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Bayesian Epistemology 

 

Erik J. Olsson 

 

Abstract: Bayesian epistemology provides a formal framework within which concepts in 

traditional epistemology, in particular concepts relating to the justification of our beliefs, 

can be given precise definitions in terms of probability. The Bayesian approach has 

contributed clarity and precision to a number of traditional issues. A salient example is 

the recent embedding of the so-called coherentist theory of epistemic justification in a 

Bayesian framework shedding light on the relation between coherence and truth as well 

as on the concept of coherence itself. Starting with the early work of Condorcet, the 

calculus of probability has proved to be a useful tool in the study of social aspects of 

knowledge as it is pursued in social epistemology. 

 

Keywords: probability, coherence, truth, justification, confirmation, social epistemology, 

formalization 

 

1. Two problems of probabilistic coherence 

 

Let us start by examining the two concepts involved in the term “Bayesian 

epistemology”. 

 First, we have the term “Bayesian” which in this context denotes a plethora of theories 

and approaches that make use of probability in the elucidation of phenomena having to 

do with our beliefs about the world. One aspect of the Bayesian approach, also called 

Bayesianism, is the representation of a state of belief as an assignment of probabilities to 

a set of propositions. Typically, Bayesians feel uncomfortable in assigning any 

proposition probability 0 or 1. Rather, they recommend assigning probabilities strictly 

between 0 and 1. One reason for this is the so-called betting interpretation of probabilities 

according to which assigning a probability means that you are willing to accept certain 

bets. Assigning probability 1 to a proposition means then that you are willing to bet 

everything – your life, your family etc. – on p being true. Since we are rarely willing to 
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bet everything on a given (empirical) proposition being true, we should avoid assigning 

probability 1 to any such proposition, the Bayesian concludes. 

 This is the static aspect of Bayesianism. There is also a dynamic aspect enshrined in 

the recommendation that a rational inquirer should update her beliefs by conditionalizing 

on the new evidence in accordance with Bayes’ rule. Let us first define the conditional 

probability of the hypothesis h given evidence e: P(h | e) = P(e | h)P(h)/P(e). This 

equation still does not state anything about how the inquirer’s probabilities should change 

given new evidence. Bayes’ rule, sometimes also referred to as the principle of 

conditionalization, states that the inquirer should, upon receiving new evidence e, update 

her probability in h so that the latter corresponds to the conditional probability of h given 

e. In other words, P*(h) = P(h | e), where P*(h) is the new probability of h given evidence 

e. These two fundamental assumptions of Bayesianism have inspired a huge debate in 

philosophy of science and statistical theory, as well as in economics and decision theory. 

The reader is referred to Talbott (2016) for an overview. 

 Let us proceed now to the term “epistemology” or “theory of knowledge”. 

Epistemology is concerned with various aspects of knowledge. What is the nature of 

knowledge and how should the concept be defined? What sources give rise to 

knowledge? How far does our knowledge extend – are there limits in principle? Do we 

have knowledge at all – or do we have to accept some form of skepticism? If we know, 

do we know that we do? And so on. Traditionally, the answer to the first question – about 

the nature of knowledge – has been knowledge amounts to justified true belief. If you 

have a belief and you entertain that belief with justification, then you know, provided of 

course that the proposition in question is true. Believing means in this context being sure 

or fully convinced of the truth of the proposition. 

 These standard characterizations of Bayesianism and epistemology reveal that it is not 

unproblematic to coherently combine the two into “Bayesian epistemology”. Just to raise 

one question: How does the fact that knowledge requires full conviction square with the 

Bayesian recommendation not to assign 1 to any given empirical proposition? Does not 

skepticism about empirical knowledge ensue? Perhaps unsurprisingly, recent texts on 

“Bayesian epistemology” in fact do not address in any great detail problems in traditional 

epistemology but rather uses the term as roughly synonymous with “Bayesianism” (e.g. 
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Talbott, 2016). Even though there are certain tensions to be overcome, a Bayesian 

approach can in fact be very effective in the elucidation of the justification part of the 

traditional concept of knowledge. This holds in particular of so-called coherentist 

accounts of justification. 

