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Abstract

This thesis focuses on charge transport in semiconductor InSb nanowire

quantum devices, including the electron transport, the hole transport, and

the Cooper pair transport. Devices in which InSb semiconductor nanowire

quantum dots are coupled with normal metals, superconductors or the prox-

imity effect induced topological superconductors are fabricated and mea-

sured in a dilution refrigerator.

Firstly, we have fabricated and measured normal metal contacted InSb

nanowire devices. In each of these devices, a quantum dot is formed in

the InSb nanowire between the contacts. We report on the magnetotrans-

port measurements performed to these quantum dot devices, and reveal

several novel transport features. First, we demonstrate two ambipolar InSb

nanowire quantum dot devices. In each of the ambipolar devices, the quan-

tum dot can be tuned from an n-type regime to a p-type regime. The

transport measurements in both of the n-type regime and the p-type regime

are performed. We also show that two methods can be used to estimate

the effective g-factor of the quantum dot, but they can give very differ-

ent estimations in the presence of a Kondo effect. In the p-type regime of

an ambipolar quantum dot, we observe conductance peaks in the stability

diagram which can be attributed to the quasi-1D lead states.

Secondly, we have fabricated and characterized the superconductor cou-

pled InSb nanowire quantum dots. We probe the density of states of the

quasi-particles in the superconductors contacts, via a weakly coupled InSb

quantum dot. In the strongly coupled InSb nanowire-superconductor junc-

tions, dissipationless Josephson currents are observed. A SQUIDS device

is also fabricated and measured, in which an anomalous modulation of the

Josephson current in the magnetic field is observed. In the medium cou-

pling regime, we observe the signatures of the multiple Andreev reflections,

the sub-gab bound states, and the Josephson current, interplaying with

the Kondo effect. By adjusting the voltages that are applied to the back

gate and the side gates of the device, we can control the dot-lead coupling

strength and the coupling asymmetry. Here, we report the quantum phase

transition induced by tuning the dot-lead coupling and the quantum phase



transition induced by a magnetic field. We have also found the coupling

asymmetry is very important for the observation of the Josephson current.

In the magnetic field, the evolution of the Kondo effect enhanced Josephson

current is found to be strongly dependent on the energy ratio of TK/∆(B).

Finally, an anomalous low-field suppression of the zero-bias conductance

peak in the Kondo regime is observed.

In the last part of the thesis, we report on our efforts to search for Ma-

jorana fermions in solid state systems. Nb-InSb nanowire quantum dot-Nb

hybrid devices were fabricated and the transport measurements were per-

formed at low temperatures for these devices. Due to the proximity effect,

the InSb nanowire segments covered by the superconductor Nb contacts be-

come superconductors at low temperatures. Under an applied magnetic field

of a sufficient strength, the proximity effect induced superconducting InSb

nanowire segments turn to topological superconductors in which Majorana

fermion bound states can exist. In our transport measurements, we have ob-

served anomalous zero-bias conductance peaks emerging in finite magnetic

fields in the Nb-InSb nanowire quantum dot-Nb hybrid devices–a signature

of the Majorana bound states in such hybrid devices. We have also found

that the zero-bias conductance peak are independent of the even-odd parity

of the quasi-particle number in the quantum dots and are associated with

interesting fine structures. As a validation, a Au-InSb nanowire quantum

dot-Nb device is fabricated and measured. Here, signatures of Majorana

bound states, i.e., the zero-bias conductance peaks in finite magnetic fields

are also observed. In addition, we analyze several other mechanisms that

can lead to the emergence of zero-bias conductance peaks in finite magnetic

fields, and discuss the results in comparison with the signatures of Majorana

bound states.
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1

Introduction

Electrons in a vacuum space can move freely without any constraint or scattering,

and they can take on continuous values of energy. However, the electron in an

atom is bounded to the positively charged atom nucleus, and can only take on

certain discrete values of energy. In some of the macroscopic solid state objects

with crystal structures at micro level (e.g., metals), the valence electron, i.e.,

the electron that is unbounded or less bounded by the nuclei, can move in a

periodic lattice potential. Under the assumption of the effective mass, it behaves

like a free electron in the vacuum but with an effective electron mass m∗ that is

different from the electron rest mass me. In this free electron model, the density

of states of the valence electrons in bulk materials, as a function of the energy E,

is given by Eq. 1.1 (1). The distribution of the density of states of bulk materials

is illustrated in Fig. 1.1 (a).
n3D (E) = m∗

√
2m∗E

π2~3 (1)

n2D (E) = m∗

π~2 (2)

n1D (E) = 1
π~

√
2m∗

E
(3)

(1.1)

The electron density of states will be modified in low-dimensional solid sys-

tems, due to the fact that the motion of the electron is quantized on at least one

of the dimensions. Equations 1.1 (2) and (3) give the density of states of a 2D

and a 1D solid systems, corresponding to Figs. 1.1 (b) and (c), respectively. With

all the three dimensions get constrained, electrons in a 0D object can only occupy

discrete energy levels, shown as in Fig. 1.1 (d). In this case, this 0D object is

an analogue of an atom, and therefore is referred to as an artificial atom or a

1



1. INTRODUCTION

EE
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Figure 1.1: (a) The density of states (DOS) (n3D) of a 3D object as a function of particle

energy E. (b) DOS (n2D) of a 2D object as a function of particle energy E. (c) DOS (n1D)

of a 1D object as a function of particle energy E. (d) DOS (n0D) of a 0D object as a

function of particle energy E.

quantum dot (1, 2).

The quantum dot supplies us a useful platform to study the electron behavior

in a mesoscopic scale. Besides, it is also a promising candidate of the basic

computing unit for the next generation computers. To explain why and how

the quantum dot can be used as a new type of computing unit, we give a brief

overview on the development of the modern transistor.

The rapid development of transistor revolutionized our society and daily lives

because it is the fundamental building block of electronic devices, such as comput-

ers and mobile phones. The development of the semiconductor device fabrication

technology has been remaining the down-scaling of the transistor size for last 50

years. As we know, the down-scaling of the transistor is well described by the

so-called Moore’s law, which points out that the density of transistors on inte-

grated circuits doubles approximately every two years (3). This allows more and

more transistors are assembled in a single chip. In 2012, the typical half-pitch

for a transistor was down-scaled to a remarkable 22 nanometers (1 nanometer

= 10−9 m) and one single CPU contained 5 billion transistors. However, the

down-scaling cannot continue forever. When the transistor size approaches the

wavelength of the electrons in the material, quantum properties arise and thereby

degrade transistor performance. Besides, the increasing of the transistor density

exacerbates the power consumption and the over-heating problems.

To solve the problems mentioned above, researchers are now trying manufac-

turing electronic components at nanoscale that can take advantage of new phys-

2



ical principles exploiting the quantum properties rather than being constrained

by them. As we mentioned, quantum dots, especially semiconductor quantum

dots, are promising candidates among these new electronic components because

they exhibit distinct quantum properties.

Firstly, the semiconductor quantum dot is an implication of the single electron

transistor (SET), which allows electrons go through the device one by one in the

form of tunneling (4). The SET is thereby very promising for solving the over-

heating and power consumption problems.

Second, the quantum dot is a strong candidate for the realization of the quan-

tum bit (i.e., the qubit), which is the basic unit of the so-called quantum com-

puter (5). Quantum computers can theoretically be used to solve certain types

of problems significantly faster than today’s classical computers. The spins of

electrons on the discrete energy levels of a quantum dot can be used as the basic

information storing and operation units, and they are therefore called the spin

qubit. Besides, if the quantum dot is contacted by two superconductors, a Joseph-

son junction is formed. The Josephson junction is also a powerful platform for

quantum computing, in which the qubit can be realized in the form of a charge

qubit or a flux qubit (6), or Andreev bound states based qubit (7). Moreover,

when the superconductors in the Josephson quantum dot are p-wave supercon-

ductors, the system becomes a topological quantum computing platform, which is

intrinsically immune to local noise from which other quantum computing systems

suffer a lot (8, 9).

The InSb semiconductor nanowire that we used in this thesis is a promising

material to make a quantum dot. The high electron mobility of InSb makes it an

ideal SET material, and we can also take the advantage of its narrow band gap

to make ambipolar SET circuits. Besides, the unique properties of InSb nanowire

make it a perfect component of quantum computing system. It has large spin-

orbit interaction, which is favored by the spin qubit system. It shows good

coupling to superconductors and can be used to fabricate high quality Josephson

junctions for superconducting quantum computation system. Moreover, a super-

conductor coupled InSb nanowire could host Majorana fermion states when the

system is exposed to a magnetic field of a moderate strength. Majorana fermion

is an exotic type of particle which is its own antiparticle. The Majorana fermionic

bound state in solid state system is crucial for building topological quantum com-

puter.

3



1. INTRODUCTION

Therefore, a comprehensive understanding about the charge transport through

an InSb nanowire quantum dot is necessary and critical. In this thesis, we have

explored the charge (including electrons, holes, and Cooper pairs) transport phe-

nomena in normal metal coupled quantum dots, superconductor coupled quantum

dots, and the quantum dots coupled by induced topological superconductors.

This thesis is organized as follows:

Chapter 2 gives a description of the growth of the materials that are used in

this thesis, and the fabrication processes of the measurement substrates and InSb

nanowire devices.

Chapter 3 gives an introduction to the electron transport model in a single

quantum dot, including sequential tunneling process, elastic/inelastic cotunnel-

ing process, the Zeeman effect and the Kondo effect. We have discussed the

measurements performed to the ambipolar InSb quantum dot devices and based

on a simple theoretical model. We also show that two methods can be used to

estimate the effective g-factor of the quantum dot, but they can give very dif-

ferent estimations in the presence of a Kondo effect. In the p-type region of an

ambipolar quantum dot, we observe conductance peaks in the stability diagram

which can be attributed to the quasi-1D leads states. These measurements are

based on Papers I and V.

Chapter 4 gives a brief introduction to the superconductivity and the Joseph-

son effect in InSb nanowire based junctions. We have studied the probing of

the density of states of the quasi-particles in the superconductors contacts, via

a weakly coupled InSb quantum dot. We then comes to a strong coupling

regime, where dissipationless Josephson currents through the InSb nanowire-

superconductor junctions are observed. A SQUIDS device is also fabricated and

measured, in which an anomalous modulation of the Josephson current in the

magnetic field is observed. We then discussed the transport in the medium cou-

pling regime. We discussed the signatures of the multiple Andreev reflections, the

sub-gab bound states, and the Josephson current, interplaying with the Kondo

effects. By adjusting the voltages that are applied to the back gate and the side

gates of the device, we can control the dot-lead coupling strength and the cou-

pling asymmetry. We report the quantum phase transition induced by tuning the

dot-lead coupling and the quantum phase transition induced by a magnetic field.

We also found the coupling asymmetry is very important for the observation of

the Josephson current. In the magnetic field, the evolution of the Kondo effect
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enhanced Josephson current is found strongly dependent on the energy ratio of

TK/∆(B). Finally, an anomalous low-field suppression of the zero-bias conduc-

tance peak in the Kondo regime of the Josephson quantum dot is discussed. The

measurements discussed in this chapter are based on Papers V and VI.

Chapter 5 gives an introduction of Majorana bound states in solid state sys-

tems and reports the observation of the anomalous zero-bias conductance peaks

emerging in finite magnetic fields in the InSb nanowire-superconductor hybrid

devices, as a signature of the Majorana bound states. The zero-bias conductance

peak is found to be independent of the even-odd parity of the quasi-particle num-

ber in the quantum dot. In addition, we analyze several other mechanisms that

can lead to the emergence of zero-bias conductance peaks in finite magnetic fields,

in comparison with the signature of the Majorana bound states. The measure-

ments discussed in this chapter are based on Papers II, III, and IV.

5



1. INTRODUCTION

6



2

Material Growth and Device

Fabrication

In this chapter, the methods of material growth, the fabrication process of low

temperature measurement substrates, and the fabrication of electric contacts to

nanowires are described.

2.1 III-V semiconductor nanowire self-assemble methods

All the samples discussed in this thesis were made from self-assembled indium

antimonide (InSb) and indium arsenide (InAs) heterostructure nanowires [Fig. 2.1

(a)]. The growth of semiconductor nanowires starts by depositing catalyst seeds

on a growth substrate. For InSb/InAs heterostructure nanowires, catalyst seeds

are nanoscale gold particles (20 ∼ 80 nm of diameters), and the growth substrate

is an InAs or indium phosphide (InP) semiconductor substrate. In a closed growth

environment, appropriate source materials are added to the surface of the growth

substrate. If the conditions are suitable, the Au particles will act as local catalysts

for crystal growth, and nanowires begin to grow on the surface of the substrate.

The InSb/InAs heterostructure nanowires can be grown by two different epitaxy

methods. One is the metal-organic vapor phase epitaxy (MOVPE) (10, 11) and

the other is the molecular beam epitaxy (MBE) (12).

In the MOVPE growth method, the InAs/InSb nanowire heterostructures

were grown on InAs(111)B or InP(111)B substrates decorated with small gold

aerosol particles. The growth was performed in a two-stage process. First, the

InAs segment was grown by adding trimethylindium (TMIn) and arsine into the
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2. MATERIAL GROWTH AND DEVICE FABRICATION

MOVPE reactor. After the growth of a segment of InAs stems, the arsine was

then switched off and trimethylantimony (TMSb) was switched on to grow the

InSb segment. The growth was terminated by shutting off the TMIn and TMSb

sources simultaneously, and cooling down was performed under hydrogen flow

only. Both segments were grown at 460 ◦C for a few minutes each. Differing

from the MOVPE method, MBE growth has to be performed in a ultra-high

vacuum chamber. However, the gold seed-assisted wire-on-wire growth process is

fundamentally analogous to MOVPE growth.

Figure 2.1(b) shows a scanning electron microscope (SEM) image of MOVPE

grown InSb/InAs heterostructure nanowires, while Fig. 2.1(c) shows an SEM im-

age of MBE grown InSb/InAs nanowires. In both growth processes, the InAs seg-

ments are pure wurtzite structure, and InSb segments have pure zinc blende struc-

ture. Contrary to most other III-V nanowires, the InSb nanowire segments are

free of any extended structural defects and do not show any tapering [Fig. 2.1(d)].

The growth of the InSb/InAs heterostructure nanowires using MOVPE was

performed by Dr. Philippe Caroff and Dr. Kimberly. D. Thelander. All the

MBE growth of the InSb/InAs heterostructure nanowires was performed by Dr.

Philippe Caroff.

2.2 Device fabrication

2.2.1 Fabrication of substrates for low-temperature measurements

Nanowires are grown on their growth substrates. However, the growth substrates

are not suitable for fabricating or measuring devices. Sample fabrications and

measurements have to be performed on other substrates according to different

experimental requirements. In this thesis, we need to measure electric properties

of samples at an ultra-low temperature and therefore substrates for low temper-

ature measurement are essential.

The low temperature measurement substrates were made from a degenerately-

doped (n-type) silicon wafer [Fig.2.2(a)]. The wafer was first dry-oxidized to form

90∼120 nm thick SiO2 layers on the top (the polished side) and the bottom (the

unpolished side) surfaces. The polished side of the wafer was then spin-coated

with a thin layer of S-1813 optical resist at a spinning speed of 3000 revolutions

per minute (RPM) for 60 seconds. Subsequently, the wafer was baked on a

hotplate at 180◦C for 3 minutes. To remove the unintended resist on the bottom
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200 nm

200 nm
1000 nm

(a) (b)

(c) (d)

Figure 2.1: Self-assembled InSb/InAs heterostructure nanowires. (a) Schematic of self as-

sembled InSb/InAs heterostructure nanowires arrays. The catalytic gold seed is illustrated

by the golden-colored particle on the top of each nanowire. (b) SEM image of InSb/InAs

heterostructure nanowires arrays grown by MOVPE. (c) SEM image of InSb/InAs het-

erostructure nanowires arrays grown by MBE. (d) SEM image of a single InSb/InAs het-

erostructure nanowire on a silicon chip. Panels (b) and (c) are reproduced by courtesy of

Dr. Philippe Caroff.
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2. MATERIAL GROWTH AND DEVICE FABRICATION

surface, it was carefully cleaned by using a clean room tissue rinsed with acetone,

followed by a 2-minute oxygen plasma ashing. After that, hydrofluoric acid (HF)

was applied on the backside of the wafer to etch away the SiO2 layer, followed by

rinsing the wafer in deionized water and drying in a N2 flow. Then 50 Å Ti and

1000 Å Au were evaporated by utilizing the physical vapor deposition (PVD) on

the backside of the wafer and the wafer was washed in hot acetone to remove the

S-1813 on the polished side. Afterwards, the wafer was cleaned in acetone for 3

minutes and isopropanol (IPA) for 3 minutes, all in an ultrasonic bath. Finally,

the wafer was dried in a N2 flow.

We need to provide a coordinate system and alignment markers for the wafer

[Fig.2.2(b)]. Firstly, the wafer was spin-coated with ZEP 520 A7 electron-beam

sensitive resist at a spinning speed of 6000 RPM for 120 seconds. It was then

baked on a hotplate at 180◦C for 5 minutes. The wafer was then exposed by

an electron-beam to create the pattern of the coordinates and markers. The

development was performed in O-xylene for 5 minutes, followed by rinsing in IPA

and drying in a N2 flow. To remove the resist residues, the wafer was cleaned with

an oxygen plasma asher for 45 seconds. Then PVD was used to evaporate 30 Å

Ti and 300 Å Au. The lift-off process was then performed in a hot remover-1165

solution in a ultrasonic bath.

The preparation of the measurement wafer was finalized by fabricating bond-

ing pads [Fig.2.2(c)]. The wafer first was spin-coated with LOR 7B resist and

baked on a hotplate at 180◦C for 5 minutes. The wafer was then spin-coated with

S-1813 and baked on a hotplate at 115◦C for 90 seconds. Ultraviolet (UV) light

was used to expose the patterns, and then the wafer was developed in MF-319

solution, rinsed in deionized water and dried in a N2 flow. After 45 seconds of

oxygen plasma ashing, 50 Å Ti and 1000 Å Au metal layers were deposited using

PVD. Then the metal was lifted-off in a hot remover S-1165 solution, followed by

rinsing in water and drying in a N2 flow. After cleaving the wafer into small silicon

chips, the fabrication of low temperature measurement substrates was finished.

2.2.2 Fabrication of electric contacts to nanowires and local gates

So far we have got highly n-doped silicon substrates with SiO2 insulating layers,

coordinate systems and bonding pads on their polished sides, and Ti/Au metal

layers on their backsides as global gates. They are ready to be deposited by

nanowires.

10



2.2 Device fabrication

Si (n++) substrate Si (n++) substrate Si (n++) substrate

Si (n++) substrateSi (n++) substrateSi (n++) substrate

SiO
2

SiO
2oxidization resist-coating

Baking

O
2

plasma

HF

washing

PVD (Ti/Au)cleaning

S-1813 Resist

coating

baking

EBLZEP 520 A7 Resist

O
2

plasma development

lift-off

cleaning

PVD (Ti/Au)

LOR 7B Resist S-1813 Resist UVL

O
2

plasma

PVD (Ti/Au)

development

coating

baking

lift-off

cleaning

(a)

(b)

(c)

e-beam

UV beam

Figure 2.2: Preparation of the low temperature measurement substrates. (a) Chip oxi-

dization, and back gate fabrication. (b) Fabrication of alignment markers. (c) Fabrication

of the bonding pads. Figures are reproduced by courtesy of Chunlin Yu.
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(a) (b)

(c) (d)

Figure 2.3: Schematics of fabrication process of nanowire-based device. (a) A highly

n-doped silicon chip with a 100 nm SiOx insulator layer on one side and a Ti/Au (5/120

nm) metal layer on the other side as a back gate. (b) Ti/Au (5/100 nm) bonding pads

and Ti/Au (5/45 nm) alignment markers are made on the substrate. (c) Nanowires are

deposited at the target region on the substrate. (d) Nanowires are contacted to metals and

the bonding pads are bonded to aluminum wires.

The nanowires were dry-transferred to the measurement substrate from their

growth substrate by using a clean room tissue. An optical microscope was used

to record the positions of the nanowires. With the assistance of the pre-defined

coordinate system on the substrate, we can select and locate well-positioned

nanowires. In order to define the electric contacts, the sample was first spin-

coated with Poly(methyl methacrylate) (PMMA) 950K A4 (or A5) at a spinning

speed of 5000 RPM for 60 seconds, followed by baking on a hotplate at 180◦C for

3-10 minutes. The contact patterns were written directly by an electron beams

machine. Afterwards the sample was developed in MIBK for 90 seconds, and

then rinsed in IPA for 60 seconds, followed by drying in a N2 flow. Before any

metal deposition, 15 seconds of oxygen plasma ashing was performed, in order to

remove the residual polymers.

Before the metallization step, an essential chemical treatment is needed in
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2.2 Device fabrication

order to get good metal-semiconductor contacts. This is because there is a thin

native oxide layer on the surface of each InSb/InAs nanowire, which will insulate

the nanowire from the metal contacts. To achieve reliable contacts to nanowires,

the surface oxides must be removed by etching and the resulting dangling chem-

ical bonds should be immediately passivated to prevent the surface reoxidation

(13). For InSb/InAs nanowires, the oxide layer etching and the surface passiva-

tion can be done simultaneously by using an ammonium polysulfide [(NH4)2Sx]

bath. The wet-etching/sulfur-passivation is performed in the diluted (NH4)2Sx
solution [the original solution was (NH4)2Sx:H2O = 1:10] at 40◦C for 1∼3 min-

utes. The passivated sample should be transferred into the evaporator chamber or

the sputter chamber quickly and the chamber should be pumped to high vacuum

for metallization.

Metal deposition can be performed in the thermal evaporation machine or

sputtering machine, depending on the target materials. Deposition of Ti/Au

layer or Ti/Al layer in this thesis was performed in a thermal evaporator, while

Ti/Nb/Ti layer and Ti/Nb/Al layer were deposited in a sputter machine. The

lift-off for thermal evaporated or sputtered metal layers was performed in hot

acetone or hot remover S-1165 followed by IPA rinsing and N2 drying. Then the

device can be bonded to a measurement chip holder by aluminum wires and ready

for electric measurements [Fig. 2.3].

Besides the global back gate (the Ti/Au layer on the backside of each sub-

strate), local gates can also be added to the substrates as side gates, top gates

or bottom gates [Fig. 2.4]. Local side gates can be fabricated with the metal

contacts in the same process. Top gates can be made after the nanowire metal-

lization. A dielectric layer is needed to insulate the nanowires from the top gates.

The device shown in Fig. 2.4(c) used a 10 nm HfO2 thin film as the dielectric

layer, which is achieved by atomic layer deposition (ALD) at 100◦C. For the

bottom gated devices, local gate arrays have to be made ahead of the nanowire

deposition. To insulate the nanowires from the gates, a dielectric layer is also

required. The nanowires are then deposited on top of the local gate arrays and

followed the same localization and metallization procedure described above.
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Figure 2.4: SEM images of several fabricated devices with different geometries. (a) SEM

image of a two-terminal nanowire device with only a global back gate. (b) SEM image of a

two-terminal nanowire device with a global back gate and two side gates. (c) SEM image

of a two-terminal nanowire device with a global back gate and two local top gates. (d)

SEM image of a two-terminal nanowire device with local bottom gates.
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3

InSb Nanowire Quantum Dots

In this chapter, we first give a brief review on some fundamental conceptions

related to quantum dots and basic properties of electron transport through sin-

gle quantum dots. Several novel electron transport features in InSb nanowire

quantum dots are also discussed.

3.1 Single quantum dot model

A single quantum dot is also referred to as an artificial atom due to its intrinsic

charge and energy quantization that is analogous to an atom. The quantum dot

system has been proven to be very useful to studies of a wide range of physical

phenomena. A lot of theoretical and experimental work has been done to describe

and understand the transport property through a quantum dot. In this section,

we briefly introduce the most fundamental phenomena, and the electron transport

mode of a single quantum dot. A more systematic physics analysis and detailed

mathematical derivation of the transport model of quantum dots can be found in

Refs. (1, 2) and references therein.

3.1.1 Charge quantization and energy quantization in a quantum dot

In 1897, J. J. Thomson discovered electrons from cathode ray experiments. A few

years later, Robert Millikan did the famous oil drop experiment. Since then we

have known that the electric charge is quantized with the elementary charge e =

1.5924×10−19 C, and the elementary electric charge e is the charge that is carried

by an electron. In 1913, Niels Bohr proposed his Bohr model in which electron
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3. INSB NANOWIRE QUANTUM DOTS

e
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(a) (b)

Figure 3.1: Schematic of charge quantization and electron energy level quantization. (a)

Adding an extra electron onto a dot increases the dot energy by a charging energy. (b)

Electron wave functions of the first three energy levels in an infinitely deep square well.

orbits and electron energies in atoms were believed to be quantized. The energy

quantization of constrained electrons has been observed in many confined systems

for the last century. Usually, the charge quantization and energy quantization are

hardly seen in macroscopic systems. However, when the dimensions of an object

are down-scaled below a few hundred nanometers, the charge quantization and

energy quantization effect become non-negligible.

We start the discussion from an isolated small piece of conductor/semiconductor

(a dot) with a capacitance C as depicted in Fig. 3.1 (a). Note that the capaci-

tance C here is the self-capacitance, and thereby the electrostatic energy of the

dot with charge Q is U = Q2/2C (taking infinity as the reference zero-energy

point). We also assume the dot temperature is zero for all the discussion below

except in some cases when the temperature is specified.

Suppose that the dot is originally electrically neutral. If we take an external

electron from the infinity and add it onto the dot, the added electron will break

the electric neutrality of the dot and generate a Coulomb repulsion force to other

external electrons. From the energy point of view, the extra electron increased

the total energy of the dot. Therefore, adding more external electrons onto the

dot will cost more energy. This phenomenon is the so-called Coulomb blockade.
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3.1 Single quantum dot model

The electrostatic energies of the dot with N − 1 and N electrons on the dot are

U (n− 1) = [(n− 1) e]2/2C and U (n) = (ne)2/2C, respectively. Therefore, the

energy needed to add the Nth electron onto the dot is

µ(N) = U(N)− U(N − 1) =
e2

C
(N − 1

2
) (3.1)

The difference between µ(N) and µ(N − 1) is called the addition energy, which

means the energy that is further needed to add the Nth electron to the dot, based

on the total required energy for adding the (N − 1)th electron µ(N − 1). That is

∆µ(N) = µ(N)− µ(N − 1) =
e2

C
(3.2)

We will see the reason why we introduce the concept of the addition energy

when we discuss the measurements of quantum dot energy spectrums in the next

subsection. In this case, the addition energy here only contains the item e2/C

which is referred to as the charging energy.

EC = e2/C (3.3)

The analysis above does not consider the quantization of electron energy levels.

However, energy quantization has to be considered when the dot is sufficiently

small. As an example, the eigen energies of a 1D infinitely-deep square-well

[Fig. 3.1 (b)] are

εn =
(~π)2

2
· n2

m∗eL
2

(3.4)

in which L is the length of the square well, m∗e is the effective mass of the electron

and n = 1, 2, 3, ... We can see that the smaller the dot size is, the larger the level

separation is. The potential profile of a real dot is usually not an ideal infinitely-

deep square-well shape, but the energy quantization obeys the same principle,

i.e., it correlates inversely with the dot size.

According to the Pauli exclusion principle, one quantum state can only hold

one fermion. A single energy level (or an orbit state) can only hold two elec-

trons with opposite spins. For a dot with an infinitely-deep square-well shaped

potential-profile, the first added electron occupies the lowest energy level. The

second added electron can also occupy the lowest energy level but it requires that

the electron has an opposite spin to the spin of the first added electron. There-

fore, the addition energy for the second electron is ∆µ2 = EC . However, the next
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Figure 3.2: (a) Schematic of a single quantum dot. (b) Schematic of the electric circuit

equivalent to a single quantum dot in the constant interaction model.

electron has to occupy the second lowest energy level, because the lowest one is

fully occupied. Therefore, it needs more energy to add the third electron onto the

dot, i.e., the addition energy for the third electron is ∆µ3 = ε3− ε2 +EC . Gener-

ally, when considering electron energy level quantization, the addition energy of

the Nth electron is:

∆µ(N) = ∆εN +
e2

C
(3.5)

in which ∆εN = εN−εN−1 is the energy difference between the level energy of the

Nth electron and the (N − 1)th level energy. For the dot with an infinitely-deep

square-well potential-profile, ∆ε2 = 0, ∆ε3 = 5
2
(~π)2/m∗eL2, ∆ε4 = 0, ∆ε5 =

7
2
(~π)2/m∗eL2, ... Because of the energy quantization, the dot is called a quantum

dot.

The main difference between the quantum model discussed above and a real

quantum dot is that a real quantum dot is not an isolated system. Instead,

the quantum dot is generally embedded in a non-vacuum environment. In the

context of transport, a quantum dot is a part of an electrical circuit. Figures 3.2

(a) and (b) show a schematic of an electric circuit equivalent to a quantum dot

model. In this model, the quantum dot is coupled to the source and drain leads

through tunnel barriers and it is capacitively coupled to a gate electrode. In the

next subsection, we will see the source-drain leads serve as electron-reservoirs for

the dot, and the gate is used to adjust the electrostatic energy of the dot. The

source/drain and the gate also modify the total electrostatic energy of the dot by

capacitive coupling:

U(N) =
(Ne)2

2CΣ

+ eN
m∑
j=1

C0j

Vj
(3.6)

where C0j is the mutual capacitance of the electrode j (source/drain leads or
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3.1 Single quantum dot model

gate electrodes) and the dot, Vj is the electrostatic potential on the electrode j.

Here, we rewrite the dot self-capacitance C as CΣ because C = CΣ = −
m∑
j=1

C0j.

Accordingly, the energy required to add the Nth electron to the dot should be

modified to:

µN = εN +
e2

CΣ

(
N − 1

2

)
− e

m∑
j=1

αjVj (3.7)

in which αj = −C0j/CΣ is called the lever arm of electrode j. αj is used in

experiments to relate the gate voltage change to the dot potential change. It can

be seen from Eq. 3.7 that the addition energy for the Nth electron remains in

the form ∆µn = ∆εn + e2/C as Eq. 3.5.

3.1.2 Coulomb oscillations and charge stability diagram

In the dot model shown in Figs. 3.2 (a) and (b), the dot is separated from the

source and drain leads by tunnel barriers. In fact, the quantum dot is defined by

these barriers. Below we will discuss how the current flows through the quantum

dot and typical transport-methods of studying a quantum dot.

Classically, if the energy of an incident electron, E, is smaller than the barrier

height V0, the electron will be reflected backward with a probability of 100%.

However, in quantum mechanics, the electron has a non-zero probability to go

through the barrier even with E < V0. This process is called tunneling. For

a 1D square-barrier [Fig. 3.3 (a)], the electron transmission coefficient (i.e., the

probability of the electron to tunnel through the barrier) is given by:

T =

[
1 +

V 2
0

4E (V0 − E)
sinh2

(
a
√

2m∗e (V0 − E)/~
)]−1

(3.8)

where a is the barrier width. Figure 3.3 (b) shows the plot of T of a square-barrier

as a function of the incident electron energy E (a = 20 nm, V0 = 0.5 eV, and

m∗e = 0.015m0). In contrast, the dashed-line corresponds to the classical T − E
relation.

