
LUND UNIVERSITY

PO Box 117
221 00 Lund
+46 46-222 00 00

A Stationary Turbine Interaction Model for Control of Wind Farms

Madjidian, Daria; Rantzer, Anders

2011

Link to publication

Citation for published version (APA):
Madjidian, D., & Rantzer, A. (2011). A Stationary Turbine Interaction Model for Control of Wind Farms. Paper
presented at 18th IFAC World Congress, 2011, Milan, Italy.

Total number of authors:
2

General rights
Unless other specific re-use rights are stated the following general rights apply:
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors
and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.
 • Users may download and print one copy of any publication from the public portal for the purpose of private study
or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove
access to the work immediately and investigate your claim.

https://portal.research.lu.se/en/publications/2f85dfd9-2944-4140-838c-1e85a6ca913b


A Stationary Turbine Interaction Model for

Control of Wind Farms

Daria Madjidian and Anders Rantzer

Department of Automatic Control, LTH, Lund University, Sweden
(e-mail: daria@control.lth.se, rantzer@control.lth.se)

Abstract: Turbines operating in wind farms are coupled by the wind flow. This coupling results
in limited power production and increased fatigue loads on turbines operating in the wake of
other turbines. To operate wind farms cost effectively, it is important to understand and address
these effects. In this paper, we derive a stationary model for turbine interaction. The model has a
simple intuitive structure, and the parameters have a clear interpretation. Moreover, the effect of
upwind turbines on a downwind turbine can be completely determined through information from
its closest neighbor. This makes the model well-suited for distributed control. In an example,
we increase total power production in a farm, by coordinating the individual power production
of the turbines. The example points to an interesting model property: decreasing power in an
upwind turbine causes downwind turbines to pose less of an obstacle for the wind, provided that
they maintain their level of power capture.

1. INTRODUCTION

While economy of scale makes it attractive to position tur-
bines close to each other in wind farms, such a placement
causes problems. When a turbine extracts power from the
wind, it disturbs the wind flow behind it. This creates a
coupling with turbines operating in its wake. The wind in a
turbine wake is characterized by a mean wind speed deficit
and an increased turbulence level. Consequently, upwind
turbines limit power production and increase fatigue loads
on downwind turbines.

In order to operate wind farms cost effectively in terms of
power production and maintenance costs, it is important
to understand and address the issue of aerodynamic cou-
pling. Thus far, this problem has received little attention
from a control perspective (see Pao et al. [2009]). The
main reason for this is the lack of wake models suitable
for control design.

1.1 Previous Work

Existing wake models, although abundant, are usually not
developed for control purposes. Since wake modeling is
a large research field, a full investigation is beyond the
scope of this discussion. Therefore, only a partial overview
is provided below.

A survey made by Crespo et al. [1999], classifies existing
wake models into three subclasses: field models, kinematic
models, and roughness element models.

Field models describe the wind speed at every point in the
flow field, which makes them computationally expensive.
Kinematic models provide simpler expressions than field
models. They usually begin with the modeling of a single
wake, by using conservation of momentum. Merged wakes
are then most often described by superimposing the indi-
vidual wakes on the ambient flow field. Opinions on how
this should be done vary, and not all kinematic models are

able to handle large wind farms (Crespo et al. [1999]). The
ones that can, are sometimes based on assumptions that
make them unsuitable for control purposes. For instance,
Jensen [1983], and Frandsen et al [2006], both assume
fixed and uniform values on thrust coefficients. However,
a change in power reference to a turbine, means that the
value of the thrust coefficient also changes.

Roughness element models describe the response of the
ambient wind flow to a sudden change in roughness. These
models are further divided into infinite cluster models, and
finite cluster models.

Infinite cluster models (e.g. Frandsen [1992]) aggregate
the effect of all turbines, and describe the entire wind
farm as one roughness element. This results in an overall
(“average”) wind profile for the farm, but the individual
effect of turbines is lost.

