, knowing the prop-
erties of the propagation channel is indispensable if communication performance is
to be optimized. In this context, channel modelling naturally becomes an important
link in the antenna design process. In general, channel modeling is a wide �eld of
research and realistic channel models can be quite complex, see e.g., [27], [3], [7].
However, since we here just aim at illustrating the role of spatio-polar selectivity in
the antenna-channel interaction we are going to present simulation results based on
a simple channel model where a two dimensional Laplacian distribution in spherical
coordinates is assumed for the AoA for each of the two orthogonal polarizations,
i.e.,

pθ,φx(θ, φ) = pθx(θ)pφx(φ) = Ae
−
√
2|θ−µθ|
σθ

−
√
2|φ−µφ|
σφ sin θ, (5.1)

where θ ∈ [0, π], φ ∈ [0, 2π) and x stands for either of θ̂ or φ̂, polarization, and
the shape is controlled by the distribution parameters {µθx, σθx, µφx, σφx}. The XPR
expressed in dB takes on three values, i.e., χ ∈ [−10, 0, 10], which is approximately
the span of variation of the XPR of the incident �eld measured in cellular com-
munication channels. Further, in order to simplify the analysis we assume that
σ = σθx = σφx ∈ [0.1, 1, 10]. It is worthwhile to observe that the isotropic model is
obtained as a limit case of the 2D Laplacian model (5.1) by letting, σθx, σφx →∞,

pθ,φ(θ, φ) =
sin θ

4π
, θ ∈ [0, π] , φ ∈ [0, 2π). (5.2)

Moreover, with the isotropic AoA distribution, a zero dB channel XPR is usually
assumed, i.e. χ = 0dB, meaning that the power in the two orthogonal polarizations
is the same. The presented models produce a Rayleigh probability density function
for the envelopes of the received signals.
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5.1 The rectangular microstrip element in a Gaussian �eld

with Laplacian PAS

The rectangular microstrip element or patch antenna is a good example of an an-
tenna widely used in many applications due to its versatility, e.g., in terms of diver-
sity of patterns and polarizations. Here, we use a numerical model of a probe fed
patch antenna on a dielectric substrate simulated with the e�eld electromagnetic
solver [1]. The coaxial probe is modelled by a wire with a delta voltage source. All
parts are centered at the origin of a right handed Cartesian coordinate system. The
geometrical parameters of the antenna are as follows: length L = 30 mm, width
W = 18 mm and feed position from center, D = 4 mm. The square ground plane is
of dimension Lg = 60 mm, the substrate thickness is T = 3 mm with relative dielec-
tric constant ε = 2.0. The antenna resonance frequency is 3.25 GHz. We consider
two di�erent orientations of the patch: in the �rst, the antenna substrate is on the
horizontal, x-y plane; in the second the substrate is vertically oriented (obtained by
rotating the z-axis towards the x-axis), which we denote as horizontal patch and
vertical patch, respectively.

The spherical vector wave mode expansion coe�cients of the horizontal patch
and vertical patch antennas are given in Fig. 2 a) and b), respectively. Observe
that only the mode indices excited by the antennas are shown. As can be seen
the multi-pole modes that are predominantly excited by the patch antennas are the
dipole moments with multi-indices from 1 to 6.

The corresponding average powers of the modes excited by the random �eld
generated accordingly to the Laplacian probability density functions (5.1) are shown
in Fig. 3. At �rst glance the behavior of the modes seems rather �chaotic", however,
a closer look reveals a systematic behavior as predicted by the theory provided in
previous sections. Several observations follow from the plots in Fig. 3. Firstly,
we can observe that the powers of the di�erent modes become more uniform as
the r.m.s. angle spread, σ, increases, i.e., the channel becomes less selective in
the multi-mode domain. This is a consequence of the well-known fact that the
more uniform the distribution of AoAs on the sphere of unit radius, the smaller the
signi�cance of particular orientation in space. Secondly, the average mode powers
show a symmetric dependence in the τ index as a function of the channel cross-
polarization ratio, χ when expressed in dB. For example, compare plots a), d) and
g): as χ changes from -10 dB to 10 dB, the power of the TE modes (τ = 1) and
TM modes (τ = 2) interchange values for �xed m and l indices. Thus, the dipole
mode with ι = 1 for χ = −10 dB has the same power as the dipole mode with ι = 2
for χ = 10 dB and vice-versa, while for χ = 0 dB both powers are equal. The same
applies for dipole pairs 3 and 4 and 5 and 6, etc. Hence, selectivity/non-selectivity
in the spatio-polar domain is equivalent to the selectivity/non-selective in the mode
domain.