If there are two tunnel barriers in series [Fig. 3.3 (c)], a 1D finitely-deep square-

well is formed in between the two barriers. Electrons are confined in the well.

Unlike the square-well shown in Fig. 3.3 (d), the quantum states in the tunnel-

barrier defined well are not real bound states. Because the electrons on these

states could tunnel out of the well, these states are referred to as quasi-bound

states.
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Figure 3.3: Electron tunneling through potential barriers. (a) A 1D square barrier. (b)

Transmission coefficient of the square barrier shown in (a), as a function of the energy of

the incident electron. (c) A quantum well formed by two square barriers. (d) A quantum

well with infinitely-thick square barriers. (e) Transmission coefficient of the quantum well

shown in (c) as a function of the energy of the incident electron, with different φ values.
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3.1 Single quantum dot model

One might think that the net transmission coefficient of the well shown in

Fig. 3.3 (c) would be the product of the left-barrier coefficient and the right-

barrier coefficient T ∗ = TLTR. T ∗ indeed approximately equal to TLTR in some

cases. However, when the energy of the incident electron approaches the energy

of a quasi-bound state in the well, T ∗ increases significantly. This is because

the electron will experience a perfectly coherent bouncing back and forth process

between the two barriers at a quasi-bound state. Therefore, the quasi-bound

state is also called the resonant state. In the symmetrical case TL = TR = T , the

net transmission coefficient of the well is given by:

T ∗ =
T 2

T 2 + 4 (1− T ) sin2φ
(3.9)

where φ is the picked-up phase in each bounce. Figure 3.3 (e) shows a few

T ∗ − E curves with different φ values. The dashed line represents the product

TLTR. One has to note that in most quantum well systems, φ is interrelated

with k-vector and therefore interrelated with E. It can be seen that T ∗ peaks

to unity even with E < V0 when φ = nπ. The condition of φ = nπ is also

the condition for the forming of the electron standing-wave in the potential well.

In the case of quantum dots, the quantum dot is most electrically transparent

when the energy of the incident electron is equal to a quantized electron level.

The electron tunneling through the quantum level is therefore called the resonant

tunneling.

Now we link the single electron-tunneling-event with the current through a

quantum dot. Without any high-order co-tunneling event, three conditions have

to be met to have a net-current flowing through a quantum dot: a non-zero

transmission coefficient, a non-empty electron reservoir on one side, and empty

states that can accept the tunneled electrons on the other side. The latter two

conditions can easily be satisfied by applying a bias-voltage Vsd to the source-

drain leads of the quantum dot. An energy window is then formed between the

chemical potential of the source lead µs and the chemical potential of the drain

lead µd = µs − eVsd. Electrons can flow through the quantum dot when one or

more resonant states are lying in the energy window µs − µd.
Figure 3.4 shows schematic energy diagrams of a quantum dot. In Fig. 3.4 (a),

there is no resonant state in the bias window and thereby no net-current through

the quantum dot. In Fig. 3.4 (b), a current can flow through the dot via the

bridging of a resonant level. The two different states in Figs. 3.4 (a) and (b) are
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Figure 3.4: The off-resonance and on-resonance states. (a) The resonant level is out of

the energy window between µs and µd. The quantum dot is in an off-resonance state and

no current flows through the quantum dot. (b) The resonant level is in the energy window

between µs and µd. The quantum dot is in an on-resonance state and a non-zero current

flows through the quantum dot.

called off-resonance and on-resonance states, respectively. The resonance on/off

switching in Figs. 3.4 (a) and (b) is performed by adjusting the chemical potential

of the quantum dot. This adjustment is achieved via a voltage Vg applied to its

gate. If we fix Vsd at a small value and sweep Vg continuously, the conductance

of the quantum dot will oscillate significantly due to the alternation of on/off

resonance. The conductance oscillation with Vg is called the Coulomb oscillation.

Figure 3.5 shows an example of Coulomb oscillation. The data is taken

from the measurement results of a Au-InSb NW-Au device (Dev. AuInSbAu#1 ).

Shown as the SEM image in the inset of Fig. 3.5 (a), two Ti/Au (5/90 nm)

leads are contacted to the MOVPE-grown InSb nanowire with a 330 nm sepa-

ration in-between. The diameter of the nanowire is 75 nm. The measurements

were performed in a 3He/4He dilution refrigerator with a base temperature of

25 mK. A quantum dot is formed in the InSb nanowire segment between the

contacts. The quantum dot is defined by the barriers that are induced by the

metal-semiconductor contacts. Figure 3.5 (a) displays the measured source-drain

current Isd as a function of the voltage applied to the global back gate Vbg. The

source-drain bias voltage Vsd is fixed at 25 µV which is much smaller than the

charging energy EC and the quantization energy difference ∆ε. It can be seen

that in most cases Isd is very small, except near the arrow-marked points where

Isd peaks. The current peaks are due to the alignment of one electron energy

level in the dot and the small source/drain energy window. As Vbg increases,

the chemical potential of the quantum dot drops, and therefore electrons near
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Figure 3.5: Coulomb oscillations. (a) The source-drain current Isd measured for a single

quantum dot device as a function of back gate voltage Vbg at T = 25 mK and B = 0 T.

The source-drain bias voltage Vsd is fixed at 25 µV. The Coulomb oscillations occur in the

form of repeated conductance peaks. The inset is the SEM image of the measured device.

(b) Schematic energy diagram of a quantum dot. (c) Distances Vadd (in the scale of Vbg)

between adjacent peaks in panel (a) as a function of the number of electrons in the dot.

Vadd alternates between large value and small value due to spin degeneracy of the quantum

levels in the dot.

the Fermi level of the contacts have higher energy relative to the dot. Quantum

levels in the dot successively fall into the source/drain energy window and in-

crease the tunneling current by resonance. After passing the energy window, the

quantum level is off resonance and the current drops back to a low level. Then,

the quantum state is occupied by an electron. The energy separation between

peak N−1 and peak N is exactly the addition energy of the Nth electron ∆µ(N)

according to its definition, as discussed above.

If we consider the spin degeneracy, one orbit state can only hold two electrons

with opposite spins. Therefore, once one of the two spin-states of an orbit level is

occupied, the addition of an electron to another spin-state just needs an increase

in the incident electron energy by a charging energy EC [Fig. 3.5 (b)]. In this case,

the addition energy is equal to EC . Otherwise, the addition energy is EC + ∆ε.

Figure 3.5 (c) shows the distance of adjacent peaks in Fig. 3.5 (a) in the scale

of Vbg (i.e., ∆µ(N)/eαbg), as a function of the number of electrons in the dot.

We can see that ∆µ(N)/eαbg has larger values when N is an even number and
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3. INSB NANOWIRE QUANTUM DOTS

has smaller values when N is odd. This is called even-odd alternation behavior,

which results from the spin degeneracy.

The current peaks in Fig. 3.5 (a) supply us with the information of the quan-

tum levels in the dot and is therefore sometimes referred to as the spectrum of

the quantum dot.

Besides adjusting the chemical potential of the quantum dot via gate(s), in-

creasing the bias energy window can also switch the on/off-resonance state of the

quantum dot. The combination of gate adjustment and bias variation will give

several different conductance states. The quantum dot has different conductance

at different combinations. If we plot the differential conductance dIsd/dVsd as a

function of Vsd and Vg, we get a 2D diagram which is called the charge stability

diagram. Figure 3.6 shows a schematic of the charge stability diagram and several

typical combinations, corresponding to different places in the stability diagram.

We can see that the stability diagram is separated into diamond-blocks, which are

called the Coulomb diamonds. The borders between different Coulomb diamonds

represent conductance thresholds of the quantum dot, and the dIsd/dVsd reaches

maxima on the borders.

The charge stability diagram can help us characterize and analyze a quantum

dot. For instance, we can directly get a very accurate estimation of the addition

energy from the half-width (along the Vsd axis) of the corresponding diamond

(V HW
sd in Fig. 3.6). The addition energy ∆µ is approximately equal to eV HW

sd .

We can also calculate the lever arm of the gate:

αg = V HW
sd /V FH

g (3.10)

in which V FH
g is the full height (along the Vg axis) of the corresponding diamond

as shown in Fig. 3.6.

In Fig. 3.7, we show three charge stability diagrams measured for InSb nanowire

quantum dot devices. Figure 3.7 (a) displays the charge stability diagram mea-

sured for Dev. AuInSbAu#2 whose SEM image is shown in Fig. 3.7 (b). The

nanowire in this device was grown by MBE with a diameter of 95 nm. It is con-

tacted by two Ti/Au(5/90 nm) leads with a spacing of 360 nm. A clear Coulomb

diamond structure can be seen from the diagram. We can extract the addition

energies to be 1.2∼2 meV in this given Vbg region. Figures 3.7 (c) and (d) are

the charge stability diagrams for Dev. AuInSbAu#1 at different temperatures.

The addition energies of Dev. AuInSbAu#1 are about 4∼8 meV and are much
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Figure 3.6: A sketch of the charge stability diagram of a single quantum dot. Different

configurations of source/drain chemical potentials and the dot energy levels at points A-E

are illustrated separately in schematic energy diagrams.
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Figure 3.7: Charge stability diagrams. (a) The charge stability diagram measured for a

Au-InSb NW-Au device (Dev. AuInSbAu#2 ). The measurements are performed at T = 25

mK and B = 0 T. (b) The SEM image of Dev. AuInSbAu#2. (c)-(d) The charge stability

diagrams measured for Dev. AuInSbAu#1. The diagram in panel (c) is taken at T = 4.2

K, while (d) is taken at T = 25 mK.

larger than the ones of Dev. AuInSbAu#2. The reason for this is that the dot

size of Dev. AuInSbAu#2 is larger than Dev. AuInSbAu#1 in terms of contacts

spacing and nanowire diameters. Another reason is that Dev. AuInSbAu#2 is

in a many-electron transport regime for the Vbg region in Fig. 3.7 (a). In this

regime, the effective quantum dot volume expands largely as a result of global

gating and the electric field-retroaction to the barriers from electrons in the dot.

The increase of the dot volume leads to a decrease of the charging energy and

quantum level separations.

As expected, the Coulomb diamond borders are broader at T = 4.2K [Fig. 3.7

(c)] than at T = 25 mK [Fig. 3.7 (d)]. If the temperature increases until the

thermal energy is larger or comparable to the charging energy (kBT ≥ EC),

Coulomb oscillation features and Coulomb diamond structures will be smeared

out.
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3.2 Ambipolar InSb nanowire quantum dot

So far, we have discussed the electron tunneling through a quantum dot. We have

also shown measured Coulomb oscillations and charge stability diagrams for InSb

nanowire-based quantum dots. We assume the quantum dot is ”n-type”, i.e., the

quantum well is assumed to be formed above the bottom of the conductance band

of the InSb nanowire. Moreover, the quantum state of the dot is called occupied

if there is an electron on the level. Likewise, a ”p-type” quantum dot can be

formed if there is a potential well for holes in the valance band. The potential

well for holes is a reversed potential well for electrons, and holes are constrained

in the potential well. In this context, a quantum state is hole-occupied if there

is no electron on that state. Since InSb is a narrow band gap [Eg = 0.235 eV at

T = 0 K (14)] material, it is possible to tune an InSb quantum dot from n-type

to p-type by gating, as shown in Fig. 3.8.

We show a typical ambipolar quantum dot device (Dev. AlInSbAl#1 ) in

Fig. 3.9. The InSb nanowire in Dev. AlInSbAl#1 is contacted by two Ti/Al(5/75

nm) contacts1 with a separation of 100 nm. Figure 3.9 (a) shows the source-drain

current Isd as a function of back gate voltage Vbg, measured for Dev. AlInSbAl#1

under a source-drain bias voltage of Vsd = 0.2 mV. The measurements show clear

1Al is a superconductor at the temperature where the measurements are performed. The supercon-

ductivity modifies the transport features in a certain way (see Chapt. 4), however, the main observation

for the physics of the ambipolar quantum dot effect remains consistent with a normal metal-contacted

quantum dot.
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3. INSB NANOWIRE QUANTUM DOTS

ambipolar quantum dot behavior. Two strong current peaks seen at Vbg ∼ −0.7V

are the Coulomb oscillation peaks rising from the electron transport through the

quantum dot. Therefore, the quantum dot is n-type in this Vbg region. As Vbg
goes toward to more negative values, a non-current region appears after the last

electron is emptied from the dot. However, as Vsd becomes sufficiently negative

(Vbg < −4 V), a region with sharp current peaks appears. These current peaks

resemble the hole transport through quantum states in the InSb nanowire quan-

tum dot. These observed current peaks are much sharper and have a height of

at least 3 orders of magnitude smaller than the observed current peaks in the

electron transport region. This implies that the tunneling barriers in the hole

transport regime of the device are much higher than the barriers in the electron

transport regime.

Figures 3.9 (b) and (c) show the charge stability diagrams of a selected many-

hole and a selected few-hole transport region, respectively. Figure 3.9 (d) shows

the charge stability diagram in the electron transport region with mainly a single

electron occupation in the dot. Here, we note that the measurements in the

electron transport region are performed in an applied magnetic field of 1.5 T, in

order to suppress the superconductivity-induced features (see Chapt. 4).

Figure 3.10 shows Coulomb oscillations of another ambipolar quantum dot

device (Dev. NbInSbNb#1 ). In this device, the InSb nanowire is contacted by

two Ti/Nb/Al(3/80/5 nm) contacts with a separation of 150 nm. In the electron

transport regime of the device, the Coulomb oscillation is clearly seen in Fig. 3.10

(a) with the conductance peaks as high up as ∼ 0.6e2/h in this region. The

addition energy is extracted from Fig. 3.10 (a) and summarized in Fig. 3.10 (b).

Note that the addition energy is calculated according to ∆(N) = eαbg∆Vbg where

αbg is the lever arm of the back gate and ∆Vbg is the distance (in the scale of

Vbg) between adjacent peaks. We can see that the addition energy shows a very

clear even-odd alternation behavior. The alternation of ∆(N) indicates that the

electron energy quantization in this regime is pronounced and is comparable to

the charging energy for the n-type quantum dot regime. The charging energy can

be estimated from the addition energy of the Coulomb diamond with an odd-

occupation, which gives Ee
C = 2.5 ∼ 4 meV. If we take ∆E(n) = 1

2
[∆µ(2n+ 1) +

∆µ(2n− 1)−∆µ(2n)] as an estimation of the quantum energy difference ∆ε(n).

This gives a ∆E(n) ranging from 0.5 meV to 7 meV.

However, when a negative back gate voltage (Vbg ∼ −10 V) is applied to the

28



3.2 Ambipolar InSb nanowire quantum dot

-4.52-4.60 -4.56 -0.40-0.70

0 2

V
sd

 (m
V

)

-8

8

0

-6.70-6.80

(b)
dIsd /dVsd (10-4e2/h) dIsd /dVsd (10-4e2/h)

4

-4

(a)

-2-6-10 Vbg (V)

Vbg (V)

Vbg (V)

Vbg (V) Vbg (V) Vbg (V)

I sd
 (n

A
)

10

0

5

-8 -4

6 

-10 -2-4-6-8

I sd
 (p

A
) 4 

2 

0

(c)

-6.75 -0.60 -0.50

-4.0 -3.0 -2.0

0.6

0.0

0.2

0.4

-4.5 -3.5 -2.5

(d)
14-2 0 2 0.8-0.4 0 0.4

Ti/Al
Ti/Al

InSb

InAs
500 nm

Figure 3.9: Measurements of an ambipolar quantum dot device. (a) The measured Isd

as a function of Vbg with an applied Vsd = 0.2 mV at T = 25 mK and B = 0 T. Current

peaks in the electron transport regime appear at around Vbg = −0.7 V, while the Coulomb

oscillation of the hole transport regime occurs when Vbg < −4 V. The inset curve is a

close-up view of the few-hole regime. The inset SEM image is taken from the measured

device. (b) and (c) are the charge stability diagrams measured in the hole transport regime

at B = 0 T. (d) is the charge stability diagram measured in the electron transport regime

at B = 1.5 T.
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device, the dot is tuned to the p-type regime. Figure 3.10 (c) shows the Coulomb

oscillation of the hole transport regime. Just like Dev. AlInSbAl#1, the quantum

dot is much more electrically opaque in the p-type regime than in the n-type

regime. The addition energy for the Vbg region shown in Fig. 3.10 (c) is extracted

and shown in Fig. 3.10 (d). In contrast to the n-type region, the addition energy

does not show an even-odd alternation and is almost constant here. This implies

the energy quantization is small for the p-type regime and the addition energy is

approximately equal to the charging energy Eh
C ≈ ∆µ(N) ≈ 4.5 meV.

The energy quantization difference between the n-type quantum dot regime

and the p-type regime is pronounced. According to Eq. 3.4, one might think

this is because the selected p-type region is in the many-hole regime (having a

larger effective dot size), while the selected n-type region is in the few-electron

regime (having a smaller effective dot size). According to the relation EC =

e2/CΣ, we can deduce the dot self-capacitances for the n-type region Cn
Σ ≈ 50

aF and for the p-type region Cp
Σ ≈ 35 aF. If we assume that the geometry of the

quantum dot is a solid-cylinder with a radius of 30 nm, we can estimate that the

lengths of the dot are ∼30 nm and ∼10 nm for the n-type and p-type regions,

respectively1. Although the calculated dot lengths are not very consistent with

the assumption of a cylinder-dot geometry, the effective volume of the p-type dot

is likely to be smaller than the volume of the n-type dot. We have to consider the

difference between the effective mass of the conductance-band electron m∗e and

of the valance-band hole m∗h. For InSb bulk material, we have m∗e = 0.0135m0,

m∗hh = 0.44m0 (heavy hole2) and m∗lh = 0.016m0 (light hole) (14, 15). Because

the heavy hole band is above the light hole band in the band structure of InSb

and m∗hh � m∗lh, the p-type quantum dot favors populating itself with heavy holes

at the low-energy regime. Therefore, according to Eq. 3.4, the heavy holes have

a much smaller quantization effect than electrons for the same dot size.

With both n-type and p-type properties, the InSb quantum dot could simplify

the design and assembling of single electron/hole transistors circuits significantly.

In addition, the p-type quantum dot has some unique properties. For example,

the quantum dot has a strong spin-orbit interaction (see the introduction of spin-

orbit interaction in later sections) in the hole transport regime. Moreover, hole

1The calculation was performed using the self-capacitance of a solid cylinder on WolframAlpha.
2Heavy-hole effective masses of InSb: m∗hh[100] = 0.32m0, m∗hh[110] = 0.42m0 and m∗hh[111] =

0.44m0
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Figure 3.10: Coulomb oscillations of an ambipolar InSb quantum dot device. (a) The

linear-response conductance G measured for the device as a function of Vbg at T = 25 mK

and B = 0 T. Vsd is fixed at 4µV. The Coulomb oscillations occur in the form of repeated

conductance peaks. The dot is in the electron transport regime in this selected Vbg region.

(b) The addition energy for panel (a) as a function of the number of electrons in the dot.

The even-odd alternation behavior of the addition energy is clearly seen. (c) The linear-

response conductance G measured for the same single quantum dot device as the one in

panels (a) and (b) (in different Vbg region), as a function of Vbg at T = 25 mK and B = 0

T. Vsd is fixed at 200µV. The conductance peaks are due to the Coulomb oscillation in the

hole transport regime. (d) The addition energy for panel (c) as a function of the number

of holes in the dot. No obvious even-odd alternation behavior is visible.
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spins have weak coupling to nuclear spins. This leads to a longer spin-coherence

time and better spin-controllability. Therefore, p-type quantum dots may bring

some advantages for the realization of spin qubits(16).

3.3 Zeeman effect

At zero magnetic field, each of the orbit states of the quantum dot has two

different spins states (s = ±1/2). In finite fields, however, the spin states will

split in energy and the spin degeneracy is lifted. This field-induced spin states

splitting is called the Zeeman effect (17, 18). According to the Zeeman effect,

the energy shifting of a spin state within a magnetic field is given by:

Ez(B) = |sg∗µBB| , s = s↑, s↓ (3.11)

in which µB is the Bohr magneton, g∗ is the effective g-factor and s↑ = 1
2
, s↓ = −1

2

are the spins for the up-spin and down-spin states. Since s↑ and s↓ have opposite

signs, the magnetic field shifts one spin state to a lower energy while shifting

the other spin state to a higher energy. Therefore, the difference of the energies

associated with the two spin states will increase as the magnetic field increases,

and results in the splitting of the corresponding spectrum line of the quantum

dot. The splitting is thereby referred to as the Zeeman splitting. The energy

splitting is given by ∆Ez(B) = |(s↑ − s↓)g∗µBB|.
In Fig. 3.11 (a), we display the linear-response conductance on a color scale

measured for Dev. AuInSbAu#1 as a function of Vbg and magnetic field B, with

a small fixed source-drain bias voltage Vsd = 25 µV. The dark lines on the color

scale represent the current peaks and imply the quantum dot is on a resonance

state at these Vbg − B points. At zero-field region, we can see that an even-odd

alternation behavior of the addition energy. Therefore, we can identify the four

levels as |n, ↑〉, |n, ↓〉,|n+ 1, ↑〉 and |n+ 1, ↓〉, from lower energy to higher energy.

As the magnetic field increases, the spin degeneracy is lifted and the quantum

levels begin to shift. The levels |n, ↑〉 and |n+ 1, ↑〉 bend to lower energy, while

levels |n, ↓〉 and |n+ 1, ↓〉 bend to higher energy. Figure 3.11 (b) shows the

schematic energy diagrams of the device at the points labeled as A, B and C

in Fig. 3.11 (a). Due to the Zeeman effect, the quantum level |n, ↓〉 is shifted

above the level |n+ 1, ↑〉 at point C. That means there is a crossover1 that occurs

1Strictly speaking, there is an anti-crossing when they approach each other because of the spin-orbit
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Figure 3.11: The Zeeman effect of a InSb quantum dot devce. (a) The linear-response

conductance measured for Dev. AuInSbAu#1 as a function of Vbg and magnetic field B.

Arrows indicate spins of corresponding resonant levels. (b) Schematic energy diagrams of

the device at the point labeled with A, B and C in panel (a).

between |n, ↓〉 and |n+ 1, ↑〉 from point B to point C.

If no other interactions are taken into account, the magnitude of the Zeeman

splitting is linearly proportional to the external magnetic field, i.e., g∗ is con-

stant and independent of the dot size, the orbital state, and the external field

orientation. The electron spin g-factor g for free electrons is approximately equal

to 2.002319, but the effective g-factor g∗ in semiconductors varies a lot. Due to

the modification of the crystal periodic potential, the effective electron g-factor

varies significantly for different semiconductor materials (19). Additionally, due

to orbit interactions and other mechanisms, the effective g-factor of a nanoscale

object shows level dependence (20), magnetic field orientation dependence (21),

and electrical field dependence (22).

The effective g-factor of bulk InSb is as high as 51 (23) which is the largest

among all III-V semiconductors. For InSb quantum dots, the g-factor fluctuates

greatly for different quantum levels and varies from device to device. Thereby,

interaction which will be introduced later.
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Figure 3.12: Electron co-tunneling induced conductance in the Coulomb blockade region.

(a) A close-up view of part of the charge stability diagram in Fig. 3.7 (c). The conductance

in the Coulomb blockade region is not zero due to electron co-tunneling processes. (b) The

same with panel (a) but with guiding lines for transport thresholds, which indicate onsets

of different transport processes. (c) A sketch of panels (a) and (b).

the effective g-factor g∗ is usually written as g∗n for the quantum state |n〉. The

effective g-factor of a quantum level can be derived according to its level evolution

in a magnetic field as shown in Fig. 3.11 (a). We give a detailed g-factor derivation

in a later section, where other g-factor derivation methods are also discussed.

3.4 Electron co-tunneling of InSb nanowire quantum dot

devices

So far, we have discussed the sequential tunneling of electron through a single

quantum dot. In the sequential tunneling process, electrons tunnel through the

quantum dot one by one. The tunneling is only allowed to happen around the

resonant levels and is forbidden when the electron is far from the resonant levels,

i.e., in Coulomb blockade regions. However, we see the tunneling current in

Fig. 3.7 is not zero even in the Coulomb blockade regions. Figure 3.12 shows a

zoomed-in view of part of Fig. 3.7 (d), in which the non-zero conductance in the

Coulomb blockade region is shown clearer. To interpret the non-zero tunneling

current in the energetically forbidden regime, we have to introduce the concept

of electron co-tunneling.
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3.4 Electron co-tunneling of InSb nanowire quantum dot devices

3.4.1 Elastic co-tunneling in InSb quantum dots

The electron co-tunneling transport refers to an electron-tunneling process in

which several tunneling events are related and several electrons are involved.

Co-tunneling involves tunneling through energetically forbidden states, or so-

called virtual states. It is a high order application of the Heisenberg uncertainty

principle. Tunneling through virtual states is possible if the timescale of the

process is short enough to be allowed by the uncertainty principle. It is therefore

essential to have strong source and drain tunnel coupling so that the tunneling

times are of the same order as the timescale defined by the uncertainty principle.

We start the discussion from the lowest order co-tunneling process, namely the

elastic co-tunneling. In Fig. 3.13, schematic energy diagrams of a quantum dot

are shown. Since the quantum dot is in a Coulomb blockaded configuration (the

source-drain bias voltage is small and resonant levels are out of the bias energy

window), no first order tunneling current will flow through the dot in the picture

of sequential tunneling. However, following the Heisenberg uncertainty principle,

the electron on the ground state of the quantum dot can potentially escape from

the dot in a timescale of ∼ ~/|ε0|. This intermediate and energetically forbidden

state is a virtual state. If another electron in the contacts tunnel into the dot and

turn the dot back to its initial charge state, the total energy is conserved in the

whole process (24). Because of the energy conservation in this co-tunneling event,

it is therefore called elastic co-tunneling. Elastic co-tunneling can happen at any

source-drain bias voltage as long as the coupling between the dot and contacts

is strong enough. In Fig. 3.12, the non-zero conductance around point A can be

attributed to the elastic co-tunneling.

3.4.2 Inelastic co-tunneling in InSb quantum dots

As shown in Fig. 3.12 (a) and by the guiding lines in Fig. 3.12 (b), the conduc-

tance profile contains more features and indicates that there are other transport

mechanisms. Figure 3.14 displays the schematic energy diagrams for another

form of co-tunneling process. This co-tunneling also starts from the tunneling

out of the electron on the ground state via a virtual state. However, the subse-

quent tunneling-in electron tunnels into the excited state instead of the ground

state. Finally, the quantum dot ends up in an excited state and therefore this co-

tunneling is called the inelastic co-tunneling (25). Inelastic co-tunneling results
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µ µµ

1 2 3

Figure 3.13: The schematic energy diagrams of elastic co-tunneling process. In the

sequential tunneling blockade region, two electrons can tunnel in and out of the dot simul-

taneously via the virtual state and an elementary charge is transferred from source (drain)

to drain (source). This co-tunneling leads a small conductance in the Coulomb blockade

region.

in a conductance enhancement inside the Coulomb blockade region. In contrast

to the elastic co-tunneling, the inelastic co-tunneling requires a source-drain bias

voltage Vsd ≥ ∆ε/e in order to conserve the energy of the total system. An

inelastic co-tunneling process can happen in the gray region of Fig. 3.12 (c).

The subsequent transport for the final state of the inelastic co-tunneling de-

pends on the dot configuration. In Fig. 3.14 (a), the excited state is out of the

bias energy window and the first order tunneling is still forbidden. If the dot

does not decay to its ground state by releasing phonons/photons, electrons in

the contacts can only go through the dot in the form of co-tunneling (elastic or

inelastic). However, in Fig. 3.14 (b), the excited state is in the bias energy win-

dow and thereby the electron can tunnel directly out of the dot in the form of

first order tunneling. This sequential tunneling is thereby called the co-tunneling

assisted sequential tunneling (CAST) (26, 27). The CAST leads to a further con-

ductance enhancement compared to the configuration in Fig. 3.14 (a). Point B

and the small split-diamond structure (surrounded by blue lines in the diamond)

in Fig. 3.12 (c) correspond to the configuration as in Fig. 3.14 (a), while point C

and its nearby region correspond to the CAST case.

3.4.3 Sequential tunneling via excited state

Along the extension lines of the inner thresholds of the CAST region (the dashed

blue lines), high conductance lines show up outside of the Coulomb diamond

and are parallel to the diamond borders. As shown in Fig. 3.14 (c), this can
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Figure 3.14: The schematic energy diagrams of the inelastic co-tunneling process. In

the Coulomb blockade region, inelastic co-tunneling can occur under a certain bias voltage.

Two electrons tunnel in and out of the dot simultaneously via a virtual state, the same

as the elastic co-tunneling. The tunneling-out electron is from the ground state and the

tunneling-in electron tunnels into the excited state. This leaves the dot in an excited state.

The inelastic co-tunneling gives further conductance enhancement. (a) shows the inelastic

co-tunneling that is not followed by CAST, while (b) shows the one followed by CAST.

(c) displays the schematic energy diagrams corresponding to point D, where sequential

electron tunneling via an excited state occurs.
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be attributed to the sequential electron tunneling via the excited states of the

quantum dot. In this case, both the ground state and the excited state are in

the bias energy window, and thereby the incident electrons have two tunneling

channels. Note that the tunneling is still sequential, i.e., electrons can only tunnel

in/out of the dot one at a time. However, the presence of additional transport

paths through excited states results in a differential conductance peak.

3.4.4 Spin-orbit interaction derived by inelastic co-tunneling spec-

trum

One of the important applications of the inelastic co-tunneling and the excited

state spectroscopy is to analyze quantum levels of the dot. As an example,

Fig. 3.15 displays the analysis of quantum level evolution in a magnetic field via

the inelastic co-tunneling spectrum.

Figure 3.15 (a) shows the charge stability diagram measured for Dev. NbInS-

bNb#1. The inelastic co-tunneling differential conductance thresholds (blue lines)

are evident in the Coulomb diamond between Vbg = 4.05 ∼ 4.15 V (the dashed

rectangle). From the above discussion, we know the onset of the inelastic co-

tunneling is at V T
sd = ±∆ε/e, in which ∆ε is the excited state energy relative to

the ground state or the energy difference between the two quantum levels. The

linear-response conductance of the device is measured as a function of Vbg and

the magnetic field B, as shown in Fig. 3.15 (b). The resonant levels correspond-

ing to the squared Coulomb diamond are indicated by the two horizontal high

conductance lines. They are from different orbital states and with opposite spins.

Due to the Zeeman splitting, the ground state resonant levels shift significantly.

We label the level spins using the arrows and denote the two levels by |n, ↓〉 and

|n+ 1, ↑〉, respectively. It is evident that state |n, ↓〉 and state |n+ 1, ↑〉 shift

toward each other from B = 0 T to B = 1.3 T, and swap their positions after

B = 1.3 T. We cannot decide whether the two states cross or anti-cross at the

swapping point because of the existence of the charging energy. However, the

inelastic co-tunneling spectrum can avoid the influence of the charging energy.

Figures 3.15 (c) and (d) show the differential conductance as a function of Vsd and

B, on a color scale and line-cut plots, respectively. The Vbg is fixed at 4.1 V as in-

dicated by the dashed lines in Figs. 3.15 (a) and (b). It can be seen that
∣∣V T
sd(B)

∣∣
decreases from B = 0.6 T to B = 1.3 T and increases again when B > 1.3 T.

