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Abstract

Dissipation in Frequency Selective Structures (FSS) of aperture/slot type is
studied. The FSS consists of an arbitrary number of aperture layers and
dielectric layers. An aperture layer consists of a conducting plate with a
periodic array of apertures, with arbitrary cross-section. The dissipation in
an FSS is due to losses in the dielectric material, and losses due to finite
conductivity in the metallic plate. The dissipation in the dielectric parts
is modelled by the complex permittivity. The dissipation on the metallic
structure arises both on the plane metallic surface and on the metallic walls
of the apertures.

The method used to analyze the FSS is based on the mode matching tech-
nique and the Finite Element Method (FEM). The apertures are treated as
waveguides. The field are expanded in Floquet modes and waveguide modes,
and scattering matrices are derived. The attenuation and the power losses
are calculated for a number of different FSS, and based on these results the
performance of an FSS with losses is discussed.

1 Introduction

In this paper the dissipation of power in Frequency Selective Structures (FSS) of
aperture/slot type is studied by a mode matching technique. FSS are most often
constructed from one or more metallic screens that are sandwiched between dielectric
slabs, see Figure 1. The metallic screens are perforated in a regular pattern such that
at the resonant frequency of the structure, the radome passes nearly 100% of the
incident power. Outside the passband, nearly all of the incident power is reflected.
In essence, these radomes provide a bandpass filter function to the antennas located
behind them. Extensive discussions on FSS can be found in [8, 11, 14].

The dissipation in an FSS is due to losses in the dielectric material, and losses
due to the finite conductivity in the metallic plate. The dissipation in the dielectric
parts is taken into account by the complex permittivity. The dissipation on the
metallic plate arises both on the plane metallic surface and on the metallic walls of
the apertures, and is modelled by the introduction of a surface resistance.

Lossless cascaded FSS have been treated in a number of papers. In [10] a multi-
layered interface with each layer comprising metal strips periodically mounted on
lossy dielectric substrate is examined. An arbitrary screen that consists of periodic
metallic surfaces which are cascaded with lossy dielectric layers is analyzed in [4, 5].
In [7] a lossy structure, composed of a thin crossed-slot aperture backed by a lossy
dielectric layer, has been considered. A numerical method for lossy FSS in the
millimeter-wave range has been carried out in [9]. In [1] infinite rectangular grids
with finite conductivity are analyzed. Waveguides filled with lossy medium and with
lossy walls are studied among others in [2].

The presence of dissipation in the dielectric medium and the metallic surfaces
in an FSS modifies the usual description of scattering by an FSS. This modification
takes the form of a complex rather than a real propagation constant (kz or γ).
The complex propagation constant may be expressed as kz = β + iα. The phase
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Figure 1: A Frequency Selective Structure (FSS).

constant, β = 2π/λ, and the attenuation constant, α, are determined by the type
of dissipation, the type of material, the mode in question, and the geometry of the
FSS. The quantity 20 log10(e

α) ≈ 8.686α, the decibels of attenuation per unit length
is frequently employed as a measure of attenuation instead of α.

In the next section the geometry for the FSS and the mode matching technique
are described. The scattering matrix and the calculation of the internal fields are
discussed in Section 3. Section 4 is devoted to the transmitted power flow, and the
flow is illustrated in several plots. The losses in the dielectric regions are described
in Section 5, where a number of different FSS with dissipation are investigated.
In Section 6 some surface fields are depicted, and the losses in the plane metallic
screen are discussed. Finally waveguides with lossy walls are analyzed in Section 7.
Numerical values of dissipation in the plane metallic screen and in the metallic walls
for some FSS are presented. In the concluding remarks in Section 8 the importance
of dissipation is discussed.

2 Geometry and method

The geometry of a simple FSS, that consists of a perforated conducting plate sand-
wiched between two dielectric slabs, is depicted in Figure 1. The screen can have an
arbitrary number of aperture layers and dielectric layers. An aperture layer consists
of an electrically conducting plate perforated with a periodic array of apertures.
The apertures can have arbitrary cross-section, and every element in the aperture
layer is assumed to be a waveguide element. The apertures can be filled with a
dielectric material and any number of dielectric layers is allowed on either side of
the conductive screen. In Figure 2 the cross-section of the simple FSS in Figure 1
is depicted.

The grid for the periodic structure is defined in Figure 3, where it is assumed
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Figure 2: A cross-section of an FSS, with the expansion modes R±
n , E±

p , the mode
coefficients A±, B±, C±, D±, E±, the scattering matrices S0, S1, S2, S3, and
propagation matrices P01, P12, P23.

that the structure is infinite in the xy-plane. The z-axis is assumed to be orthogonal
to the surface of the conducting screen. The apertures are spaced periodically along
the x-axis with period a. The other axis of periodicity y′ makes an angle φ0 with the
x-axis and the apertures are spaced periodically along this second axis with period
b, see Figure 3. Hence, the array of apertures is divided into identical cells. The cell
at the origin is called the unit cell, and is denoted D ∈ R

2. The cross-section of the
aperture at the unit cell is denoted Ω ∈ R

2, Ω ⊂ D.
The method for analyzing the FSS is based on a general mode-matching tech-

nique and cascade coupling [12]. The FSS is divided into a number of boundaries
and uniform layers, see Figure 2, and the fields in each layer are expanded in a
complete set of vector wave functions. The mode matching technique is based on
the matching of the tangential electric and magnetic fields at each junction between
uniform sections.

The tangential electric and magnetic fields outside the screen and inside the
dielectric layers, see Figure 2, are expanded in Floquet modes, RTln and T Tln , see
e.g., [11–13]. The Floquet modes form a complete and orthonormal set of tangential
plane waves. The tangential fields inside the aperture layers, see Figure 2, are
expanded in waveguide modes, ETp and HTp, see e.g., [2]. The sets of waveguide
modes are complete and orthogonal. The geometry of the aperture is arbitrary. This
is possible since the method does not rely on explicit expressions for the waveguide
modes. Instead the Finite Element Method (FEM) is used to obtain the appropriate
modes.