In Section 4 we gave a de�nition of the MEG in terms of the spherical vector
wave expansion coe�cients. As we stated there, the MEG is a �gure of merit of
the interaction of the antenna with the channel. The physical meaning is straight-
forward, the more multimodes excited by the antenna match the corresponding
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Figure 1: The horizontal patch antenna. The vertical patch is obtained by a
rotation around the y-axis towards the x-axis

channel modes, the better the antenna performance will be in terms of link gain.
This is illustrated in Fig. 4, where the cdf (cumulative distribution function) of the

normalized "instantaneous" link gain6 Gi =
‖w‖2F
〈‖a‖2F 〉

, is shown. Curves for the hori-

zontally oriented patch and the vertically oriented patch antennas are represented
by the discontinuous and continuous lines, respectively. As can be seen the MEG
is di�erent for all the 9 propagation scenarios considered. This can be explained by
the fact that the directivity of the two considered antennas have not been suitably
matched to the PAS of the incoming �eld. Or looking at it from the point of view of
the spherical vector waves, the multimodes excited by the antenna (Fig. 2) do not
match the corresponding channel multimodes (Fig. 3). In general, for some channel
realizations the "matching" is bad, while for others it is much better, which gives
place to the "fading" behavior. The dynamic range varies between 20 to 40 dB.

Also in Section 4 we showed the conditions for link gain maximization: multi-
mode conjugate mode matching, (4.11). An example of the conjugate mode match-
ing for idealized antennas is given which is illustrated in Fig. 3. The plots depict
the "instantaneous" link gain of antennas that are mode-matched only to the TM
dipole modes. Here we can see that even if the MEG in this case does not equal
10log10(4π) ≈ 11dB as it would be obtained by the full mode matching, a con-

6We assume 100 % e�cient antennas, i.e., ηn = 1 for all n antenna ports.
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Figure 2: Spherical vector wave expansion coe�cients of a) horizontal patch an-
tenna and b) the vertical patch antenna.

siderable increase in performance is observed and it is independent from the chan-
nel cross-polarization ratio, χ and only slightly dependent on the angle spread, σ.
This immediately suggests that, in principle, if an antenna is constructed such as
it conjugate-matches the three lowest dipoles a considerable link power improved
could be obtained in most cases compared with the two patches.

5.2 The elementary "Tripole" in a Gaussian �eld with Lapla-

cian PAS

Here, we have chosen to investigate the spatio-polar performance of antennas by
means of the "tripole" antenna [6]. The main reason for choosing this antenna is
that it combines the three lowest modes of the electromagnetic �eld but still might
provide full polarization �exibility as we saw from the previous section. The tripole
antenna is a polarization diversity antenna system.

Fig. 5 shows the statistics of the normalized squared envelope corresponding
to the three-orthogonal dipoles that correspond to the �rst three electrical modes
of the multi-pole expansion, |fι|2, with ι = 2 corresponding to the multi-index set
{2,−1, 1}, ι = 6 to {2, 1, 1} and ι = 4 to {2, 0, 1} ,respectively, where the multi�index
ι, is ordered and identi�ed with the number ι = 2(l2 + l − 1 + m) + τ . Cumulative
distribution functions (cdf) of the three polarization branches of the tripole antenna
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Figure 3: Average mode power versus mode index for the random �eld simulated
according to (5.1).

are shown for di�erent values of the channel cross-polarization ratio, χ and the σ-
parameter of the Laplace distribution of the AoA. Observe that, as expected, the
powers of the two horizontal dipoles, |f2|2 and |f6|2 are identically distributed, while
the power of the vertical dipole, |f4|2, (depicted by the discontinuous line) is shifted
some dBs to the left or the right depending on the channel XPR.

