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Abstract

A method based on power series expansions of the surface charge density, with

Legendre polynomials as basis functions, is introduced in this paper. With a

Galerkin method, applied to the method of moment, the resulting integrals

for the elements of the impedance matrix are four dimensional. The corre-

sponding integrands are products of the static Green function and Legendre

polynomials. The introduction of the Legendre polynomials leads to a reduc-

tion of the number of non-zero elements in the impedance matrix with a fast

computational method as a consequence. The method is compared to standard

MoM in which piecewise linear basis functions are used.

1 Introduction

The most time consuming part in the method of moment (MoM) is the time required
to �ll the impedance matrix. This is caused mainly by two factors: every element
in the structure interacts with all of the other elements and the integral expressions
have, in most cases, to be solved by some quadrature rule which can be very time
comprehensive. Several methods have been proposed for reducing the time con-
suming calculations of the integrals and to handle the troublesome self couplings,
i.e., when the source and observation point coincide. Tarricone et al. [8] introduces
a method that reduces the four-dimensional integrals to a quasi-one-dimensional
numerical integration. A method based on a procedure suggested in [7] together
with the Du�y transform [2] solves the self couplings for di�erent geometries. An-
alytic methods for the solution of four-dimensional singular potential integrals for
triangular elements have been developed in [3].

Reducing the complexity of the impedance matrix is crucial when large problems
are considered. Methods like the multilevel fast multipole method [1] use advanced
algorithms to reduce the number of operations from ONitN

2 to ONitN logN . An-
other way to reduce the problem is to use hierarchal basis functions [9]. Jørgensen et

al. [5] show that hierarchical Legendre basis provides a better condition number of
the impedance matrix than existing interpolatory bases which imply that a fast it-
erative solution still can be achieved although high order basis functions are used.
Higher order basis functions have the advantage of reducing the number of unknowns
since larger elements can be used.

A limitation to these methods are that they �rst and foremost are designed for
two dimensional problems solving EFIE (or MFIE) applying surface currents on
PEC surfaces. For three dimensional problems further improvements have to be
done.

In the quasi static regime surface currents can, for most of the cases, not be
assumed which implies that the current density inside the conductive regions has
to be included in the model. For thick metallic leads it is possible to assume an
exponential decay of the current density, leading to a two dimensional approach,
but for leads with a thickness of the order of the skin depth simple approximations
are not possible. For microstrip circuits i.e., transmission lines, and integrated
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inductors in modern electronic systems this is the case. Since there are demands on
fast and accurate EM solvers, from the circuit industry, standard methods can not
be applied.

A new quasi static algorithm is under development. From the algorithm, that is
based on the MoM, it will be possible to extract numerical values of the resistance,
capacitance, inductance and the Q-value of a passive component, e.g., an inductor.
The method is based on expansion of the current density, inside the conductive
regions, and the surface charge density in terms of Legendre polynomials.

To evaluate the method an investigation is presented in this paper in which
the capacitive couplings between two quadratic microstrips, with a known surface
charge density, are considered. The results are compared to the results achieved
when standard basis functions, i.e., linear splines, are used.

2 Impedance matrix terms

At quasi static conditions in homogeneous space the scalar potential, Φ, can be
approximated by its static counterpart [4], that is

Φ(r) =
1

4πε

∫
S

ρS(r′)
1

|r − r′|
dS ′

where S is the surface on which ρS exists and ε = ε0εr. To be able to solve this
equation for ρS, the surface charge density is expanded into a set of basis functions,
(ϕmnk). We �nd

ρS(r) =
∞∑

mnk=0

cmnkϕmnk(r)

where cmnk ∈ C are the expansion coe�cients. Applying a projection procedure by
using a set of test functions, (ψmnk), yields the weighted residual form∫

S

ψmnk(r)Φ(r)dS =
∑

m′n′k′

Zmnk,m′n′k′cm′n′k′

where

Zmnk,m′n′k′ =
1

4πε

∫
S

∫
S

ψmnk(r)ϕm′n′k′(r
′)

1

|r − r′|
dS ′dS

are the impedance (moment) matrix terms. When Galerkin's method [6] is applied
the elements yield

Zmnk,m′n′k′ =
1

4πε

∫
S

∫
S

ϕmnk(r)ϕm′n′k′(r
′)

1

|r − r′|
dS ′dS.

A speci�c case with two parallel quadratic elements of two microstrips is now
considered for the comparison of two methods. Both elements have a width and
length of w = l = 30µm and they are placed in parallel with a distance X0 between
the origins of the local coordinate systems, K1 and K2, which coincide with the
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Figure 1: Part of the surface charge density, ρS, on two parallel microstrips. The
two plates are separated a distance X0 between the two centers. The charge distri-
bution has been achieved from a FEM simulation of a microstrip at 20GHz.

midpoints of the two elements. The surface charge densities on the two elements are
assumed to vary only in the x-direction and are thus constant in the longitudinal
direction (y-direction), as is illustrated in Figure 1. This corresponds to a piecewise
constant distribution since the element length, l, is assumed to be small in compar-
ison to the variations of the surface charge density along the longitudinal direction
of the strip.