The tangential electric and magnetic fields are matched by the boundary condi-
tions at every boundary surface between uniform section of the structure, in order
to obtain a scattering matrix Sn, see Figure 2. Each junction along the FSS has
its own scattering matrix and the scattering matrix represents the scattering prop-
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Figure 3: The periodicity of the FSS.

erties of the individual boundary or layer. For every layer a propagation matrix
Pm is calculated. These scattering matrices are cascade coupled to form an overall
scattering matrix S for the complete FSS, see Figure 4. This scattering matrix gives
the overall transmission and reflection properties of the FSS. The mode coefficients
and fields can be found at every boundary and inside every layer.

A substantial number of evanescent modes must be included in the numerical
calculations. This is because the uniform sections are usually relatively short in
length and thus the amplitude of the decaying modes may still be significant at the
next junction. An important question is: How many Floquet modes and waveguide
modes are needed? The rule of thumb is that the value of the maximum transverse
wavenumber should be the same in all regions to obtain good mode matching.

The current method is implemented in MATLAB. The eigenvalue problem for
the waveguide modes was solved by FEMLAB [3]. FEMLAB is a commercial FEM
program, which can be integrated in MATLAB as a toolbox. Extensive discussions
on the geometry and the method can be found in [12, 13].

In all examples in the paper, the incident field is a TE-polarized plane wave at
normal incidence. More general polarization and direction of incidence are possible,
but not shown in this paper. The power losses are calculated at the frequency with
maximum transmission. In all numerical examples the metallic screen is made of
copper.
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Figure 4: Scattering matrix for an FSS.

3 Scattering matrices

3.1 Scattering matrix and cascade coupling

In Figure 4, A+ and B− are column matrices containing the mode coefficients of the
total incident field. The column matrices A− and B+ contain the mode coefficients
of the total scattered field. The characteristics of the FSS are given by a scattering
matrix S, (

A−

B+

)
= S

(
A+

B−

)
=

(
S11 S12

S21 S22

) (
A+

B−

)
. (3.1)

The elements of S describe the coupling between the modes on the left-hand side
and the modes on the right-hand side of the FSS.

If there is no source on the right-hand side, i.e., B− = 0, then A− = S11A
+,

and hence S11 is the reflection matrix. The transmission matrix of the FSS is S21

since B+ = S21A
+. In this paper only reciprocal materials are considered and that

implies that S12 = S21.
By an iterative method, the scattering matrix of the complete FSS is formed

from the individual scattering matrices. If two scattering matrices Sa and Sb are
cascaded, then the matrix elements of the cascaded scattering matrix Sc are given
by 



Sc
11 = Sa

11 + Sa
12(I − Sb

11S
a
22)

−1Sb
11S

a
21,

Sc
12 = Sa

12(I − Sb
11S

a
22)

−1Sb
12,

Sc
21 = Sb

21(I − Sa
22S

b
11)

−1Sa
21,

Sc
22 = Sb

22 + Sb
21(I − Sa

22S
b
11)

−1Sa
22S

b
12,

(3.2)

where I is the unit matrix.

3.2 Internal fields

In order to determine the dissipation in a layer of the FSS, the mode coefficients
and the fields in that layer have to be calculated. Below, the mode coefficients C±

at the boundaries z = zm and z = zm+1 in the layer, denoted C, between these
boundaries, see Figure 5, are calculated from the incident mode coefficients A+.
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Figure 5: Inside the FSS.

Suppose there is no source on the right-hand side, i.e., B− = 0, then{
A−(z0) = S11A

+(z0),

B+(zn) = S21A
+(z0),

(3.3)

If the scattering matrices Sa and Sb are known and the propagation matrix for the
layer C is Pc, then {

A−(z0) = Sa
11A

+(z0) + Sa
12C

−(zm),

C+(zm) = Sa
21A

+(z0) + Sa
22C

−(zm),
(3.4)

{
C−(zm+1) = Sb

11C
+(zm+1),

B+(zn) = Sb
21C

+(zm+1),
(3.5)

and {
C−(zm) = Pc

12C
−(zm+1),

C+(zm+1) = Pc
21C

+(zm).
(3.6)

From (3.4), (3.5) and (3.6), the mode coefficients C± at z = zm are determined as{
C+(zm) = (I − Sa

22P
c
12S

b
11P

c
21)

−1Sa
21A

+(z0),

C−(zm) = Pc
12S

b
11P

c
21C

+(zm),
(3.7)

and at z = zm+1 as{
C+(zm+1) = (I − Pc

21S
a
22P

c
12S

b
11)

−1Pc
21S

a
21A

+(z0),

C−(zm+1) = Sb
11C

+(zm+1).
(3.8)

When the FSS is processed from left to right, the scattering matrices are calcu-
lated, cascaded and saved at all layers. In this case only the scattering matrices Sa

and S are known, while Sb is unknown. By utilizing (3.3)a and (3.4)a, it is seen
that

C+(zm) = (Sa
21(S11 − Sa

11)
−1Sa

12 + Sa
22)C

−(zm). (3.9)
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A comparison with (3.7) gives

Pc
12S

b
11P

c
21 = (Sa

21(S11 − Sa
11)

−1Sa
12 + Sa

22)
−1. (3.10)

In order to determine the dissipation inside a layer, the mode coefficients and the
fields at that point must be calculated. Below the mode coefficients at z ∈ [zm, zm+1]
in the layer C are calculated, see Figure 5.