However,
∣∣V T
sd(B)

∣∣ never reaches zero, i.e., the two states |n, ↓〉 and |n+ 1, ↑〉 do
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Figure 3.15: Inelastic co-tunneling spectrum in a magnetic field. (a) The charge stability

diagram measured for Dev. NbInSbNb#1. The conductance thresholds corresponding to

the onset of inelastic co-tunneling can be clearly seen in the Coulomb diamond between

Vbg = 4.05 ∼ 4.15 V. (b) The linear-response conductance measured for Dev. NbInSbNb#1

as a function of Vbg and the magnetic field B. (c) Differential conductance measured for

Dev. NbInSbNb#1 as a function of Vsd and B, at Vbg = 4.1 V [the dashed line in panels (a)

and (b)]. The shift of the inelastic co-tunneling threshold implies the evolution of quantum

levels in the magnetic field. (d) Line-cut plot corresponding to panel (c).
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not crossover at the swapping point. The minima of
∣∣V T
sd(B)

∣∣ is around 550 µV.

The anti-crossing in Fig. 3.15 (c) is due to the spin-orbit interaction (28, 29).

When an electron moves in an electric field, it will experience a magnetic field in

its own rest reference frame according to the relativity theory. This magnetic field

will act on the spin of the electron and induce the so-called spin-orbit interaction.

In III-V semiconductors, both asymmetric crystal potential in materials (the

Dresselhaus type) and the asymmetry of the electrical potential (the Rashba

type) can cause the spin-orbit interaction. In Chapt. 5, we will see the spin-

orbit interaction plays a critical role in the research of Majorana bound states.

In Fig. 3.15 (c), the state |n, ↓〉 and the state |n+ 1, ↑〉 hybridize at B = 1.3

T and form an avoided level crossing. This anti-crossing indicates a mixing of

the two orbitals stemming from spin-orbit interaction in the dot. The spin-orbit

energy ∆so can be estimated from the anti-crossing gap according to the relation

V T
sd(B = 1.3T ) ≈ 2∆so. For the case in Fig. 3.15, ∆so is about 275 µeV.

3.4.5 The Kondo effect in InSb nanowire quantum dot

The elastic co-tunneling or the inelastic co-tunneling is not spin-sensitive trans-

port mechanism. However, when the spin is included, a new type of co-tunneling

process can happen in the quantum dot system.

In the 1930s, researchers found that the resistance of metals containing some

magnetic impurities increased below a critical temperature. The phenomenon

was not explained until 1964 by Jun Kondo, who proposed it was caused by

the scattering of the spins of the conducting electrons via the magnetic impuri-

ties (30). The effect is therefore called the Kondo effect. In the quantum dot

system, the dot also behaves like a magnetic impurity when there is at least one

unpaired spin on the dot (like the odd charged states for the cases above) (31). If

the coupling between the dot and leads is strong enough, the interaction between

the localized unpaired spin in the dot and the delocalized spin in the lead starts

playing an important role [Figs. 3.16 (a) and (b)]. Since this interaction is similar

to the spin-scattering interaction in the dilute magnetic alloys, it is also referred

to as the Kondo effect.

Figures 3.16 (c)-(d) show schematic energy diagrams of a quantum dot which

is in the Coulomb blockade configuration. A spin-degenerate quantum level of

the dot is populated by a single spin. If the dot is strongly coupled to at least

one of the surrounding leads, a correlation can occur between the unpaired spin
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Figure 3.16: The Kondo effect in quantum dot systems. (a) A concept map showing

the singlet state formed between the unpaired spin in the quantum dot and the delocalized

spins in the leads. (b) Schematic energy diagram showing the formation of the Kondo

singlet state in the quantum dot system. (c) and (d) reveal that the Kondo effect results in

DOS peaks at the Fermi energies of the contacts at zero-bias voltage and finite-bias voltage,

respectively. (e) Schematic energy diagrams show the spin-flip process in the quantum dot

system caused by the Kondo effect.
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on the dot and the delocalized spins on the leads, and form a spin-singlet state.

From the point of view of the density of states (DOS), an extra DOS peak is

formed in the dot at the Fermi energy of the contact (32, 33). These DOS peaks

are illustrated in Figs. 3.16 (c) and (d).

In order to form the Kondo singlet state in the quantum dot system, two

conditions have to be met. Firstly, the coupling between the dot and at least

one of the surrounding leads has to be sufficiently strong to allow the correlation

to occur. Secondly, the temperature has to be low enough to avoid destroying

the spin singlet. The critical temperature below which the Kondo effect is visible

is referred to as the Kondo temperature TK . When a quantum dot is strongly

coupled to contacts and is occupied by an unpaired spin, its conductance in the

Coulomb blockade region will increase as the temperature drops down below TK .

This can be attributed to the formation of a DOS peak in the metal-dot system

via magnetic-exchange coupling. Another transport feature of the Kondo effect in

the quantum dot system is the emergence of a zero-bias differential conductance

peak. At zero-bias voltage, the system gains greater density of states from the

Fermi levels of both contacts and the two contacts get bridged with each other

via the density of states. When the applied voltage is large, separating the Fermi

levels in the two leads, the electrons at the Fermi level in the higher energy lead

can no longer tunnel resonantly into the enhanced density of states in the lower

energy lead. Therefore, a zero-bias differential conductance peak emerges at the

Kondo regime.

The low-bias conductance enhancement mechanism can also be interpreted as

the spin-flip assisted co-tunneling process (34). As shown in Fig. 3.16 (e), the

localized electron may tunnel out of the dot to form an energetically forbidden

virtual state for a short time. Simultaneously, a spin-down electron on the leads

may tunnel into the dot. This co-tunneling process results in a coherent spin-flip

of the localized electron on the dot. Actually, the spin-flip is indeed the physical

manifestation of the time-averaged singlet state. At a small applied bias voltage,

electrons can tunnel through the dot, mediated by the spin-flip process among

the dot and two contacts. As a result, the Kondo effect leads to a much greater

conductance enhancement than the normal elastic co-tunneling around zero-bias

voltage. However, at a finite applied bias voltage, the source-dot spin-flip and

drain-dot spin-flip become incoherent due to the energy difference. Again, a

zero-bias differential conductance peak is developed.
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Figure 3.17: The Kondo effect in an Al-InSb nanowire quantum dot-Al device. (a)

The measured source-drain current, Isd, as a function of Vbg, at Vsd = 10µV and B = 30

mT, measured for Dev. AlInSbAl#2. The temperature is varied between 100 mK to 1000

mK. It is evident that the current at the region indicated by arrows is higher at low

temperature than at high temperature. (b) The charge stability diagram measured for

the same device in the same Vbg region. The Coulomb diamonds structure is blurred

because of the strong dot-leads coupling (life-time broadening). Solid lines are guiding

lines indicating Coulomb diamond borders for diamonds I and III, and the dashed lines

represent an estimated position for diamond II which is not visible due to the ultra low

conductance there. According to the addition energies, we know diamonds I-III are odd-

occupied diamonds. Zero-bias conductance peaks in diamonds I and III are clearly seen.

(c) Differential conductance on a color scale as a function of Vsd and temperature T , at

Vbg = −350 mV, measured for the device. (d) Three dIsd/dVsd − Vsd line cuts taken

from panel (c) at T = 100, 500 and 900 mK. From (c) and (d), we can see that the

zero-bias conductance peak gets lower and broader as the temperature increases. (e) Zero-

bias differential conductance as a function of T extracted from panel (c). The zero-bias

conductance decreases as the temperature increases and shows a negative linear slope on

the logarithmic temperature scale.
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In Fig. 3.17, we show some transport features of the Kondo effect measured

for an InSb nanowire quantum dot coupled to Al leads (Dev. AlInSbAl#2 ). Fig-

ure 3.17 (a) shows the measured source-drain current Isd for the device, as a

function of Vbg, at Vsd = 10µV and B = 30 mT1. The temperature is varied

between 100 mK to 1000 mK. And Fig. 3.17 (b) displays the charge stability

diagram corresponding to Fig. 3.17 (a). Due to the strong dot-leads coupling,

Coulomb oscillation peaks and diamond structures are blurred. We use solid

lines in Fig. 3.17 (b) as guiding lines for diamond structures. Regions I-III can

be identified as odd-occupied diamonds according to their addition energies. Note

that the conductance in diamond II is too weak to be seen and therefore we de-

pict an estimated diamond using dashed lines. It is evident in Fig. 3.17, that the

current in the Coulomb blockade regions of diamonds I, II and III decreases as

the temperature increases. It is contradictory to the fact that the conductance

in the blockade region should increase with rising temperature because of the

thermal broadening of the resonant peaks. This anomalous temperature depen-

dence can be attributed to the Kondo effect. As we mentioned above, due to

the formation of a Kondo singlet state, the conductance of the quantum dot is

enhanced at low temperature. However, the singlet state is gradually destroyed

as the temperature increases and then the conductance decreases.

Besides the anomalous temperature dependence, the zero-bias conductance

anomalies in diamonds I and III in Fig. 3.17 are also manifestations of the Kondo

effect. The zero-bias anomaly is therefore called the Kondo peak or Kondo ridge.

In Figs. 3.17 (c) and (d), we can see that the height of the Kondo ridge is lowered

by increasing the temperature. In the logarithmic temperature scale, the zero-bias

conductance shows a negative linear slope with temperature. This logarithmic

temperature dependence is a typical feature of the Kondo effect. Note that there

is a saturated region at the low temperature part, which is probably caused by a

saturation of the electron temperature in the device.

The Kondo effect will be suppressed under the application of an external

magnetic field. This is because the spin degeneracy is lifted by the Zeeman

effect. As shown in Fig. 3.18 (a), the applied magnetic field splits the unpaired

localized electron state into a Zeeman doublet separated by the energy |g∗µBB|.

1At B ≥ 30 mT or T ≥ 1 K, the superconductivity of Al leads is suppressed and the device behaves

just like normal metals coupled to the quantum dot. All the data concerned in this chapter for this

device is taken either at B ≥ 30 mT or T ≥ 1 K
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Figure 3.18: The Kondo effect in a magnetic field. (a) Schematic energy diagram of a

quantum dot with split Kondo DOS peaks at the Fermi level. (b) The Kondo effect in

the equilibrium regime in a magnetic field. The Kondo effect contributes very little to

the conductance in linear-response regime. (c) The Kondo effect in the non-equilibrium

regime. The Kondo effect induces two conductance peaks at ±eVsd = |g∗µBB| where

the bias energy window covers one of the split Kondo DOS peak of each spin. (d) The

low-bias source-drain current on a color scale, as a function of Vbg and magnetic field B.

The resonant level shifting direction in the magnetic field proves diamonds I and III have

odd-occupation, which is consistent with Fig. 3.17 (b). (e) The Isd − B relation taken

from panel (d) along the dashed lines. From panels (d) and (e), it can be seen that the

equilibrium conductance in diamonds I and III vanishes gradually in the magnetic field.

(f) Differential conductance on a color scale as a function of Vsd and B at Vbg = −350 mV

measured for the device. (g) The same with (f) but represented by a line-cut plot. The

Kondo ridge splits into two peaks in the finite magnetic field separated by 2 |g∗µBB| /e.
(h) The linear fitting for the split Kondo peaks which gives the effective g-factor |g∗| = 39.
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This also splits the enhanced density of states at the Fermi level into two peaks

with energies |g∗µBB| above and below the Fermi level (35). The conductance

enhancement in the equilibrium regime is then reduced. However, when the Fermi

level of one lead is raised by a voltage |g∗µBB| /e relative to the other lead, the

current-carrying window can cover one of the split Kondo DOS peaks of each

spin, and thereby electrons can tunnel through the quantum dot.

Figure 3.18 (d) displays the low-bias source-drain current on a color scale,

as a function of Vbg and magnetic field B. From the shifting direction of the

resonant levels in the magnetic field, we can also decide that diamonds I and III

have odd-occupations, which is consistent with Fig. 3.17 (b). Note that there

is a sharp low-conductance gap in the low field region, which is caused by the

superconductivity in Al leads and will be discussed in Chapt. 4. In Fig. 3.18 (e),

two Isd−B curves are shown, which are taken from Fig. 3.18 (d) where the Kondo

effect occurs at a low magnetic field (along the dashed lines). It is clear that the

conductance enhancement induced by the Kondo effect in the equilibrium regime

decreases as the magnetic field increases. In Fig. 3.18 (f) and (g), two conductance

peaks at ±Vsd = |g∗µBB| /e emerge. These are the split Kondo peaks in the non-

equilibrium regime, and they are separated by 2 |g∗µBB| /e. By linear fitting of

the split Kondo peaks, the effective g-factor can be calculated. Fig. 3.18 gives

the effective g-factor here as about -39.

At high magnetic fields, the Kondo effect will almostly disappear, and the

Kondo peak will evolve smoothly into a co-tunneling threshold (36).

3.5 Derivation of effective g-factor for InSb quantum dot

with Kondo effect

So far, we have discussed two methods that can be employed for estimating

effective g-factors of InSb quantum dot devices. They are the electron addition

spectroscopy based g-factor derivation (Fig.3.11) and the Kondo splitting based

derivation. However, both methods could give a wrong estimation of the g-factor

of an InSb quantum dot in the presence of a strong Kondo effect.

Figure 3.19 (a) displays linear fittings for resonant level positions on the scale

of Vbg, for the state |1, ↑〉 and the state |1, ↓〉 of Dev. AlInSbAl#1. The inset

is the linear-response conductance on a color scale as a function of Vbg and B.

As we discussed in the section of the Zeeman effect, the two resonant levels
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Figure 3.19: The electron addition spectroscopy based g-factor derivation may lead

an over-estimated g-factor. Experimental data is taken from measurement results of

Dev. AlInSbAl#1. (a) The linear fits for the two resonant levels, corresponding to spin-

states for the range B = 0.2 ∼ 0.5 T. The inset is the linear-response conductance on a

color scale as a function of Vbg and B. The two resonant levels split due to the Zeeman

effect, and the g-factor can be calculated to be |g∗| = 72 according to Eq. 3.11. (b) The

differential g-factor as a function of B, derived from the electron addition spectroscopy. (c)

The linear-response conductance as a function of Vbg at different temperatures. The inset

is the corresponded colormap. It is evident that the resonant levels show a visual splitting

tendency as the temperature rises. (d) Schematic diagrams show how a Kondo DOS peak

complicates the derivation of correct addition energy.

split due to the Zeeman effect, and the g-factor can be calculated according

to Ez (B) = |g∗|µBB. The Zeeman energy is determined by the change of the

addition energy Ez (B) = ∆E (B)−∆E (0). The addition energy can be extracted

by ∆E (B) = αbg∆Vbg (B), in which ∆Vbg is the peak separation on the scale of

back gate voltage and αbg is the lever arm. For the range of B = 0.2 ∼ 0.5 T,

the g-factor is decided to be |g∗| = 72.

We can also derive the effective g-factor differentially, using |g′| = 1
µB
dEz (B)/dB.

Figure 3.19 (b) shows |g′| as a function of B, derived from the electron addition

spectroscopy. Surprisingly, the differential g-factor varies greatly with the change

of magnetic field, instead of being a constant.

To explain this result, we plot a T -version electron addition spectroscopy

in Fig. 3.19 (c), i.e., the linear-response conductance as a function of Vbg and
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Figure 3.20: The Kondo splitting based g-factor derivation may lead to an underesti-

mated g-factor. (a) Differential conductance on a color scale as a function of Vsd and B.

The split Kondo peaks are indicated by the dashed lines. (b) The differential g-factor as a

function of B, derived from the Kondo splitting.

temperature T . One may predict that the resonant levels will get broader but keep

their positions on the scale of Vbg if only considering thermal broadening effect.

However, it is evident that the resonant levels show a visual splitting tendency as

the temperature rises. We propose a possible interpretation as shown in Fig. 3.19

(d). With a large Kondo DOS peak at the Fermi level, the conductance maxima

points do not align with the intrinsic charging levels. In the vicinity of the Kondo

DOS peak, the probed conductance peak shifts towards the Fermi level and gives

a false addition energy ∆E∗ that is smaller than ∆E. Once the Kondo effect

is suppressed by the temperature rising or the application of a magnetic field,

this conductance peak will shift back to the intrinsic charging level position and

thereby ∆E∗ approaches ∆E. This will cause a visual level splitting as T rises

and causes an extra splitting beside the Zeeman splitting in the magnetic field.

The extra splitting of the conductance peaks results in an overestimated g-factor.

Compared to the addition energy spectroscopy, the Kondo splitting or inelastic

co-tunneling method is more precise than electron addition spectroscopy. This

is because the co-tunneling spectrum is independent of chemical potential of the

dot, making the splitting immune to small charge fluctuations near the quantum

dot. The g-factor measurements can be done in the regime far away from charging

levels and therefore avoid the above mentioned problem. Additionally, the Kondo

splitting or co-tunneling method is inherently more precise because the intrinsic

width of the Kondo peak is smaller than the width of the charging peak.

Figure 3.20 shows the Kondo splitting based g-factor calculation, derived for
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3.6 Features of quasi-1D DOS of the reservoirs

the same device as in Fig. 3.19. The split Kondo peaks can be seen in Fig. 3.20 (a)

(indicated by the dashed lines). By linear fitting of the Kondo peaks, the effective

g-factor can be decided to be |g∗| = 33. We can also derive the differential g-

factor as we have done in Fig. 3.19 (b). The results are shown in Fig. 3.20

(b). Again, the differential g-factor is not constant, but shows an increase with

small fluctuations in the range of B = 0.1 ∼ 0.5 T. This g-factor puzzle results

from the non-linear splitting of the Kondo peak. This is consistent with the

theoretical literature which predicts that the low-field Kondo splitting can be

reduced down to 4/3 |g∗|µBB due to the attraction of the Kondo resonance to

the Fermi level (37, 38). Reference (39) shows a similar observation.

Above all, the derivation of the effective g-factor for a quantum dot with a

strong Kondo effect can be very delicate. For the cases in Fig. 3.19, the calculated

effective g-factor can be twice as high as the one derived in Fig. 3.20. Although

the differential g-factors from both derivation methods will converge to the correct

value at high field, the risk of field induced orbital effects grow.

3.6 Features of quasi-1D DOS of the reservoirs

As discussed earlier, the bias spectroscopy needs charge carriers on both sides of

the dot in order to probe the quantum states in the dot. The properties of these

reservoirs will strongly influence the behaviour of the device, and in some cases

manifest themselves as the origin of some transport features.

In the above discussion, contacts of quantum dots are all assumed to be metal-

lic leads with constant and large DOS at their Fermi levels. However, in some

cases, the carrier reservoirs can not be treated as a vast Fermi sea. Instead, non-

linear leads DOS of the leads with singularities could rise up from dimensionality,

superconductivity or surface state topology. As an example, here we discuss a

transport feature in the tunneling spectroscopy of an InSb quantum dot device,

induced by quasi-1D dimensionality of leads induced . Tunneling features related

to superconductivity and surface state topology will be studied in Chapt. 4 and

Chapt. 5, respectively.

For some quantum dots, confined in 2D semiconductor inversion layers (2

dimensional electron gas, 2DEG), their source/drain reservoirs are electrostati-

cally induced two-dimensional charge layer. Due to the small effective electron

mass in the semiconductor and the 2D confinement, the DOS of the source/drain

49



3. INSB NANOWIRE QUANTUM DOTS

reservoirs are modulated into sub-band structures. These singularities of the lead

states will induce additional densely spaced peaks and dips in the differential con-

ductance in the charge stability diagrams (40). One might think that for nanowire

quantum dots contacted by metal leads, these lead states are not visible due to

the non-fluctuating density of states of the metal contact. However, we observed

evident lead state features in the measurements shown below.

Figure 3.21 shows charge stability diagrams measured for the p-type region of

Dev. NbInSbNb#1, corresponding to Fig. 3.10 (c). The full-scale diagram is split

into two parts and are displayed in Figs. 3.21 (a) and (b) respectively. It can be

seen that the Coulomb diamond structures are sharp and have regular sizes. All

the diamonds have almost the same addition energies around 4.5 meV. This is

consistent with the Coulomb oscillation in Fig. 3.10 (c). The close-up views in

Figs. 3.21 (c) and (d) show that there is an extra high differential conductance

line outside of each diamond [labeled by black solid circles in Figs. 3.21 (c) and

(d)]. These high conductance lines are similar to the sequential tunneling via

excited states. However, as we have discussed, the quantization energies of the

dot in this Vbg region are much smaller than the energy derived from the ex-

cited states. Figure 3.21 (e) shows a differential conductance line-cut taken in

Fig. 3.21 (d) along the dashed line, in which the anomalously high conductance

line corresponded to dI/dV peak is high and sharp.

The transport features shown in Fig. 3.21 are similar to the lead state features

of the quantum dot confined in the 2DEG. Actually, the anomalously high con-

ductance lines in the p-type InSb nanowire quantum dot have been reported by

Pribiag et al (16). In Ref. (16), the origin of this conductance was decided to be

lead-states instead of the excited states of the dot, relying on the large difference

between the effective g-factors of InSb electrons and holes.

Figure 3.22 (a) shows the SEM image of Dev. NbInSbNb#1, and Fig. 3.22 (b)

depicts the schematic band diagram of the device. It can be seen that the real,

or direct, carrier reservoirs of the quantum dot are the InSb nanowire segments

covered by the metal. Due to different electric field screening effects from metal

electrodes, the metal covered nanowire segments are still in the n-type region,

although the dot is already tuned to p-type. The tunneling barriers of the p-type

dot are formed by the bent band gap of InSb semiconductor nanowire. Therefore,

the carrier reservoirs have quasi-1D DOS as shown in Figs. 3.22 (c) and (d). When

the resonant-tunneling window of the dot is aligned with the DOS singularities
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Figure 3.21: The lead states in an InSb nanowire quantum dot device. (a)-(d) Charge

stability diagrams measured for Dev. NbInSbNb#1. The full-scale diagram is split into two

parts that are shown in panels (a) and (b). (c) and (d) are close-up views of the dashed

rectangles in panels (a) and (b), respectively. (e) The differential conductance line-cut

along the dashed line in panel (d).
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in the n-type nanowire leads, a high conductance peak will develop.

Although the potential tuning efficiency of the back gate to n-type leads is

much weaker than the tuning efficiency to the p-type dot, the Fermi levels of the

nanowire leads can still be tuned by the back gate [Fig. 3.22 (e)]. That means

the DOS singularity energy ∆EN of the Nth sub-band relative to the Fermi level

will change from diamond to diamond, and ∆EN can be deduced from the peak

distances as in Fig. 3.21 (e). Figure 3.22 (f) shows the extracted average values

of ∆EN in each diamond, as a function of order number of the dot [assigned

as in Fig. 3.21 (a) and (b)]. We can see that ∆EN does indeed change linearly

with hole numbers and therefore with Vbg. Moreover, it is evident that there

are two DOS singularity features in diamonds 9∼16. By linear fitting for ∆EN
and ∆EN−1, the energy difference between the Nth sub-band and the (N − 1)th

sub-band can be determined to be about 2.1±0.1 meV. The linear change of the

position of the anomalous conductance peak provides a strong evidence of lead

states. It also proves the chemical potential of leads can be adjusted by back gate

voltage inspite of electrical field screening from metal electrodes.

52



3.6 Features of quasi-1D DOS of the reservoirs

(c)

(b)

Δ
E

 =
 2

.0
~

2
.2

 m
e

V

0
0

1

2

3

∆
E

 (
m

e
V

)

n
5 10 15 20 25

(f)

(d)
µ

s

eV
sd

µ
d

ɛ

µ
s

µ
d

eV
sd

ɛ

E
f∆E

N

∆E
N ∆E

N-1

V
bg

(e)

S DE
g

E
C

500 nm

InAs

InSb

Ti-Nb-Al(a)

N

N+1

N-1

N-2

Figure 3.22: Quasi 1D density of states in the leads of the InSb nanowire quantum

dot. (a) SEM image of Dev. NbInSbNb#1. (b) Schematic band diagram for p-type region

of Dev. NbInSbNb#1. The potential barriers of the quantum dot are formed by the bent

band gap of the InSb nanowire. (c) and (d) Schematic energy diagrams of the device with

quasi 1D DOS in the leads. (e) The chemical potential of the leads can be tuned by the

gate. (f) The energy of the DOS singularity relative to the Fermi level as a function of the

order number of the diamonds.
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4

Superconductor Coupled InSb

Nanowire Quantum Dots

In Chapt. 3, we discussed the transport features of InSb quantum dots with

normal metal leads (or with superconductor leads but in their normal state). Su-

perconductor coupled quantum dot systems are also interesting and have promis-

ing application in building quantum computers. In this chapter, we will discuss

several new transport phenomena that rise in the superconductor-InSb nanowire

quantum dot-superconductor systems.

4.1 Introduction of superconductivity

Superconductivity was discovered by H. K. Onnes in 1911 (41), when he mea-

sured the resistance of mercury (Hg). Onnes found that the mercury resistance

suddenly dropped to zero when the temperature was below 4 K. Soon afterwards,

Onnes and other researchers found that the sharp resistance drop also occured

for some other metals when they were cooled below certain temperatures. These

metals are called superconductors. In Fig. 4.1, we show the resistance measured

for a small piece of TiNbAl (3/85/5 nm) metal as a function of temperature.

The metal resistance drops to zero at T ≈ 7 K, indicating TiNbAl transform to

a superconducting state. The temperature at which the transition between the

normal state and the superconducting state occurs is called the critical temper-

ature of the superconductor, and is denoted by Tc. For example, Tc of Hg is 4

K and Tc of the TiNbAl thin layer in Fig. 4.1 is 7.5 K. Normally, the values of

Tc are significantly lower than room temperature. However, with the continuous
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Figure 4.1: Resistance measured for a piece of TiNbAl (3/85/5 nm) metal as a function

of temperature. The metal resistance drops to zero at T ≈ 7.5 K because it transforms to

a superconducting state when T < Tc. The inset is the schematic layout of the measured

metal piece.

efforts spent on searching for high-Tc superconductor materials, the records of

the highest Tc have over the decades been frequently broken and Tc is gradually

approaching the room temperature (42).

Besides the zero resistance, a superconductor has another important property,

which is described as an expulsion of a magnetic field from the superconductor

during its transition to the superconducting state. This phenomenon is called

the Meissner effect (43). Note that the Messiner effect is an intrinsic property of

superconductors, and cannot be explained merely by zero resistance. However,

the external magnetic field can also quench the superconductivity after it reaches

a certain strength. The magnetic field at which the superconductivity vanishes

is called the critical magnetic field Bc.

4.1.1 The BCS theory of superconductivity

Although the experimental studies and phenomenological understandings about

superconductivity developed rapidly in the earlier days, no comprehensive mi-

croscopic theory was proposed until J. Bardeen, L.N. Cooper and J.R. Schrieffer

suggested an electron pairing mechanism in 1957 (44). Their microscopic inter-

pretation of superconductivity is referred to as the BCS theory.
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We know the electrical resistance of a metal arises from the scattering of the

conduction electrons. However, the BCS theory pointed out that the charge car-

riers in superconductors are electron pairs, or the so-called Cooper pairs. The

Cooper pairs cannot be scattered unless the pairing is broken, and thereby the

scattering-free motion of the Cooper pairs result in the zero resistance of su-

perconductors. However, how can electrons be paired up with mutual Coloumb

repulsion? The key point of the Cooper pair formation is the electron attraction

mediated by the electron-phonon interaction. Shown in Fig. 4.2 (a), a conduction

electron moving in a conductor will stir a charge fluctuation and ionic vibration

of the lattice in the near vicinity of the electron. The positively charged ions tend

to accumulate around the electron, forming a screening cloud of positive charge

around the electron. A second electron nearby can be attracted into this region

of higher positive charge density. With a coherent phase, the charge fluctuations

and ionic vibrations can overwhelm the Coulombic repulsion between the two

electrons and they are attracted to each other by their screening clouds. In the

terms of quasi-particles, the two electrons are bonded together by exchanging

virtual phonons: one emits a phonon and the other one absorbs it. The average

maximum distance at which this phonon-coupled interaction takes place in the

formation of a Cooper pair is called the coherence length ξ.

Because of the Pauli exclusion principle, only electrons with opposite spins

can be paired together1. This means the pair has zero spin and is thereby a

boson.

The electron pairing causes dramatic changes of conductor properties. Firstly,

the bosonization of the electron pairing lowers the energy of the electrons into a

giant quantum state with a macroscopic phase. Note that the pairing of two elec-

trons is transient and transitions of electrons from pair to pair occur frequently.

The fabric-like pairing bonds a huge number of electrons on a condensed state.

This condensed bosonic state is immune to weak scattering, because the scat-

tering of one single pair requires the change of the entire macroscopic state and

needs a large energy. Secondly, the electron pairing opens up an energy gap ∆

above and below the Fermi level, as shown in Fig.4.2 (b). Unbound electrons and

holes, or the so-called quasi-particles, are separated from the macroscopic state

of condensed Cooper pairs by ∆ and can only exist outside the superconduct-

1Strictly speaking, either electrons with opposite spin momentums (s-wave superconductor) or

opposite orbit momentums (p-wave superconductor) can be paired up.
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ing gap. Therefore, an energy larger than 2∆ is required to split a Cooper pair

and excite the electrons from the Fermi level to the next available state. Above

all, the motion of the Cooper pair is dissipationless and therefore the electrical

resistance of a superconductor is zero.

The superconducting energy gap in the DOS near the Fermi level is the critical

feature of superconductivity. The magnitude of ∆ represents how large the pairing

potential is or how much energy is needed to break a Cooper pair. It also deter-

mines how high the critical temperature can be by the relation 2∆ ≈ 3.5kBTc. ∆

decreases as T or B increases, and approximate estimations of ∆− T and ∆−B
relations are given by equation group 4.1. ∆ (T ) = ∆0

√
cos
[
π
2
(T/Tc)

2]
∆ (B) = ∆0

√
1− (B/Bc)

2
(4.1)

As shown in Fig. 4.2 (b), the DOS outside of ∆ is no longer constant. Instead,

there are two singularities near E = ±∆. The DOS of a superconductor can be

written as:
Ns (E)

Nn (E)
=

{
E√

E2−∆2 E > ∆

0 E < ∆
(4.2)

where Nn(E) is the DOS when the metal is in the normal state.

4.1.2 Superconductivity of Nb thin film

As an example, we discuss more details about the superconductivity of the TiN-

bAl thin film device shown in Fig.4.1. This device consists of a 85 µm long and

300 nm wide Ti/Nb/Al (3/85/5 nm) thin film connected to Au contacts. The de-

vice is measured in a 4He cryostat with a base temperature of 2 K using a current

bias setup. Although the device here is a trilayer thin film, its superconductivity

is mainly decided by Nb. The thin Ti layer is used as the adhesion layer and the

Al layer is used to protect Nb from oxidation.

Differing from Hg and Al, Nb is a type-II superconductor. Type II super-

conductors show two critical magnetic field values, one at the onset of a mixed

superconducting and normal state (the lower critical magnetic field Bc1) and one

where the superconductivity ceases (the upper critical magnetic field Bc2) (45).