 The truth conduciveness of coherence. Pre-systematically, coherence is a good thing. 

If a set of beliefs is coherent, we tend to think that it is plausibly true, and that a more 

coherent set is more likely to be true than a less coherent one. Consider however the 

following example from Klein and Warfield (1994, 130-131): 

 

A detective has gathered a large body of evidence that provides a good basis for 

pinning a murder on Mr. Dunnit. In particular, the detective believes that Dunnit had 

a motive for the murder and that several credible witnesses claim to have seen Dunnit 

do it. However, because the detective also believes that a credible witness claims that 

she saw Dunnit two hundred miles away from the crime scene at the time the murder 

was committed, her beliefs set is incoherent (or at least somewhat incoherent). Upon 

further checking, the detective discovers some good evidence that Dunnit has an 

identical twin whom the witness providing the alibi mistook for Dunnit.  

 

Let the original belief system of the detective contain the beliefs that (1) Dunnit had a 

motive; (2) several credible witnesses report that they saw Dunnit commit the murder; (3) 

a single credible witness reports that she saw Dunnit far away from the crime scene at the 

time of the murder. Let the extended belief system contain the same believes plus the 

additional beliefs that (4) Dunnit has an identical twin and (5) Dunnit did it. Then we 

would say that the extended system is more coherent than the original belief system. So 

we should expect the former to be more likely to be true. However, the extended system 

contains more propositions than the original system, and hence the probability of the 

conjunction of the propositions in the extended system must be lower than the probability 

of the conjunction of the propositions in the original system: disregarding some trivial 

special cases, the probability of a bigger conjunction is lower than the probability of a 

smaller conjunction. So, despite being more coherent, the extended system is actually less 

likely to be true. So, coherence is after all not correlated with plausible truth. 
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Defining coherence. There have been few convincing proposals for how to define 

coherence in traditional epistemology. The attempt to spell our coherence in purely 

logical terms, e.g. by A. C. Ewing (1934), was soon seen to be too restrictive. Most other 

proposals suffer from serious incompleteness or imprecision. A case in point is the 

account due to Laurence BonJour (1985), who regards coherence to be a concept with a 

multitude of different aspects, corresponding to the following coherence criteria (ibid.: 

97-99): 

 

(1) A system of beliefs is coherent only if it is logically consistent. 

(2) A system of beliefs is coherent in proportion to its degree of probabilistic 

consistency. 

(3) The coherence of a system of beliefs is increased by the presence of inferential 

connections between its component beliefs and increased in proportion to the 

number and strength of such connections. 

(4) The coherence of a system of beliefs is diminished to the extent to which it is 

divided into subsystems of beliefs which are relatively unconnected to each other 

by inferential connections. 

(5) The coherence of a system of beliefs is decreased in proportion to the presence of 

unexplained anomalies in the believed content of the system. 

 

Now it could well happen that one system S is more coherent than another system T in 

one respect, whereas T is more coherent than S in another. Perhaps S contains more 

inferential connections than T, which is less anomalous than S. If so, which system is 

more coherent in an overall sense? A difficulty pertaining to theories of coherence that 

construe coherence as a multifaceted concept is to specify how the different aspects are to 

be amalgamated into one overall coherence judgment. Bonjour’s theory remains silent on 

this important point and, as we shall see, in several other regards as well. 

 

2. A Bayesian analysis of the Dunnit example 
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Let us state the argument in more precise terms. A central claim in the coherence theory 

which has strong intuitive backing is the following: 

 

(A) The more coherent a set is, the more probable it is. 

 

Let us say that an extension K´ of a set K is non-trivial if some of the beliefs that are K´ 

but not in K neither follow logically from K, nor have a probability of 1. Klein and 

Warfield’s argument against (A) rests on the following premises: 

 

(B) Any non-trivial extension of a belief system is less probable then the original system. 

 

(C) There exist non-trivial extensions of belief systems that are more coherent than the 

original system. 

 

But, so the argument goes, (B) and (C) taken together contradict (A). 