The mode coefficients at z are{
C+(z) = Pc

12(z − zm)C+(zm),

C−(z) = Pc
21(zm+1 − z)C−(zm+1),

(3.11)

where Pc
12(z − zm) and Pc

21(zm+1 − z) are propagation matrices from zm to z and
from zm+1 to z, respectively.

4 Power flow

The time-average power flow across a surface Ω in the z-direction is given by the
integral of the complex Poyntings vector over that surface,

P =

∫
Ω

ẑ· < S > da

=
1

2
Re

∫
Ω

ẑ · {E × H∗} da =
1

2
Re

∫
Ω

ẑ · {ET × H∗
T} da,

(4.1)

where ∗ denotes complex conjugate, and ET, HT are the transverse fields. The real
power is given by the real part of P , while the imaginary part represents energy
stored in the electric and magnetic fields.

4.1 Power flow inside the dielectric layers

The total transverse electric and magnetic fields outside the structure and inside the
dielectric layers can be written as




Ed
T(r) =

∑
ln

{a+
lneiγnz + a−

lne−iγnz}RTln(ρ),

Hd
T(r) =

∑
ln

{a+
lneiγnz − a−

lne−iγnz}T Tln(ρ),
(4.2)

where RTln and T Tln are Floquet modes, see [12, 13]. The relation between RTln

and T Tln is
η0T Tln × ẑ = YlnRTln, (4.3)

where η0 is the free space wave impedance and Yln is the mode admittance

Yln =

{
γn

µk0
, l = 1,

εk0

γn
, l = 2.

(4.4)
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The Floquet modes are tangential plane waves, where l = 1 and l = 2 represent
TE and TM polarized waves, respectively. They are orthogonal to each other in the
sense that∫

D

ẑ · {RTln × T ∗
Tl′n′} da =

Y ∗
l′n′

η0

∫
D

RTln · R∗
Tl′n′ da =

Y ∗
ln

η0

δll′δnn′ , (4.5)

where D is the unit cell. Thus, the time-average power flow across the surface D in
the z-direction is

P d = Re
∑
ln

Y ∗
ln

2η0

{(a+
lneiγnz + a−

lne−iγnz)(a+∗
ln e−iγ∗

nz − a−∗
ln eiγ∗

nz)}

= Re
∑
ln

Y ∗
ln

2η0

{|a+
ln|2e−2 Im(γn)z − |a−

ln|2e2 Im(γn)z − i2 Im(a+
lna−∗

ln ei2 Re(γn)z)}.
(4.6)

Suppose that the dielectric layer consists of a lossless material, i.e., the permit-
tivity ε and the permeability µ are real. For frequencies f above the cutoff frequency
fcn for the Floquet mode RTln, the mode is propagating, the transverse wavenumber
τn is smaller than the wavenumber, and the longitudinal wavenumber γn is real, i.e.,

f > fcn ⇔ τn < k ⇔ γn real. (4.7)

The time-average power flow for the propagating Floquet modes across the surface
D in the z-direction in a lossless dielectric is

P d =
∑
τn<k

Yln

2η0

{|a+
ln|2 − |a−

ln|2}. (4.8)

For frequencies f below the cutoff frequency fcn, the mode is evanescent, the trans-
verse wavenumber τmn is larger than the wavenumber, and the longitudinal wave-
number γmn is imaginary, i.e.,

f < fcn ⇔ τn > k ⇔ γn imaginary. (4.9)

The time-average power flow for the evanescent Floquet modes across the surface D
in the z-direction in a lossless dielectric is

P d = −Re
∑
τn>k

Y ∗
ln

2η0

{i2 Im(a+
lna−∗

ln )} =
1

η0

∑
τn>k

Im(Y ∗
ln) Im(a+

lna−∗
ln ). (4.10)

4.2 Power flow inside the waveguide

The total transverse electric and magnetic fields inside the waveguide are




Ew
T(r, ω) =

∑
vp

{b+
vpe

ikzpz + b−vpe
−ikzpz}ETvp(ρ, ω),

Hw
T(r, ω) =

∑
vp

{b+
vpe

ikzpz − b−vpe
−ikzpz}HTvp(ρ, ω),

(4.11)
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where ETvp and HTvp are waveguide modes, see [12, 13]. The relation between ETvp

and HTvp are
η0HTvp = Yvpẑ × ETvp, (4.12)

where

Yvp =




√
ε
µ
, v = 0 (TEM),

kzn

µk0
, v = 1 (TE),

εk0

kzn
, v = 2 (TM),

(4.13)

is the admittance for the waveguide modes. The waveguide modes are a complete
set, and they are orthogonal to each other in the sense that

∫
Ω

ẑ · {ETvp × H∗
Tv′p′} da =

Y ∗
vp

η0

δvv′δpp′ , (4.14)

where Ω is the cross-section surface of the aperture. Thus, the time-average power
flow through a cross-section Ω of the waveguide is

Pw = Re
∑
vp

Y ∗
vp

2η0

{|b+
vp|2e−2 Im(kzp)z −|b−vp|2e2 Im(kzp)z − i2 Im(b+

vpb
−∗
vp ei2 Re(kzp)z)}. (4.15)

Suppose that the dielectric waveguide puck consists of a lossless material, i.e.,
the permittivity ε and the permeability µ are real. For frequencies f above the cutoff
frequency fcp for the waveguide mode ETvp, the mode is propagating, the transverse
wavenumber ktp is smaller than the wavenumber, and the longitudinal wavenumber
kzp is real, i.e.,

f > fcp ⇔ ktp < k ⇔ kzp real. (4.16)

The time-average power flow for the propagating waveguide modes through the
cross-section Ω of the dielectric puck is

Pw =
∑

ktp<k

Yvp

2η0

{|b+
vp|2 − |b−vp|2}. (4.17)

For frequencies f below the cutoff frequency fcn, the mode is evanescent, the trans-
verse wavenumber ktp is larger than the wavenumber, and the longitudinal wave-
number kzp is imaginary, i.e.,

f < fcp ⇔ ktp > k ⇔ kzp imaginary. (4.18)

The time-average power flow for the evanescent waveguide modes through the cross-
section Ω of the lossless dielectric puck is

Pw = −Re
∑

ktp>k

Y ∗
vp

2η0

{i2 Im(a+
vpa

−∗
vp }. (4.19)
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Figure 6: Power flow through an FSS.