A survey by Bossayani et al [1980] compares different
roughness element models, and explains how infinite clus-
ter models are modified into finite cluster models. As
opposed to modeling the farm as a single roughness ele-
ment, the finite cluster models describe the wind speed at
each row of turbines perpendicular to the incoming wind
direction. In order to handle wind farms of any size, all
models in the survey introduce a rate of replenishment,
describing the influx of momentum (or power) from the
free flow.

1.2 Contributions and Outline

Here, we take a new approach, and derive a stationary
wind farm control model for turbines arranged in a row.
The turbine interaction (wake) part captures both wind
speed deficits and increased turbulence levels. The assump-
tion is that each upwind turbine adds to deficits and turbu-
lence levels at all turbines further downwind. The result is
a turbine interaction model, that maps thrust coefficients,
wind speeds, and turbulence levels at upwind turbines, to



wind speeds and turbulence levels at downwind turbines.
The structure of the model is intuitive, and its parameters
have a clear interpretation. The model also reflects the
spatially distributed structure of a wind farm, in the sense
that the effect on a turbine from all other turbines can
be completely determined through information from its
closest upwind neighbor. This makes the model a good
candidate for distributed control, which is especially im-
portant as the number of turbines in wind farms increases.

A wind farm model consists of three parts: a model for
the ambient wind entering the farm, turbine models, and
a model describing the aerodynamic interaction between
the turbines. The interaction model constitutes the main
part of this paper and is presented in Section 2. Section 3
begins by describing the ambient wind and the turbines. It
then links these models to the interaction model to form
a complete model of the farm. In Section 4, we present
an example where we increase total power production by
coordinating the power production of the turbines. Finally,
we point to an interesting result: by decreasing power
production in an upwind turbine, all downwind turbines
can reduce their thrust while maintaining the same power
capture.

2. WIND TURBINE INTERACTION

The basic mechanisms behind turbine interaction are ex-
plained in Burton et al. [2008]. Each turbine extracting
power produces a wake, characterized by a mean wind
speed deficit and an increased turbulence level. Since the
thrust coefficient determines the momentum extracted
from the flow, it is directly linked to the deficit. The wind
speed gradient between the wake and the free stream re-
sults in additional shear generated turbulence. Therefore,
the thrust coefficient is also directly related to the added
wake turbulence. The shear generated turbulence transfers
momentum from the free flow to the wake and causes
the wake to expand. Therefore, as the wake travels down-
stream, it gradually becomes wider but shallower until the
flow has fully recovered far downstream. It should also
be noted that in addition to shear generated turbulence,
the turbine itself generates turbulence directly. This extra
component is caused by the vortices shed by the blades,
and from having placed an object (the turbine) in the wind
field. However, this type of turbulence decays quickly, and
(due the the long distances between turbines in farms)
does not add significantly to turbulence levels at downwind
turbines.

Our goal is to develop a model of turbine interaction, with
the additional property that the wind speed at a turbine
can be determined from information available at its closest
neighbors. We tailor our model to a farm consisting of a
row of N equidistant turbines, where the mean values of
the thrust coefficients are between 0 and 1. We do not
consider wake meandering, and therefore assume that the
wind direction is parallel to the row of turbines at all times.
The setup is shown in Figure 1.

To capture the structure of aerodynamic coupling between
turbines, we need a model where upwind turbines add to
the wind speed deficits and turbulence levels of downwind
turbines. Based on the previous discussion, the deficit
and turbulence that a turbine adds at another turbine

v
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Fig. 1. Row of turbines

depend on the thrust coefficient of the upwind turbine
and the distance between the two turbines. A large thrust
coefficient implies that more momentum is extracted from
the flow. Therefore, both deficit and added turbulence
should increase when the thrust coefficient increases. Since
ambient wind flow strives to reduce wake effects, the deficit
and added turbulence should decrease with the distance
between turbines.

We also impose additional standard requirements on the
model (see Frandsen et al [2006] and Frandsen [2007]).

i Mean wind speeds at all turbines must be positive,
and not higher than ambient mean wind speed. In
addition, in an infinitely long row of turbines, where
all turbines extract maximum amount of power, there
is an asymptotic wind speed.

ii Turbulence levels at all turbines must be bounded from
below by ambient turbulence intensity, and bounded
from above.