When the applied field is lower than Bc1, the superconductor behaves the same

as type-I superconductor and repulses magnetic flux entry. In the mixed state,
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Figure 4.2: The BCS theory on superconductivity. (a) Schematic sketch of the formation

of Cooper pairs in a superconductor. Two electrons with opposite momentums and spins

are bonded together via electron-phonon-electron interaction. (b) The superconductivity

modulation of the DOS of the metal. The electron pairing opens up an energy gap at the

Fermi level.

magnetic fluxes can penetrate the superconductor through vortices. Each vortex

carries a quantum of flux Φ0 = h/2e and is concentrated toward its normal state

center by circling Cooper pairs (46). Vortices are pinned to pinning centers (such

as impurities, defects or geometry irregularities, note that each vortex is also

constrained by the repulsion forces from neighboring vortices so that the overall

lattice energy of the vortices is the lowest) at first, and therefore they cannot

move or contribute any dissipative current. However, as the magnetic field in-

creases, the density of vortices increases. The supercurrent is squeezed into a

smaller space resulting in an increase of the local supercurrent density J . There-

fore, the Lorenz force fL = J × Φ0 increases and finally conquers the pinning

forces (47). Vortices then start moving and producing non-zero resistivity. The

field at which vortices begin to move is called the irreversibility field Birr. If the

magnetic field increases further to Bc2, the overlapping of vortices occurs and the

superconductivity is completely washed out.

Figure 4.3 (a) shows the measured source-drain voltage drop on the device Vsd,

as a function of the applied source-drain current Isd, at T = 3 K and B = 0 T.

Here, the measured voltages for both current sweep directions are plotted, where

the solid curve is for the upward current sweep (from negative Isd to positive Isd)
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Figure 4.3: (a) Source-drain voltage Vsd measured for the device as a function of applied

source-drain current Isd at T = 3 K and B = 0 T. The solid curve is recorded in the upward

current sweeping direction and the dashed curve in the downward current sweeping direc-

tion. (b) Differential resistance on a color scale measured for the device at zero magnetic

field, as a function of Isd and temperature T . (c) Differential resistance measured for the

device at T = 3 K as a function of Isd and a magnetic field B⊥, applied perpendicularly

(to the plane of the Nb thin film).

and the dashed curve is for the downward current sweep. It can be seen that

there is a flat part in each of the curves, which indicates that the voltage drop is

zero and the thin film is in a superconducting state. However, when the applied

current is increased to a certain value, the current becomes dissipative. This

is because the superconductor can only hold a disspationless supercurrent with

limited magnitude. The upper limit of the supercurrent allowed to flow through

the superconductor is called the critical current Ic. Beyond Ic, the kinetic energy

of the superconducting carriers exceeds the binding energy of the Cooper pairs,

and thereby quenches the superconductivity (48).

In Fig. 4.3 (a), the switching between the supercurrent branch and the dissi-

pative branch shows a typical hysteretic behavior, i.e., the upward current sweep

gives a different critical current from the downward current sweep. (49). The

hysteretic I-V curve could be the result of phase instability normally found in a

capacitively and resistively shunted nanoscale superconductor or Josephson junc-

tion (see definition later), or simply due to a heating effect.

Figure 4.3 (b) displays the differential resistance dVsd/dIsd on a color scale

measured for the device, as a function of Isd and temperature T . The bias current

is swept from negative to positive values. The dark blue region corresponds to the

region where the thin film is in the superconducting state and a supercurrent flows

through the film. In the slightly lighter blue region, the thin film is in the normal,
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Figure 4.4: (a) Resistance measured for the device as a function of the perpendicularly

applied magnetic field B⊥ at different temperatures T = 2.5−7.5 K and at Isd = 5 nA. (b)

The upper critical magnetic field B⊥c2 and the irreversibility field B⊥irr as a function of T ,

extracted from panel (a). (c) Resistance measured for the device as a function of the angle

θ between the direction of the applied magnetic field and the axis normal to the substrate

(indicated by the schematic inset), at T = 3 K and at Isd = 5 nA. (d) The upper critical

magnetic field Bc2 and the irreversibility field Birr as a function of θ, extracted from panel

(c).

resistive state. The peak in the differential resistance at positive and negative bias

currents signals a transition between the superconducting state and the normal

state at the value of the critical supercurrent Ic. The temperature dependence

measurements show that Ic decreases as T increases, and Ic vanishes around

T = 7.5 K. Thereby, the critical temperature of the metal can be determined to

be Tc ≈ 7.5 K. Figure 4.3 (c) shows the dVsd/dIsd color scale as a function of

Isd and the perpendicularly applied magnetic field B⊥. It can be seen that Ic
decrease quickly with the increase of B⊥, and Ic goes to zero around B⊥ = 3 T.

Therefore, the upper critical magnetic field of the thin film at T = 3 K is 3 T.

Figure 4.4 (a) shows the resistance R measured for the device as a function of
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B⊥ at different temperatures from 2.5 K to 7.5 K and at Isd = 5 nA. At T = 2.5 K,

R remains around 0 below B⊥ = 3 T. R starts to increase at B⊥ = 3 T, indicating

that the flux lines in the thin film begins to move. We take the transition magnetic

field at which R jumps from 0 to finite value as the irreversibility field B⊥irr, and

it can be used as the estimation of the upper-limit for the lower critical field B⊥c1
of type II superconductors. When the magnetic field exceeds B⊥irr, R increases

steeply to a large value and then gradually approaches the normal state resistance

value Rn. We define the magnetic field at which R = Rn as the upper critical

field value of B⊥c2, i.e., the thin film completely turns to its normal state when

B⊥ > B⊥c2. For the R − B⊥ curve measured at T = 2.5 K, we can deduce that

B⊥irr = 2.9 T and B⊥c2 = 4.1 T. As the temperature increases, both B⊥irr and

B⊥c2 decrease and finally become zero at the critical temperature Tc = 7.5 K. We

extracted the values of B⊥irr and B⊥c2 for all the curves in Fig. 4.4 (a) and plot

them as a function of T (the B⊥ − T phase diagram) in Fig. 4.4 (b). It can be

seen that both B⊥irr and B⊥c2 vary linearly as T changes, and this is consistent

with the theoretical prediction for granular type II thin films and consistent with

experimental results reported in ref (50). By linear fit for the B⊥ − T phase

diagram, we can extrapolate the values of B⊥irr and B⊥c2 near zero temperature.

The estimatedB⊥irr andB⊥c2 values at T = 300 mK are 4.2 T and 5.8 T respectively,

and they are almost the same as the values measured for a Ti/Nb/Ti thin film

device in ref (51).

We also performed magnetic field angle dependent measurements at T = 3

K. Figure 4.4 (c) shows the resistance R measured for the device as function of

B at different field orientations (see the angle θ definition in the schematic inset

of figure 4.4 (c) and at Isd = 5 nA. The magnetoresistance measurements show

that Birr and Bc2 are both anisotropic with respect to the magnetic field orienta-

tions. The values of Birr and Bc2 have their minimums at θ = 0o (perpendicular

field) whereas they peak at θ = 90o (parallel field), and the differences between

maximums and minimums are about 0.6 T and 0.5 T, respectively. The mag-

netoresistance anisotropy of Birr and Bc2 can be attributed to the anisotropy of

diamagnetic energy for a given magnetic field (45). The anisotropy only occurs

when the thickness of the thin film is smaller than or comparable with the pen-

etration depth λ of the superconductor. Considering that the thickness of our

device is d = 93 nm and the deduced penetration depth is λL = 115 nm (52), our

measurement results are thereby reasonable.
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4.2 Probing superconductor density of states with an InSb

nanowire quantum dot

We have discussed the dissipationless supercurrent measurements through a su-

perconductor in the previous section. Here, we show the direct probing of the

superconductor DOS by transport measurements. The idea is similar to the

probing of quasi-1D leads state in Chapt. 3, i.e., via the sharp resonant level of

a quantum dot.

The device studied here is Dev. AlInSbAl#1 which has been described in the

previous chapter. Figure 4.5 (a) displays the schematic band diagram of this

device. Under an applied negative global back-gate voltage, the quantum dot

is inversed from n-type to p-type, while the metal covered nanowire segments

remain n-type due to the electrical field screening from the Al electrodes. The

barriers of the dot are formed by the bent band gap of the InSb nanowire.

We have shown the ambipolar transport features of this device in an earlier

part. In the p-type transport region, some anomalous features arise due to the

superconductivity of the Al contacts. As shown in Fig. 4.5 (b), there is a sharp

current peak shooting up in each of the I−V curves at the edges of the Coulomb

staircase. These current spikes in I − V curves can be explained as the BCS-

DOS distribution Ns in the superconductor contacts[Fig. 4.5 (c)]. Because of the

extremely weak coupling in the p-type dot region, the tunneling rate is the choke

point of the current flow. The frequency of the tunneling event is proportional to

the DOS of the quasi-particles in the reservoirs. Therefore, the tunneling current

peaks when the resonant level in the quantum dot is aligned with one or two

BCS-DOS singularities (53).

The current spikes result in a negative differential conductance (NDC) in the

dIsd/dVsd charge stability diagram. This BCS-DOS singularity induced NDC has

been observed in semiconductor nanowire quantum dots with superconductor

leads by Doh et al (54). Differing from the smooth NDC hills in previous similar

work, the current peaks here are much sharper and have a needle shape. The

average full width at half maximum (FWHM) of the current peaks is only 40

µeV, while the maximum current can reach 2−3 times higher than the flat part.

This inspired us to make it a powerful BCS-DOS research method with ultra

high resolution. Probed by the hyper-sharp resonant quantum level, BCS-DOS

at different magnetic fields and various temperatures can be probed precisely and
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Figure 4.5: Anomalous current spikes in the I−V curves of an Al coupled InSb nanowire

quantum dot. (a) Schematic band diagram of Dev. AlInSbAl#1, including an SEM image.

A p-type quantum dot is defined by the bent band gap of the InSb nanowire. Al is

superconducting below 1 K. (b) The source-drain current in the hole transport region as a

function of Vsd. Curves with different colors are taken at different Vbg. A very sharp current

peak appears at each edge of the Coulomb staircase which can be attributed to the BCS

density of state singularity in the superconductor contact. The inset is the corresponding

Coulomb diamond in the charge stability diagram. (c) Schematic energy diagram of the

device show the dot configuration at different source-drain bias voltages.
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Figure 4.6: Probing the DOS of superconducting Al leads via an InSb nanowire quantum

dot. (a) Source-drain current measured for Dev. AlInSbAl#1, as a function of Vsd, at

T = 40 mK, Vbg = −6.43 V [the dashed line B in the inset of Fig. 4.5 (b)] and at

different B. The current spikes at the edge of the Coulomb staircase gradually flatten

as the applied field quenches the superconductivity of the Al contacts. (b) A simulation

result of (a). (c) Source-drain current as a function of Vsd, at B = 0 mT, Vbg = −6.43

V and at different temperatures T . Rising temperature also flattens the DOS singularity

features. (d) A simulation result of (c). (e) The current peak height as a function of

magnetic field, extracted from panel (a). (f) The high peak height (circle) and the small

peak height (square) caused by thermal excitation as functions of T . The subplot is the

distance between the two peaks (defined by the inset schematic) as a function of T .

directly. According to the theoretical fit below, the energy resolution σ, i.e. the

FWHM of the resonant level, is less than 5 µeV at the base temperature. Com-

pared with the traditional scanning tunneling microscopy (STM) method [σ ≈ 15

µeV (55)] and the photoemission spectroscopy method [σ ≈ 2.9 meV (56)], this

is really an ideal tool to investigate BCS-DOS of superconductor, especially for

low dimensional materials.

Fig. 4.6 shows the magnetic field and temperature dependence measurements

of the current spikes. In the magnetic field dependence measurements Fig. 4.6

(a), the temperature is fixed at 40 mK and Vbg is set at -6.43 V. As predicted by

the relation in Eq. 4.1, the current peak is flattened gradually resulting from the

field-induced gap suppression. The peak height as a function of magnetic field
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is summarized in Fig. 4.6 (e). The current height has its maximum around the

zero-B region and then fades as B increases. Finally, a transition point comes

out at B = 62 mT, which indicates the disappearance of the superconductivity at

the critical magnetic field Bc = 62 mT. We simulate the I − V curves according

to the model described later, and the simulation results are shown in Fig. 4.6 (b).

Compairing Figs. 4.6 (a) and (b), it can be seen that the simulation fits very well

with the measurement data.

The temperature evolution of the current peak shows the same tendency as

the magnetic field dependency measurements. As shown in Fig. 4.6 (c), the peak

is smeared as the superconductivity of the contacts are thermally washed out,

which is consistent with Eq. 4.1. The temperature dependence of the peak height

[Fig .4.6 (f), open circles] shows that the critical temperature Tc is about 1 K.

Moreover, as the temperature rises, an additional current peak appears on the

lower bias side of the main current peak. This is caused by the thermal excitation

of quasi-particles over the superconductivity energy gap. On the one hand, ∆

shrinks as the temperature goes up, and on the other hand the thermal energy of

quasi-particles gets larger and larger. Therefore, more and more quasi-particles

are excited over ∆, and therefore it will give another current peak when the

resonant level in the quantum dot is aligned with these thermally excited quasi-

particles. Simulation results for Fig. 4.6 (c) are shown in Fig. 4.6 (d). Fig. 4.6

(f) gives the height of the thermal current peak (open square) as a function of

temperature. Contrary to the edge peak, the thermal peak height increases as

the temperature increases. The distance d between the main current spikes and

the thermal current peak [defined by the schematic in the subplot of Fig. 4.6 (f)],

should be proportional to 4∆(T )/e. Note that d is not determined by 2∆(T )/e

as the bias voltage is applied symmetrically to the source/drain contacts. We

can see that d decreases as the temperature increases, which is consistent with

Eq. 4.1. The dashed line is the result of fit of d from Fig. 4.6 (d).

Figures 4.7 (a), (c), (e), (g), and (i) show the low-bias transport measurement

near a resonant level. The main features here are consistent with Fig. 4.6: the

NDC near the edge of the Coulomb steps, the DOS singularity induced sharp

dIsd/dVsd peaks and the manifestation of ∆− B and ∆− T relations. However,

a novel feature conflicting with our model arises. In our model, at small bias

voltage |Vsd| < 2∆/e, there should be no net current through the dot in the

presence of the quasi-particle DOS gap. In Fig. 4.7 (c), it is evident that high
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Figure 4.7: (a) A fine structure of the charge stability diagram around a resonant level.

Al contacts are in the normal states at B = 200 mT. The high conductance line indicated

by the arrow is attributed to the excited state, which is not included in the single level

model. (b) A simulation result for panel (a). (c) The same as (a) but at B = 0 mT, and

thereby the Al contacts are superconducting. (d) A simulation result for panel (c). (e)

Differential conductance on a color scale as a function of B and Vsd, and Vbg is fixed at the

position marked by the white dashed line A in panel (c). (f) A simulation result for panel

(e). (g) and (h): The same as (e) and (f) respectively, but corresponding to the position

marked by the white dashed line B in panel (c). (i) Differential conductance on a color

scale, as a function of T and Vsd, and Vbg is settled at the position A. (j) A simulation

result for panel (j).
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dIsd/dVsd lines show up in the region |Vsd| < 2∆/e. These lines also extend out

of the region |Vsd| < 2∆/e and are parallel to the DOS singularity sharp peaks.

In fact, these unexpected conductance lines also have homologous features at the

large bias regime. By rechecking the current plots in Fig. 4.6 (b), we can find

that a small current plateau lies on the lower bias side of each current spike.

Additionally, the magnetic field measurements show that these weak dIsd/dVsd
peaks do not change their positions as B changes.

These novel features can be interpreted by a non-zero DOS in the supercon-

ducting gap. Therefore, we can build the following model to simulate this system

Similar to the model in Ref. (57), the current tunneling from one side to

another side, for example, from left to right, is given by

Il→r ∝
+∞∫
−∞

Nl
Sf (E, µl)G (E)Nr

S [1− f (E, µr)] dE (4.3)

where µl, µr are chemical potentials of left and right leads respectively, f (E, µ) =[
1 + e(E−µ)/kBT

]−1
is the Fermi-Dirac distribution function. Therefore the net

current is I = Il→r − Ir→l. As we mentioned above, the BCS-DOS is given by

Eq. 4.2. To be more precise, we update it by adding a constant item C (56) to

represent the non-zero DOS in the gap, and replacing E with E − iγ, i.e., the

Dynes model for non-ideal superconductor with grain, impurity or defects (58).

We then get

Ns (E,B, T ) = Nn (E)
E − iγ[

(E − iγ)2 −∆(B, T )2]1/2
+ C (4.4)

We use Lorentzian function to describe the broadened line-shape of the resonant

level (59):

Gε (E) = Γ/2π

(E−ε)2+(Γ/2)2
(4.5)

where ε is the energy of the quantum level related to the Fermi level and Γ =

ΓL + ΓR is the total coupling strength.

In the simulation, we take γ = 1µeV and Γ = 10µeV and let C = 0.2Nn. The

normalized simulation results are shown in Figs. 4.6 (b) and (d), and Figs. 4.7

(b), (d), (f), (h), and (j).

The model with a residual normal DOS item C in the superconducting gap

fits well with measurement results. However, there is not a final conclusion about
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where these normal states come from. The Dynes model itself can induce a non-

zero DOS within ∆ as long as γ is large enough. However, in our model, the

Dynes model cannot give a good fit without the item C. A possibility is that

these normal states may rise from the InSb nanowire segments beneath the con-

tacts. This proposal is consistent with the features of the quasi-1D leads states in

Dev. NbInSbNb#1 that we discussed in Chapt. 3. However, a systemic study for

the model of superconductor electrode/barrier/semiconductor lead-quantum dot-

semiconductor lead/barrier/superconductor electrode is required with all possible

configuration.

4.3 Josephson effect and proximity effect

4.3.1 Introduction of the Josephson effect and the proximity effect

In 1962, Josephson made the remarkable prediction that a dissipationless super-

current should flow between two superconducting electrodes even when separated

by a thin normal state layer (60). This effect is the so-called Josephson effect. The

superconductor-normal conductor (or insulator, semiconductor)-superconductor

(SNS) junction is therefore referred to as a Josephson junction, and the supercur-

rent through the Josephson junction is called the Josephson current. The critical

current for a Josephson junction is given by:

Ic = Im sin ∆ϕ (4.6)

in which ∆ϕ = ∆ϕL −∆ϕR is the phase difference between the superconducting

wave function of the left and the right-side superconductors, and Im is the maxi-

mum critical current that the junction can hold. Im is usually much smaller than

the intrinsic critical current of the superconductor.

Actually before Josephson effect was proposed, a supercurrent flowing through

an SNS junction was found and was explained by the proximity effect (61, 62). As

we pointed out earlier, all the electrons near the Fermi level of the superconductor

condense into the BCS ground state and form bosonic Cooper pairs. All the

Cooper pairs can be described by a macroscopic wave function ψ and have the

same phase ϕ. At the interface of the superconductor and normal conductor,

the amplitude of ψ cannot go to zero abruptly. Instead, ψ leaks out of the

superconductor and spreads into the normal conductor. The decay tail length of ψ

is determined by the superconductor coherence length ξ. In an SNS junction, the
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Figure 4.8: The superconducting proximity effect at the superconductor-normal conduc-

tor interface. In an SNS junction, a supercurrent can flow through the whole junction if

the SN coupling is strong and the separation l between superconductors is smaller than or

comparable to the superconductor coherence length ξ.

wave functions of the left-side and right-side superconductors, ψL and ψR, overlap

if the width of the normal conductor l is smaller than or comparable to ξ[Fig. 4.8].

In microscopic view, the proximity effect is due to the penetration of Cooper pairs

from superconductor to normal conductor in the vicinity of the interface. The

incident Cooper pair remains their correlation in the normal conductor within a

lifetime. Note the Cooper pair penetration is also interpreted as a process called

the Andreev reflection which will be addressed later.

Besides the disspationless supercurrent, another important consequence of

the proximity effect is the opening up of a quasi-particle DOS gap in the normal

conductor, i.e., the induced superconducting energy gap. In Chapt. 5, we will

show the direct probing of the induced superconducting energy gap and see how

critical the induced superconducting energy gap is for searching for Majorana

fermions.

4.3.2 Josephson current in InSb nanowire based Josephson Junction

In addition to the normal conductor, the normal state layer in the Joseph-

son junction can also be semiconductor or insulator. Semiconductor nanowire

or carbon nanotube based Josephson junctions have already been reported in

Refs. (63, 64, 65). Especially, the InSb nanowire based Josephson junctions have

also been achieved recently (51, 66).

Here, we show the transport measurement results for a Nb coupled InSb
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Figure 4.9: Josephson current through Dev. NbInSbNb#2. (a) SEM image of the device.

The electrodes in the device are made from trilayer superconductor Ti/Nb/Ti (3/80/5

nm). The diameter of the InSb nanowire is about 65 nm, the separation between contacts

is about 110 nm, and the lengths of the InSb nanowire sections covered by the two Nb

based contacts are about 740 and 680 nm, respectively. (b) The source-drain voltage drop

Vsd at the junction, as a function of the applied source-drain current Isd, at three different

back-gate voltages Vbg = −3.6 V, -1.1 V and -0.5 V. The red and black curves are recorded

in the upward and the downward current sweeping direction, respectively. (c) Differential

resistance on a color scale as a function of Isd and Vbg measured for the device at B = 0

T. Here, the critical supercurrent shows a clear Vbg dependence. (d) The critical current Ic

(red curve) and the normal state resistance RN (black curve) as a function of Vbg measured

for the device at B = 0 T. It is generally seen that the smaller RN is, the larger Ic is.
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nanowire device, or Dev. NbInSbNb#2. An SEM image of this device is shown in

Fig. 4.9 (a). First, we characterize this device by current biased measurements.

Figure 4.9 (b) shows the measured source-drain voltage of the device at a tem-

perature of 25 mK as a function of the applied source-drain current Isd at three

different voltages Vbg applied to the back-gate. A zero resistance branch is clearly

seen in each measured curve, which indicates the presence of a dissipationless

Josephson supercurrent in the junction. The Josephson junction switches to a

dissipative transport branch when the applied current is larger than the critical

current Ic. Similar to the I − V curve of the TiNbAl trilayer superconductor

discussed in last section, the device also shows a hysteretic behavior, i.e., the

upward current sweeping trace (red curve) and downward sweeping trace (black

curve) have different switching points.

The critical current Ic of a semiconductor based Josephson junction is related

to the resistance of the junction in the normal state (63, 66) and can thereby

be tuned by Vbg. For example, in Fig. 4.9 (b), we see that Ic is 1.1 nA at

Vbg = -3.6 V but it is only 0.2 nA at Vbg = −1.1 V. The tunability of the

critical supercurrent Ic can be visualized more clearly in Fig. 4.9 (c), where the

differential resistance is plotted as a function of Isd and Vbg. Ic is characterized

by the width of the low differential conductance region and it is evident that Ic
is a function of Vbg. Fig. 4.9 (d) shows the measured critical current Ic and the

normal state resistance Rn as a function of Vbg. The resistance Rn is deduced

from the differential resistance at Isd = 1.5 nA in Fig. 4.9 (c). At 1.5 nA and

beyond the Vsd−Isd characteristics show approximately straight lines [see Fig. 4.9

(b)]. Generally, a small Ic is observed at a region of gate voltage for which Rn is

large. According to theoretical predictions (45), the product IcRn is a constant

that is proportional to the superconducting energy gap: IcRn = π∆/e. However,

the measured IcRn product in this device is not a constant, but varies from 2

µV to 12 µV. These values are overall much smaller than the expected value of

π∆Nb/e ≈ 4.7 mV. Such reduced experimental values have also been observed in

Refs. (63, 66) and can typically be attributed to a premature switching due to

thermal activation in a capacitively and resistively shunted junction and to finite

transparencies at the superconductor-nanowire interfaces (45).

Figure 4.10 (a) shows the measured differential resistance of Dev. NbInSbNb#2

as a function of Isd and the magnetic field B applied perpendicular to the sub-

strate at Vbg = −3.6 V. It is generally seen that the critical current Ic decreases
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Figure 4.10: Magnetic field and temperature dependence measurements of the Josephson

current in Dev. NbInSbNb#2. (a) Differential resistance on a color scale measured for

Dev. NbInSbNb#2 at Vbg = −3.6 V, as a function of Isd and the magnetic field B applied

perpendicularly to the substrate. The Josephson current is seen to persist as the magnetic

field goes up to B ∼ 2 T. (b) Source-drain voltage Vsd measured for the device, as a

function of Isd at Vbg = −3.6 V and B = 0 T and at four different temperatures T = 25,

300, 700, and 1000 mK. We can see that the supercurrent continues to be visible when the

temperature goes up to T = 700 mK, but it disappears at T = 1 K. (c) The same as (a),

but at different temperatures, from T = 200 mK to T = 700 mK. It is evident that Bc

decrease as the temperature increases.
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as B increases and disappears after the magnetic field becomes higher than the

critical value Bc. We find that, with Nb contacts, Bc can reach a few Tesla,

which is much higher than for Al based junctions (63, 66). The high Bc of the

Josephson junction is due to the high intrinsic Bc of the Nb-based trilayer su-

perconductor. Figure 4.10 (b) displays the source-drain voltage Vsd as a function

of Isd, measured at different temperatures for the device at Vbg = −3.6 V and

B = 0 T. The measurements show that Ic has a clear temperature dependence.

As the temperature increases, Ic decreases gradually. Eventually, Ic disappears

at the temperatures higher than a critical value of Tc ∼ 1 K. In Fig. 4.10 (c), a

series of differential resistance measurements are shown, which are the same as

in Fig. 4.10 (a) but at different temperatures, from T = 200 mK to T = 700

mK. It is evident that Bc decreases as the temperature increases. Above all, the

magnetic field and temperature dependence of the Josephson current show the

same tendency as the intrinsic supercurrent in superconductor metals.

As we will see later, InSb nanowire based Josephson junctions have promis-

ing applications in superconducting quantum computers (6, 67). Especially, the

proximity effect induced superconductivity in InSb nanowire is very critical for

the research of Majorana bound states in solid state systems. This is a crucial

component for topological quantum computing (9).

4.3.3 Josephson current in an InSb/InAs nanowire based SQUID de-

vice

As indicated by Eq. 4.6, the amplitude of the Josephson current is strongly in-

fluenced by the phase difference between two superconductor electrodes. The

Josephson current will show a sinusoidal modulation by ∆ψ. If two Josephson

junctions are connected by a superconductor loop, they then form a so-called

superconducting quantum interference device (SQUID) (68). A SQUID system is

composed of two Josephson junctions in parallel connected via a superconducting

loop, as shown in the schematic in Fig. 4.11 (a). In the presence of a magnetic

field, a magnetic flux Φ = B ·S is enclosed in the loop. If the maximum Josephson

currents of the junctions are the same Im1 = Im2 = Im, the Josephson current of

the SQUID is then given by:

Ic = 2Im cos (πΦ/Φ0) (4.7)
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4.3 Josephson effect and proximity effect

where Φ0 is the flux quanta. The superconducting interference is a Cooper pair

version of the Aharonov-Bohm effect (69), in which interference of single electrons

is modulated with a vector potential A caused by an enclosed magnetic flux

in a loop. Because the Cooper pair carries two elementary charges, the flux

quanta in the SQUID is Φ0 = h/2e instead of h/e in normal electron interference

systems. For more general cases in which the Im1 6= Im2, Eq. 4.7 is modulated

to (70, 71, 72):

Ic =

√
(Im1 − Im2)2 + 4Ic1Ic2cos2 (πΦ/Φ0) (4.8)

.

Figure 4.11 (b) displays the schematic of a measured SQUID device made from

a Ti/Nb/Al-trilayer coupled InSb junction and InAs junction. In the standard

current-biased setup, the differential resistance on a color scale is illustrated in

Fig. 4.11 (c), as a function of Isd and a perpendicularly applied magnetic field B,

at Vbg = 3.9 V and T = 25 mK. The critical current Ic can be extracted from the

width of the zero-resistance region (dark) in the color scale. It is evident that

the Ic shows a cosine-like oscillation in the range of B = 0 − 100 mT, which is

the manifestation of Cooper pair interference. The oscillation period is about 20

mT. According to Eq. 4.7, this gives an effective SQUID area of S ≈ 1µm2. This

effective area is much larger than the area of the red dashed square in Fig. 4.11

(b), which is about 0.4µm2. This is probably because the InSb nanowire and

InAs nanowire have large contact areas with the superconductor, and the real

SQUID area is extended, as the black dashed square shown in Fig. 4.11 (b).

However, in the high field region as shown in Fig. 4.11 (d), the oscillation

of Ic disappears. We do not know the reason for the missing of Ic oscillation,

but one possible argument is that the Cooper pair tunneling through one of the

junctions is turned off by the magnetic field-effect-transistor behavior (B-FET,

for a detailed discussion about this effect see Chapt. 5). The SQUID is degraded

to a single Josephson junction.

Moreover, Fig. 4.12 shows that the magnetic field can also change the oscil-

lation periods of Ic. Fig. 4.12 (a) displays similar measurements as in Fig. 4.11

(c), but at a different back-gate voltage Vbg = 5 V. The critical current Ic as a

function of magnet field is extracted in Fig. 4.12 (b), and it is fitted to a cosine

function (the dashed line). Here, the oscillation period is also about 20 mT.

However, in the high field region as shown in Fig. 4.12 (c) and (d), the oscillation
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Figure 4.11: A SQUID device made from InSb and InAs nanowire Josephson junctions.

(a) Schematic of a typical SQUID. (b) Schematic layout of a SQUID made from Nb-

coupled InSb and InAs nanowires. (c) Differential resistance on a color scale measured for

the SQUID, as a function of the applied source-drain current Isd and magnetic field B, at

Vbg = 3.9 V and T = 25 mK. The critical current Ic is represented by the width of the

zero-resistance region. (d) Similar to (c), but in a different field region.

period is enlarged to about 32 mT. Again, the reason for the oscillation period

change is not clear to us. From the point of view of the B-FET argument, the

high magnetic field may dramatically change the potential profile of the junctions

and therefore lead to a change of the effective SQUID area.

4.4 Conductance sub-gap structures in Josephson quan-

tum dots

When the coupling between superconductors and normal conductors in an SNS

structure is not strong enough, Cooper pairs cannot go directly through the junc-

tion via the proximity effect. There are voltage drops at the SN/NS interfaces

and the N part itself when a non-zero current is passing through, and therefore a

potential difference ∆µ = µs−µd is developed between the two superconductors1.

In fact, even in an SNS system with strong coupling, ∆µ can also be developed

1This is the reason why we can probe the DOS of superconductors in the S-InSb QD-S system. The

opaque barriers between S and QD protect the superconductivity from being destroyed by the large

current.
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Figure 4.12: Critical current of the SQUID. (a) Differential resistance on a color scale

measured for the SQUID, as a function of the applied source-drain current Isd and magnetic

field, at Vbg = 5 V and T = 25 mK. (b) Extracted critical current as a function of magnet

field. The dashed line is a cosine fit for the experimental data. (c) and (d) are similar to

(a) and (b), respectively, but in a different magnetic field region.

when the applied source-drain current exceeds the critical current of the junction.

Because the intrinsic critical current of a superconductor is usually much larger

than the critical current of the Josephson junction, the induced superconduc-

tivity in the N layer will disappear first as the applied current increases. Then

the voltage drops across the N layer as in the decoupled SNS structure. Many

novel features will arise from the voltage-biased SNS systems. Especially, in

the S-QD-S system (the Josephson QD), conductance sub-gap structures (SGS)

such as multiple Andreev reflection (MAR), Andreev bound states (ABS) and

Yu-Shiba-Rusinov states (YSR).