4.3 Conservation of power

The conservation of power is satisfied, and for the FSS it yields that the incident
power is equal to the sum of the reflected, transmitted, and dissipated power, see
Figure 6,

P incident = P reflected + P transmitted + P dissipated. (4.20)

The dissipated power is decomposed in four different parts

P dissipated = P loss
dl + P loss

dw + P loss
ms + P loss

mw , (4.21)

and P loss
dl is the power losses in the dielectric layers, see Section 5.1, P loss

dw is the power
losses in the dielectric waveguide pucks, see Section 5.2, P loss

ms is the power losses in
the plane metallic surfaces, see Section 6, and P loss

mw is the power losses in the metallic
walls of the waveguides, see Section 7. The power losses can with good accuracy be
determined separately. The power losses due to dissipation in the dielectric medium,
P loss

dl and P loss
dw , are determined under the assumption of infinite conductivity for the

metallic medium, and the power losses due to finite conductivity in the metallic
medium, P loss

ms and P loss
mw , are determined under the assumption of lossless dielectric

medium.
In this paper the dissipation is studied at frequencies with maximum transmis-

sion, i.e., P reflected ≈ 0, and therefore the transmitted power is

P transmitted ≈ P incident − P dissipated. (4.22)

4.4 Numerical plots of power flow through FSS

The power flow density through an FSS is illustrated in Figure 7. The structure in
the two examples consists of a crossed dipole FSS and a hexagonal FSS imbedded in
two dielectric layers, as in Figure 8. The incident field is a TE-polarized plane wave
at normal incidence, i.e., the spherical angle of incidence θ = 0◦, and the azimuthal
angle φ = 0. The contour plots of the power flow density are given at five different
boundaries; at the outer boundary (between the vacuum and the dielectric layer),
in the middle of the dielectric layer, in the dielectric layer 1/10 of the thickness
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Figure 7: Power flow density for (a) a crossed dipole FSS, and (b) a hexagonal
FSS, cf. Figure 6 and 8.
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(a) (b) (c)

(d)
Dielectric sheet,

Dielectric puck,
Copper plate,h1 = 1

h2 = 2

10
.0

8.5 d

8.
0

6.0 c 7.2 e [mm]

h2 = 2

10
.0

ε1 = 4(1 + i tan δ)

ε2 = 2(1 + i tan δ)

60◦60◦

Figure 8: Three examples of FSS patterns; (a) crossed dipole FSS, (b) annular
FSS, (c) hexagonal FSS. In (d) the vertical cross-section of an FSS is depicted.
Cross-sections of type 1 have d = 0.85 mm, c = 5.0 mm, and e = 5.2 mm, while
cross-sections of type 2 have d = 1.90 mm, c = 4.0 mm, and e = 3.2 mm.

Material εr εi tan δ
Citanite 3.47 0.00750 0.0022
Plexiglas 2.59 0.00670 0.0026
Styron 2.54 0.00030 0.00012
Styramic 2.62 0.00023 0.00009
Teflon 2.08 0.00037 0.00018
Epoxy adhesive 2.80 0.056 0.020
E-glass 4.30 0.043 0.010
Rohacell 71 1.10 0.0011 0.0010

Table 1: Properties of some common dielectric materials at 10 GHz, [6].

of layer from the aperture layer, at the boundary between the dielectric layer and
the aperture layer, and in the middle of the aperture layer. The power plots are
symmetric around z = zc, this follows from invariance under time reversal for a
structure that has a symmetric geometry and is non-reflecting.

5 Dielectric losses

Electric-type dissipation in the dielectric medium is modelled by the complex relative
permittivity

ε = εr + iεi = εr(1 + i tan δ), (5.1)

where εr is the real relative dielectric constant, and tan δ = εi/εr is the loss tangent
for the dielectric material. For a dissipative medium it is possible to introduce a
conductivity σ that is related to the imaginary part of the permittivity εi as

ε = εr + i
σ

ωε0

= εr + i
σ

2πfε0

. (5.2)
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Obviously, tan δ = σ/(2πfε0εr) is a frequency dependent function.
A “perfect dielectric” would be one for which tan δ = 0. The only perfect

dielectric is vacuum. A “good dielectric” is defined to be one for which εr remains
almost constant at all radio frequencies and for which tan δ is very small. Examples
of good dielectrics are polystyrene, paraffin, and teflon. There is also a group of
“lossy dielectrics”, characterized by a varying εr and a larger tan δ in the radio-
frequency range. Examples of lossy dielectrics are plexiglas, porcelain, and bakelite.
Table 1 shows examples of complex relative permittivity for some dielectric materials
at 10 GHz.

5.1 Losses in dielectric layers

The propagation in the z-direction of a Floquet mode through a lossy dielectric layer
is described by, see (4.2),

e±iγnz = e±iβnze∓αdlnz, (5.3)

where γn is the complex propagation constant, βn is the phase constant, αdln is
the attenuation constant due to dissipation in the dielectric layer. The complex
propagation constant can be written as

γn = βn + iαdln =
√

k2 − τ 2
n =

√
k2

0ε − τ 2
n =

√
k2

0εr(1 + i tan δ) − τ 2
n

=
√

k2
0εr − τ 2

n + ik2
0εr tan δ =

√
k2

0εr − τ 2
n

√
1 + i

k2
0εr

k2
0εr − τ 2

n

tan δ,
(5.4)

where τn is the transverse wavenumber for the mode. When the losses are small,
tan δ � 1, and (5.4) may be approximated by

γn = βn + iαdln =
√

k2
0εr − τ 2

n(1 + i
1

2

k2
0εr

k2
0εr − τ 2

n

tan δ)

=
√

k2
0εr − τ 2

n + i
1

2

k2
0εr√

k2
0εr − τ 2

n

tan δ.