Two di�erent methods are now introduced; orthogonal projection onto a �nite
dimensional subspace with Legendre polynomials, Pk, as basis functions and, for
comparison, projection onto a �nite dimensional subspace with linear splines, Lm,
as basis functions. The idea behind the �rst method is to use large elements and
orthogonal projection; the accuracy is thereby a�ected by the number of terms in the
series expansion of the surface charge density. In the second method small elements
and piecewise linear basis functions are used, which conveys that the accuracy is
a�ected by the number of quadrature points.

Let r = r1 be a source point on the �rst element and r′ = X0x̂ + r2 a source
point on the second element. The impedance matrix terms of the two methods
becomes

ZP
k,k′ =

1

4πε

∫ a

−a
dx1

∫ a

−a
dy1

∫ a

−a
dx2

∫ a

−a
dy2

Pk(x1/a)Pk′(x2/a)√
(x1 − x2 −X0)2 + (y1 − y2)2

, (2.1)

ZL
m,m′ =

1

4πε

∫ a

−a
dx1

∫ a

−a
dy1

∫ a

−a
dx2

∫ a

−a
dy2

Lm(x1)Lm′(x2)√
(x1 − x2 −X0)2 + (y1 − y2)2

(2.2)

where a = w/2, k ∈ [0, K] is the index of the Legendre functions and m ∈ [1,M ] is
the quadrature point index.
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3 Electric energy

To compare the two methods it is convenient to calculate the electric energy since it
is proportional to the capacitance. In the case of surface charge densities the electric
energy can be written

We =
1

8πε

∫
S

∫
S

ρ∗S(r)ρS(r′)

|r − r′|
dS ′dS.

The two projection methods convey

WP
e =

∑
kk′

1

2
c∗kZ

P
k,k′ck′ , W L

e =
∑
mm′

1

2
d∗mZ

L
m,m′dm′ .

By introducing the integral function

Ik,k′(a,X0, Y0) :=∫ a

−a
dx1

∫ a

−a
dy1

∫ a

−a
dx2

∫ a

−a
dy2

Pk(x1/a)Pk′(x2/a)√
(x1 − x2 −X0)2 + (y1 − y2 − Y0)2

(3.1)

the electric energy based on Legendre polynomials can be written

WP
e =

∑
kk′

1

8πε
c∗kIk,k′(a,X0, 0)ck′ . (3.2)

Since the linear splines ful�ll

dmLm(x) + dm+1Lm+1(x) = qm + pm(x− xqm), x ∈ [xqm, x
q
m+1],

the electric energy based on linear splines becomes

W L
e =

∑
mm′

1

8πε

∫ xqm+1

xqm

dx1

∫ a

−a
dy1

∫ xq
m′+1

xq
m′

dx2

∫ a

−a
dy2·

(qm + pm(x1 − xqm))∗(qm′ + pm′(x2 − xqm′))√
(x1 − x2 + xcm − xcm′)2 + (y1 − y2)2

(3.3)

where xcm are coordinates to the center point of the local element. By coordinate
translations the integrands in Eq. (3.3) can be expressed in terms of Legendre poly-
nomials of zeroth and �rst order. Using Eq. (3.1) the energy can be written

W L
e =

∑
mm′

1

8πε

[
q∗mqm′I00(·) + s

{
q∗mpm′(I00(·) + I01(·)) + p∗mqm′(I00(·) + I10(·))

}
+

s2p∗mpm′
{
I00(·) + I01(·) + I10(·) + I11(·)

}]
(3.4)

where (·) = (s, xcm−xcm′ , 0) and s = a/(N−1) is half the width of the local elements.
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4 Results

The surface charge density, ρS, is expanded in the Legendre basis using the projection
method. The values of the expansion coe�cients are:

c0 = 4.7454 · 10−24, c4 = 6.6313 · 10−24, c8 = 6.7803 · 10−24, c12= 6.3031 · 10−24,

c2 = 6.2969 · 10−24, c6= 6.8852 · 10−24, c10 = 6.6259 · 10−24, c14= 5.9598 · 10−24.

All odd coe�cients are zero since the surface charge density is an even function. The
results of the projection method are shown in Figure 2, where the surface charge
density has been projected onto Legendre polynomials for �ve di�erent values of the
truncation constant K. The results show how powerful orthogonal projection really
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Figure 2: The results from the orthogonal projections of the surface charge density
of the microstrip. The projections have been performed for �ve di�erent values of
the truncation constant, K, in the series expansions. The dot curve, in Figure (a)
and (b), corresponds to the surface charge density of the microstrip and has been
included as a reference.

is; already at K = 6 a good approximation is achieved. Thus only a few terms are
necessary to approximate the surface charge density su�ciently.

The convergence study of the two integration techniques is considered next. The
technique based on linear splines has a slow convergence speed as can be seen in
Figure 3 where the electric energy is considered. The energy has been calculated
for the values M = {40, 50, . . . , 110}, where M is the number of quadrature points.
The calculations have been performed for di�erent values of X0.