We now present the interaction model. Let v be the ambi-
ent mean wind speed, and denote the thrust coefficient of
turbine n as CTn

. A model for the deficit experienced by
turbine 2 in the row is given by:

v2 = (1 − k1CT1
)v

where k1 > 0 is a distance parameter. The larger the
distance between the turbines, the smaller k1 will be.

Turbine 2 and 3 will be in the wake of the turbine 1.
Suppose for a moment, that turbine 2 is switched off, which
implies CT2

= 0. The deficit at the third turbine can then
be modeled as:

v3 = (1 − k2CT1
)v

where 0 < k2 < k1. This implies v3 > v2, and the first
turbine therefore shapes the wind field around the second
and third turbine non-uniformly. To take this into account
when merging the wakes of turbine 1 and turbine 2, we
add their effects:

v3 = (1 − k1CT2
− k2CT1

)v

Similarly, the deficit at turbine number n + 1 can be
expressed as:

vn+1 = (1 − k1CTn
− . . . − knCT1

)v (1)

where 0 < kn < . . . < k1. The model implies that
upwind turbines, 1, . . . , n, subtract wind from a downwind
turbine, n + 1, according to their thrust coefficients and
their distance to turbine n + 1.

As stated earlier, we aim for a model where the wind speed
at a turbine can be determined from information available
at its closest upwind neighbor. This can be achieved if the
deficit decays exponentially with distance. For the time
being, we will assume that this is the case, and relax



the assumption later on. Let k = k1, and ki = ki, i =
2, . . . , N − 1, and define

zn =

n∑

i=1

kiCT(n+1−i)

Then, (1) can be written recursively:

vn+1 = (1 − zn)v = (1 − kCTn
− kzn−1)v

= (1 − kCTn
)v − kv + k(1 − zn−1)v

= (1 − kCTn
)v − k(v − vn) (2)

The first term on the right hand side describes the deficit
caused by the closest neighbor n, whereas the second term
describes the total deficit caused by other upwind turbines.

By defining the relative mean deficit at turbine n as:

δn =
v − vn

v
(3)

we can express (2) as:

δn+1 = kδn + kCTn

This gives a new interpretation. The wind speed deficit at
a turbine depends on the deficit at the previous turbine,
and the effect of the previous turbine.

We can also rewrite (2) as

vn+1 = vn + (1 − k)(v − vn)
︸ ︷︷ ︸

recovery

−kvCTn
︸ ︷︷ ︸

effect of neighbor

(4)

which states that the wind speed at a turbine depends on
the wind speed at the previous turbine, a deficit dependent
recovery term, and the effect of the previous turbine.

The wind speed at turbine n, will be described as a mean
wind speed with turbulent fluctuations, wn(t), superim-
posed:

vn + wn(t)

where wn is a zero mean stationary process, with variance
σ2

n. Again, assuming an exponential decay in added wake
turbulence, with the same distance parameter k, we can
model the dependence of σn+1 on upwind turbines as:

σn+1 = (1 + kCTn
+ · · · + knCT1

)σ

= σ + kσCTn
+

kσ

v
(v − vn) (5)

where σ2 is the variance of the incoming ambient wind
speed. Equation (5) states that the added turbulence at
a turbine depends on the deficit at the previous turbine,
and the effect of the previous turbine.

Even though the assumption on exponential decay is
arbitrary, (4) and (5) still give an idea of how to obtain
a parametrized stationary turbine interaction model. To
allow more flexibility, we separate the terms by introducing
one distance parameter for each:

vn+1 = vn + k′(v − vn) − kvCTn
(6)

σn+1 = σ +
c′σ

v
(v − vn) + cσCTn

(7)

where k′, k, c′, and c are all positive.

Remark 1. By using (3), (6) can be expressed as a first
order system:

δn+1 = (1 − k′)δn + kCTn
(8)

The speed of recovery corresponds to the pole of the
system: 1 − k′.

Expressions (6) and (7) give an intuitive map from thrust
coefficients, distance, ambient mean wind speed, and am-
bient wind speed variation to mean wind speeds and wind
speed variations at the turbines. Deficit and added turbu-
lence both increase with thrust coefficients and decrease
with distance. The speed of recovery can be tuned through
k′ and c′, and the effect of the nearest upwind neighbor
can be tuned through k, and c.