4.4.1 Mechanisms of SGS in Josephson junctions

As an incident electron at the Fermi level comes to the interface of the normal

conductor and the superconductor, it will be scattered at the interface in the

presence of the superconducting energy gap ∆. The scattering here takes a very

unique form, which forces the electron to grab another nearby electron to form a

Cooper pair and to enter the superconductor. As a result, a hole with an opposite
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Figure 4.13: Schematic of Andreev reflection and Andreev bound states in the SNS

and SN systems. (a) Andreev reflection occurs at the interface of a normal conductor

and a superconductor. An incident electron (hole) from the normal layer side hits the SN

interface, and another hole (electron) with an opposite spin will be reflected back. (b-

c) The coherent back-and-forth Andreev reflections form bound states in the sandwiched

normal layer. The configuration is an analogue of the Fabry-Pérot resonator and only the

resonant states with standing-wave-like Schrödinger functions can be established. (d-e)

Andreev bound states can also be established in a half Josephson junction (SN) structure.

spin and an opposite wave vector will be reflected back. The process is called

the Andreev reflection and it is schematically shown in Fig. 4.13. If the incident

charge carrier is a instead hole, the reverse process occurs, and an electron with

an opposite spin and an opposite wave vector gets reflected back.

In an SNS junction in equilibrium, once the Andreev reflection is initialized, a

process of bouncing back-and-forth will occur in between the two superconductors

[Figs. 4.13 (b-c)]. This configuration is an analogue of the Fabry-Pérot optical

resonator (73). Only the coherent states with standing-wave-like Schrödinger

functions are robust. The quantization condition of the bound states is that the

phase shift ϕ acquired on a single round-trip (two reflections) should be an integer

multiple of 2π (74):

ϕ ≡ 2 ζL′

~υF
− 2 arccos ζ

∆0
± δφ = 2πm m = 0,±1,±2, ... (4.9)

where ζ is the energy of the bound state relative to the Fermi level, υF is the Fermi

velocity, δφ = φL − φR is the phase difference between the two superconductors,

and L′ = L/cos θ is the traveling length of the electron/hole from one side of

the superconductor to the other side. The item ζL′

~υF
is the phase shift picked up
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by the electron/hole on a single path, while arccos ζ
∆0

is the phase shift gained

in a single reflection event. Because of the electron-hole symmetry, those bound

states always come in pairs. Each pair contains an electron-like bound state and

a hole-like bound state, and they are symmetric with respect to the Fermi level.

According to Eq. 4.9, the discrete ABS spectrum can be tuned by varying the

phase difference between superconductors, as reported in Refs. (75, 76).

ABS plays an important role in transferring the supercurrent through the SNS

junction. However, it does not only exist in SNS junctions. Figure 4.13 (d) shows

that the bound states can also be established in a superconductor-normal layer-

barrier structure (a half Josephson junction). In this process, after an electron

(hole) is reflected by the superconductor, it hits the barrier at the other side.

The normal barrier bounces the incident electron (hole) back without changing

its spin or charge sign. The electron (hole) then hits the SN interface again

and a hole (electron) with an opposite spin is reflected. In this case, a whole

round trip contains two Andreev reflections and two normal reflections. Since

an elastic normal reflection does not change the phase, the total phase shift is

ϕ ≡ 4 ζL′

~υF
−2 arccos ζ

∆0
. Therefore, the quantization condition of the bound states

in the SN structures is given by:

ϕ ≡ 4 ζL′

~υF
− 2 arccos ζ

∆0
= 2πm m = 0,±1,±2, ... (4.10)

These entangled ABSs in the SN-hybrid structures lead to discrete peaks in the

DOS of the quasi-particles. These DOS peaks can be probed by tunneling spec-

troscopies (77, 78, 79, 80, 81).

When a bias voltage is applied to the two superconductors in the SNS junc-

tion, Andreev reflections cannot be bound any more. However, multiple Andreev

reflection (MAR) events can still generate SGS features at Vsd = 2∆/ne(n =

1, 2, ...). Differential conductance peaks emerge at each onset of the coherent

MAR events (82) at low temperature. Figure 4.14 (a) shows an SNS junction

with a bias voltage Vsd = 2∆/e applied to the two superconductors. The bias

aligns the lower electron-like quasi-particle DOS singularity of the left-side super-

conductor with the upper hole-like quasi-particle DOS singularity of the right-side

superconductor.Quasi-particles direct tunneling peaks at Vsd = 2∆/e, and a dif-

ferential conductance peak develops. Although no Andreev reflection occurs, we

refer to the process as the first-order MAR. At Vsd = ∆/e [Fig. 4.14 (b)], the

Fermi level of the left-side superconductor is aligned with the lower edge of the
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Figure 4.14: Schematic of multiple Andreev reflections. (a) The first-order MAR occurs

under a bias voltage of 2∆/e. The alignment of the left-lower and the right-upper quasi-

particle singularities will lead to a differential conductance peak. Note that it is called

the first-order of MAR induced conductance peak but there is no reflection at all. (b)

The second-order MAR, where µs − µd = ∆. The Andreev reflections occur at the SN

interfaces. (c) The third-order MAR, where, µs − µd = 2/3∆.

upper band of the right-side superconductor. At the same time, the Fermi level

of the right-side superconductor is aligned with the upper edge of the lower band

of the left-side superconductor. Here the reflection of the hole-like quasi-particles

from the right-side superconductor and the reflection of the electron-like quasi-

particles from the left-side superconductor occurs. This process is referred to as

the second-order MAR. In Fig. 4.14 (c), at a bias of 2/3∆/e, a process involving

two Andreev reflections is possible. Here, an electron-like quasi-particle from the

singularity of the lower band of the left-side superconductor is Andreev-reflected

against the right-side superconductor, reflecting a hole-like quasi-particle. The

hole-like quasi-particle is in turn Andreev-reflected against the left-side super-

conductor, sending an electron-like quasi-particle back. Finally, the electron-like

quasi-particle enters the upper band of the right-side superconductor. The entire

process is called the third-order MAR. Further lowering of the bias could induce

more high-order MARs. However, as the order of the multiple Andreev reflection

increases, the total scattering path gets longer and the process gets more difficult

to keep coherent.

4.4.2 SGS in Josephson QD without Kondo effect

The SGS of the Josephson junction can be very complicated in the presence

of the on-site Coulombic repulsion in the sandwiched object of nanoscale. In
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(a2)
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(a1)

(b1) (d)
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Figure 4.15: Schematic process of the co-tunneling of the Cooper pair across a quantum

dot. (a1-a2) The ”0”-junction: The Cooper pair tunnels through the quantum dot with

a spin-singlet ground state, via a fourth-order co-tunneling process. No extra phase shift

is picked up in this sequence of processes. (b1-b2) The ”π”-junction: The Cooper pair

tunnels through the quantum dot with a spinful doublet ground state, via a fourth-order

co-tunneling process. The process is accompanied by the spin-flips on the dot and results

in a π-phase shift to the transferred Cooper pair singlet. (c) and (d) show the Andreev

bound states in a Josephson quantum dot with the spin-singlet and spin-doublet ground

states, respectively. Compared with the ”0”-junction, the electron-like bound state and

the hole-like bound state swap their positions in energy in the ”π”-junction.

this subsection, we focus on the SGS of the Josephson quantum dot without the

influence of the Kondo effect. Before analyzing any experimental data, we discuss

how the spin on the dot modifies the SGS.

When the sandwiched normal object in an SNS structure is a quantum dot,

the Andreev transport process becomes sensitive to the dot configuration. In the

strong coupling regime, where Γ� EC ,∆ (Γ is the total dot-leads coupling and

EC is the charging energy of the dot), the Coulomb blockade is negligible and

the Andreev transport process is similar to the SNS junction discussed above.

However, the Coulombic energy has to be taken into account when EC is much

larger than Γ. In this case, the intermediate quasi-particle-reflections in the
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Andreev transport process cannot take ballistic paths as shown in Figs. 4.13

(b-d), but have to take a high-order co-tunneling path via virtual state(s) (83).

When the ground state of the sandwiched quantum dot is a spin-singlet of zero

spin (even occupation), the Cooper pair tunneling process does not pick up any

additional phase shift more than the phase shift given in Eq. 4.9. Whereas, if the

dot ground state is a spin-doublet with a −1
2

net spin (odd occupation), the dot

behaves like a magnetic impurity and induces an additional phase change to the

Cooper pair co-tunneling.

The details of the co-tunneling of the Cooper pair through a quantum dot

are shown schematically in Fig. 4.15. Prohibited by the Coulomb blockade, the

Cooper pair can only transport via the fourth-order co-tunneling process. Figures

4.15 (a1-2) illustrate the transfer of a Cooper pair through a quantum dot with a

spin-singlet ground state. The co-tunneling starts from the transfer of one half of

a Cooper pair in the left-side superconductor, for example, the down-spin electron

as shown in Fig. 4.15 (a1). Via a virtual state, the down-spin electron tunnels

into the dot by kicking out the down-spin electron of the spin-singlet on the dot.

The system then comes to another virtual state (the energy is not conserved at

this point), but the dot is still in the spin-singlet state. The co-tunneling of the

up-spin electron of the original Cooper pair then occurs via another virtual state.

The up-spin electron of the singlet in the dot is kicked out by the tunneling-in

electron and it combines with the previously tunneled down-spin electron to form

a new Cooper pair. In the whole process, three virtual states are involved and

therefore the process is a fourth-order co-tunneling event.

The Cooper pair co-tunneling process via a spinful doublet ground state can

be very different from the process via a spin-singlet, as shown in Figs. 4.15 (b1-

2). The co-tunneling is also carried out by two half-Cooper pair co-tunneling

events. However, each event is accomplished with a spin-flip in the dot, i.e.,

the tunneling-in down-spin (up-spin) electron kicks out an up-spin (down-spin)

electron that was occupying the spin-doublet ground state of the dot. The spin-

flip is favored because its corresponding virtual state has a lower energy than other

possible virtual states. As a result, the Cooper pair singlet state from the left-side

superconductor, |ψL〉 = (|↑↓〉 − |↓↑〉), becomes |ψR〉 = (|↓↑〉 − |↑↓〉) = eiπ |ψL〉 in

the right-side superconductor after being transferred across the dot. The sequence

of the co-tunneling process above picks up a π-phase shift to the Cooper pair

singlet state. Therefore, the Josephson quantum dot with a doublet ground state
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is referred to as a ”π”-junction, while the Josephson quantum dot with a singlet

ground state is a ”0”-junction. The Josephson current through a ”π”-junction

reverses in sign compared with the Josephson current through a ”0”-junction.

Back to the point of view of ABS, compared with the ”0”-junction, the

electron-like ABS and the hole-like ABS in the ”π”-junction swap their positions

in the energy spectrum [Figs. 4.15 (c) and (d)]. The Josephson quantum dot can

be tuned from a ”0”-junction to a ”π”-junction (from the even occupation to the

odd occupation in weak coupling regime) by a gate. Therefore, the electron-like

ABS overlaps with the hole-like ABS at the Fermi level at the phase-transition

point. This phase-transition is called the quantum phase transition (QPT).

Now we focus on the SGS measurements that were performed for an Al-coupled

InSb nanowire quantum dot device, named as Dev. AlInSbAl#3. Figure 4.16 (a)

displays an SEM image of Dev. AlInSbAl#3 and Fig. 4.16 (b) shows the schematic

layout of the device. In this device, the InSb nanowire with a diameter of ∼70 nm

is contacted by two Ti/Al (5/90 nm) superconductor leads with a separation of

120 nm. Besides the global back-gate, a fork-shape side-gate and a stick side-gate

are also fabricated in order to finely control the chemical potential of the dot and

the dot-leads coupling strength/symmetry.

The charge stability diagram in Figs. 4.16 (c) and (d) show the Coulomb

diamond structures corresponding to the first electron in the normal state and

the superconducting state, respectively. The two side-gates are not used here.

The charging energy EC is estimated to be about 8.5 meV according to the

diamond size. EC is much larger than the superconducting energy gap of Al

∆ = 157µeV. No Kondo ridge can be seen in the diamond, indicating that the dot-

leads coupling Γ is weak. Compared with the diamond in the normal state, some

features arise in the low-bias region in Fig. 4.16 (d) as the superconductivity of the

leads is turned on. The fine structure in Fig. 4.16 (e) shows that the conductance

SGS emerges. There are two pairs of vertical high-conductance lines around

Vsd = ±2∆/e (indicated by the black arrows) and Vsd = ±∆/e (red arrows).

Figure 4.16 (f) displays two dIsd/dVsd − Vsd line-cuts taken at point A and point

B in Fig. 4.16 (e). It is evident that there are two differential conductance peaks

at Vsd = ±2∆/e and a conductance plateau with a threshold at Vsd = ±∆/e.

These features can be attributed to the first-order and the second-order MARs.

High-order MARs are not visible in this regime due to the weak coupling.

Figure 4.16 (g) shows a close-up view of the region near the resonant level [the
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Figure 4.16: SGS of a Josephson quantum dot without the Kondo effect. (a) SEM

image of Dev. AlInSbAl#3. The InSb nanowire is contacted by two Ti/Al (5/90 nm)

superconductor leads with a separation of 120 nm. In addition to the global back-gate,

a fork-shape side-gate and a stick side-gate are also fabricated. (b) Schematic layout of

the device. (c) The charge stability diagram of Dev. AlInSbAl#3. The Coulomb diamond

structure corresponding to the first electron occupation is shown here. The measurements

are performed at B = 30 mT and the device is in its normal state. The charging energy can

be estimated from the size of the diamond to be EC = 8.5 meV. (d) The same as (c), but

with B = 0 mT. The superconductivity of the leads is turned on. Some superconductivity-

induced conductance features emerge in the low-bias region. (e) A close-up view of the

squared region in (d). Vertical high-conductance lines are visible, which can be attributed

to the MARs. (f) Two dIsd/dVsd − Vsd line-cuts taken from (e). The conductance peaks

around Vsd = ±2∆/e and Vsd = ±∆/e are visible, corresponding to the first-order MAR

and the second-order MAR, respectively. (g) A zoomed-in view of the squared region in

(e). There are two high-conductance lines crossing at the resonant level, with another

two outer parallel high-conductance lines. Those lines are due to the ABS formed in this

junction and the crossing indicates that a QPT occurs when the quantum dot changes

from even occupation to odd occupation. (h) The red line represents the dIsd/dVsd − Vsd
line-cut, taken at point C in (g), while the black line is taken at point D.
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Figure 4.17: ABSs formed in the Josephson QD with asymmetric couplings. ABSs

are formed at the interface of the left-side superconductor and the quantum dot, while

the right-side superconductor serves as a tunneling tip and can probe the ABSs. (a) The

configuration with a bias voltage Vsd = (∆ + ζ)/e. The lower ABS is aligned with the

hole-like quasi-particle DOS singularity in the right-side superconductor and will result in

a differential conductance peak. (b) The configuration with a bias voltage Vsd = ζ/e. The

lower ABS is aligned with the Fermi level of the right-side superconductor. The residual

normal DOSs in the superconducting energy gap will lead to a weak differential conductance

peak. (c) The bias-mirrored configuration of (b). (d) The bias mirrored configuration of

(a).

squared region in Fig. 4.16 (e)]. We see that the vertical MARs high-conductance

lines are interrupted at the resonant point. Two high-conductance lines (red-

dashed lines) cross at the zero-bias voltage and are parallel to another outer

pair of high-conductance lines (black-dashed lines). The dIsd/dVsd − Vsd line-cut

taken at the crossing point C is shown in Fig. 4.16 (h), in which we can see

that the minimum separation of the outer conductance peaks is 2∆/e. The high-

conductance lines near the resonant point are the manifestations of ABSs formed

in the Josephson quantum dot with a very asymmetric coupling.

Without loss of generality, let us assume ΓL � ΓR, namely, the dot is coupled

strongly to the left-side superconductor but is well decoupled from the right-side

superconductor. As a result, the S-QD-S junction degrades to an S-QD system

with the other side of superconductor serving as a tunneling probe. ABSs are

formed in the S-QD system at ±ζ and are pinned to the left-side superconductor,

as shown in Fig. 4.13 (e). The right-side superconductor can probe the DOS

of the S-QD system. Differential conductance peaks will arise at Vsd = ±(∆ +

ζ)/e, when the lower (upper) ABS is aligned with the hole-like (electron-like)
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Figure 4.18: Schematic diagram of ABSs energies as a function of gate voltage. The texts

”0” and ”π” indicate that the Josephson quantum dot is a ”0”-junction or ”π”-junction in

the corresponding regime. The two ABSs cross at the phase-transition points. As the gate

voltage goes away from the QPT point, ABSs merge with the quasi-particle continuum at

±∆.

quasi-particle DOS singularity in the right-side superconductor [Figs. 4.17 (a) and

(d)]. Moreover, in this case the superconducting energy gap is a softened gap,

i.e., there are normal DOS residuals in the superconducting energy gap. This

soft-gap may rise from material defects, impurities in the superconductor (58)

or the inhomogeneities of the superconductor-semiconductor interface (84, 85).

Therefore, when the Fermi level of the normal DOS is aligned with the ABSs at

Vsd = ±ζ/e, differential conductance peaks arise [Figs. 4.17 (b) and (c)] (86).

The ABSs energy dispersion relation with the gate voltage, ζ − Vbg, can be

extracted according to the tunneling spectrum in Fig. 4.16. A schematic ζ − Vbg
dispersion diagram is shown in Fig. 4.18. The texts ”0” and ”π” indicate that

the Josephson quantum dot is a ”0”-junction or ”π”-junction in the corresponded

diamond. The two ABSs cross at the phase-transition points (indicated by ”QPT”

in the figure). As the gate voltage goes away from the QPT point, ABSs merge

with the quasi-particle continuum at ±∆.

4.4.3 SGS in Josephson QD with Kondo effect

When a quantum dot with an odd occupation is strongly coupled to its con-

tact(s), a spin-exchange process will lead to the formation of a spin-singlet in

the dot-lead(s) system [Fig. 4.19 (a)]. This is the Kondo effect as we described

earlier. However, complexity increases when the coupled contacts are replaced
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Figure 4.19: Schematic of a Josephson quantum dot with the Kondo effect. (a) Normal

contact coupled quantum dot with the Kondo effect. The spin in the quantum dot forms a

spin-singlet state with the electrons at the Fermi level of the contact, via a spin-flip process.

The spin on the quantum dot gets screened by the Kondo effect. (b) The competition

between the Kondo effect and the superconductivity. The Kondo effect will be suppressed

if kBTK < ∆, because there is no free electron in the uncertainty-principle defined energy

window at the Fermi level of the superconductor, to form a spin-singlet with the spin on

the dot. The superconductor-QD system is therefore a ”π”-junction. (c) The Kondo effect

survives if kBTK > ∆, when the spin-flip dominates over electron pairing. A spin-singlet is

formed and the system becomes a ”0”-junction. The dashed lines in (b) and (c) represent

the DOSs in the dot when the lead is in a normal state.

by superconductors. At the Fermi level of the superconductors, electrons with

opposite spins pair up into Cooper pair spin-singlets and the pairing potential

opens an energy window of 2∆ in the quasi-particle DOS. If the energy scale of

the Kondo effect kBTK is smaller than ∆, no free electrons are available at the

Fermi levels of the leads to screen the magnetic spin on the dot. Cooper pairs

with zero spin cannot screen the −1
2

magnetic impurity either. Therefore, the

Kondo effect is suppressed [Fig. 4.19 (b)]. On the other hand, if the dot-lead ex-

changing energy is larger than the superconducting energy gap, the spin-flip then

dominates over the electron pairing, and the magnetic impurity remains screened

[Fig. 4.19 (c)]. As a result, the odd-occupied Josephson QD with kBTK < ∆

is a ”π”-junction due to the unscreened spin on the dot, while the odd-occupied

Josephson QD with kBTK > ∆ is a ”0”-junction. Consequently, the ABSs formed

in the Josephson QD with kBTK > ∆ are reversed compared with the Josephson

QD with kBTK < ∆, i.e., the electron-like ABS and the hole-like ABS exchange

their positions in the energy spectrum.

Figure 4.20 shows the measurements performed for Dev. AlInSbAl#3 with
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side-gate voltages Vg1 = −1 V and Vg2 = 1 V. In the Vbg region shown in the fig-

ure, the dot is odd-occupied and is associated with a high-TK Kondo effect. The

device is first characterized in its normal state. As shown in Fig. 4.20 (a), in the

charge stability diagram measured at B = 30 mT, the Kondo ridge at zero-bias is

visible. The superimposed white line is the dIsd/dVsd − Vsd line-cut taken at the

place indicated by a F, i.e., the center of the Coulomb diamond. The Kondo effect

induced zero-bias conductance peak has a half-width-of-half-maximum (HWHM)

of 0.35 meV, which can be used as a approximate estimation of the Kondo tem-

perature kBTK ≈ 0.35 meV. Therefore, kBTK > ∆ = 0.157 meV. The coupling

asymmetry ratio χ = min (ΓL,ΓR)/max (ΓL,ΓR) can be estimated according to

the relation:

Gmax = 2e2

h
4ΓRΓL

(ΓR+ΓL)2
= 2e2

h
4χ

(1+χ)2
(χ ≤ 1) (4.11)

in which Gmax is the zero-bias conductance in the center of the Coulomb diamonds

(the electron-hole symmetry point). Here, the Gmax = 0.42e2/h and therefore

χ ≈ 0.06, indicating the dot-leads coupling are very asymmetric.

In Fig. 4.20 (b), the lead superconductivity is turned on at B = 0 mT. The

superconductivity-induced conductance SGS emerges at the low-bias region of the

charge stability diagram. For clarity, Fig. 4.20 (c) shows a few dIsd/dVsd − Vsd
line-cuts taken at the points indicated by A,B and C in Fig. 4.20 (b). The

diagram and line-cuts show that in the even occupation region, the SGS is dom-

inated by the first-order and second-order MAR features. Conductance peaks

appear around Vsd = ±2∆/e and ±∆/e. In the odd occupation regime, however,

the SGS becomes subtle. The conductance peaks at Vsd = ±2∆/e are missing,

while conductance peaks at Vsd = ±∆/e are enhanced both in height and width.

Moreover, two small inner conductance peaks emerge at Vsd = ±10µV with a

close-up view shown in Fig. 4.20 (d).

To fully understand the SGS in the odd occupation regime, the Kondo effect,

ABSs and MARs all have to be taken into account. The mechanisms, which can

induce enhanced conductance peaks at Vsd = ±∆/e will be discussed systemati-

cally in the next subsection. For this device, we only focus on the signatures of

ABS. In Fig. 4.20 (b), the dashed lines indicate the ABSs signatures probed by

the DOS singularities in the weakly-coupled superconductor (the probing lead).

The two small inner peaks in Fig. 4.20 (d) are the ABSs signatures probed by the

residual DOS in the probing lead. The separation in Vsd between the high con-

ductance peak and the small conductance peak with the same Vsd sign is about
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∆/e, which is consistent with our assumption.

Although the quantum dot transforms from even occupation to odd occupa-

tion, the QPT, i.e., ABSs crossing at zero-bias as in Fig. 4.16 is missing. This is

due to the Kondo effect which screens the spin on the dot. Therefore, the junction

does not experience a ”0-π” phase transition, as indicated by Fig. 4.20 (g) where

the ABS energy diagram as a function of Vbg is schematically shown. To prove this

assumption, we performed magnetic field dependence measurements. Figure 4.20

(e) displays the low-energy differential conductance on a color scale as a function

of Vsd and a perpendicularly applied magnetic field B, at Vbg = −332 mV [indi-

cated by the dashed line in Fig. 4.20 (d)]. A few dIsd/dVsd − Vsd line-cuts taken

from Fig. 4.20 (e) at points D, E and F are also shown in Fig. 4.20 (f) for clarity.

The magnetic field dependence diagram and line-cuts show that the two inner

conductance peaks cross at B =∼ ±2mT and split again afterwards. This can

be explained as the magnetic field induced QPT (80). The applied magnetic field

lifts the spin-degeneracy of the quantum level in the dot by Zeeman splitting. As

we discussed in Chapt. 3, the spin-flip process is then significantly suppressed,

and therefore the spin-singlet state degrades to a magnetic-doublet state. As

a result, the magnetic field drives the Josephson QD from a ”0”-junction to a

”π”-junction and the QPT occurs at a finite magnetic field. Note that the field-

induced QPT leads to the emergence of a zero-bias conductance peak at a finite

magnetic field. We will show in the next chapter that this zero-bias peak can

mimic the Majorana bound states in some cases, and therefore special attentions

should be paid to it. The ABS energy diagram as a function of B is schemati-

cally shown in Fig. 4.20 (h). The field-evolution of the inner conductance peaks

is again consistent with the assumption of ABS.

We note that there are also conductance peaks/plateaus at Vsd = ±∆/e and

Vsd = ±1
2
∆/e in Figs. 4.20 (b) and (c), which can be attributed to the second-

order and the forth-order MARs.

The measurements in Fig. 4.20 reveal that the odd-occupied Josephson quan-

tum dot with strong Kondo effect can screen the −1
2
-spin on the dot, and make

the odd-occupied QD a ”0”-junction. What about a Kondo effect with medium

strength, i.e., kBTK ≈ ∆? A reasonable prediction is that the Kondo effect will

drive the ”π”-junction towards the ”0”-junction, but whether the phase transition

can be completed or not depends on the relations among Γ, ∆ and EC . As an

example, we discuss the measurements shown in Fig. 4.21 which were performed

89



4. SUPERCONDUCTOR COUPLED INSB NANOWIRE QUANTUM
DOTS

d
I s

d
 /d

V
s
d
 (

 e
2
/h

)

V
sd

 (mV)
0.0-0.4 0.4-0.2 0.2

1.6

1.2

0.4

0.0

(c) A
B
C

-∆ ∆

∆/2-∆/2

-2∆

2∆

(d)

V
sd

 (μV)
-20-60 6020-40 400

V
b

g
 (

m
V

) -330

-328

-332

-336

-334

d
I
s

d
 /d

V
s

d  (e
2/h

)

1
.0

0
.9

0
.8

0
.7

D
E

F

d
I
s

d
 /d

V
s

d  (e
2/h

)

1
.0

0
.9

0
.8

0
.7

V
sd

 (μV)
-60 60-30 300

B
 (

m
T

)

12

6

-6

0

(e)

V
sd

 (mV)
0.0-0.4 0.4-0.2 0.2

V
b

g
 (

m
V

)

-310

-320

-330

-340

-350

(b)

A

B

C

dI
sd 

/dV
sd

 (e2/h)

1.51.00.50.0

d
I s

d
 /d

V
s
d
 (

 e
2
/h

)

1.1

1.0

0.9

0.8

(f) D

E

F

V
sd

 (μV)
-60 60-30 300

(g)
∆

E

0

-∆ -ζ

ζ

V
bg

“0” “0*” “0”

E

ζ

(h) ∆(B)

-∆(B)

0

B0

“π” “π”
“0*”

QPT

-ζ

QPT

V
sd

 (mV)
0.0-1.5 1.51.0-1.0 0.5-0.5

V
b

g
 (

m
V

)
-300

-320

-340

-360

(a)
dI

sd 
/dV

sd
 (e2/h)

0.60.40.20.0

B = 30 mT

even

even

odd ∆

Figure 4.20: SGS of a Josephson quantum dot with a strong Kondo effect. (a) The

charge stability diagram measured for Dev. AlInSbAl#3, at B = 30 mT and with side-gate

voltages Vg1 = −1 V and Vg2 = 1 V. The system is in its normal state. The zero-bias Kondo

ridge is visible. The superimposed white line is the dIsd/dVsd − Vsd line-cut taken at the

position indicated by F. (b) The low-bias region of the charge stability diagram in (a) but

with B = 0 mT, i.e., the device is in its superconducting state. (c) The dIsd/dVsd − Vsd
line-cuts taken from (b) at the points indicated by A,B and C. The diagram in (b) and line-

cuts in (c) show an even-odd alternation of the conductance SGS. In the even occupation

region, the SGS is dominated by the first-order and the second-order MAR features. In the

odd occupation, the SGS is composed of ABS-features superimposed with MAR signatures.

Although the quantum dot transforms from even occupation to odd occupation, the QPT

is missing. This is due to the Kondo effect which screens the spin on the dot and a spin-

singlet ground state is formed in the dot-lead system. Therefore, the junction does not

experience a ”0-π” phase transition. (d) A zoomed-in view of the squared region in (b).

There are two inner high-conductance lines at Vsd = ±10µV, which can be attributed to

the residual normal DOS probed ABSs. (e) Differential conductance in the low-bias region

on a color scale, as a function of Vsd and a magnetic field B applied perpendicularly to the

substrate, at Vbg = −332 mV [indicated by the dashed line in (d)]. (f) The dIsd/dVsd−Vsd
line-cuts taken from (e) at points D, E and F. The diagram in (e) and line-cuts in (f) show

the inner high-conductance lines in (d) cross at B =∼ ±2mT and split again afterwards.

This can be explained as the magnetic field induced QPT when the singlet state changes

to magnetic doublet as the spin-degeneracy is lifted. (g) and (h): Schematic diagram of

ABS energy in this case, as a function of Vbg and B, respectively.
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for Dev. AlInSbAl#3 in a region with a medium dot-leads coupling.

Figure 4.21 (a) displays the charge stability diagram at Vg1 = Vg2 = 0 V

and B = 30 mT1. The Kondo ridge at zero-bias is visible. According to the

HWHM and the peak heigh of the conductance ridge at the center of the Coulomb

diamond, the Kondo temperature of this region is estimated to be TK ≈ 1.5 K and

the coupling asymmetry ratio to be χ = 0.09. Again, the device is asymmetrically

coupled to the superconductors. The Kondo energy is therefore kBTK = 0.13

meV. In Fig. 4.21 (b), the lead superconductivity is turned on at B = 0 mT.

The SGS features emerge in the low-bias region. A zoomed-in view of the SGS in

the low-energy regime is shown in Fig. 4.21 (c) on a color scale, and in Fig. 4.21

(d) in the form of line-cuts. The even-odd alternation of SGS is evident. In

the even-occupied region, the first-order and the second-order MAR signatures

dominate the SGS. In the odd-occupied region, the ABS signatures and the MAR

signatures are both visible. For clarity, we superpose guiding lines of different

signatures on the charge stability diagram in Fig. 4.21 (e) with a different color

scale . The first-order, the second-order and the forth-order MAR signatures are

indicated by the dashed lines at Vsd = ±2∆/e, Vsd = ±∆/e and Vsd = ±1
2
∆/e,

respectively. The singularity probed and normal DOS probed ABS signatures are

indicated by open-circles and open-squares, respectively. We see that the ABS

signatures show two nested brackets-like shapes, and the inner pair crosses at the

resonant points. This indicates that the Josephson quantum dot is a ”π”-junction

in the odd-occupied Coulomb diamond, and QPT occurs at the resonant points

where the quantum dot changes from even-occupied to odd-occupied. However,

in the presence of the Kondo effect, the energies of the ABSs are lowered, i.e.,

they do not merge into the quasi-particle continuums as in Fig. 4.16. A schematic

diagram of the energies of ABSs as a function of gate voltage is shown in Fig. 4.21

(f).