(5.5)

Hence, the phase constant and the attenuation constant are given by

βn =
√

k2
0εr − τ 2

n,

αdln =
k2

0εr tan δ

2βn

.
(5.6)

The total transmitted power P trans
dl through the dielectric layer can be written as

P trans
dl = P inc

dl − P loss
dl =

∞∑
n=1

Pdlne−2αdln∆zdl �
∞∑

n=1

Pdln(1 − 2αdln∆zdl)

= P inc
dl (1 − 2αdl∆zdl) � P inc

dl e−2αdl∆zdl ,

(5.7)

where P inc
dl is the incident power on the dielectric layer, P loss

dl � P inc
dl 2αdl∆zdl is the

total power losses in the dielectric layers, αdl =
∑∞

n=1
Pdln

P inc
dl

αdln is the total attenuation

constant due to dissipation in the dielectric layers, and ∆zdl is the thickness of the
layers.
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5.2 Dielectric losses in aperture

The propagation of a waveguide mode through an aperture with perfectly conducting
walls is described by, see (4.11),

e±ikzpz. (5.8)

The equation for the complex propagation constant kzp = βp + iαdwp in a dielectric
filled aperture becomes

k2
zp = (βp + iαdwp)

2 = k2 − k2
tp = k2

0εr(1 + i tan δ) − k2
tp, (5.9)

where βp is the phase constant, αdwp is the attenuation constant, and ktp is the
transverse wavenumber. When the losses are small, tan δ � 1, and for frequen-
cies sufficiently above the cutoff frequency so that α � β, Equation (5.9) may be
approximated by

β2
p + i2αdwpβp = k2

0εr − k2
tp + ik2

0εr tan δ, (5.10)

Hence

β2
p = k2

0εr − k2
tp,

αdwp =
k2

0εr tan δ

2βp

,
(5.11)

and the propagator of a mode is given by

e±ikzpz = e±iβpze∓αdwpz, (5.12)

where αdwp is the attenuation constant due to dissipation in the dielectric waveguide
puck.

The total transmitted power P trans
dw through the aperture can be written as

P trans
dw = P inc

dw − P loss
dw =

∞∑
n=1

Pdwne−2αdwn∆zdw � P inc
dw (1 − 2αdw∆zdw), (5.13)

where P inc
dw is the incident power in the aperture, P loss

dw � P inc
dw 2αdw∆zdw is the total

power loss in the dielectric waveguide puck, αdw =
∑∞

n=1
Pdwn

P inc
dw

αdwn is the total

attenuation constant due to dissipation in the dielectric waveguide puck, and ∆zdw

is the thickness of the puck.

5.3 Numerical examples of dielectric losses

The reflected and transmitted power for a lossy structure are plotted in Figure 9.
The structure consists of a lossy crossed dipole-puck aperture imbedded in two
lossy dielectric layers shown in Figure 8. The complex permittivity for the puck
is ε1 = 4(1 + i tan δ) and for the dielectric layer ε2 = 2(1 + i tan δ), where the loss
tangent tan δ = 0, 0.001, 0.01 or 0.1. The reflected and transmitted power are
plotted in three cases; losses only in the dielectric layer, losses only in the aperture
layer, and losses both in the dielectric and aperture layer. The incident field is a
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Crossed dipole FSS 1 : Losses in both the dielectric pucks and sheets

Crossed dipole FSS 1 : Losses in the dielectric pucks
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Crossed dipole FSS 1 : Losses in the dielectric sheets

8 8.5 9 9.5 10 10.5 11 11.5 12
Frequency [GHz]

-18

-16

-14

-12

-10

-8

-6

-4

-2

0

P
ow

er
 [
d
B

]

-20

Trans. tan(δ)=0
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Refl.   tan(δ)=0.1

(a) (b)

(c)

Trans. tan(δ)=0
Refl.   tan(δ)=0
Trans. tan(δ)=0.01
Refl.   tan(δ)=0.01
Trans. tan(δ)=0.1
Refl.   tan(δ)=0.1

Trans. tan(δ)=0
Refl.   tan(δ)=0
Trans. tan(δ)=0.01
Refl.   tan(δ)=0.01
Trans. tan(δ)=0.1
Refl.   tan(δ)=0.1

Figure 9: Dissipation in a crossed dipole FSS of type 1, cf. Figure 8. Both the
transmitted and reflected power are plotted. The curves with a dip are the reflected
power. (a) Dissipation only in the waveguide puck, (b) Dissipation only in the
dielectric layers, (c) Dissipation both in the dielectric layers and the waveguide
puck.

TE-polarized plane wave at normal incidence. The sharp null in the reflected power
of the lossless structure does not exist when the losses are added.

Three other examples of lossy FSS are presented in Figure 10. The geometries
for the FSS are shown in Figure 8. The complex permittivities for the dielectrics
are the same as for the crossed dipole FSS. The reflected and transmitted power are
plotted, where the loss tangent for the dielectric is the same for both the dielectric
layer and the dielectric waveguide puck.

In Figure 11 a lossy structure that consists of a lossy hexagonal-puck aperture
imbedded by two lossy dielectric layers is considered. The complex permittivity for
the puck ε1, and for the dielectric layer ε2, are the same as for the crossed dipole
FSS. The incident field is a TE-polarized plane wave at normal incidence.