Let us look at the support for (B) and (C). While (B) is taken for granted, (C) is 

supported by the above Dunnit example. It is difficult to question (C). Intuitively the 

members of the extended set in the Dunnit example hangs better together than the 

elements of the original set. Also, the original set contains an anomaly which is resolved 

through the introduction of the beliefs that Dunnit did it and has an identical twin who the 

witness providing the alibi mistook for Dunnit. Because no new anomaly is thereby 

introduced, it follows from Bonjour’s fifth criterion that the extended set is more 

coherent. 

But what about (B)? It derives support from its similarity with 

 

(B´) Any non-trivial extension of a set of propositions is less probable than the original 

set. 

 

That claim follows directly from the laws of probability and is therefore entirely 

innocent. But notice that (B´) is about sets of propositions, whereas (B) is about belief 

systems. What is the difference? A belief system is not any old set of propositions but a 
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set of propositions believed to be true by a subject. Hence, whereas the probability of a 

set of propositions is the probability that these propositions are all true, the probability of 

a belief system is the probability that these propositions are true, given that they are 

believed by the person in question. The former is an unconditional and the latter a 

conditional probability. 

 Let  S = {p1, …, pm} and S´ = {p1,…,pm, pm+1, …, pn}. Moreover, let B be a belief 

system corresponding to S and B´ be a belief system corresponding to S´. Formally, (B´) 

can be expressed as follows: 

 

(B´*) If S´ is a non-trivial extension of S, then P(p1, …, pm, pm+1,…, pn) < P(p1,…,pm). 

 

The claim (B) should rather be understood as follows: 

 

(B*) If B´ is a non-trivial extension of B, then P(p1, …, pm, pm+1,…, pn | belp1, …, belpm, 

belpm+1, …, belpn) < P(p1,…,pm | belp1, …, belpn), 

 

where belpi states that the subject believes proposition pi. 

 For the Dunnit argument it is (B*) that needs to hold, not (B´*). It can be shown 

however that (B*) is false. There can be non-trivial extensions of a belief system that are 

more probable than the original belief system. Suppose again that a robbery has been 

committed. A detective wishing to find out whether Dunnit did it (call that proposition r) 

consults independent witnesses that have a track-record of being sufficiently reliable so 

that the detective can routinely trust their reports. This reminds us of Bonjour’s 

“cognitively spontaneous beliefs” which play a crucial role in his epistemology. We 

assume that the detective believes something just in case a witness has said so. 

Suppose that the first witness reports that Dunnit was driving his car away from the 

crime scene at high speed (c) and the second that Dunnit is in the possession of a gun of 

the relevant type (g). The original belief system contains the propositions c and g. Now a 

new witness steps forward, claiming that Dunnit deposited a large sum of money in his 

bank the day after the robbery (m). The extended belief system contains the propositions 

c, g and m. The key notions of reliability and witness independence can be expressed in 
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probability theory. For instance, that a given witness is a reliable belief producer can be 

expressed as follows: 

 

P(beli | i) = p and P(beli | not-i) = 1-q for p, q  1 and i = c, g, m. 

 

Hence, the probability that you form the belief, if it is true, should be high, and the 

probability that you form the belief, if it is false should be low. 

That the beliefs are independently held means that they there is no direct influence 

between the testimonies upon which they were based. This can be captured by saying that 

the detective’s routinely acquired belief about some item of evidence is probabilistically 

independent of any other item of evidence or any other of his routinely acquired beliefs, 

conditional on the that item of evidence. We express this formally for two items of 

evidence using the notation of Dawid (1979) for the propositional variables c, g, r, belc 

and belg. (The values of the propositional variable c are the propositions c and its 

negation not-c and similarly for the other propositional variables.) 

 

  belc  g, belg | c and belg  c, belc | g 

 

The first part of this statement is read belc is independent of g and belg given c, which is 

sometimes expressed by saying that c “screens off” belc from g and belg. This implies for 

instance that belc is independent of not-g and belg given not-c. 

With a few additional assumptions it can now be proved that the extended belief 

system is more probable than the original system: 

 

  P(c, g | belc, belg) < P(c, g, m | belc, belg, belm) 

 

For more details and a proof, see Bovens and Olsson (2002). 