So far, we have demonstrated the ABSs in the quantum dots that are weakly,

strongly and medially coupled to superconductors, respectively. In the odd-

occupied Coulomb diamonds, these ABS signatures exhibit different behaviors

which are strongly dependent on the dot-lead(s) coupling. In Fig. 4.22, we will

show the evolution of the ABS signatures with a continuously-scaled dot-lead(s)

1Note that the measurements were performed in the fridge after a warming-up and cooling-down

process, compared with the above measurements performed for this device. A warming-up/cooling-

down process rearranges the background charge-distribution of the measurement substrate, and the

device may show different gate response.
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Figure 4.21: ABS signatures and MAR signatures in a Josephson quantum dot with

the Kondo effect of medium strength. (a) The charge stability diagram measured for

Dev. AlInSbAl#3, at Vg1 = Vg2 = 0 V, and B = 30 mT (normal state). The Kondo ridge

is visible with TK ≈ 1.5 K and coupling asymmetry ratio χ = 0.09. (b) The same as (a),

but measured at B = 0 mT. The SGS emerge when the lead superconductivity is turned

on. (c) A zoomed-in view of the SGS in the low-energy regime. (d) The same as (c) but

in the form of line-cuts. Adjacent line-cuts are offset sequentially by 0.12 e2/h for clarity.

The even-odd alternation of SGS is evident in both (c) and (d). The ABS signatures and

MAR signatures are both visible. (e) The same as (c) but in a different color scale. (f)

The schematic energy diagram of ABS as a function of gate voltage.
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coupling.

For Dev. AlInSbAl#3, we can use its two side-gates to control the total dot-

lead(s) coupling and the coupling asymmetry. By adjusting the voltages applied

on the side-gate #1 (Vg1) and the voltage on the side-gate #2 (Vg2), we can keep

the chemical potential of the quantum dot at the center of a Coulomb blockade

region with an odd occupation, but vary the dot-lead(s) coupling. Figure 4.22

(a) shows a phase-diagram of the two side-gates measured for Dev. AlInSbAl#3,

i.e., the linear-response conductance on a color scale as a function of Vg1 and Vg2.

The measurements are performed at Vbg = −0.5 V and B = 200 mT. The dashed

line is an equipotential line that corresponds to the center of a Coulomb blockade

region with an odd occupation. The charge stability diagram with respect to Vbg
in Fig. 4.21 (a) corresponds to the position indicated by F in Fig. 4.22 (a), at

Vg1 = Vg2 = 0 V. The Kondo ridges in the normal state that were measured along

this equipotential line are shown in Fig. 4.22 (b). TK can be estimated according

to the HWHM of the Kondo peaks. It is clear to see that TK increases from 1.6 K

to 2.7 K, as Vg1 gets more positive and Vg2 gets more negative. The corresponding

evolution of the SGS measured at B = 0 mT is displayed in Fig. 4.22 (c). The

signatures of the ABSs probed by the quasi-particle DOS singularities are visible

and are indicated by the solid lines. The dashed lines are the guide lines to show

normal DOS probed ABSs signatures which are only partly visible. It is evident

that the ABS energies decrease as TK increases, which is consistent with our

expectation. A QPT occurs at the point indicated by F, where the electron-like

and the hole-like ABSs merge together, associated with a zero-bias conductance

peak. The schematic diagram of the ABS energies as a function of TK is shown in

Fig. 4.22 (d). Note that the TK at the QPT point is 2.1 K, which is higher than

the theoretically predicted value of ∆/kB ≈ 1.8 K. We attribute the inconsistency

of TK at the QPT to the systematic deviation of the estimation method of TK
1.

4.4.4 Kondo effect enhanced ∆-peaks

We summarize several low-energy charge stability diagrams in Fig. 4.23, in which

Figs. 4.23 (a), (d) and (g) have already been discussed earlier. All measurements

are performed in the odd-occupied Coulomb blockade regions of Dev. AlInSbAl#3

at B = 0 mT, T = 25 mK and different gate voltage configurations. Tuned by

1TK is extracted according to the HWHM of the Kondo ridge that was measured at B = 30 mT.

However, the Kondo peak may be broadened by the magnetic field due to the large effective g-factor.
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Figure 4.22: The ABS evolution with the Kondo temperature. (a) The linear-response

conductance on a color scale measured for Dev. AlInSbAl#3, as a function of Vg1 and

Vg2, at Vbg = −0.5 V and B = 200 mT. The chemical potential of the quantum dot can

be controlled by adjusting Vg1 and Vg2. The dashed line is an equipotential line that

corresponds to the center of the Coulomb blockade region shown in Fig. 4.21 (a). (b) The

Kondo ridges in the normal state that measured along the equipotential line in (a). The

values of TK are estimated according to the HWHMs of the Kondo peaks. Along the arrow,

TK increases from 1.4 K to 2.7 K. (c) The evolution of the SGS along the equipotential

line in (a). The superimposed solid lines are the guide lines of the singularity-probed ABS

signatures, while the dashed lines are the guide lines of the normal DOS probed ABS

signatures which are not visible here. The coupling controlled QPT occurs at the point

indicated by F. (d) The schematic diagram of the ABS energy as a function of the Kondo

temperature TK .
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Vg1, Vg2 and Vbg, these diamonds are associated with different Kondo temperatures

and different coupling asymmetry ratios. The values of TK and χ are estimated

according to the HWHMs and peak heights of the Kondo ridges in the normal

state. Generally, the right-upper diagrams in Fig. 4.23 correspond to higher TK
values and larger χ values, while left-lower diagrams correspond to lower TK
values and smaller χ values.

In almost all of the diagrams in Figs. 4.23 [except (g)], pronounced conduc-

tance peaks show up around Vsd = ±∆/e. Moreover, in the diagrams with

stronger and more symmetric coupling [(b), (c), (e), (f) and (i)], the differen-

tial conductance peaks emerge at zero-bias voltage and run through the whole

Coulomb diamond of odd occupation. These features all strongly depend on the

Kondo resonance.

These conductance peaks at Vsd = ±∆/e have been detected routinely in odd-

occupied Josephson quantum dots with moderate dot-lead(s) couplings (87, 88,

89, 90, 91), and are often referred to as the ∆-peaks. However, there are still a

lot of argument and debate about the physical origin of the ∆-peaks.

For the Josephson quantum dot with asymmetric coupling, Refs. (88, 89) state

that the ∆-peaks could be caused by the hidden Kondo DOS peak formed in the

dot-lead system. The corresponding schematic is shown in Fig. 4.24 (a). When

Γ ≥ ∆, the Kondo resonance survives in the competition with the superconduc-

tivity. If ΓL � ΓR, the left-side lead contributes more than the right-side lead

on screening the spin on the dot. That is to say, with a finite bias voltage, the

Kondo DOS peak at the Fermi level of the left-side contact is much larger than

the Kondo DOS at the Fermi level of the right-side contact. It looks like the

Kondo DOS peak is pinned at the Fermi level of the left-side contact. In this

case, the right-side superconductor serves as a tunneling probe. When the quasi-

particle DOS singularities of the probing superconductor are aligned with the

Kondo DOS peak at the Fermi level of the left-side superconductor, a prominent

tunneling current enhancement occurs. The explanation is reasonable when the

total dot-leads coupling is strong but very asymmetric.

Another argument is that the ∆-peaks are due to the ABS at the QPT point.

Here, we would like to explain the sub-gap bound states induced ∆-peaks from

another point of view, which is described in terms of the Kondo model rather

than the Anderson model (91, 92) for a spinful Josephson quantum dot.

In bulk superconductors, magnetic impurities will give rise to the localized Yu-
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Figure 4.23: The low-energy charge stability diagrams measured for Dev. AlInSbAl#3

with different gate-voltage configurations. All measurements are performed at B = 0 mT

and T = 25 mK. The estimated Kondo temperature TK and coupling asymmetry ratio χ

are labeled for each diagram except for (h). Generally, right-upper diagrams correspond

to higher TK values and larger χ values, while left-lower diagrams correspond to lower TK

values and smaller χ values.
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(a)
Г

L
Г

R

(b)
Г

L
Г

R

Figure 4.24: The hidden Kondo DOS peak and YSR bound states. (a) The hidden Kondo

DOS peak that is pinned to the superconductor on one side may cause two pronounced

∆-peaks. The explanation is reasonable when the total dot-leads coupling is strong but

very asymmetric. (b) The formation of Yu-Shiba-Rusinov sub-gap bound states could also

induce enhanced ∆-peaks, especially when kBTK ∼ ∆, i.e., at the QPT point.

Shiba-Rusinov bound states (YSR-states) inside the superconducting gap (93, 94,

95, 96). YSR-states result from a reduced pairing potential near the magnetic

impurities. In the vicinity of an uncompensated −1
2
-spin, it needs smaller energy

to break a Cooper pair spin-singlet. Therefore, the quasi-particle DOS singu-

larities at ±∆ will move towards the Fermi level by Ex, the exchange energy

between the unscreened spin of the magnetic impurity and the quasi-particles in

the superconductor. The quantum dot with an odd occupation can reduce the

pairing potential in the same way as the magnetic impurity, when it is coupled

to superconductors. To lower its energy, the unpaired spin in the quantum dot

correlates with the quasi-particles in the superconductor leads via an exchange

interaction, which is known as the spin-flip process as we described earlier. This

leads to the formation of the sub-gap bound states at ±(∆−Ex) [Fig. 4.24 (b)],

similar to the YSR-states in the bulk superconductor with magnetic impurities.

The energy scale of the exchange interaction Ex can be reflected by the Kondo

temperature TK . If kBTK � ∆, the exchange interaction is so weak that there

is not much inter-talk between the superconductor and the quantum dot. YSR-

states are close to the quasi-particle continuum. As TK increases, the energies

of the YSR-states get lower. In the limit of kBTK ≈ ∆, the exchange interac-

tion is well-matched with the electron pairing potential in strength. This leads

to the merging of the sub-gap bound states at the Fermi level and a complete

closing of the quasi-particle excitation gap. When kBTK exceeds ∆ significantly,

the spin-flip wins the competition. However, the magnetic spin in the dot is
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get well-screened by the Kondo resonance at the same time, and therefore the

quasi-particle excitation gap opens up again, along with the YSR-states moving

towards the opposite quasi-particle bands (97).

The crossing and spliting of the YSR sub-gap states as TK increases are con-

sistent with the QPT in the point of view of the Andreev bound states. When

kBTK ≈ ∆, the YSR-resonance states emerge at the Fermi level of the strongly

coupled superconductor. If the dot-leads coupling is asymmetric, ∆-peak will

emerge when the quasi-particle DOS singularity is aligned with the YSR-states.

The third proposal is that the prominent ∆-peak can be attributed to the

Kondo effect enhanced second-order MAR (87). At a finite bias voltage Vsd,

Kondo DOS peaks are pinned at the Fermi levels of both superconductor contacts

with an energy separation of eVsd. This requires that the dot-lead coupling ΓL
and ΓR are both large enough to retain Kondo resonance in the non-equilibrium

regime. As shown in Fig. 4.25 (a), under Vsd = ±∆/e, the Kondo DOS peaks

overlap with the paths of the second-order MAR1. The overlapping reliefs the on-

site Coulomb interaction caused tunneling suppression, and opens up two chan-

nels for the AR process. Therefore, the second-order MAR is greatly enhanced

in contrast to the one in the even-occupied Coulomb diamonds. However, the

Kondo DOS peaks do not overlap with the first-order and the third-order MARs,

while they partly overlap with the forth-order MAR. Generally, it is predicted

that the Kondo DOS should enhance MARs of even-order. This predication is

consistent with our measurement results in Figs. 4.20 and 4.21, where ∆-peaks

are pronounced and 1/2∆-peaks are visible.

The above three explanations for the enhanced ∆-peaks focus on different

physical mechanisms, and the extent of their applications differs with each other.

However, the Kondo effect is proven to be critical in all of these arguments. In

some cases, comprehensive and unified scopes are needed to explain the ∆-peaks.

4.4.5 Kondo effect enhanced zero-bias peaks

The zero-bias conductance peaks (ZBP) in Figs. 4.23 (b), (c), (e), (f) and (i) can

be attributed to the supercurrent enhanced by the Kondo effect. In a voltage-

biased measurement setup, ZBP should appear if Cooper pair (co-)tunneling oc-

curs. In fact, in some cases, the ZBP is a more sensitive signature of the supercur-

rent than the zero-resistance current in current-biased measurements (see SI of

1In some references, the second-order MAR is referred to as the first-order AR.
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(a) ГL ГR
(d) ГL ГR

(c) ГL ГR
(b) ГL ГR

Figure 4.25: MARs correlate with the Kondo effect. (a) The Kondo effect enhanced

second-order MAR. Kondo DOS peaks at the Fermi levels of the superconductor contacts

open channels for the second-order MAR. (c)-(d) Kondo DOS peaks with the first-order,

the third-order and the forth-order MARs, respectively. However, only MARs of even-order

can be enhanced by the Kondo effect.

Ref. (98)). Generally speaking, the (co-)tunneling of the Cooper pair through a

quantum dot is strongly suppressed due to the on-site repulsive Coulomb interac-

tion. However, the supercurrent is predicted to coexist with the Kondo resonances

provided that the Kondo energy kBTK is larger than ∆ (99, 100, 101). The Kondo

resonance increases the electrical transparency of the quantum dot and therefore

also promotes the (co-)tunneling of the Cooper pair. The supercurrent enhanced

by the Kondo effect has been observed experimentally (102, 103). It was proven

in the previous theoretical and experimental work that the energy ratio kBTK/∆

is the key parameter of determining the magnitude of the enhanced Josephson

current. Normally, the larger the ratio kBTK/∆ is, the larger the Josephson

current Ic is, with an exception at the QPT point, where |Ic| shows an abrupt

drop (104).

The values of TK corresponding to the Kondo valleys in Figs. 4.23 (b), (c),

(e), (f) and (i) are 2.6 K, 4.6 K, 2.3 K, 2.4 K, and 1.6 K, respectively. According

to our earlier discussion, the Josephson quantum dot is a ”0”-junction in the

odd-occupied Coulomb diamonds in Figs. 4.23 (b), (c), (e), and (f), whereas it is

a π-junction in Fig. 4.23 (i). Despite the different phases-shifts, ZBPs emerge in

all of these diagrams. However, we found that the diagram in Fig. 4.23(a) (or in

Fig. 4.20) does not show a ZBP, even with a high TK of 4.1 K. The ZBP missing

in the high TK regime could result from the very asymmetric coupling. Although

the quantum dot is strongly coupled to the superconductor contact on one side,

leading to a high TK Kondo resonance, the decoupling between the dot and the

superconductor on the other side inhibits the tunneling of Cooper pairs.
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To investigate the influence of coupling asymmetry on the ZBP, we activate

the two side-gates of Dev. AlInSbAl#3 and select a region in the Vg1−Vg2 phase-

diagram to finely control the asymmetry. The Vg1 − Vg2 phase-diagram, i.e., the

linear-response conductance on a color scale as a function of Vg1 and Vg2 is shown

in Fig. 4.26 (a). The measurements are performed at B = 30 mT and Vbg = −0.3

V. Due to the strong coupling, the resonant peaks of the same orbital state merge

together, but they split at B = 0.2 T because of the Zeeman effect, as shown in

the inset colormap of Fig. 4.26 (a). Along the dashed line in Fig. 4.26 (a), the

differential conductance as a function of Vsd is plotted on a color scale in Fig. 4.26

(b). The coordinated adjustment of Vg1 and Vg2 keeps the Vsd-sweeping in the

center of the Coulomb diamond with an odd occupation. We can see that the

Kondo ridge emerges at zero-bias, varying both in magnitude and width. Along

the arrow, the value of TK shows a slight increase from 2.6 K to 3.2 K, but the

coupling asymmetry ratio χ decreases from 0.38 to 0.08. We then come to the

SGS in the superconducting state in Fig. 4.26 (c). As we predicted, the ZBP

only emerges at the region with more symmetric coupling, despite fact that the

total coupling is slightly weaker. This indicates that besides the total coupling,

the coupling asymmetry is another important parameter for the (co-)tunneling

of the Cooper pair.

Special attention should be paid to the ZBPs appearing near the quantum level

resonance points, like those points labeled by F in Figs. 4.23 (d), (g) and (h). The

Kondo resonance has the highest strength near the resonant level, and therefore

the supercurrent can be more enhanced by the Kondo correlation. However, ZBP

can also be caused by many other mechanisms near the resonant level. Firstly, the

single electron resonant level is also a possible supercurrent channel, and therefore

the supercurrent transistor effect (105) can be induced. Secondly, crossover of

ABS (or YSR) states can also lead to a ZBP in the tunneling regime, as we

discussed earlier. Thirdly, a bunch of high-order MARs could get dramatically

modified and converge to a ZBP (106) near the resonant level. Finally, the

residual quasi-particle resonant tunneling events near the Fermi level can also

contribute to the conductance peak, as shown in Fig. 4.7.
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Figure 4.26: The influence of the coupling asymmetry on the ZBP. (a) The Vg1 − Vg2

phase-diagram of Dev. AlInSbAl#3, i.e., the linear-response conductance on a color scale

as a function of Vg1 and Vg2, at B = 30 mT and Vbg = −0.3 V. The inset schematic shows

the device layout and the inset colormap is the Vg1 − Vg2 phase-diagram in the normal

state for the dash-squared region. (b) The differential conductance on a color scale as a

function of Vsd, along the dashed line in (a). The measurements are kept in the center of

the Coulomb diamond with an odd occupation. Along the arrow, the value of TK shows

a slight increase from 2.6 K to 3.2 K, but the coupling asymmetry ratio χ decreases from

0.38 to 0.08. (c) The same as (b) but at B = 0 mT. Conductance SGS emerges at the

low-bias region. ZBP only appears in the upper region where coupling is more symmetric

despite the fact that the total coupling is slightly weaker.
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4.5 SGS evolutions with temperature and magnetic field

The conductance SGS can be dramatically modified with the increasing temper-

ature or an increase of the external magnetic field. In this section, we will discuss

how SGS evolves as the temperature or the magnetic field increases, by analyzing

the measurement results achieved from a few Josephson quantum dot devices.

The first example is selected from the electron transport region of Dev. AlInS-

bAl#1. We first characterize the device in its normal states and its SGS at zero

field and base temperature in Fig. 4.27.

Firstly, the device is measured in a voltage-biased setup. Figure 4.27 (a)

shows the charge stability diagram measured for the device at B = 0.2 T, when

the contacts are in their normal states. The Coulomb diamond structure can

be identified with the charging energy of Ec ≈ 7 meV. The Kondo anomaly can

be identified near the zero-bias region. However, due to the large effective g-

factor of the InSb quantum dot, the Kondo ridge has split at B = 0.2 T. The

Kondo peaks at different magnetic fields from B = 70 mT to B = 700 mT,

are shown in Fig. 4.27 (b). It is evident that the Kondo ridge starts splitting

even at B = 70 mT, where the device just transforms from the superconducting

state to the normal state (Bc = 62 mT for this device). To estimate the Kondo

temperature, we have to deduce the line-shape of the Kondo ridge at zero field but

with normal contacts. This is done by fit the measured split-Kondo peaks using

the method in Ref. (37). The result of the fit is represented by the red-dashed

line in Fig. 4.27 (b). Accordingly, the Kondo temperature TK at the center of

Coulomb diamond is determined to be 2.2 K and the coupling asymmetry ratio

χ is 0.17. So the relative energy-relations for the odd-occupied diamond can be

determined as Ec � kBTK & ∆.

In the superconducting state, the conductance SGS emerges. Figures 4.27

(c) and (d) display the low-energy SGS on a color scale and sequentially offset

line-cuts, respectively. A few line-cuts [indicated by A-D in Fig. 4.27 (c)] are

highlighted in Figs. 4.27 (e) and (f). The SGS exhibits typical even-odd alter-

nation behavior as we described earlier. In the deep blockade region with even

occupation [like at point A in Fig. 4.27 (c)], only the first-order and the second-

order MAR induced peaks are visible. The first-order MAR feature is very sharp

and it is even associated with two differential conductance dips with negative

values near the two 2∆-peaks. The areas with negative differential conductance
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Figure 4.27: The SGS measured for Dev. AlInSbAl#1. (a) The charge stability diagram

measured for the device at B = 0.2 T. The device is in its normal state, and the Coulomb

diamond structure can be identified. The Kondo anomaly can be seen clearly at zero-bias.

However, the Kondo ridge has already split even at B = 0.2 T due to the large effective

g-factor of the InSb quantum dot. (b) The differential conductance as a function of Vsd

performed at Vbg = −585 mV [the dashed line in (a)] and at different magnetic fields from

B = 70 mT to B = 700 mT. It is evident that the Kondo ridge already starts splitting

at B = 70 mT, where the device just transforms from the superconducting state to the

normal state (Bc = 62 mT for this device). The line-shape of the Kondo ridge at zero

field but with normal contacts is deduced according to the measured split-Kondo peaks,

and is represented by the red-dashed line in (b). Accordingly, the Kondo temperature

TK at the center of the Coulomb diamond is determined to be 2.2 K and the coupling

asymmetry ratio χ is 0.17. (c) and (d) show the low-energy SGS of the squared region

in (a), on a color scale and in a sequentially offset line-cut plot, respectively. A few line-

cuts [indicated by A-D in (c)] are highlighted in (e) and (f). The SGS exhibits typical

even-odd alternation behavior. In the deep blockade region with even occupation (like at

point A), only the first-order and second-order MAR induced peaks are visible. The first-

order MAR feature is so sharp it is even associated with two differential conductance dips

with negative values near the two 2∆-peaks. In contrast, the SGS in the deep blockade

region with odd occupation (like at point B) displays two pronounced ∆-peaks but with

the 2∆-peaks missing. A pronounced ZBP and the conductance peaks at ±1/3∆/e can

be also identified. (g) The differential resistance as a function of the applied source-drain

current Isd and Vbg measured for the device. (h) V − I curves (the measured voltage drop

as a function of the applied current) measured in the Kondo valley. It is clear to see that

there is a relatively flat part at the low-bias region in each of these curves, which can be

attributed to the Kondo effect enhanced Josephson current. (i) The zero-bias conductance

measured in the superconducting state Gs and measured in the normal state Gn, and the

critical current Ic, as a function of Vbg.
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(NDC) in Fig. 4.27 (c) are encircled by purple lines, which favors a upper left-

lower right diagonal distribution in the stability diagram. The signature of the

second-order MAR is much weaker than the signature of the first-order MAR.

This is because that the Andreev reflection process is strongly suppressed by the

on-site Coulomb interaction.

In contrast, the SGS in the deep blockade region with odd occupation [like

at point B in Figs. 4.27 (c) and (e)] displays two strongly enhanced ∆-peaks

but the 2∆-peaks are absent. Outside of the ∆-peaks, pronounced NDC-dips

are also clearly seen. The prominent features around ∆ should be related with

the Kondo effect, as we discussed earlier. According to the energy scale relation

kBTK & ∆, the assumptions of the hidden-Kondo peak, the YSR-states and the

Kondo-enhanced second-order MAR all make sense. In addition to the ∆-peaks,

a sharp ZBP and the conductance peaks at ±1/3∆/e are also visible. The ZBP is

attributed to the Kondo effect enhanced supercurrent. The 1
3
∆-peak could result

from the sixth-order-MAR enhanced by the Kondo effect, as we anticipated that

the even-order MAR will get enhanced by the Kondo effect. In fact, if we check

the line-cut B in Figs. 4.27 (e) carefully, fainter conductance shoulders can be

identified at Vsd = ±1/2∆/e on the sharp slopes of ∆-peaks. The shoulders may

imply the onset of the fourth-order-MAR process, but it gets absorbed by the

nearby ∆-peaks.

Near the resonance point [the line-cut in Fig. 4.27 (f)], the SGS becomes

complicated. The conductance peaks or conductance plateaus at ±2∆/e, ±∆/e

and ±1/2∆/e can be identified. These are attributed to the first-order, second-

order, and fourth-order MARs. As indicated by the dashed lines, their magnitudes

and positions show a clear Vbg-dependence. This is because the MAR is modified

by the single electron resonance in the dot (106).

The device is then characterized in a current-biased setup. Figure 4.27 (g)

shows the measured differential resistance as a function of applied current Isd and

Vbg measured for the device. The dark region represents the area where the device

has a lower resistance. Figure 4.27 (h) shows a few V −I curves, i.e., the measured

voltage drop across the junction as a function of the applied source-drain current.

The V −I curves are measured in the Kondo valley. It is clear to see that there is

a nearly-dissipationless1 current branch in each of the V − I curves. The nearly-

1The resistance of the Josephson current here is not strictly zero, which is due to the background

resistance in the measurement circuit and due to the fact that the Josephson quantum dot here is
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dissipationless current can be attributed to the Kondo effect enhanced Josephson

current. We extract the critical current Ic in the Kondo regime and plot it in

Fig. 4.27 (i), as a function of Vbg, along with the zero-bias conductance measured

in the superconducting state Gs and in the normal state Gn. It is evident that Ic
is significantly dependent on the Kondo resonance instead of the single electron

resonance.

4.5.1 SGS evolution with temperature

We now turn to the SGS evolution with the temperature. As the temperature

increases, the SGS of the Josephson quantum dot changes. Firstly, according to

Eq. 4.1, the superconducting energy gap ∆ decreases as the temperature rises

and the superconductivity completely vanishes above the critical temperature Tc.

Therefore, all the features related to ∆(T ) will evolve accordingly. Secondly,

the single-electron resonance levels, the quasi-particle DOS singularities, and the

Kondo ridges will be thermally broadened and smoothed. Therefore, sharp peaks

and/or dips in SGS will be flattened. Lastly, the temperature changes the Fermi-

Dirac distribution function f (E, T ) =
[
1 + e(E−Ef)/kBT

]−1

, and therefore more

electron-like quasi-particles will be activated over 2∆(T ) to another quasi-particle

band and leads to new transport features.

Figure 4.28 displays the temperature dependent measurements for Dev. AlInS-

bAl#1. Figure 4.28 (a) shows the differential conductance on a color scale as a

function of Vsd and T . The measurements are performed in the blockade re-

gion with an even occupation, at the position indicated by the dashed line A in

Fig. 4.27 (c). The 2∆-peaks and the ∆-peaks are visible. We extract their posi-

tions in Vsd and their peak heights, and plot them as a function of T in Figs. 4.28

(b) and (c), respectively. It can be seen that the positions of the 2∆-peaks and

the ∆-peaks bend towards zero-bias and fits well with ∆ (T ) and 1/2∆ (T ), re-

spectively. The peak magnitudes also decrease as the temperature rises as the

superconductivity and Andreev reflections are thermally smeared.

Surprisingly, a ZBP emerges at T ∼ 450 mK and peaks at T = 800 mK. It

disappears when the superconductivity disappears above T = 1 K. We attribute

this ZBP to the thermal-activation enhancement of the quasi-particles. As shown

in Figs. 4.28 (g-h), as the temperature increases, ∆ shrinks and the two quasi-

resistively and capacitively shunted.
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Figure 4.28: The SGS evolution with temperature. (a) The differential conductance on

a color scale measured for Dev. AlInSbAl#1, as a function of Vsd and T , at the position

indicated by the dashed line A in Fig. 4.27 (c). (b) The positions of peak A1 and peak A2

in Vsd, as a function of T . Solid lines are the fit lines of ∆ (T ) and 1/2∆ (T ), respectively,

according to Eq. 4.1 (1). (c) The heights of peak A1, peak A2 and peak AZBP as a

function of T . (d-f) The same as (a-c) but for the position indicated by the dashed line

B in Fig. 4.27 (c). (g) and (h) show the schematics of the influence of the quasi-particle

thermal-excitation on the tunneling current.

particle bands move closer. On the other hand, electron-like quasi-particles get

more thermally activated (107). As a consequence, more and more electron-like

quasi-particles accumulate in the upper quasi-particle band. The quasi-particle

band to band tunneling is thereby activated and the ZBP develops.

Figures 4.28 (d-f) show similar measurements as Figs. 4.28 (a-c), but measured

in the blockade region with odd occupation, at the position indicated by the

dashed line B in Fig. 4.27 (c). In this region, ∆-peaks and 1/3∆-peaks exhibit

the same tendency as the peaks in the even-occupied region, and their positions

in Vsd and peak heights both decrease as ∆(T ).

Although the Kondo-effect enhanced ZBP also decreases in magnitude, it

shows a different line-shape than other peaks in Figs. 4.28 (f). In contrast to

the slow drops of the ∆-peak and the 1/3∆-peak, the ZBP shows a dramatic

decrease at T < 500 mK1. The inset plot of Fig. 4.28 (f) shows the height of the

ZBP but on a logarithmic temperature scale, and it is clear to see the negative

1Below T = 150 mK, the ZBP and other conductance peaks do not show any significant change

due to the electron temperature saturation.
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Figure 4.29: The SGS evolution with the magnetic field. (a) The differential conductance

on a color scale measured for Dev. AlInSbAl#1, as a function of Vsd and B, at the position

indicated by the dashed line A in Fig. 4.27 (c). The fit lines of 2∆(B) and ∆(B) are

superimposed. (b) The same as (a), but at the position indicated by the dashed line B in

Fig. 4.27 (c). The fit lines of ∆(B), ∆(B) and 1
3∆(B) are superimposed. (c) The same as

(b), but in a larger B scale. Two dIsd/dVsd − Vsd line-cuts are superimposed, which are

taken at the position indicated by Fs .

linear slope in the range of T = 150 − 700 mK. This is consistent with the fact

that the ZBP is greatly dependent on the Kondo effect. As we discussed in

Chapt. 3, the negative linear slope in the G − log(T ) curve is a typical feature

of the temperature dependence of the Kondo effect. Therefore, the Kondo effect

enhanced ZBP could show the same tendency. Note that the height of the ZBP

shows a small recovery in the range of T = 700−950 mK, and it can be attributed

to the shadow-effect of the quasi-particle thermal-activation, similar to that of

the ZBP shown in Fig. 4.27 (c).

4.5.2 SGS evolution with magnetic field

The magnetic field can modify the SGS of a Josephson quantum dot in many

aspects. First, the magnetic field leads to the closing of ∆ and all the SGS

features related to ∆(B) evolve accordingly. Second, the magnetic field induces

the Zeeman effect, which splits the spin-degenerated quantum levels. The lifting

of the spin degeneracy can lead to the splitting of the Kondo ridge and a ”0-

π” quantum phase transition. The Zeeman effect can also change the on/off

resonance status of the quantum dot, especially for a quantum dot with a large

effective g-factor.

In Fig. 4.29, the SGS field evolution of Dev. AlInSbAl#1 is shown. Fig-

ure 4.29 (a) displays the differential conductance on a color scale measured for
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Dev. AlInSbAl#1, as a function of Vsd and B. The measurements are performed

in the blockade region with an even occupation, at the position indicated by the

dashed line A in Fig. 4.27 (c). It can be seen that both the 2∆-peak and the

∆-peak bend towards zero-energy as the magnetic field increases. According to

Eq. 4.1 (2), 2∆(B) and ∆(B) are plotted and superimposed on the colormap, and

they fit well with the 1st and 2nd MAR features, respectively. As expected, the

magnitudes of the 2∆-peak and the ∆-peak also decrease as the magnetic field

increases.