From a closer analysis of Fig. 5, we see that the average power of the three
modes satis�es the following inequalities at all angle spread values σ,

〈|f2|2〉 = 〈|f6|2〉 > 〈|f4|2〉, for χ = −10dB (5.3)

〈|f2|2〉 = 〈|f6|2〉 ' 〈|f4|2〉, for χ = 0dB (5.4)

〈|f2|2〉 = 〈|f6|2〉 < 〈|f4|2〉, for χ = 10dB. (5.5)

This is a result of power imbalance between the θ̂ and φ̂ polarizations, quanti�ed
by the channel XPR, χ, even when the total �eld is unpolarized as it is the case in
our simulations. Hence, in this type of channels, the polarization imbalance has a
larger impact on the mode power than the angle spread. On the other hand, the
angle spread has a major impact on the correlation of the di�erent multimodes. Fig.
5 shows the elements of the correlation matrix Rι′ι.

Here we can observe that mode correlation increases for low angular spreads,
while it decreases for more isotropic channels. This, of course, is a known result.
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Figure 4: Cumulative distribution functions (cdf) of the normalized instanta-
neous gain of the horizontal patch (−−), the vertical patch (− ) and the conju-
gate matched antennas, (· · ·). Results are shown for di�erent values of the channel
cross-polarization ratio, χ and the σ-parameter of the Laplace distribution of the
AoA.

However, the new aspect here is that we can achieve uncorrelated signals based on
the mode analysis of the channel as shown in Section 4. Here, we have limited
our analysis to the three lowest modes for illustrative purposes only. In general (as
shown in Section 4) the degrees of freedom for diversity and spatial multiplexing
transmission are limited by the minimum of the number of excited modes and the
number of antenna ports.

Since we have three modes that can be excited at three antenna ports, the
solution to decorrelated signal is given by (4.14), which states that the transmission
matrix should be equal to the Hermitian transpose of the matrix containing the
eigenvectors of the correlation matrix of the multi-poles. By doing so we indeed
achieve uncorrelated signals. The fading variation of the combined antenna diversity
branches is identical to the Maximum Ratio Combining (MRC) applied to the multi-
poles. The cdf of the MRC signal is shown in Fig. 6 and is identical to the cdf of
TM-2 matched signal, i.e., in this case mode matching and MRC are equivalent.
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Figure 5: Cumulative distribution functions (cdf) of w of the vertical dipole and
the two horizontal dipole elements of the tripole antenna denoted by (−−), (− )
and ( · − ·−), respectively. Results are shown for di�erent values of the channel
cross-polarization ratio, χ and the σ-parameter of the Laplace distribution of the
AoA, where ι = {τml} is the multi-pole multi-index.

6 Summary

In this paper we have introduced a new approach to analyze the interaction between
antennas and the propagation channel. Our method employs the scattering matrix
of the antenna and the spherical vector wave expansion of the electromagnetic �eld.
The focus is on the spatio-polar characterization of the antennas, the channel and
their interaction. The key contribution of our paper can be summarized as follows:
we show that in a Gaussian electromagnetic �eld (the propagation channel) each
multimode coe�cient in the spherical vector wave expansion is a Gaussian variate,
as a consequence the envelope of each multimode coe�cient in the spherical vector
wave expansion is a Ricean variate. We derive closed-form expressions for the mode
correlation matrix for arbitrary power angular spectra (PAS) of incoming waves, we
derive closed-form expressions for the normalized power of single modes in terms
of the PAS of incoming waves and the channel cross-polarization ratio (XPR). We
then show that maximum received (transmitted) power is achieved by conjugate
mode matching and that independent signals are achieved by eigenmode (reception)
transmission over the strongest multimodes. A de�nition of the MEG of antennas
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Figure 6: Elements of the covariance matrix Rι′ι where ι = {τml} is the multi-pole
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based on scattering matrix parameters is provided and we show that maximumMEG
is achieved by conjugate mode matching. The results presented here provide not only
limits on the achievable performance of antennas in random propagation channels,
but also provide a framework for a detailed analysis of antenna-channel interaction.
Future work will investigate MIMO systems and whether this framework can also
be used for antenna synthesis.
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Appendix A. Spherical vector waves