 

3. Bayesian accounts of coherence 
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Let us now return to the problem of how to define coherence. Bonjour’s account serves to 

illustrate another general difficulty. The third criterion stipulates that the degree of 

coherence increases with the number of inferential connections between different parts of 

the system. As a system grows larger the probability is increased that there will be 

relatively many inferentially connected beliefs. For a smaller system, this is less likely. 

Hence, there will be a positive correlation between system size and the number of 

inferential connections. Taken literally, Bonjour’s third criterion implies, therefore, that 

there will be a positive correlation between system size and degree of coherence. But this 

is not obviously correct. 

Here is another general challenge for those wishing to give a clear-cut account of 

coherence. Suppose a number of eye witnesses are being questioned separately 

concerning a robbery that has recently taken place. The first two witnesses, Robert and 

Mary, give exactly the same detailed description of the robber as a red-headed man in his 

forties of normal height wearing a blue leather jacket and green shoes. The next two 

witnesses, Steve and Karen, also tell exactly the same story but only succeed in giving a 

very general description of the robber as a man wearing a blue leather jacket. So here we 

have two cases of exact agreement. In one case, the agreement concerns something very 

specific and detailed, while in the other case it concerns a more general proposition. This 

raises the question of which pair of reports is more coherent. Should we say that 

agreement on something specific gives rise to a higher degree of coherence, perhaps 

because such agreement seems more “striking”? Or should we rather maintain that the 

degree of coherence is the same, regardless of the specificity of the thing agreed upon? 

The rich literature on Bayesian coherence measures provides various answers to these 

questions. Here are the two most discussed measures: 

 

 C1(p1,…,pn) = P(p1…pn)/P(p1)…P(pn) 

 

 C2(p1,…,pn) = P(p1…pn)/P(p1…pn) 

 

C1 was put forward in Shogenji (1999) while C2 was tentatively proposed in Olsson 

(2002) and, independently, in Glass (2002). As the reader can verify, C1 is sensitive to 
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size as well as to specificity, while this is not so for C2. It has been suggested, therefore, 

that these two measures actually measure two different things. While C2 captures the 

degree of agreement of the proposition in a set, C1 is more plausible as a measure of how 

striking the agreement is. See Olsson (2002) and also Bovens and Olsson (2000) for a 

discussion of agreement vs. striking agreement. Since the appearance of these two 

measure, a large number of other alternative measures have been proposed, many of 

which are considered in Olsson and Schubert (2007). 

 One influential thought in traditional epistemology is that coherence is somehow 

linked with “mutual support”. The Bayesian way of thinking of support is in terms of a 

confirmation measure. Douven and Meijs (2007) have proposed a general scheme for 

defining coherence measures given a measure S of degree of confirmation. For two 

propositions p and q, their suggestion takes the following form: 

 

C3(p,q) = ½ (S(p,q) + S(q,p)) 

 

Thus, the degree of coherence of a set of two propositions depends on how much they 

confirm each other on the average. In order to turn this scheme into a definite measure of 

coherence, we have to specify a particular measure of confirmation, of which there is no 

shortage in the Bayesian literature. Douven and Meijs’s preferred choice is the difference 

measure advocated by Gillies (1986) and others: 

 

C4(p,q) = P(p|q) – P(p) 

 

Plugging in this measure in Douven and Meijs’s recipe yields the following formula: 

 

 C5(p,q) = ½ (P(p|q) – P(p) + P(q|p) – P(q)) 

 

But there are of course a whole range of other confirmation measures that could just as 

well have been employed, e.g., the ratio measure preferred by Schlesinger (1995) and 

others: 
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C6(p,q) = P(p|q)/P(p) 

 

As is easily seen, the ratio measure of confirmation coincides with the Shogenji measure 

of coherence for the case of two propositions. 