The SGS field evolution for the blockade region with odd occupation is shown

in Figs. 4.29 (b) and (c). The measurements are performed at the position indi-

cated by the dashed line B in Fig. 4.27 (c). The fit lines of 2∆(B), ∆(B) and
1
3
∆(B) are superimposed on Fig. 4.29 (b). Again, we can see that all the MAR

peaks evolve with ∆(B) even when they have a correlation with the Kondo effect.

Figure 4.29 (c) shows the SGS evolution in a larger B scale. The Kondo peak

can be identified when the superconductivity vanishes at B > 62 mT, when the

Kondo ridge has already split.

The SGS field evolution of Dev. AlInSbAl#1 mainly shows that they are

modified as ∆ decreases with the magnetic field. As we mentioned, a magnetic

field can also modify the SGS in other ways.

We have demonstrated the magnetic field induced QPT in an odd-occupied

quantum dot but with a spin-singlet ground state [Fig. 4.20 (c)]. In contrast,

the ABS in a ”π”-junction quantum dot should show a split due to the Zeeman

effect (80). An example is given in Figs. 4.30 (a-c). Figure 4.30 (a) illustrates the

measured SGS of Dev. AlInSbAl#3 which has been shown in Fig. 4.23 (h). The

guide lines of the quasi-particle DOS singularity probed ABS signatures and the

residual normal DOS probed ABS signatures are superimposed. According to the

bracket-like shape of the ABS signatures, it is clear that the Josephson quantum

dot is a ”π”-junction in the center of the blockade region with an odd occupa-

tion. Figure 4.30 (b) shows the SGS field-evolution at the position indicated by

the dashed line in Fig. 4.30 (a), and the squared region is shown in the 3D

zoomed-in plot in Fig. 4.30 (c). As expected, the ABS shows a split in the mag-

netic field. The splitting of the ABS signatures is limited by the quasi-particle

continuum which is defined by ∆(B). Again, the split Kondo peaks emerge when

the superconductivity is quenched by the magnetic field.

Figures 4.30 (d-f) illustrate the SGS evolution in a magnetic field for three
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Figure 4.30: The SGS evolution in a magnetic field. (a) The charge stability diagram

which is the same as Fig. 4.23 (h) in a different color scale. The guide lines for DOS

singularity probed ABS signatures (diamonds) and residual normal DOS probed ABS sig-

natures (circles) are superimposed. The inset is a close-up view of the squared region, in

which normal DOS probed ABS is visible. (b) The differential conductance on a color

scale as a function of Vsd and B, measured at the position indicated by the dashed line in

(a). The fit lines of 2∆(B) and ∆(B) are superimposed. (c) A 3D zoomed-in view of the

squared-region in (b). (d-f) The same as (b) but measured at three different odd-occupied

diamonds. They are measured at the centers of the odd-occupied diamonds in Figs. 4.23

(g), (d) and (e), respectively. (g) The same as (b), but measured for Dev. AlInSbAl#2,

in an odd-occupied Coulomb diamond. (h1) A close-up view for the squared region in

(g). (h2) The zero-bias differential conductance as a function of B, taken in (h1) along

the dashed line. (i), (j1) and (j2) are the same as (g), (h1) and (h2), respectively, but

measured at a different odd-occupied Coulomb diamond of Dev. AlInSbAl#2.
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odd-occupied Coulomb diamonds with different TKs. They are taken from the

diamonds shown in Figs. 4.23 (g), (d) and (e), respectively.

The quantum dot in Fig. 4.30 (d) is associated with the lowest TK , in which

the coupling is so weak that no Kondo features can be identified. Although the

quantum dot is odd-occupied, its SGS does not show any typical odd-occupied

behavior such as the enhanced ∆-peaks or the emergence of a ZBP. Due to the

weak exchange interaction, the sub-gap bound state is close to the quasi-particle

continuum and only weak first-order and second-order MAR signatures are visible.

The field evolution of these weak MARs only show monotonic decrease with ∆(B).

As the Kondo correlation gets stronger in Fig. 4.23 (e), the exchange inter-

action drives the sub-gap bound state towards the Fermi level, to an energy of

Eb = ∆− Ex. As indicated by the F, the sub-gap bound state is probed by the

quasi-particle DOS singularity of the superconductor on other side and induces

two conductance peaks at ± |∆ + Eb| /e. For the bound state with 0 < Eb < ∆,

its induced conductance peak does not follow 2∆(B)/e or ∆(B)/e in a magnetic

field. However, the conductance peaks at ±∆/e in Fig. 4.30 (e) show a good fit

with ±∆(B)/e, and is therefore consistent with our assumption that they are

attributed to the Kondo effect enhanced second-order MAR.

In Fig. 4.30 (f), the Kondo energy kBTK just exceeds ∆ and therefore Eb ≈ 0.

Similar to the measurements in Figs. 4.29 (b) and (c), the field evolution of the

SGS in Fig. 4.30 (f) mainly exhibits the monotonic decrease of the ∆-peaks with

∆(B).

Lastly, we check the influence of the magnetic field on the ZBP which is in-

duced by the Kondo effect enhanced supercurrent. As pointed out earlier, the

magnitude of the Kondo effect enhanced Josephson current is mainly determined

by the energy ratio kBTK/∆. The magnetic field smears both the Kondo reso-

nance and ∆, and therefore the field evolution of the Josephson current should

depend on whether the degrading of the Kondo effect is faster than the degrading

of ∆ in the magnetic field (108). The degrading of ∆ is determined by the Eq. 4.1

(2), however, the decreasing of the Kondo resonance depends on TK and the ef-

fective g-factor of the quantum dot. According to theoretical prediction (37),

the higher TK is and the smaller the effective g-factor is, the higher the splitting

threshold field is (36), and therefore the slower the Kondo resonance degrading

is.

Figures 4.30 (g-j) show the measurements for another Al-contacted InSb quan-
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tum dot device, Dev. AlInSbAl#2, with the same geometry as Dev. AlInSbAl#3.

In these measurements, two different evolutions of the Kondo effect enhanced

Josephson current in two Kondo valleys (K1 and K2 ) are illustrated. The field

evolutions of SGS in two odd-occupied Coulomb diamonds are shown in Figs. 4.30

(g) and (h). With different TK , χ and g-factors, Kondo effect enhanced ZBPs

appear in both regimes. The highlighted ZBP structures and their corresponding

zero-bias conductance as a function of B are displayed in Figs. 4.30 (h) and (j).

It is evident that the height of the ZBP in valley K1 decreases in the range of

B = 3− 17 mT, whereas the ZBP of the valley K2 shows a clear increase in the

same range of the magnetic field.When compairing the TK values and effective

g-factors of K1 and K2, we found TK1 < TK2 and |g∗1| > |g∗2|, which is consistent

with our expectation. However, we are aware that there could be other affecting

parameters such as χ or Ec to complicate the competition between the Kondo

effect and ∆.

4.6 Anomalous low-field suppression of the zero-bias con-

ductance peak in Josephson QD devices

We have shown that the Josephson current in a single junction decreases as the

applied magnetic field increases. However, after careful checking the Josephson

current induced ZBPs in Fig. 4.29 (c) and Figs. 4.30 (g-j), we found that the

ZBPs do not reach their maxima at B = 0 mT. Instead, there are conductance

valleys or dips in the low-field region[B = −20 − 20 mT in Fig. 4.29 (c) and

B = −3 − 3 mT in Figs. 4.30 (g-j)]. We will see in this section that the exotic

field-response of the ZBPs in the low-field region has been routinely observed in

our InSb nanowire based Josephson quantum dots.

In Fig. 4.31 (a), a close-up view of the ZBP region of Fig. 4.29 (c) is shown. It

is evident that the height of ZBP reaches its maximum at B = ±20 mT, and it is

suppressed in the range of B = −20−20 mT. More clearly, Fig. 4.31 (b) displays

the measured source-drain current Isd in the same region, as a function of B, at

different Vsd from 2 µV to 38 µV. For each I−B curve, a current valley shows up

in the range of B = −20− 20 mT. We define IP as the maximum current, IV as

the current at B = 0 mT, and I∆ = IP−IV as the depth of the current valley. We

then extract IP , IV and I∆ from (b), and plot them in Fig. 4.31 (c), as a function

of Vsd. Both IP and IV increase with Vsd, while I∆ displays a non-monotonical
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Figure 4.31: The anomalous low-field suppression of the Kondo effect enhanced Joseph-

son current in Dev. AlInSbAl#1 and Dev. AlInSbAl#3. (a) A close-up view of the ZBP

region in Fig. 4.29 (c). The height of the ZBP in the range of B = −20 − 20 mT is sup-

pressed. (b) The measured source-drain current Isd, corresponding to (a), as a function

of B, at different Vsds from 2 µV to 38 µV. For each I − B curve, we define IP as the

maximum current, IV as the current at B = 0 mT and I∆ = IP − IV . (c) The extracted

IP , IV and I∆ from (b), as a function of Vsd. The solid lines are the fit lines of I∆ and IP

according to Eq. 4.12. The line-shape of I∆−Vsd shows a typical supercurrent-Vsd shape of

a small Josephson junction. (d) The differential conductance on a color scale as a function

of Vsd and B, measured in the Kondo valley in Fig. 4.23 (f). (e1) A zoomed-in view of

the squared region in (d). (e2) The zero-bias conductance as a function of B. (f) I∆ as

a function of Vsd, extracted for the region shown in (e1). The line-shape of the I∆ − Vsd
curve is similar to the one in (c). (g) The difference between the zero-bias conductance at

B = 3 mT and the zero-bias conductance at B = 0 mT, which is denoted ∆G(B = 3mT ),

as a function of Vbg. ∆G(B = 3mT ) represents the depth of the conductance dip in the

low-field region [see the definition in (e2)]. (h1) ∆G(B) as a function of B and Vbg, com-

pairing with the low-energy charge stability diagram in (h2). (i) The same as (f), but at

different temperatures from T = 50 mK to 500 mK. As the temperature increases, the

conductance dip is smeared out.
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change as Vsd increases. I∆ first dramatically increases from Vsd = 0µV to 6µV,

and it then decays with a long smooth tail as Vsd continues to increase. We found

that the line-shape of I∆ can be fitted very well to a typical Is − V curve (the

Josephson current as a function of Vsd) (104, 109, 110), which is described by: Is (Vsd) = IcIm

[
J1−iη(Vsd)(Ic~/2ekBT )

J−iη(Vsd)(Ic~/2ekBT )

]
I (Vsd) = IsRJ+Vsd

R+RJ

(4.12)

where Ic is the critical current of the Josephson junction, R and RJ are two

resistances in a resistively and capacitively shunted junction model (105), Jα (x) is

the modified Bessel function of the complex order α, and η (Vsd) = ~Vsd/2eRkBT .

For the fit shown in Fig. 4.31 (c), the parameters are set to be T = 100 mK,

Ic = 1.6 nA, R = 1.5 kΩ, and RJ = 45 kΩ.

The good correlation between the line-shape of I∆−Vsd and the typical I−V
curve of Josephson current implies that the current suppression in the low-field

region is due to the decrease of the Josephson current. In this case, the Josephson

current through a quantum dot is suppressed.

The measurements for Dev. AlInSbAl#3 also show similar phenomena. Fig-

ures 4.31(d-f) display a suppression of ZBP in the range of B = −3− 3 mT. The

suppression here is even sharper than the one shown in Figs. 4.31 (a-c), and the

zero-bias conductance shows a dip in the low-field region. The suppression also

shows the finger-prints of the Josephson current in the I∆−Vsd curve in Fig. 4.31

(c), with a similar line-shape as the Josephson I − V curve. We then check the

gate-dependence of the low-field suppression. For convenience we denote the dif-

ferential conductance as a function of Vbg and B as G(Vbg, B). In Fig. 4.31 (g),

we extract ∆G = G(Vbg, 3mT )−G(Vbg, 0mT ), i.e., the depth of the conductance

dip in the low-field region [see the definition in Fig. 4.31(e2)], as a function of

Vbg. Similarly, ∆G(B) = G(Vbg, B) − G(Vbg, 0mT ) is shown on a color map in

Fig. 4.31 (h1) as a function of B and Vbg, along with the low-energy charge sta-

bility diagram in Fig. 4.31(h2). We can see that the low-field suppression occurs

for all Vbg values as long as there is a ZBP at that Vbg. Moreover, the dip-depth

is relevant to the ZBP height at the zero field. The higher the ZBP at B = 0

mT is, the deeper the low-field conductance dip is. The temperature dependence

measurements of the low-field suppression is shown in Fig. 4.31 (i), in which the

zero-bias conductance as a function of B measured from T = 50 mK to T = 500

mK is shown.The conductance dip gets shallower as the temperature increases
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and is completely smeared out at T = 450 mK.

As we have shown in Fig. 4.30 (j), the magnetic field could lead to an increase

of the energy ratio kBTK/∆ and therefore increase the Josephson current. How-

ever, the low-field suppression of ZBP in Figs. 4.31 (d-i) only occurs below |B| < 3

mT, and kBTK/∆ has not yet effectively increased with ∆(B = 3mT ) ≥ 0.98∆0.

Therefore, the low-field suppression of the ZBP is not a modification of the change

of kBTK/∆.

One might think the low-field suppression of the ZBP is a result of the mag-

netic field induced QPT, i.e., the Josephson quantum dot changes from a ”0”-

junction at zero magnetic field to a ”π”-junction at a finite magnetic field, just

like the measurements shown in Fig. 4.20 (e) and the data reported in Ref. (80).

However, in Fig. 4.32, we will demonstrate that the low-field suppression of ZBP

could occur in both ”0”-junction and ”π”-junction.

Figures 4.32 (a-c) display the magnetic field dependence measurements for

the Kondo valley shown in Fig. 4.23 (b). The Josephson quantum dot is a ”0”-

junction in the center of the odd-occupied Coulomb diamond, due to the strong

Kondo effect. It shows a low-field suppression of ZBP in the range of B = −3−3

mT. We then change to another Kondo valley with a lower TK of ∼1.2 K. The

bracket-like shape of the ABS-induced conductance peaks in Fig. 4.32 (d) indicate

that the Josephson quantum dot is a ”π”-junction deep in the odd-occupied

diamond region. Figures 4.32 (e) and (f) show the magnetic field dependence

measurement for the ZBP, at position A (near the phase transition point) and

position B (deep in the ”π”-junction), respectively. It is clear to see that a low-

field suppression of ZBP occurs at both positions. In this case, there is no QPT

because the dot is a ”π”-junction even at B = 0 mT. Therefore, the low-field

suppression of ZBP does not result from the field-induced QPT. Moreover, the

zero-bias conductance as a function of B at different Vbg positions from A to B

are shown in Fig. 4.32. With different bound state energies Eb, the widths of

these low-field conductance dips in a magnetic field are all about 6 mT.

In Fig. 4.33, we summarize several measurement results of the low-field sup-

pression of ZBP in the regimes with different TKs. Figure4.33 shows the zero-bias

conductance as a function of the applied magnetic field, measured at different

regimes with different Kondo temperatures. Figures 4.33 (a-d) are measured for

Dev. AlInSbAl#2 and (e-h) are measured for Dev. AlInSbAl#3. The low-field

suppression of the zero-bias conductance occurs in all of the regimes, with the TK
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Figure 4.32: The low-field suppression of the ZBPs in a ”0”-junction and in a ”π”-

junction. (a) The differential conductance on a color scale as a function of Vsd and B,

measured for Dev. AlInSbAl#3 at the center of the odd-occupied Coulomb diamond in

Fig. 4.23 (b). (b) A close-up view of the squared region in (a). (c) The zero-bias conduc-

tance as a function of the magnetic field [along the dashed line in (b)]. The ZBP in this

”0”-junction Kondo valley shows a fainter conductance-dip as indicated by the arrows in

(c). (d) The low-energy charge stability diagram with the SGS, measured for Dev. AlInS-

bAl#3, at Vg1 = −2 V and Vg2 = 3 V. The bracket-like shape of the ABS signature indicates

that the quantum dot is a ”π”-junction in the odd-occupied diamond. (e)-(f) The same

as (b), but measured at the positions A and B in (d). (g) The zero-bias conductance as a

function of B measured at different Vbg between positions A and B. It is clear to see that

a low-field conductance dip emerges in each of these curves. The width of the dip on the

scale of the magnetic field does not depend on the energy Eb of the sub-gap bound states.
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Figure 4.33: The zero-bias conductance as a function of the applied magnetic field, mea-

sured at different regimes with different Kondo temperatures. (a-d) are the measurements

for Dev. AlInSbAl#2 and (e-h) are the measurements for Dev. AlInSbAl#3. The low-field

suppression of the zero-bias conductance occurs in all of the regimes, with the TK ranging

from 1.5 K to 4.4 K. However, the suppression is very weak in the regimes shown in (e)

and (h) associated with the highest TK of 4.4 K and 3.6 K, respectively.

ranging from 1.5 K to 4.4 K. However, the suppression is very weak in the regimes

shown in (e) and (h) which have the highest TK of 4.4 K and 3.6 K, respectively.

We also performed field dependence measurements for Dev. AlInSbAl#3 in

an open region without the Coulomb blockade.

Figure 4.34 (a) shows the differential conductance as a function of Vsd and Vbg,

measured in the open region of Dev. AlInSbAl#3 in its normal state at B = 30

mT. Because there is no Coulomb blockade, the conductance exceeds 2e2/h. A

chess-pattern conductance structure can be identified, indicating that the Fabry-

Pérot interference-like transport occurs. In the superconducting state, the tun-

neling of the Cooper pair is enhanced at the constructively interfered points in

the conductance chess pattern and a high ZBP emerges there (111) [Fig. 4.34 (b)].

The magnetic field dependence measurements are shown in Figs. 4.34 (c) and (d),

at Vbg = 1.88 V as indicated by the dashed line in Fig. 4.34 (b). Although the

supercurrent-induced ZBP is as high as 6e2/h, no low-field suppression emerges

here.

Consequently, the low-field suppression is much sharper for the ZBP in the

Kondo regime with a medium TK . Also, for the same device, the conductance-dip

width in the scale of the magnetic field varies very little with gate voltage, despite

the fact that the g-factor of the quantum dot and TK both fluctuate greatly with
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Figure 4.34: The measurements in the open region of Dev. AlInSbAl#3. (a) The charge

stability diagram measured in the open region of Dev. AlInSbAl#3 in its normal state at

B = 30 mT. A Fabry-Pérot interference-like conductance chess pattern can be identified.

(b) The same as (a), but measured in the superconducting state at B = 0 mT. The Joseph-

son current induced ZBP is visible at those Vbg values where the normal state conductance

is high. (c) The differential conductance as a function of Vsd and B, measured at the

position indicated by the dashed line in (b). (d) The zero-bias conductance as a function

of B [along the dashed line in (c)]. The ZBP does not show any suppression in the low-field

region.
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gate voltage. However, the dip-width can be very different from device to device.

We are uncertain about the physical origin of the exotic low-field suppres-

sion of the ZBP. Similar field-enhancement of the superconductivity has been

reported in ultra-thin superconductor films and wires (112, 113, 114), where it is

referred to as the anti-proximity effect. Different explanations are proposed for

the anti-proximity effect in those references. However, the anti-proximity effect

in Josephson quantum dot has never been reported. Our measurements show

that the anti-proximity effect is routinely found in the Kondo regime of the InSb

nanowire based Josephson quantum dot devices. The anti-proximity effect likely

favors the regime where the Kondo effect promotes the co-tunneling of Cooper

pair but the quantum dot remains to be spinful.
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5

Search for Majorana Bound

States in Superconductor-InSb

Nanowires Hybrid Devices

In this chapter, we will discuss the search for the Majorana bound states in

superconductor-InSb nanowire hybrid systems. Anomalous zero-bias differential

conductance peaks, as the signatures of the Majorana bound states, are studied

in Au-InSb nanowire quantum dot-Nb hybrid device and in Nb-InSb nanowire

quantum dot-Nb hybrid devices. The zero-bias conductance peaks that induced

by other mechanisms are also described in comparison with the signature of Ma-

jorana bound states.

5.1 Majorana bound states in superconductor-coupled semi-

conductor nanowires

Majorana fermions are particles with half spins and they are their own antipar-

ticles. The exotic fermions are first predicted by and then named after Ettore

Majorana. The conception arises from a ”real” version of Dirac equation. Dirac

derived his relativity-style Schrödinger equation in 1928, from which Dirac de-

veloped the conception of negative energy and thereby predicted the existence of

antiparticles. A few years later, antiparticles were discovered. In the terms of

quantum field theory, a particle and its anti-particle can be described by a pair of

conjugate complex fields. However, an imaginary part is included in Dirac equa-
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tion, and therefore the quantum state of the particle is complex. As we know, a

complex number is different from its conjugation and hence a particle is differ-

ent from its antiparticle, for example, electron is distinct from its antiparticle–

positron. In 1937, Ettore Majorana fashioned Dirac formula by making it more

mathematically elegant (115). He replaced Dirac’s matrices with a pure imagi-

nary one and thus could get a real wave function eventually. Since for a real wave

function Ψ, Ψ = Ψ† holds, and an interesting deduction thereby comes out from

Majorana equation: there could be some −1
2
-spin fermions which are their own

antiparticles.

The first candidate of Majorana fermions was (and is) the neutrino. One

way to check whether the neutrino is or is not a Majorana fermion is the so-

called neutrinoless ββ-decay neutron collisions (116, 117). However, although

plenty of efforts have been made over several decades, no neutrinoless ββ-decay

is observed. Another Majorana fermions hunting field is fairly larger than the size

of an atom, the cosmos. To explain the conflicts between cosmology observations

and calculations (118), it is suggested that our visible universe, i.e., the part

composed of the Standard Model (SM) particles (119), is actuarially immersed in

a giant bath of the dark matters. The most popular theory about the composition

of the dark matters is the hypothesis of the weakly interacting massive particles

(WIMP) (120). It is soon realized that the hypothetical WIMP particle could be

a candidate of the Majorana neutrinos (121).

Along with the efforts made in particle physics and cosmology, a new Ma-

jorana fermions searching field is also opened up in solid state physics. It was

realized that the quasi-particles in solid state systems could be engineered to ma-

terialize the Majorana fermions (122, 123, 124, 125, 126). Numerous proposals for

probing Majorana fermions in solid state systems1 have been suggested, ranging

from the fraction quantum Hall effect with 5/2 filling factor (128), the p-wave

superconductor (129), the topological insulator coupled to an s-wave supercon-

ductor (130), and the semiconductor with strong spin-orbit interaction (SOI) in

the close proximity of an s-wave superconductor (131, 132). One of the most

recent proposals is to expose a superconductor-coupled semiconductor nanowire

with a strong SOI into an external magnetic field (133, 134). These propos-

als have stimulated a new wave of searches for Majorana fermions in solid state

1The ultra-cold 3He superfluid droplet (127) is also a candidate platform for realizing Majorana

bound states.
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systems. The Majorana fermions in solid state systems, are also referred to as

the Majorana bound states, obey a so-called non-Abelian statistics (135, 136).

This makes the Majorana bound states a promising candidate of the topological

quantum computer (8, 9, 137), which is robust against local noise.

The key idea of materializing the Majorana bound states in superconductor-

semiconductor nanowire hybrid devices is to create a p-wave superconducting

environment. Differing from the s-save superconductivity that we have discussed

in previous chapters, the p-wave superconductivity is implemented by pairing the

electrons with the same spins to a Cooper-pair (spin-triplet pairing). To realize p-

wave superconductivity in semiconductors, two conditions have to be met: a spin-

less environment near the Fermi-level and an induced superconducting energy gap

in the close proximity of an s-wave superconductor.

Normally, the energy dispersion of 1D semiconductor nanowire is parabolic,

with a spin degeneracy [Fig. 5.1 (a)]. However, in the presence of an SOI, the

two electronic spin bands split as shown in Fig. 5.1 (b). Under an application

of an external magnetic field normal to the SOI induced effective magnetic field,

a gap Ez is opened up by the Zeeman splitting at k = 0 in the dispersion re-

lation [Fig. 5.1 (c)]. Here, the spins at k = ±kF are polarized by the SOI and

the external magnetic field. The nanowire with a dispersion relation as shown in

Fig. 5.1 (c) is usually called in a helical phase. A spin-less environment is thereby

formed at the Fermi level in the helical phase. Superconducting energy gap can

be also induced into the nanowire by the proximity effect, and a superconducting

energy gap ∆ is opened at the Fermi level. This is the superconducting phase

[Fig. 5.1 (d)]. When both Zeeman gap and superconducting gap are induced, the

nanowire can be driven into two different phases, depending on the relation of the

Zeeman gap Ez and the superconducting energy ∆. If Ez < ∆ [Figs. 5.1 (e) and

(g)], the nanowire is in the trivial superconducting phase because electrons with

opposite spins are involved in electron pairing. However, if Ez > ∆ [Figs. 5.1

(f) and (h)], only one spin can be used to form Cooper pairs, i.e., the p-wave

pairing occurs. In this case, the nanowire is called in the non-trivial supercon-

ducting phase or the so-called topological superconducting phase. According to

Kitaev (8), a pair of Majorana bound states will be created at the two ends of a

1D p-wave superconducting chain.
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Figure 5.1: Energy dispersion of 1D semiconductor nanowires. Solid lines represent the

electron-like bands, while the dashed lines represent the hole-like bands. (a) The nanowire

energy dispersion of the normal phase without any SOI. The two electron spin bands

are degenerate. (b) Spin bands split due to the SOI. (c) The helical phase. A Zeeman

energy gap Ez opens up under the application of an external magnetic field normal to the

direction of the SOI. (d) The superconducting phase. A superconducting energy gap ∆

is induced into the nanowire. No magnetic field is applied here. (e-f) Two helical phases

with different Ez values. The gray regions represent the superconducting energy gaps

that would be induced after the nanowire being coupled to an s-wave superconductors. A

spineless environment is formed in the gray region of the helical phase dispersion in (f).

(g) The trivial superconducting phase with ∆ > Ez. (h) The non-trivial superconducting

phase with ∆ < Ez. (i) The field evolution of E(kF ) (the light-blue line) and E(0) (the

brown line). The black line shows the field evolution of the overall energy gap. (j) Two

Majorana bound states (indicated by the F) are formed at the two boundaries of the

trivial superconducting phase and the non-trivial superconducting phase. Panels (a-h) are

reproduced by courtesy of Guang-yao Huang.
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5.2 Anomalous zero-bias conductance peaks in supercon-

ductor coupled InSb nanowire quantum devices

Semiconductor InSb nanowires, with strong Rashba SOIs (138, 139, 140), giant

effective g-factors (20) and good couplings to s-wave superconductors (66), are

expected to provide an excellent material platform for the study of Majorana

bound state in solid state systems (51, 98, 141, 142, 143). In this section, we will

introduce the measured zero-bias differential conductance peaks as the signatures

of the Majorana bound states in the InSb nanowire-based hybrid devices.

Devices with two different geometries are fabricated and measured, as shown

in Fig. 5.2. The first geometry is a normal metal-InSb nanowire-superconductor

structure [Fig. 5.2 (a)], with a quantum dot in between the normal metal and the

superconductor. This structure is referred to as the N-QD-S structure. With an

external magnetic field of moderate strength, the InSb nanowire segment that is

covered by the superconductor can be driven into a topological superconducting

phase. As we discussed earlier, a pair of Majorana bound states will be formed at

the ends of the topological superconductor nanowire segment. The wave function

probability distributions in non-trivial superconducting phase, along the nanowire

segment that is covered by the superconductor in Fig. 5.2 (a) is shown in Fig. 5.2

(c). We can see that a pair of zero-energy bound states emerge in the supercon-

ducting energy gap, at the ends of the topological superconducting nanowire seg-

ment. The second geometry is a superconductor-InSb nanowire-superconductor

structure [Fig. 5.2 (b)], again, with a quantum dot formed in between the two

contacts. This structure is referred to as the S-QD-S structure. Since there are

two InSb nanowire segments are covered by superconductors, two pairs of Ma-

jorana bound states can be held in the nanowire in a moderate magnetic field,

separated by the quantum dot. However, the two inner Majorana bound states

(near the quantum dot) can hybridize into a pair of quasi-particles with finite

energies, if the coupling between them is strong. The wave function probability

distributions in non-trivial superconducting phase, along the nanowire in Fig. 5.2

(b) is shown in Fig. 5.2 (d). We can see that there are two pairs of low-energy

bound states emerging in the superconducting energy gap. The two outer bound

states are zero-energy states, while the two inner bound states have non-zero

energies due to the wave function hybridization.

To drive the Nb-contacted InSb nanowire segments of the device from a triv-
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Figure 5.2: Two devices for creating and detecting Majorana bound states. (a) The

schematic layout of the normal metal-InSb nanowire-superconductor hybrid device. (b)

The schematic of the superconductor-InSb nanowire-superconductor hybrid device. (c)

Wave function probability distributions in a non-trivial superconducting phase, along the

nanowire segment that is covered by the superconductor in (a). (d) Wave function probabil-

ity distributions in a non-trivial superconducting phase along the nanowire in (b). Panels

(c) and (d) are reproduced by courtesy of Guang-yao Huang.
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ial superconducting phase to a nontrivial topological superconducting phase,

an application of an external magnetic field B, perpendicular to the Rashba

SOI-induced effective magnetic field BSO, is needed. The magnetic field in-

troduces a Zeeman energy Ez = 1
2
|g∗|µBB̃, where µB = e~/2me is the Bohr

magneton, g∗ is the effective g-factor, and B̃ is the magnetic field actually ap-

plied on the Nb-contacted InSb nanowire segments, which is greatly different

from B due to the Meissner effect. The topological phase transition occurs at

Ez =
√

∆2
InSb + µ2 (131, 133, 134). In general, it is difficult to accurately deter-

mine the strength of the externally applied magnetic field BT at which the phase

transition in the Nb-contacted InSb nanowire segments occurs. In a single band

transport case, according to the measured properties of the Nb trilayer thin film

measured in Chapt. 4, the value of BT (at µ = 0) is estimated to be in the range

of 0.33− 0.78 T.

5.2.1 Anomalous ZBP in Au-InSb nanowire-Nb quantum devices

In this subsection, we discuss the anomalous zero-bias conductance peak (ZBP)

arising from an N-QD-S device in finite magnetic fields. An SEM image of the fab-

ricated and measured N-QD-S device, Dev. AuInSbNb, is shown in Fig. 5.3(a).

The device was made from the InSb nanowire segment of an InAs/InSb het-

erostructure nanowire. One of its two contacts was made from superconducting

Nb (in a 3 nm Ti/80 nm Nb/5 nm Ti triple layer form) and the other one was

made from normal Au (in a 4 nm Ti/80 nm Au double layer form). The spac-

ing between the two contacts is about 210 nm. Mourik et al. and Churchill et

al. have studied devices with similar geometries as Dev. AuInSbNb (98, 143).

Differing from those devices, an InSb nanowire quantum dot was formed in the

junction between the two contacts in this device.

Figure 5.3(b) shows the differential conductance of the device measured atB =

0 T as a function of Vbg and Vsd. Coulomb diamond structures can be identified in

the diagram with the addition energy Eadd is about 1.5−2 meV. At small source-

drain bias voltages, we see the existence of a gap of low conductance over the entire

measured back gate voltages in the figure. This low conductance gap arises from

the proximity effect induced superconducting energy gap of the InSb nanowire.