The regular spherical vector waves are given by

v1ml(kr) = jl(kr)A1ml(kr̂), (6.1)

v2ml(kr) =
(krjl(kr))

′

kr
A2ml(kr̂) (6.2)

+
√
l(l + 1)

jl(kr)

kr
A3ml(kr̂),

where the time convention eiωt is used and jl(kr) are the regular spherical Bessel
functions.

Similarly, the incoming (p = 1) and outgoing (p = 2) spherical vector waves,

u
(p)
τml(kr) are given by

u
(p)
1ml(kr) = h

(p)
l (kr)A1ml(kr̂), (6.3)

u
(p)
2ml(kr) =

(krh
(p)
l (kr))′

kr
A2ml(kr̂) (6.4)

+
√
l(l + 1)

h
(p)
l (kr)

kr
A3ml(kr̂),

where h
(p)
l (kr) are the spherical Hankel functions of the p-th kind.

The functions Aτml(kr̂) are the spherical vector harmonics that satisfy the com-
plex valued inner product, i.e. orthogonality on the unit sphere [15],∫

Aτml(r̂) ·A∗τ ′m′l′(r̂)dΩ = δττ ′δmm′δll′ . (6.5)

The addition theorem for the vector spherical harmonics is

l∑
m=−l

Aτml(r̂) ·A∗τ ′m′l′(r̂)dΩ =
2l + 1

4π
(6.6)

Appendix B. Proof of Proposition 1

Proof. The correlation matrix for the expansion coe�cients, i.e., mode correlation
is computed as

Rιι′ = 〈f ∗ι fι′〉. (6.7)

Now, in order to simplify the notation we use the integral representation obtained
in the limiting case of a continuum of incoming waves. Hence, the coe�cients can
be computed as

fι =
4π(−i)l−τ+1

k
√

2η

∫
E0(k̂) ·A∗ι (k̂)dΩ, (6.8)
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Hence,

Rιι′ =
8π2(−i)l−l

′−τ+τ ′

ηk2
. . . (6.9)

. . .

∫ ∫
〈E0 ·A∗ιE′∗0 ·A′ι′〉dΩdΩ′

=
8π2(−i)l−l

′−τ+τ ′

ηk2
. . .

. . .

∫ ∫
〈EθE ′∗θ 〉A∗ι,θA′ι′,θ

+〈EθE ′∗φ 〉A∗ι,θA′ι′,φ
+〈EφE ′∗θ 〉A∗ι,φA′ι′,θ
+〈EφE ′∗φ 〉A∗ι,φA′ι′,φdΩdΩ′,

Further, by inserting the spatial correlation conditions (2.4) we obtain that the mode
correlation can be expressed as the sum of the mode correlation corresponding to
the polarized and the unpolarized components

Rιι′ = Rpol
ιι′ +Runpol

ιι′ , (6.10)

where mode correlation of the polarized component is given by

Rpol
ιι′ = 4π(−i)l−l

′−τ+τ ′(P0θA
∗
ι,θ(Ω0)Aι′,θ(Ω0)

+2 Re
{√

P0θP0φA
∗
ι,θ(Ω0)Aι′,φ(Ω0)e

iψ
}

+P0φA
∗
ιφ(Ω0)Aι′,φ(Ω0)), (6.11)

where
√
P0θP0φ = 2π

ηk2

∣∣EθE∗φ∣∣ and ψ is a phase angle that depends on the polariza-
tion, e.g., ψ = 0, for a linearly polarized wave and ψ = ±π

2
for circularly polarized

waves. Similarly, the mode correlation corresponding to the unpolarized component
can be calculated as follows

Runpol
ιι′ = 4π(−i)l−l

′−τ+τ ′ . . . (6.12)

. . .