By using requirements i) and ii) stated earlier in this
section, we can provide some bounds on k and k′.

Requirement i) states that vn ≤ v, for CTn
∈ [0, 1],

n = 1, . . . , N , and any N ∈ N. Since vn = (1 − δn)v,
the requirement translates to δn ≥ 0. From (8) we note
that this is satisfied if and only if k′ ≤ 1. Let CTn

=
1, n = 1, . . . , N . Then vn > 0 is satisfied if and only if
δn < 1. If k′ ∈ (0, 1], from (8) we see that ∃δ̄ > 0, such
that δn < δ̄, n = 1, . . ., and limn→∞ δn = δ̄. δ̄ satisfies

δ̄ = (1 − k′)δ̄ + k ⇒ δ̄ =
k

k′

The asymptotic wind speed is given by v̄ = (1 − δ̄)v. We
have that, v̄ > 0, if and only if

0 < k < k′ ≤ 1 (9)

Since c′ and c are positive, (9) also implies σn ≥ σ, and
that there is σ̄ > 0 such that σn < σ̄ for n = 1, . . . , N ,
and any N ∈ N. This shows that requirement i) and ii) are
satisfied if and only if (9) holds.

Remark 2. The model can be made more general. First,
the equidistance assumption is not necessary. Different
distances can be handled, by introducing ki,j to model
the coupling between turbines i and j, and assuming that
the deficit decay satisfies

ki,j =

j−1
∏

l=0

k(i+l,i+l+1), for j > i

Also, the term CTi
in (1), can be replaced by a more

general expression fi(CTi
), where fi is monotonically in-

creasing and
fi : [0, 1] → [0, 1]

Similarly, when modeling turbulence levels, we can intro-
duce gi(CTi

), where gi is monotonically increasing and

gi : [0, 1] → R+

Proceeding the same way as above results in:

vn+1 = vn + k′

n,n+1(v − vn) − kn,n+1vfn(CTn
)

σn+1 = σ +
c′n,n+1σ

v
(v − vn) + cn,n+1σgn(CTn

)

where k′

n,n+1, kn,n+1, c′n,n+1, and cn,n+1 are all positive.

3. WIND FARM MODEL

It is common practice to model the wind speed at a
turbine as a mean wind speed, v, with fluctuations, w,
superimposed. The fluctuations have zero mean when
averaged over a period of about 10 minutes and are roughly
Gaussian (Burton et al. [2008]). This makes it natural to
model incoming wind speed at a turbine as, v+w(t), where
v denotes the mean wind speed over a 10 minute interval,
and w is a stationary process with zero mean, and variance



σ2. The standard deviation σ is usually defined implicitly
through the turbulence intensity, Ti = σ

v
.

In order for a turbine to extract power, it needs to interact
with the wind. The total wind power passing through the
area swept by the turbine rotor is given by:

Pwind =
1

2
ρπR2v3

where ρ is the density of the air, and R is the rotor radius.
The power, P , extracted by the turbine, depends on the
pitch angle β, and tip speed ratio λ:

P = CP (λ, β)Pwind

CP is the power coefficient of the turbine, and determines
the portion of total wind power that is extracted. The tip
speed ratio is defined as λ = Rωr

v
, where ωr is the angular

velocity of the rotor.

We define the available power, Pa at the turbine as the
maximum amount of power that the turbine can extract:

Pa = min(CP,maxPwind, Pmax) (10)

where CP,max is the peak of the CP curve, and Pmax is the
rated extracted power for the turbine.

There will also be a thrust force FT on the rotor:

FT =
1

2
ρπR2CT (λ, β)v2

where the thrust coefficient, CT , depends on tip speed
ratio and pitch angle. As discussed in Section 2, the thrust
coefficient is directly linked to the wind speed deficit and
added turbulence that the turbine induces downwind.