Figure 5.3(c) shows a trace taken from Fig. 5.3(b) at Vbg = 0.835 V. The low

conductance gap in the low bias voltage region can be easily identified. At the

edges of the gap, two conductance peaks appear located symmetrically around
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Figure 5.3: N-QD-S device. (a) SEM image of the fabricated Au-InSb nanowire quantum

dot-Nb device, Dev. AuInSbNb. (b) Differential conductance on a color scale as a function

of Vbg and Vsd (charge stability diagram) measured at B = 0 T. Here, no ZBP is visible.

(c) A differential conductance trace of the device at Vbg = 0.835 V. The two conductance

peaks indicated by the two black arrows can be attributed to the quasi-particle tunneling

through the singularities in the DOS of the superconducting InSb nanowire. The two

conductance peaks indicated by red arrows are most likely caused by the Andreev bound

states in the junction region. (d) Linear conductance on a color scale measured for the

device as a function of Vbg and B.
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Vsd = 0 V. These peaks arise from quasi-particle tunneling through the singularity

points in the DOS in the superconductor InSb nanowire and the distance between

the two peaks is given by 2∆InSb/e, where ∆InSb is the proximity effect induced

superconducting energy gap in the InSb nanowire. From the measurements, we

can deduce a value of ∆InSb ∼ 0.27 meV. We also note that the measurements also

show two weak subgap differential conductance peaks as indicated by red arrows

in Fig. 5.3(c). These two subgap peaks are most likely due to Andreev bound

states located symmetrically around zero energy in the dot, as we described in

the previous chapter. Figure 5.3(d) shows the linear conductance on a color scale

measured for the device as a function of Vbg and B. The field-evolution of the

quantum levels can be seen.

No ZBP can be seen in Fig. 5.3(b). However, ZBP emerges in the charge

stability diagram shown in Fig. 5.4(a), which is measured at the same gate

voltage region as in Fig. 5.3(b) but at B = 1.25 T [along the dashed-line C in

Fig. 5.3 (d)]. A weak ZBP is visible in the whole gate voltage range. For a

better visualization of the ZBP, Figs. 5.4(b) to 5.4(d) show three traces of the

differential conductance measured at back gate voltages Vbg = 0.9, 0.84 and 0.78

V, i.e., along the three dashed lines in Fig. 5.4(a). A ZBP is clearly seen in

each of the three traces regardless of differences in the back ground conductance.

Several 3D colormap charge stability diagrams for different Vbg regions are also

illustrated in Figs .5.4(e)-(h). A continuous zero-bias peak can be seen in each of

these 3D plots, no matter the quantum dot is in on/off-resonance status.

Figure 5.5(a) shows the differential conductance measured for the device at a

fixed back gate voltage Vbg = 0.835 V [along the dashed-line A in Fig. 5.3 (d)]

as a function of Vsd and B. In these measurements, no ZBP features are found

at magnetic fields B < 0.8 T. However, at B ∼ 0.8 T, two weak conductance

peaks appear in the close vicinity of Vsd = 0 V. As the magnetic field iincreases

further, the two conductance peaks gradually merge into a single ZBP at B ∼ 1.2

T. The ZBP remains visible until B ∼ 1.5 T. Figure 5.5(b) shows the same

measurements of differential conductance as a function of Vsd and B but for the

device at Vbg = 0.81 V [along the dashed-line B in Fig. 5.3 (d)]. In this figure,

a few line-cuts of the differential conductance taken at different Vbg, as indicated

by horizontal solid lines are shown. Here, again, we see no ZBP at low magnetic

fields, but it is clearly visible at magnetic fields B ∼ 0.9− 1.8 T.

Consequently, the ZBP only emerges in a finite magnetic field B > 0.8 T
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Figure 5.4: N-NW-S2. (a) Differential conductance on a color scale as a function of

Vbg and Vsd measured at B = 1.25 T for Dev. AuInSbNb. A weak ZBP is visible over the

measured Vbg region in the figure. (b)-(d) Traces of the differential conductance of the

device taken from (a), at three different values of Vbg indicated by the dashed lines in (a).

A ZBP is clearly seen in each trace. (e)-(g) 3D colormaps of charge stability diagrams for

different Vbg regions, where a continuous ZBP goes through all the diagrams.

and it is not dependent on the on/off-resonance status of the quantum dot. It

cannot be attributed to the Kondo effect as discussed in Chapt.3, or the field-

induced QPT as discussed in Chapt.4 either. Similar as in Ref. (98), the ZBP

here is a signature of the Majorana bound states in the InSb nanowire segment

covered by the superconductor Nb contact. However, differing from Ref. (98),

the zero-energy state is probed by the Au contact via the quantum dot (144).

5.2.2 Zero-bias conductance peaks in Nb-InSb nanowire-Nb quantum

devices

Besides in the N-QD-S structure device, we also observed anomalous ZBPs in

S-QD-S structure devices.

Figure 5.6 (a) displays the charge stability diagram of Dev. NbInSbNb#2 mea-

sured at a magnetic field of B = 0 T. Here, a clear quasi-particle Coulomb

blockade diamond structure is seen, indicating the formation of a quasi-particle

quantum dot in the InSb nanowire junction region between the two supercon-

ductor contacts. From the Coulomb diamond structure, we can determine that

the quasi-particle addition energy of the quantum dot is Eadd ∼ 7 meV, which is

much larger than the superconducting energy gap ∆Nb of Nb. Inside the Coulomb
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Figure 5.5: (a) Differential conductance as a function of Vsd, at Vbg = 0.835 V and at

different B in the region of B ∼ 0 − 1.4 T, measured for Dev. AuInSbNb. The measured

curves are successively offset by 0.06e2/h for clarity. A ZBP is present at magnetic fields

B ∼ 1.2−1.5 T. (b) The same measurements as in (a) but for Vbg = 0.81 V. Superimposed

on the Fig. are the traces of the differential conductance taken at different B values indi-

cated by horizontal lines in the figure. A ZBP is clearly seen in the magnetic field region

between B ∼ 0.9− 1.8 T.

blockade region, vertical stripe features of high conductance can be identified.

These high conductance stripe features are due to the MARs associated with

the superconducting energy gap ∆Nb of Nb and the MARs associated with the

induced superconducting energy gap ∆InSb of InSb nanowire.

The magnetic field dependent measurements of the differential conductance for

Dev. NbInSbNb#2 at V bg = −11.1 V, for which the device is in a quasi-particle

Coulomb blockade region. Figure 5.6 (b) shows the results of the measurements

on a color scale and Fig. 5.6 (c) shows the ranctangled region in Fig. 5.6 (b) in

a line-cuts plot. The main observation is the emergence of a pronounced high

ZBP structure as the magnetic field exceeds ∼ 1 T. The ZBP lasts to B ∼ 2.5

T and locates symmetrically with respect to zero magnetic field. A similar ZBP

also emerges in the magnetic field dependent measurements for the same device

at Vbg = −15 V, as shown in Fig. 5.6 (d). Figure 5.6 (e) shows the high-resolution

measurements of the charge stability diagram in the center of the quasi-particle

Coulomb blockade region at B = 1.8 T for which the measurements show a

strong ZBP. It can be seen clearly that the ZBP runs through the whole blockade

region. Figure 5.6 (f) shows the temperature dependence measurements of the

ZBP. The differential conductance are measured at B = 1.8 T and Vbg = −11.1
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Figure 5.6: Anomalous ZBP in Dev. NbInSbNb#2. (a) The charge stability diagram

measured for Dev. NbInSbNb#2 at B = 0 T. The measurements show a quasi-particle

Coulomb blockade diamond structure with a quasi-particle addition energy Eadd ∼7 meV

to the InSb nanowire quantum dot. The weak vertical stripes of high conductance seen

in the Coulomb blockade region arise from MARs with the superconducting energy gaps,

∆Nb and ∆InSb, related, respectively, to the two Nb-based contacts and the two proximity-

effect-induced superconducting InSb nanowire segments covered by the Nb based contacts.

(b) Differential conductance on a color scale as a function of source-drain bias voltage Vsd

and magnetic field B applied perpendicularly to the substrate and to the InSb nanowire

measured for the Dev. NbInSbNb#2 at V bg = −11.1 V [corresponding to the dashed line

in (a)]. A pronounced zero bias conductance peak is seen to emerge when the magnetic

field exceeds ∼1 T, in both the positive and the negative magnetic field directions. (c)

Same measurements as in (b), but the differential conductance traces measured in the

region marked by the dashed square in part (b) are shown. Here, the measured curves are

successively offset by 0.05 e2/h for clarity. In this figure, in addition to the ZBP, two side

differential conductance peaks are seen to appear at finite Vsd. (d) The same with (c) but

measured for the device at Vbg = −15 V. (e) High-resolution measurements of the charge

stability diagram for the device at B = 1.8 T, for which the device shows a strong ZBP.

Here, only the measurements in the center of the Coulomb blockade region are shown. (f)

Differential conductance on a color scale as a function of Vsd and temperature T measured

for the device at B = 1.8 T and Vbg = −11.1 V. Here, it is seen that the ZBP becomes

hardly visible when the temperature goes above 350 mK.
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V, as a function of Vsd and temperature T . Here, we find that the ZBP decreases

gradually as the temperature is increased and becomes to be hardly visible at a

temperature T ∼ 350 mK (which corresponds to an energy scale of 32 µeV) and

above.

Now we check what the possible mechanism(s) of the ZBP is here. In a Joseph-

son junction device, there are several mechanisms that can cause a ZBP, such as

the Kondo effect, YSR/ABS bound states at QPT point, the Josephson current,

and the high-order MARs. For the Kondo effect, irrespective of half or integer

spin Kondo effect, an associated ZBP should split and move to finite bias volt-

age positions with an increasing magnetic field. However, in our measurements,

the ZBP appears at much stronger magnetic fields (about 1.2-2.7 T) and it does

not show splitting over about a 1.5 T range of magnetic fields. Therefore, the

ZBP we have observed in here could not be a feature of the Kondo effect. As we

discussed in Chapt. 4, field induced QPT can also lead to a ZBP. However, the

QPT induced ZBP will split as the magnetic further increases. The Josephson

current and high-order MARs can also give a ZBP. In both cases, the ZBP will

decrease with an increasing magnetic field. This is clearly not consistent with our

observations, and therefore, all these superconductivity effects cannot be consid-

ered as the physical origin of the ZBP that we have observed. One may also

argue that an applied perpendicular magnetic field could change the energy level

positions in the InSb nanowire quantum dot, leading to level shifting, due to, e.g.,

the Zeeman effect and thus occasionally turn the device to resonant conduction

even if the device is in a Coulomb blockade region at B = 0 T (i.e., the B-FET

effect, as we mentioned in Chapt. 4). However, in Fig. 5.6 (e), we see that the

ZBP runs through the whole blockade diamond, even with the quantum dot is

in the off-resonance status. It should also be noted that in a recent theoretical

work (145), it was predicted that weak antilocalization could induce a ZBP in

a disordered Majorana nanowire. However, due to the inclusion of a quantum

dot in our Nb-InSb nanowire-Nb device, the weak antilocalization induced ZBP

should be suppressed by the Coulomb blockade effect.

In the point of view of Majorana bound states, when there is no coupling

between the two Nb-covered InSb nanowire segments in the device, each of the

two nanowire segments in a topological superconductor phase should support a

pair of Majorana fermions located at the two ends of the segment. When the two

topological superconducting InSb nanowire segments are coherently connected
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via a quasi-particle quantum object, e.g., quantum dot, the interaction between

a pair of nearby zero-energy Majorana fermions leads to the creation of a pair of

normal fermion states at finite energies. The entire nanowire will then behave as

a topological superconductor, supporting the pair of the remaining zero-energy

Majorana modes [see Fig. 5.2 (d)], which are located at the two ends of the entire

nanowire and are therefore strongly coupled to the Nb contacts. Cooper pairs

can move between the two Nb contacts via the Majorana bound states, leading

to an enhancement in the zero-bias conductance. Therefore, the ZBP observed

in this device could be a signature of Majorana bound states.

A more interesting question is how the even-odd parity of the the intermedia

quantum dot influence the ZBP emerging in a finite magnetic field. In Figs. 5.7

and 5.8, we investigate the evolution of the ZBP with the change of the even-odd

parity of the quantum dot.

Figure 5.7 displays the charge stability diagram of Dev. NbInSbNb#1 at B = 0

T, with the differential conductance in a logarithmic color scale. Here, clear

Coulomb blockade diamond structures can be seen, indicating the formation of

the QD between the two superconductor contacts. The quasi-particle addition

energy Eadd to the QD at B = 0 T is in the range of 2.7 −5.6 meV, which is much

larger than ∆∗. Eadd also shows a regular odd-even oscillations behavior which

indicates the alternation in the odd-even parity of the quasi-particle occupation

number in the QD. No ZBP features can be identified in the diagram. Figure 5.7

(b) shows the charge stability diagram measured for the device at B = 1.2 T.

Figures 5.7 (c) and 5.7 (d) are the corresponding line-cut plots of the differential

conductance on the linear scale at small source-drain bias voltages. For clarity,

these line-cut plots are presented in such a way that their differential conductance

values at Vsd = 0 µV are successively offset by 0.005 e2/h in each figure, while

their actual zero-bias conductance values are represented by their colors in a gray

scale. Here, Coulomb diamond structures remains to be clearly seen in the charge

stability diagram plot of Fig. 5.7 (b), indicating the survival of the QD in the

device in the presence of a 1.2 T magnetic field. In the line-cut plots of Fig. 5.7

(c) and 5.7 (d), we can see a global conductance gap structure in the small source-

drain bias voltage region of Vsd ∼ −0.35 meV to Vsd ∼ 0.35 meV, showing that

the Nb-contacted InSb nanowire segments are still in a superconducting state

with an energy gap ∆InSb ∼ 0.17 meV. Strikingly, a pronounced conductance

peak appears at zero-bias voltage and goes through almost the whole Vbg region
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Figure 5.7: ZBP in Dev. NbInSbNb#1. (a) The charge stability diagram measured for

Dev. NbInSbNb#1 at B = 0 T. (b) The same with (a) but measured at B = 1.2 T. (c)

and (d) show the differential conductance line-cut plot at low-bias voltage as a function of

Vbg, corresponding to the conductance color map in (b). Vbg ranges from 5.15 V to 5.4 V

in panel (c), and 5.4 V to 5.835 V in panel (d). For clarity, these line-cuts are shifted in

such a way that the differential conductance at Vsd = 0µV are linearly offset by 0.005e2/h,

while their real zero-bias conductance values are represented by their color in a gray scale.

A ZBP almost going through the whole stability diagram is clearly visible in panels (b-d)

and (d). The ZBP appears in each of the CB diamond structures, irrespective of the QD

occupation number is even or odd. (e) and (f): The differential conductance measured for

the device as a function of Vsd and B, at Vbg = 5.29 V and Vbg = 5.48 V, respectively.

(g) and (h): Differential conductance line-cut plots at low bias voltage as a function of B,

corresponding to the rectangled regions in panels (e) and (f). For clarity, these line-cuts are

shifted in the same way as in (c) and (d). In the panels (d-g), ZBPs emerge at B = 0.5−0.6

T and last more than 1 T before their disappearing.
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shown here, including both the Coulomb blockade regions and quantum resonance

regions. This zero-bias conductance peak feature is seen in Fig. 5.7 (b), and is even

more remarkably seen in Figs. 5.7 (c) and 5.7 (d). The zero-bias conductance peak

has a height up to ∼ 0.2 e2/h at the quantum resonance points and ∼ 0.06 e2/h

at the electron-hole symmetry points (centers of the Coulomb blockade regions).

Moreover, appearance of the zero-bias conductance peak is independent of the

even-odd parity of the quasi-particle number in the QD, i.e., the ZBP appears in

all the Coulomb blockade regions, irrespective of even or odd the quasi-particle

occupation number in the QD is.

Figures 5.7 (e-h) shows the magnetic field dependent measurements of the

differential conductance for the device. Figures 5.7 (e) and 5.7 (f) display the

differential conductance in a logarithmic color scale measured for the device as a

function of Vsd and magnetic field B perpendicularly applied to the substrate at

Vbg = 5.29 V and Vbg = 5.48 V. The corresponding line-cut plots of the differential

conductance in the linear scale are shown in Figs. 5.7 (g) and 5.7 (h). For clarity,

these line-cut curves are offset in the same way as in Figs. 5.7(c) and 5.7 (d), with

their actual zero-bias conductance values represented again in a gray scale color.

The B-evolution measurements of the differential conductance in Figs. 5.7 (e)

and 5.7 (g) starts from the CB region of an odd-occupied diamond at B = 0 T,

while it starts from an even-occupied CB region at B = 0 T for Figs. 5.7 (f) and

5.7 (h). Again, from these figures, we can see ∆InSb-induced low-conductance

gap, and it shows a tendency of gradually decreasing as B increases. Within

both odd and even occupied CB regions, there are no ZBP structures when the

applied magnetic field is small. However, as the magnetic field increases over a

certain value, ZBP structures emerge in both odd and even occupied CB regions.

The ZBP structures insist for a long range of magnetic field before they finally

disappearing at high magnetic field region. The ZBP in Figs. 5.7 (e) and 5.7 (g)

emerges at B =∼ 0.6 T and disappears at B =∼ 1.8 T, while the ZBP exists in

the range of B = 0.75− 2.1 T in Figs. 5.7 (f) and 5.7 (h).

The measurements results represented in Fig. 5.7 are consistent with the mea-

surements in Fig. 5.6. With more Coulomb diamonds, the ZBP feature in this

device shows a clear robustness against even-odd parity of quasi-particle numbers

in the QD. In the same argument mentioned earlier, the parity-independent ZBP

cannot be explained by the Kondo effect, ABS, the Josephson current, the high-

order MAR, or the weak anti localization. It could be a signature of Majorana
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Figure 5.8: (a)-(f) : Differential conductance as a function of Vsd at Vbg = 5.385 V, 5.395

V, 5.445 V, 5.765 V, 5.815 V and 5.835 V, respectively, measured for Dev. NbInSbNb#1

at B = 1.2 T. Experimental data, Gaussian-fitting for ZBPs and Gaussian-fitting for side

structures are represented by blue dots curves, red dashed lines, and blue dashed lines,

respectively. The summary of ZBP fitting and side structure fitting in each of these panels

is represented by black solid line. (g) Side structure separations in bias voltage Vsp1,

Vsp2[see definitions in panel (a) and (d)], and dIsd/dVsd at Vsd = 100 µV, as a function of

Vbg. Vsp2 values are only extracted for the curves whose ZBPs show clear splitting (split into

two peaks or a plateau structures). It shows a clear synchronization between Vsp1 values

and the background conductance Coulomb oscillations. (h) The values of Vsp1 and Vsp2 as

a function of B, extracted from Fig. 5.7(c), together with the differential conductance at

Vsd = 100 µV.
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bound states, as we discussed on Dev. NbInSbNb#2.

As we discussed previously, coherently coupled Majorana bound states will

hybridize into a pair of quasi-particle with finite energies. This hybridization

will lead to an energy splitting of the zero-mode Majorana bound state and can

serve as an important signature of Majorana physics (146). If both of the two

Nb-contacted InSb nanowire segments are driven into a non-trivial topological

superconducting phase (TS), in the TS-QD-TS system, due to the inner pair of

the Majorana bound states are coherently coupled via the QD and thereby they

are strongly influenced by the QD [see the tight banding calculation in the SI of

article III]. Moreover, since the chemical potential of the QD can be tuned more

effectively by the back gate than the chemical potential of the Nb-covered InSb

nanowire segments, the hybridization of the inner Majorana bound states hence

should be dominated by the QD. At the same time, the outer pair Majorana

bound states in the TS-QD-TS system will remain at zero-energy mode since the

QD influence to the outer pair Majorana bound states is much weaker than to

the inner pair Majorana bound states. Then if the measurement resolution is

high enough and the peak-broadening is weak, a conductance fine structure is

expected in the measurements, resulting from the hybridized Majorana bound

states and the zero-mode Majorana bound states.

In fact, in a close view, each ZBP structure in Figs. 5.7 shows a fine structure.

In Fig. 5.8 (a)-(f), we summarized several typical fine structures chosen from

Fig. 5.7 (c). Most ZBP structures in Figs. 5.7 (c) and (d) show line-shapes

similar to the ones displayed in Fig. 5.8 (a)-(b) (the open-circles), i.e., a high ZBP

accompanied by two small side-peaks/side-plateaus structures. In these figures,

the red-dashed lines and blue-dashed lines are the Gaussian-fitting lines for the

ZBPs and the side-peaks, respectively. While the solid-black lines represent the

sum of the two Gaussian-fittings. It can be seen that, for both side-peaks and side-

plateaus, the tripe-peak Gaussian-fitting are well matched by the experimental

data. Actually, the tripe-peak Gaussian-fitting can also be matched with single

broadened ZBPs which appears at some Vbg values, as the one shown in Fig. 5.8

(c).

This synchronization is consistent with our hypothesis that the hybridization

of the inner pair of Majorana bound states are strongly influenced by the QD.

When the quantum level (ground state) is far away from the Fermi levels of the

TS segments, the interaction between the inner pair of Majorana bound states is
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weak due to the Coulomb blockage. However, when the quantum level is aligned

to the Fermi levels of the TS segments, the interaction between the inner pair of

Majorana bound states is enhanced via the resonant level. The variation of the

interaction leads to a change of the energies of the hybridized Majorana bound

states and therefore a change of Vsp1.

To investigate the conductance triple-peak structure more carefully, we define

Vsp1 as the distance between the Gaussian-fitted side-peaks in the scale of Vsd
[see definition in Fig. 5.8 (a)]. Then we extract Vsp1 values from Figs. 5.7 (c-d)

as a function of Vbg and plot it in Fig. 5.8 (c) (red-circles). As a background,

the differential conductance measured at Vsd = 100 µV as a function of Vbg is

also plotted in Fig. 5.8 (c) (black solid line), which is dominated by the Coulomb

oscillation. Surprisingly, the Vsp1 is also modulated by the background conduc-

tance Coulomb oscillation. The Vsp1 amplitude is in the range of 50 − 150 µV

and shows a clear synchronization with the background conductance Coulomb

oscillation, especially in the region Vbg = 5.2− 5.45 V.

In Fig. 5.8 (h), we also extract and plot Vsp1 for the conductance curves in

Fig. 5.7 (g) as a function of magnetic field, along with the background conduc-

tance at Vsd = 100 µV. Comparing to the large oscillation in Fig. 5.8 (g), Vsp1
only shows a small change as the magnetic field increases.

As shown the Figs. 5.8(d-e), at some Vbg values, the ZBP splits into two peaks

(or a plateau structure due to the peak-broadening) and shows a quadruple-peak

structure together with the side-peaks. The quadruple-peak structure is also

well fitted by a Gaussian-fitting, indicated by the dashed lines in Figs. 5.8(d-

e). Similar to Vsp1, we define Vsp2 as the distance between the Gaussian-fitted

peaks that split from the ZBP [see definition in Fig. 5.8 (d)]. The values of

Vsp2 are extracted (only for the curves with clear quadruple-peak conductance

structures) and plotted in Figs. 5.8 (g) (diamonds) as a function of Vbg, and

are plotted in Figs. 5.8 (h) (diamonds) as a function of B. As indicated by

Fig. 5.8 (g), the amplitude of Vsp2 does not show a clear synchronization with

the background Coulomb oscillation. The splitting of ZBP occurs around the

Coulomb conductance peaks at Vbg = 5.32, 5.38, 5.51 V. However, it does not

occur at all of the resonant points, and it either does not only occur at the

resonant points. The ZBP splitting even happens in the CB regions of the last

four Coulomb oscillation periods in Fig. 5.8 (g). In the magnetic field dependent

measurements, the splitting of ZBP occurs at the high magnetic field in Fig. 5.8
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(h), while it does not show clear ZBP splitting at any magnetic field in Fig. 5.7

(h).

The splitting of ZBP, with back gate and magnetic field irregularities, can be

attributed to the outer pair Majorana bound states related hybridizations. Simi-

lar to the inner pair Majorana bound state, the interaction between the outer pair

of Majorana bound states is influenced by chemical potentials, Zeeman energies

and the intermediary QD. Among these parameters, however, the QD is not the

dominating one anymore, due to the relatively long distance between the QD and

the outer pair Majorana bound states. Thus, in the conductance measurements,

the splitting of the ZBP is not synchronous to the Coulomb oscillations.

In summary, the ZBPs emerging in the superconductor-semiconductor nanowire

are observed as a signature of Majorana bound states. As pointed by Churchill et

al. (143), other interesting transport features in an N-InSb nanowire-S structure

are also observed, with both consistence and inconsistence with the interpretation

of the Majorana bound states. In addition, according to the theoretical predic-

tion, the ideal ZBP induced by Majorana bound states in tunneling experiments

should have a quantized conductance of 2e2/h at zero temperature (147, 148)

and with a gap-closing feature (149). Finite temperature, disorders (150), multi-

subbands (151), and the soft induced gap (152) in the system can all make the

Majorana bound state induced ZBP much lower than 2e2/h. To confirm the

existence of the Majorana bound states in the nanowire-superconductor hybrid

devices, more systemic tests are needed, including the detection of the fractional

Josephson current and the validation of the non-Abelian statistics.

5.3 Zero-bias conductance peaks without Majorana bound

states

In this section, we introduce several mechanisms that can lead to the emergence of

a ZBP in a finite magnetic field, or mechanisms that can lead to an enhancement

of the zero-bias conductance in a finite magnetic field, in a Josephson quantum

dot devices without Majorana bound states.

In Chapt. 4, we already mentioned about the field induced QPT which will

lead to an emergence of ZBP in a finite magnetic field. We have also shown

the magnetic field could enhance the Josephson current by increasing the ratio

TK/∆(B) in some cases. And in the last part of Chapt. 4, we demonstrated an
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anomalous low-field suppression of Josephson current (i.e., a high-field enhance-

ment).

Besides the above mechanisms, the Kondo effect in a finite magnetic field can

also lead to an emergence of ZBP. As we discussed in Chapt. 3 and Chapt. 4, the

Kondo effect manifests itself as a spin-flip process, in which two spin-degenerate

quantum levels are needed. In addition to the intrinsic spin-degeneracy of the

quantum dot at a zero magnetic field, a quasi spin-degeneracy can be gained from

different orbital states in the presence of Zeeman effect, similar to the cases shown

in Figs. 3.11 (a) and 3.15 (b). Although there is an anti-crossing induced by the

spin-orbit interaction, a spin-flip process can still be established if the coupling

is strong. In Fig. 5.9 (a), we show the linear-conductance on a color scale as a

function of Vbg and B, measured for Dev. NbInSbNb#1. At the lower-right corner,

there are several horizontal high conductance stripes induced by the Kondo effect

formed in the finite magnetic field. The inset of Fig. 5.9 (a) shows the differential

conductance as a function of Vsd and B, measured at the Vbg position indicated

by the dashed line in Fig. 5.9 (a). The dashed line crosses two Kondo resonance

regimes, with one at the zero magnetic field and the other one at B ≈ 0.5 T.

It can be seen that a ZBP emerges at B ≈ 0.5 T(as indicated by a superposed

differential conductance line-cut in the inset). This ZBP can be attributed to the

Kondo effect formed in a finite magnetic field. It splits quickly as the magnetic

field further increases.

Figure 5.9 (b) displays the linear conductance measurements performed for

another device, Dev. NbInSbNb#3, as a function of Vbg and B. We can see

that due to the giant effective g-factor of the InSb quantum dot, the quantum

levels shift dramatically in the magnetic field. And due to the strong dot-leads

coupling, horizontal high conductance stripes that are induced by Kondo effects

can be seen. Here, we fix the Vbg to the position indicated by the dashed line,

and we measured and plotted the differential conductance as a function of Vsd
and B in the inset of Fig. 5.9 (b). A ZBP can be identified in the range of

B ≈ 0.1 − 0.35 T in the inset. This ZBP could be attributed to the B-FET

effect since a quantum resonant level gets closer to the dashed line in the finite

magnetic field. However, the ZBP could also results from the field induced QPT.

The quantum dot is a ”0”-junction at B = 0 T, and it will evolve toward a

magnetic doublet ”π”-junction in the presence of the Zeeman effect. Therefore,

the field-induced QPT could occur and lead to a ZBP (80). Figures 5.9 (c) and
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Figure 5.9: ZBP emerging in a finite magnetic field without Majorana bound state.

(a) The linear-conductance on a color scale as a function of Vbg and B, measured for

Dev. NbInSbNb#1. The inset shows the differential conductance as a function of Vsd and

B, measured at the Vbg position indicated by the dashed line. A ZBP emerges at B ≈ 0.5

T, as indicated by a superposed differential conductance line-cut. The ZBP is attributed

to the Kondo effect formed in a finite magnetic field. (b) The same with (a) but measured

for another device, Dev. NbInSbNb#3. The inset shows the differential conductance as a

function of Vsd and B, measured at the Vbg position indicated by the dashed line. A ZBP

can be clearly identified in the range of B ≈ 0.1− 0.35 T. This ZBP could be attributed to

a B-FET effect or a field-induced QPT. (c) The same with (a) and (b), but measured for

NbInSbNb#4. (d) The differential conductance as a function of Vsd and B, measured at

the Vbg position indicated by the dashed line in (c). We can see that there is a Josephson

current induced ZBP in (d), with the height peaks at B ≈ 0.7 T. This field-enhanced ZBP

clearly results from the level shifting in the magnetic field, i.e., the B-FET effect.
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(d) show the similar measurements as in Fig. 5.9 (b), but measured for a different

device, NbInSbNb#4, which has a stronger coupling. Figure 5.9(d) displays the

differential conductance as a function of Vsd and B, measured at the Vbg position

indicated by the dashed line in Fig. 5.9 (c). We can see that there is a Josephson

current induced ZBP in Fig. 5.9 (d), with the height peaks at B ≈ 0.7 T. This

field-enhanced ZBP clearly results from the level shifting in the magnetic field,

i.e., the B-FET effect.

Moreover, there are some anomalous ZBPs in Josephson quantum dot devices

without Majorana bound state (76), which have not been clearly understood. As

an example, Fig. 5.10 shows an anomalous ZBP that arises from Dev. AlInSbAl#3.

Fig. 5.10 (a) shows a charge stability diagram which has been already shown in

Fig. 4.32 (d). Figure 5.10 (b) displays the differential conductance as a function of

Vsd and B, measured at the Vbg position indicated by the dashed line in Fig. 5.10

(a). Figure 5.10 (c) shows the differential conductance as a function of Vsd and

B in a line-cut plot, corresponded to the rectangled region in Fig. 5.10 (b). It is

evident that a ZBP appears at B ≈ 18 mT. We are not clear about its physical

origin.

Consequently, there are a several mechanisms could result in ZBPs in a finite

magnetic field without Majorana bound state. Special attentions should be paid

on these ZBP in the search for Majorana fermions in semiconductor nanowire-

superconductor hybrid devices.
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Figure 5.10: An anomalous ZBP emerging in a finite magnetic field in Dev. AlInSbAl#3.

(a) The charge stability diagram which has been already shown in Fig. 4.32 (d). (b) The

differential conductance as a function of Vsd and B, measured at the Vbg position indicated

by the dashed line in (a). (c) The differential conductance as a function of Vsd and B

in a line-cut plot, corresponded to the rectangled region in (b). It is evident that a ZBP

appears at B ≈ 18 mT.
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