∫
Pθpθ(Ω)A∗ι,θ(Ω)Aι′,θ(Ω)

+Pφpφ(Ω)A∗ι,φ(Ω)Aι′,φ(Ω)dΩ,

which concludes the proof.

Appendix C. Derivation of Lemma 1

Proof. The spherical vector wave multimode expansion coe�cients are given by
(3.2)-(3.4), where we have assumed a mixed �eld with both random Gaussian, un-
polarized, �eld components and one deterministic, polarized, �eld component. The
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Gaussianity of the multipole modes follows directly from the Gaussianity assump-
tion of the incident �eld and the fact that Gaussian variables remain Gaussian under
summation and a�ne transformations in general.

The mean is directly obtained from the fact that the average of the expansion
coe�cients corresponding to the unpolarized waves is zero, 〈funpol

ι 〉 = 0. Hence, the
average of the expansion coe�cients is given by

〈fι〉 =
4π(−i)l−τ+1

k
√

2η
〈E0 ·A∗ι 〉 = fpol

ι . (6.13)

The second moment of the mode distribution follows from Proposition 1 by
considering the diagonal elements of correlation matrix for the expansion coe�cients,
i.e. the mode correlation. Hence, the second moment or the mode power can be
expressed as the sum of the mode power corresponding to the linearly polarized
(ψ = 0) and the unpolarized components

〈f ∗ι fι〉 = Pι = P pol
ι + P unpol

ι , (6.14)

where Pι = Rιι, P
pol
ι = Rpol

ιι and P unpol
ι = Runpol

ιι .

Appendix D. Proof of Proposition 2

Proof. From (4.6) we can write the total power of the outgoing signals from the
N -port antenna

‖w‖2F = ‖Ra‖2F (6.15)

=
∑
n

∣∣∣∣∣∑
ι

Rn,ιaι

∣∣∣∣∣
2

,

where we have introduced the multi�index ι→ {τml} , ordered and identi�ed with
the number ι = 2(l2+l−1+m)+τ . By the Cauchy-Schwartz-Buniakovskii inequality

‖w‖2F ≤
∑
n

∑
ι

|Rn,ι|2 ‖a‖2F . (6.16)

Equality is achieved for Rn,ι = cna
∗
ι , where cn is a constant. From (4.1) and using

normalization, |vn|2 = 1 and

1

2ηk2

∫
F n(r̂) · F ∗n(r̂)dΩ = 4πηn, (6.17)

we get for the transmission coe�cients∑
ι

|Tι,n|2 = 4πηn. (6.18)

Using the Lorentz condition for reciprocal antennas (4.5) we �nd out the constants
cn

cn = eiϕn
4πηn
‖a‖F

, (6.19)
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where ϕn is an arbitrary phase. Then, we �nally arrive at the inequality that
concludes the proof

‖w‖2F ≤ 4π
N∑
n=1

ηn ‖a‖2F . (6.20)

Appendix E. Proof of Proposition 5

Proof. Given the correlation matrix of outgoing waves

Rw = RRaR
H , (6.21)

perform the diagonalization, Ra = UΛaU
H , which leads to

Rw = RUΛaU
HRH , (6.22)

where U∞×∞, Λ∞×∞a , now choose R =cUH
a,N , where Ua,N is a matrix containing N

�rst eigenvectors of U, corresponding the ordered eigenvalues in Λa

Rw = |c|2 UH
a,NUΛaU

HUa,N

= |c|2 Λa,N . (6.23)

Now, using the normalization |vn|2 = 1 and

1

2ηk2

∫
F n(r̂) · F ∗n(r̂)dΩ = 4πηn, (6.24)

we get for the transmission coe�cients∑
ι

|Tι,n|2 = 4πηn, (6.25)

where we have made use of the multi�index notation, ι → {τml} , ordered and
identi�ed with the number ι = 2(l2 + l − 1 +m) + τ . Hence, since

RRH = |c|2 UH
a,NUa,N = |c|2 IN , (6.26)

and

trRRH = |c|2N = 4π
N∑
n=1

ηn, (6.27)

we get for the �nal result

R =eiϕ

(
4π

N

N∑
n=1

ηn

) 1
2

UH
a,N . (6.28)
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