Each turbine has a control variable, u, which can be
generator torque and/or pitch angle for an uncontrolled
turbine, or e.g. power reference for a power controlled
turbine (see Section 4). By manipulating u, tip speed
ratio and pitch angle can be controlled. Assuming that
the mapping (u, v) → (λ, β) is well defined, we can define

cP (u, v) = CP (λ(u, v), β(u, v))

cT (u, v) = CT (λ(u, v), β(u, v))

Given ambient mean wind speed v, and ambient turbu-
lence intensity Ti, the model for turbine n + 1 along the
row is given by:

Pn+1 =
1

2
ρπR2cP (un+1, vn+1)v

3
n+1

yn+1 = f(un+1, vn+1, σn+1)

vn+1 = vn + k′(v − vn) − kvcT (un, vn), v1 = v

σn+1 = σ +
c′σ

v
(v − vn) + cσcT (un, vn), σ1 = Tiv

where yn represents outputs of interest for turbine n (e.g.
a measure of fatigue loading), and cP and cT are the power
and thrust coefficients as a function of control action un,
and mean wind speed vn.

4. EXAMPLES

4.1 NREL turbines

The wind farm in the examples below will consist of NREL
5 MW turbine models. The turbines are variable speed
and (collective) pitch controlled, and described in detail
in Jonkman et al [2009], and Grunnet et al [2010]. The

generator has an efficiency of µ = 0.944 which implies
Pmax = 5/µ = 5.30 MW. Power and thrust coefficients are
shown in Figure 2.
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Fig. 2. Power and thrust coefficient for the NREL 5 MW
turbine. Solid: β = 0o, dashed: β = 2o, dash-dotted:
β = 4o. λ∗ = 7.6, β∗ = 0o

We assume that each turbine is equipped with a standard
controller that manipulates generator torque and pitch
angle. The controller has three regions of operation, illus-
trated by Figure 3. In region 1, the wind speed is too low to
produce power. In region 2, the controller tries to extract
maximum power. This is done by fixing the pitch angle to
the optimal angle for power capture, β∗. β∗ is the value
that results in the highest value of the power coefficient
(see Figure 2). The controller then varies generator torque
to track the optimal tip speed ratio, λ∗. In region 3,
the controller strives to maintain a power reference, u.
This is achieved by keeping the rotational speed close to
ωr = min(λ∗v

R
, ωr,rated) by varying the pitch angle, where

ωr,rated is the rated rotor speed. The generator torque is
used to produce the desired power.
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Fig. 3. Power capture curve for the NREL 5 MW turbine.
u = 4 MW (solid), maximum power capture (dashed).
The gray dotted lines show the operating regions for
the controller.



On farm level, the control input to a turbine is the power
reference u. A turbine will only respond to farm control if

Pmin ≤ u ≤ Pa

where Pmin is the lowest level of power production a
turbine can sustain, and the available power, Pa, is given
by (10). This corresponds to operation in region 3.

Figures 4 and 5 show the power and thrust coefficients
as function of power reference and wind speed. The high
valued flat part of the curves correspond to operation in
region 2. The slanting part of the curves correspond to
operation in region 3.
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Fig. 4. Power coefficient for the NREL 5 MW turbine as
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Fig. 5. Thrust coefficient for the NREL 5 MW turbine as
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4.2 Wind field parameters

Let incoming mean wind speed be 11 m/s, and ambient
turbulence intensity 0.1. The coupling parameters are set
to k′ = c′ = 0.35, k = 0.1, and c = 0.92. This means that if
all turbines would operate in region 2, the second turbine
would experience a mean wind speed deficit of 8%. The

Table 1. Power extracted in each turbine (MW)

i Pi Pa,i Pi/Pa,i P 0

a,i
Pi − P 0

a,i
σi/σ0

i

1 4.76 4.92 0.97 4.92 -0.16 1.00

2 3.72 3.97 0.94 3.87 -0.15 0.96

3 3.21 3.47 0.93 3.26 -0.048 0.93

4 2.95 3.18 0.93 2.90 0.047 0.92

5 2.78 3.00 0.93 2.68 0.10 0.92

6 2.68 2.89 0.93 2.54 0.13 0.92

7 2.67 2.82 0.95 2.46 0.21 0.92

8 2.66 2.75 0.97 2.40 0.26 0.93

9 2.64 2.67 0.99 2.37 0.27 0.95

10 2.58 2.58 1.00 2.34 0.23 0.97
∑

30.64 32.11 – 29.74 0.90 –

asymptotic mean wind speed deficit far downwind would
be 22%. If we define the turbulence intensity at turbine
n, as Ti,n = σn

v
, the second turbine would experience a

turbulence intensity of 0.17. The asymptotic turbulence
intensity far downwind would be 0.3.