 

4. Impossibility results for coherence and truth 

 

The paper by Klein and Warfield and also Michael Huemer (1997) spurred an intense 

debate on the relation between coherence and truth or high probability, a debate which is 

still on-going. The most thought-provoking results concern the possibility of finding a 

measure of coherence that is truth conducive in the following sense: if a set of beliefs A is 

more coherent than another set of beliefs B, then the probability of A is higher than the 

probability of B. Here it is assumed that the beliefs in question are somewhat reliable and 

independently held. Finding such a measure was first stated as an open problem in Olsson 

(2002). An impossibility result to that effect was first proved by Luc Bovens and Stephan 

Hartmann in their 2003 book. A different impossibility theorem was proved in Olsson 

(2005). 

These impossibility results give rise to a mind-boggling paradox. How can it be that 

we trust and rely on coherence reasoning, in everyday life and in science, when in fact 

coherence is not truth conducive? Since the impossibility results were published a 

number of proposals have been made for how to avoid the anomaly they present us with. 

Olsson and Schubert (2007) observed that, while coherence falls short of being truth 

conducive, it can still be “reliability conducive,” i.e. more coherence, according to some 

measures, entail a higher probability that the sources are reliable, at least in a 

paradigmatic case. For a further development of this idea, see Schubert (2011). Staffan 

Angere (2007, 2008) has argued, based on the results of computer simulations, that the 

fact that coherence fails to be truth conducive in the sense just referred to does not 

prevent it from being connected with truth in a weaker, defeasible sense: almost all 

coherence measures that have an independent standing in the literature satisfy the 

condition that most cases of higher coherence are also cases of higher likelihood. Other 

researchers have proposed other ways of reconciling the impossibility results with our 
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ordinary reliance on coherence. For an up-to-date overview of the debate, see Olsson 

(2017). 

 

5. Bayesian social epistemology 

 

Following C. I. Lewis (1946), most Bayesian coherence theorists take as their paradigm 

case a scenario involving a number of witnesses giving coherent testimonies. This is then 

taken to be analogous to the situation upon which traditional coherence theorists have 

been most interested: the coherence of one person’s beliefs. It is perfectly possible to by-

pass the second issue so as to focus only on witness scenarios, in which case the study 

falls under the area known as social epistemology. Bovens and Hartmann (2003) 

elaborate on witness coherence and their book contains further references. A closely 

related topic is the Bayesian study of voting and the famous Condorcet Jury Theorem 

which states, roughly, that if voters are independent and somewhat reliable, the majority 

is more likely to have the right answer than anyone in the minority. Moreover, the chance 

that the majority is right approaches 1 as more voters are added. See for instance Goodin 

and List (2001) for more on this. 

The Jury Theorem belongs, more generally, to what Alvin I. Goldman (1999) calls 

veritistic social epistemology which aims to evaluate social practices, jury voting being 

but one case, in terms of their veritistic outputs, where veritistic outputs includes states 

like knowledge, error and ignorance. Goldman focuses on the tendency of practices to 

produce true belief in the participants, true belief representing in his view a weak form of 

knowledge. Thus, states of true belief have fundamental veritistic value or disvalue, 

whereas practices have instrumental veritistic value insofar as they promote or impede 

the acquisition of fundamental veritistic value. 

Let us now turn to the very concept of veritistic value. Goldman’s main proposal is 

that degrees of belief (DB) have veritistic value relative to a question Q, so that any DB 

in the true answer to Q has the same amount of V-value as the strength of the DB. 

Goldman represents strength of belief as subjective probability. In Goldman’s 

terminology, V-value of DBx(true) = x. Suppose, for example, that Mary is interested in 

the question whether it will rain tomorrow. If the strength of Mary’s belief that it will rain 
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tomorrow is .8, and it will in fact rain tomorrow, then the V-value of Mary’s state of 

belief vis-à-vis the rain issue is .8. 

Suppose that a question begins to interest agent S at time t1, and S applies a certain 

practice  in order to answer the question. The practice might consist, for instance, in a 

certain perceptual investigation or in asking a friend. If the result of applying  is to 

increase the V-value of the belief states from t1 to t2, then  deserves positive credit. If it 

lowers the V-value it deserves negative credit. If it does neither, it is neutral with respect 

to instrumental V-value. There is more complexity to come, however. In evaluating the 

V-value of a practice, we usually cannot focus merely on the one agent scenario. As 

Goldman notes, “[m]any social practices aim to disseminate information to multiple 

agents, and their success should be judged by their propensity to increase the V-value of 

many agents’ belief states, not just the belief states of a single agent” (1999, 93). This is 

why we should be interested in the aggregate level of knowledge, or true belief, of an 

entire community (or a subset thereof). 