In Table 2 numerical values of losses in the dielectric mediums are presented.
Five different geometries are compared in the table; two types of crossed dipoles
FSS, two types of annular FSS, and a hexagonal FSS. The cross-sections are given
by Figure 8, and in the caption of that figure. The cross-sections of type 2 have
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Annular FSS 1 : Losses in both dielectric sheets and pucks
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Crossed dipole FSS 2 : Losses in both dielectric sheets and pucks
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Trans. tan(δ)=0.1
Refl.   tan(δ)=0.1

Trans. tan(δ)=0
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Trans. tan(δ)=0.1
Refl.   tan(δ)=0.1
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Trans. tan(δ)=0.1
Refl.   tan(δ)=0.1

Figure 10: (a) Dissipation in a crossed dipole FSS of type 2. (b) Dissipation in
an annular FSS of type 1. (c) Dissipation in an annular FSS of type 2. Both the
transmitted and reflected power are plotted, where the curves with a dip are the
reflected power. The geometries are given by Figure 8.

approximately twice as large apertures than cross-sections of type 1.
Numerical values of the total attenuation factors for dissipation in the dielectric

are presented in Table 3. The attenuation factor due to dissipation in the dielectric
layer αdl and the attenuation factor due to dissipation in the dielectric waveguide
puck αdw are calculated for three different loss tangents, tan δ = 0, 0.001, 0.01 or
0.1. The same five structures as in Table 2 are used, see also Figure 8.

In Table 3 it can be seen that the attenuation is much larger in the dielectric
waveguide puck than in the dielectric layer. This is because the fields, and therefore
the power flow density, are much larger in the aperture than in the dielectric layer.
The table also shows that the attenuation is smaller if the aperture is larger. This
is because the power flow density is larger in a smaller aperture, and therefore the
dissipation is larger in a smaller aperture.

Figure 12(a) shows the relation between the power loss and tan δ for the hexago-
nal FSS (Figure 8). The three curves in the figure represent the following quantities;
losses only in the dielectric layer, losses only in the waveguide puck, and losses both
in the dielectric layer and waveguide puck. The corresponding attenuation factors
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Hexagonal FSS: Losses in the dielectric pucks

Hexagonal FSS: Losses in both the dielectric pucks and sheets

Hexagonal FSS: Losses in the dielectric sheets
(a) (b)

(c)

Trans. tan(δ)=0
Refl.   tan(δ)=0
Trans. tan(δ)=0.01
Refl.   tan(δ)=0.01
Trans. tan(δ)=0.1
Refl.   tan(δ)=0.1

Trans. tan(δ)=0
Refl.   tan(δ)=0
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Trans. tan(δ)=0.1
Refl.   tan(δ)=0.1

Trans. tan(δ)=0
Refl.   tan(δ)=0
Trans. tan(δ)=0.01
Refl.   tan(δ)=0.01
Trans. tan(δ)=0.1
Refl.   tan(δ)=0.1

Figure 11: Dissipation in a hexagonal FSS of type 1, cf. Figure 8. (a) Dissipation
only in the waveguide puck, (b) Dissipation only in the dielectric layers, (c) Dissi-
pation both in the dielectric layers and the waveguide puck. Both the transmitted
and reflected power are plotted, where the curves with a dip are the reflected power.

are depicted in Figure 12(b). The two curves in the figure represent the attenua-
tion constant for dissipation in the dielectric layer and the attenuation constant for
dissipation in the waveguide puck, respectively.

The total transmitted power can approximately be written as

P trans
d = P inc

d − P loss
d = P inc

d − (P loss
dl + P loss

dw ) � P inc
d (1 − 2αdl∆zdl)(1 − 2αdw∆zdw),

(5.14)
where P inc

d is the total incident power, and P loss
d is the total power loss due to dissi-

pation in the dielectric mediums. The power losses in the dielectric sheets, P loss
dl =

P inc
d 2αdl∆zdl, and the power losses in the dielectric pucks, P loss

dw = P inc
d 2αdw∆zdw,

can with good approximation be determined separately. The power losses due to
dissipation in the dielectric layers are determined by assuming lossless dielectric
waveguide pucks, and the power losses due to dissipation in the dielectric waveguide
pucks is determined by assuming lossless dielectric layers. In Tables 2 and 3, it can
be seen that this is a good approximation when tan δ < 0.01.
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tan δ P loss
d [dB]

Dielectric Crossed dipole Annular Hexagonal
sheets pucks 1 2 1 2 1

0 0 0 0 0 0 0
0.001 0.049 0.022 0.046 0.026 0.035
0.01 0.48 0.22 0.40 0.24 0.35
0.1 3.91 1.94 3.27 2.08 2.94

0.001 0 0.035 0.023 0.025 0.019 0.023
0.001 0.084 0.045 0.065 0.043 0.058
0.01 0.51 0.24 0.41 0.25 0.37
0.1 3.93 2.96 3.29 2.09 2.96

0.01 0 0.34 0.23 0.20 0.17 0.23
0.001 0.39 0.25 0.23 0.20 0.26
0.01 0.80 0.44 0.58 0.40 0.56
0.1 4.13 2.13 3.41 2.21 3.10

0.1 0 2.96 2.11 1.75 1.57 2.00
0.001 2.99 2.12 1.79 1.59 2.03
0.01 3.31 2.28 2.08 1.76 2.28
0.1 5.94 3.69 4.54 3.37 4.44

Table 2: Losses in the dielectric medium at the frequency with maximum trans-
mission. The geometries are given by Figure 8.

tan δ αdl [ mm−1]
αdw [ mm−1]

Crossed dipole Annular Hexagonal
1 2 1 2 1

0.001 0.00100 0.00067 0.00073 0.00056 0.00066
0.0057 0.0025 0.0053 0.0030 0.0041

0.01 0.0098 0.0066 0.0058 0.0049 0.0066
0.055 0.025 0.046 0.028 0.040

0.1 0.085 0.061 0.050 0.045 0.058
0.45 0.22 0.38 0.24 0.34

Table 3: Attenuation constant for dissipation in the dielectric medium. The geome-
tries are given by Figure 8.