Even at M = 110 the method has not converged to a satisfactory level; the
error is several percent. The main reason is that the surface charge density has
a gradient that goes to in�nity at the edges, which conveys that the number of
quadrature points has to be very large in this region to increase the convergence (a
rule of thumb is that the total charge on each element should be the same). Since an
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(c) X0 = 2w
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Figure 3: Convergence study of the integration technique based on linear splines.
The electric energy is plotted as a function of the square of the element size, h =
w/(M − 1), for di�erent values of X0. It has been calculated for the values M =
{40, 50, . . . , 110}. Figure (a) corresponds to the self coupling and the other �gure
to mutual coupling.

equidistant mesh is used, the total number of quadrature points must be very large
to assure that regions with large gradients are provided with a dense mesh, with a
slow convergence as a consequence. An interesting observation, though, is that for
increasing values on X0 the error decreases. The explanation to this phenomenon
is that the energy expression, Eq. (3.4), contains polynomials of di�erent orders in
the integrands. Since the interaction between integral expressions containing higher
order polynomials (HOP) are more sensitive to a change in the distance between the
elements, in comparison to the expressions containing low order polynomials (LOP),
the error at far distances is mainly caused by the integration of LOP. Since the errors
to the expressions containing LOP are smaller, due to smoother integrands, the error
of the total integral expression is expected to decrease as the distance between the
elements increases.

The results from the second method, in which Legendre polynomials are used,
are presented in Figure 4. In the �rst case, regarding the interaction due to self
coupling (Figure (a)), the convergence is rather fast; the error at the expansion
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truncated at order four is around 1% and at twelve less than 0.1%. In the second
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Figure 4: Convergence study of the integration technique based on Legendre poly-
nomial expansions. The electric energy is plotted as a function of the truncation
coe�cient, K, in the series expansion for di�erent values of X0. w is the width of
the strip. Figure (a) corresponds to the self coupling and the other �gures to mutual
coupling. Observe the cancelation e�ect in the series expansion of order six in �gure
(d).

case, the interaction due to the mutual coupling (Figure (b)-(d)), it can be seen that
the convergence becomes faster when the value of X0 increases. Already at short
distances the convergence is extremely fast; at X0 = 2w an expansion up to order
two is su�cient to achieve results with an error less than 0.1%. At distancesX0 ≥ 2w
terms of order three and higher can be neglected. The deviation in the results of
K = 6, in Figure (d), is caused by cancellation e�ects which can appear when
analytic solutions to Eq. (3.1) are used. To prevent this phenomenon the number of
digits has to be increased. This has a drawback of slowing down the computational
speed and increasing the memory needed. In the calculations a precision of 16 digits
have been used.

The di�erent terms in the polynomial series expansion couples to the other ele-
ments in a way that resembles the interaction of multipoles. Terms of zeroth order
correspond to the monopoles and terms of �rst order correspond to dipoles and so



8

on. The electric �eld for a multipole of order ` decreases as 1/r`+2. Since all of
the coe�cient are of the same magnitude the Legendre polynomials of higher orders
only a�ect the elements in a close neighborhood to the element.

5 Conclusions

A comparison between two di�erent sets of basis functions in the method of moments
has been presented. In the �rst method an orthogonal projection on a base of
Legendre polynomials is used and in the second method the projection is done on a
base of linear splines.

We have shown that when the coupling between two elements at short distances
are calculated, only a few terms of Legendre functions are necessary to achieve
good accuracy. Thus the time for �lling the impedance matrix will be much shorter
in comparison to the method with linear splines. Legendre functions lead to a
coarse matrix for which the number of operations to solve the system of equations
is considerable reduced.

The use of Legendre polynomials leads to a signi�cant reduction of the number
of unknowns. In the example coe�cients up to order fourteen have been used.
Since the coe�cients of odd order numbers are zero (due to case that the function
that represents the surface charge density is even) the number of unknowns in the
element is seven.1 This should be compared to one hundred unknowns when using
quadrature points. In the case when the surface charge density can not be described
by an even function, coe�cients of odd order must be included, with an increase in
the number of unknowns as a consequence.

The comparison has been done for an equidistant grid (for the linear splines),
which is the case when the mesh has been produced automatically by a mesh gen-
erator. For a problem adjusted grid, i.e., an adaptive grid, the convergence will be
signi�cantly improved. Regions with a large gradient is then supplied with a large
amount of quadrature points whereas the other regions can be rather coarse.

Since it becomes very cumbersome to produce analytic solutions to all combina-
tions of elements and all di�erent combinations of Legendre polynomials, additional
methods have to be applied. By using the procedure suggested in [7] and the Du�y
transform [2], the four dimensional integrals can be solved for more general cases.

In the full problem there is coupling between charge densities and current den-
sities, via the continuity equation. Applying the same algorithm to the current
densities the advantage of the current method is even more evident.
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