4.3 Examples

Consider a wind farm with N turbines, where each turbine
tries to capture as much power as possible. We will now try
to increase the total power capture in the farm by limiting
power capture at some of the turbines. The idea is that by
decreasing power capture at upwind turbines, their thrust
coefficients also decrease. This in turn, increases available
power at turbines further downwind.

We proceed as follows: let each turbine capture as much
power as possible, i.e. ui = Pmax, i = 1, . . . , N , and set
n = 1.

(1) Grid over un to find

u∗

n = arg max
un

N∑

i=1

Pi

(2) Set un = u∗

n, and n = n + 1. Go to step 1.

Table 1 shows the result for a farm with N = 10 turbines.
Pi is the power captured by turbine i; Pa,i is the available
power at turbine i; and σi is the wind speed standard
deviation at turbine i. P 0

a,i and σ0
i denote the captured

power and wind speed standard deviation at turbine i
when each turbine extracts maximum power. Limiting
some of the upwind turbines, resulted in a total power
capture increase of 3.0%. The turbulence levels at all
turbines except turbine 1 were also decreased.

Figure 6 shows the power increase when running the same
algorithm for different values of N . Although, the power
distribution might not be optimal, the result indicates that
for larger farms, the benefit in coordinating turbines could
be larger. A reason for this is illustrated by the following
example.

Consider a farm with N = 10 turbines, where all turbines
individually extract as much power as possible. Fix the
power references of turbines 2 through N − 1 to the
current available power. Then decrease the power capture
of turbine 1 by 0.5 MW. Figure 7 shows the change in wind
speed, ∆vi, thrust coefficient, ∆CTi

, and available power,
∆Pa,i, at each turbine. The increase in available power
becomes larger further downwind. The reason is that the
change at turbine 1 increases available power at turbines
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Fig. 6. Relative gain in total captured power for different
numbers of turbines.

2-10. Turbine 2 already has a power setpoint it needs
to maintain. To do this, the turbine needs to decrease
its power capture. This leads to a simultaneous decrease
in thrust coefficient, which further increases available
power at turbines 3-10. Similarly, turbine 3 is also limited
and needs to decrease its power capture, and so on.
The change at turbine 1, therefore, results in a larger
and larger increase in available power downwind. Having
many turbines in a farm, can thus increase the impact of
decreasing power in a single turbine.

Based on the results in Figure 7, we observe that the model
suggests that a power decrease at an upwind turbine can
have two effects. The first is that it causes all turbines
further downwind, that maintain their level of power
production, to pose less of an obstacle for the wind. The
second is that the increase in available power becomes
larger further downwind. While the first effect is intuitive,
the latter is due to the choice of of k, and k′. It occurs for
large enough ratios, k

k′
(i.e small enough distances between

the turbines). Whether this effect can be found in actual
wind farms has to be concluded by experiments.
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Fig. 7. Result of decreasing power in turbine 1 by 0.5 MW,
while maintaining the power capture in turbines 2-9.
The values in the plots show the change relative to the
case before the power decrease at turbine 1. Note that
while ∆Pa,i, and ∆vi increase downwind, the same is
not true for the absolute values Pa,i, and vi.

5. FUTURE WORK

Due to high confidentiality, and that real wind farms
are mostly commercial, it takes time to obtain data for
validation. However, efforts are being made on this front,
and model validation will be carried out in the near future.

Another natural step is to examine to what extent the
simplicity and distributed structure of the model can be
exploited for distributed control purposes.

We would also like to extend the model to fit more
complicated wind farm topologies, such as grids.
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