6 Losses in plane metallic screen

The plane metallic screen is assumed to have a finite conductivity, σm, see Figure 13,
and to fulfill the condition for a good conductor, i.e.,

σm 	 ωε0εm. (6.1)
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Figure 12: Power loss and attenuation constant for the hexagonal FSS. The geom-
etry is given by Figure 8.

Metallic screenEm, Hm

εm, µm, σm Dielectric sheet
Ed, Hd

εd, µd, σd

Dielectric puck
Ew, Hw
εw, µw, σw

δ

δ

Figure 13: Skin depth, δ.

The permittivity εm and the permeability µm are real for the metal, and the wave-
number inside the metal is

k(ω) =
ω
√

µm

c0

(εm + i
σm

ωε0

)1/2 ≈ 1 + i√
2

√
σmµ0µmω, (6.2)

where (6.1) is used for the approximation.

6.1 Power losses in a plane metallic surface

Let ξ̂ be the inward normal to the metallic surface, directed inwards the metal, see
Figure 13. A plane wave propagating in the ξ̂-direction inside the metal can be
written as Em = E0e

ikξ = E0e
iξ/δe−ξ/δ, where

δ =

√
2

ωµ0µmσm

(6.3)

is the skin depth, which is the depth for the field to decay by e−1. Table 4 shows
examples of conductivity and skin depth for a number of metals at 10 GHz.
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Material Conductivity, σm Skin depth, δ, Surface resistance, Rs,
[S/m] at f = 10 GHz [m] at f = 10 GHz [Ω]

Silver 63.0 · 106 0.63 · 10−6 0.0125
Copper 59.6 · 106 0.65 · 10−6 0.0129
Gold 45.2 · 106 0.75 · 10−6 0.0148
Aluminum 37.8 · 106 0.82 · 10−6 0.0162
Iron (µm = 103) 10.4 · 106 0.049 · 10−6 0.0308

Table 4: Conductivity, skin depth, and surface resistance for a number of metals.

In the microwave range the skin depth is much smaller than the dimensions of
the metallic screen, see Table 4. The ξ-derivatives of the fields in the metal are
then much greater than the derivatives in the tangential direction. Therefore the
tangential-derivatives are neglected and

∇ � ξ̂
∂

∂ξ
. (6.4)

Maxwells equations together with the assumptions (6.1) and (6.4) give that

∂2Hm

∂ξ2
+ iωµ0µmσmHm = 0, (6.5)

with the solution
Hm = H‖e

iξ/δe−ξ/δ, (6.6)

where H‖ is the tangential component of the magnetic field at the surface of the
metallic screen. A very good approximation is that the value of H‖ is the same as
for a perfectly conducting screen. The corresponding electric field, which is derived
from Maxwells equations, is

Em =
i − 1

σmδ
(ξ̂ × H‖)e

iξ/δe−ξ/δ. (6.7)

The ohmic losses in the metal can now be calculated. The time-average of the
power loss per unit volume in the metal is

dP

dv
=

1

2
Re{J · E∗

m} =
σm

2
Em · E∗

m =
1

σmδ2
|H‖|2e−2ξ/δ, (6.8)

and the power loss density is

dP

da
=

∫ ∞

0

dP

dv
dξ =

1

2σmδ
|H‖|2 = Rs|JS|2, (6.9)

where Rs = 1/(2σmδ) is a surface resistance, cf. Table 4 .
The power loss on the plane metallic part of the unit cell can be written as

P loss
ms =

1

2σmδ

∫
D\Ω

|H‖|2 da, (6.10)
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Figure 14: Skin depth, δ, and surface resistance, Rs.

and the loss factor Lf due to the finite conductivity in the metallic screen is defined
as

Lf =
P loss

ms

P inc
ms

, (6.11)

where P inc
ms is the incident power on the plane metallic screen.

The skin depth δ and the surface resistance Rs are depicted in Figure 14. In
figure (a) the dependence of the conductivity σ at 10 GHz is plotted and in figure
(b) the dependence of frequency for copper is shown.

6.2 Surface field plots and numerical examples of losses

Figures 15 and 16 are contour plots for the tangential electric and magnetic fields
at the metallic surface. The fields are plotted for five different cross-sections, and
for every geometry both the electric and the magnetic fields are shown; E-field to
the left and H-field to the right. The incident field is a TE-polarized plane wave at
normal incidence, i.e., the polar angle of incidence θ = 0◦, and the azimuthal angle
φ = 0◦. The electric field exists only in the aperture and is zero at the metallic
surface, whereas the magnetic field exists both in the aperture and at the metallic
surface.

Numerical values of the power loss P loss
ms at the plane metallic surface are pre-

sented in Table 5. The metallic screen is made of copper, and the power losses are
calculated at both sides of the metallic plate. Five different geometries are com-
pared in the table; two types of crossed dipoles FSS, two types of annular FSS, and
a hexagonal FSS. The cross-sections are given by Figure 8, and in the caption of
that figure. The cross-sections of type 2 have about twice as large apertures than
the cross-sections of type 1. In Table 5 dissipation in the dielectric materials are
also included. The complex permittivity for the puck is ε1 = 4(1 + i tan δ) and for
the dielectric layer ε2 = 2(1 + i tan δ). The loss tangent is the same for both the
puck and the layers, and four cases are studied tan δ = 0, 0.001, 0.01 or 0.1. The
upper number is the power loss P loss

d in the dielectric mediums and the lower is the
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(a)

(b)

|E| |H|

|E| |H|

Figure 15: The electric and magnetic fields at the metallic surface; E-field on the
left and H-field on the right. (a) Dipole FSS, (b) Crossed dipole FSS.

power loss P loss
ms in the metallic surface. The incident field is a TE-polarized plane

wave at normal incidence, and the field impinges from the left side. The power loss
P loss

d in the table indicates how much the incident field P inc is attenuated before it
reaches the metallic screen.