 Consider a small community of four agents: S1-S4. Suppose that the question of 

interest is whether p or not-p is true, and that p is in fact true. At time t1, the several 

agents have DBs vis-à-vis p as shown in the corresponding column (see Table 1). 

Practice  is then applied, with the result that the agents acquire new DBs vis-à-vis P at t2 

as shown in the column under t2. 

 

  t1 t2 

S1 DB(p) = 

.40 

DB(p) = . 70 

S2 DB(p) = 

.70 

DB(p) = .90 

S3 DB(p) = 

.90 

DB(p) = .60 

S4 DB(p) = 

.20 

DB(p) = .80 
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Table 1 

 

At t1 the group’s mean DB in p is .55, so that .55 is their aggregate V-value at t1. At t2, 

the group’s mean DB in p is .75, so that this is their new aggregate V-value. Thus the 

group displays an increase of .20 in its aggregate V-value. Hence the practice  displays 

positive V-value in this application. 

 A further issue is that there is a need to consider not just one application of a practice 

but many such applications. In evaluating a practice, we are interested in its performance 

across a wide range of applications. In order to determine the V-value of the practice  in 

our example we would have to study how well it fares in other applications as well. This 

would presumably mean, among other things, varying the size of the population of 

inquirers as well as allowing it to operate on other initial degrees of belief. Once we have 

isolated the relevant set of applications against which the practice is to be measured, we 

can take its average performance as a measure of its V-value. 

It follows from these considerations that, when assessing the V-value of a practice, we 

need to “average” twice. For each application Ai of the practice, we need to assess the 

average effect Ei it had on the degrees of belief of the members of the society. The V-

value of the practice is then computed as the average over all the Eis. 

As one can imagine, the task to compute the V-value of a social practice can become 

quite complicated in practice. For that reason, researchers have been interested in 

delegating it to computers. See Olsson (2011) for a description of the simulation 

framework Laputa which allows V-values to be computed automatically for a variety of 

social practices. 

 

6. The value of Bayesian epistemology 

 

Pursuing Bayesian epistemology, as understood here and arguably in Bovens and 

Hartmann (2003), means translating concepts and ideas from epistemology into the 

language of probability, especially concepts that relate to the way in which our beliefs are 

justified. This brings with it a number of advantages, many of which pertain to the use of 

formal methods generally. One has already been made: by means of formalization vague 
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or ambiguous concepts can be made precise and different senses distinguished. This was 

amply illustrated in our discussion of various ways of defining the concept of coherence – 

the central concept in the coherentist theory of justification – in probabilistic terms. 

Further, once a problem has been translated into probability theory, it can be handled in a 

more objective fashion than was previously possible. Our Bayesian treatment of the 

Dunnit example due to Klein and Warfield illustrates this advantage allowing it to be 

rigorously proved that one of their premises is false. The same example pinpoints another 

virtue of formalization: the possibility of making and upholding delicate distinctions that 

are difficult to express and sustain in ordinary language, i.e., the distinction between any 

old propositions and propositions that are believed to be true by some inquirer, and the 

implications of that difference for the probability of a set. See Hansson (2000) for an 

illuminating discussion of the value of formalization. 

Finally, formalization in a standard formal framework, probability being no exception, 

furthers the important scientific virtues of unity and integration. Thus, the marriage 

between coherence and probability has led to a tighter connection between epistemology 

and other areas of philosophy and science in which probability plays a major role. As we 

saw, authors have explored the rather obvious connection to confirmation theory, 

including Branden Fitelson (2003). Links to artificial intelligence – Bayesian networks 

and fuzzy logic respectively – are established in Bovens and Olsson (2000) and Glass 

(2006). 
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