In Table 5 it is seen that if tan δ ≤ 0.001, the power loss P loss
ms at the plane metallic

surface is almost independent of the power loss P loss
d in the dielectric mediums The

power loss due to finite conductivity in the plane metallic plate can therefore be
determined separately, i.e., the power loss P loss

ms is determined by assuming a lossless
dielectric medium.

A comparison of the geometries of type 1 and 2 in Table 5, shows that the power
loss for the plane metallic plate is much smaller for geometries of type 2. The reason
is that the fields must be much larger if the aperture is smaller in order to give the
same power flow P . By using P ∼ H2 · A and A ∼ Γ2, it can be seen that

P loss ∼ H2 · Γ ∼ Γ

A
∼ 1√

A
, (6.12)

where A is the area and Γ is the circumference of the aperture.
On a comparison between the losses in the dielectric medium and the plane
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(a)

(b)

(c)
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|E| |H|

|E| |H|

Figure 16: The electric and magnetic fields at the metallic surface; E-field on the
left and H-field on the right. (a) Circular FSS, (b) Annular FSS, (c) Hexagonal FSS.
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tan δ Side P loss
d [dB]

P loss
ms [dB]

Crossed dipole Annular Hexagonal
1 2 1 2 1

0 Left 0 0 0 0 0
0.0076 0.0030 0.0063 0.0030 0.0042

Right 0 0 0 0 0
0.0076 0.0030 0.0063 0.0030 0.0042

0.001 Left 0.04 0.03 0.03 0.03 0.04
0.0075 0.0030 0.0062 0.0029 0.0042

Right 0.13 0.08 0.11 0.08 0.11
0.0075 0.0030 0.0062 0.0029 0.0042

0.01 Left 0.37 0.25 0.22 0.18 0.25
0.0064 0.0028 0.0056 0.0027 0.0038

Right 1.27 0.66 0.96 0.63 0.90
0.0063 0.0028 0.0055 0.0027 0.0037

0.1 Left 3.73 2.35 2.43 1.88 2.54
0.0026 0.0017 0.0027 0.0018 0.0020

Right 8.92 5.28 7.33 5.17 6.88
0.0020 0.0013 0.0023 0.0014 0.0016

Table 5: The power loss P loss
ms at the plane metallic surface made of copper. The

power losses are calculated at both sides of the metallic plate, and dissipation in
the dielectric material is included with tan δ. The upper number is the power loss
P loss

d in the dielectric medium and the lower is the power loss P loss
ms in the metallic

surface. The geometries are given by Figure 8.

metallic plate in Table 5, it is seen that, if tan δ > 0.001 the losses in the dielectric
medium are dominating.

7 Losses in waveguide walls

In the usual theory for waveguides, the walls of the waveguide are supposed to be per-
fectly conductive (infinite conductivity σ). In that case, a propagating waveguide
mode is not attenuated in a waveguide filled with a lossless medium, and a non-
propagating mode does not carry any active power. In this section the finite con-
ductivity of the metallic walls is taken into account. It implies an attenuation of the
propagating modes and also an active power transportation by the non-propagating
modes.
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7.1 Power losses in metallic walls

Assume that the walls of the waveguide are good, but not perfect, conductors, i.e.,
the conductivity, σ, is large, but finite. The total electric and magnetic field inside
a waveguide can be expanded in eigenmodes as [13]




E±(r, ω) =
∑
vp

a±
vp{ETvp(ρ, ω) ± ẑEzvp(ρ)}e±ikzp(ω)z,

η0H
±(r, ω) =

∑
p

a±
vp{±η0HTvp(ρ, ω) + ẑHzvp(ρ)}e±ikzp(ω)z,

(7.1)

where a±
vp are expansion coefficients for the waveguide modes. From (6.9), the power

loss per unit length can be written as

dP

dz
= −

∮
Γ

dP

da
dl = − 1

2σδ

∮
Γ

|H±|2 dl, (7.2)

where Γ is the boundary of the aperture. The amplitudes of the total magnetic field
at the metallic waveguide walls are

|H±|2 =
∑
vp

|H±
vp|2 =

∑
vp

|a±
vp|2{|HTvp|2 +

1

η2
0

|Hzvp|2}. (7.3)

The total power loss in a section of length ∆zc of the waveguide is given by

P loss
mw = −dP

dz
∆zc = P inc

dw 2αc∆zc, (7.4)

where P inc
dw is the incident power flow through the aperture, and the corresponding

attenuation constant αc of the field due to finite conductivity in the walls of the
waveguide is

αc = −1

2

1

P inc
dw

dP

dz
=

Rs

2

1

P inc
dw

∮
Γ

|H±|2 dl

=
Rs

2

∑
vp

|a±
vp|2

P inc
dw

∮
Γ

{|HTvp|2 +
1

η2
0

|Hzvp|2} dl,
(7.5)

where Rs is the surface resistance.

7.1.1 Lossless material

Suppose that the waveguide is filled with a lossless medium, i.e., the permittivity
ε and the permeability µ are real. In a first order approximation, the modes are
attenuated due to the losses in the walls, when the modes propagate through the
waveguide. The frequency is above the cutoff for the mode, i.e., the propagation
constant kzp is real. One mode that propagates in the positive z-direction is studied.
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From (4.15), the time-average power flow for the mode vp in a lossless waveguide
with perfectly conducting walls is

P+
vp =

Yvp

2η0

|a+
vp|2, (7.6)

where Yvp is the wave impedance. Thus, the power flow with perfectly conducting
walls is independent of z and the mode is not attenuated. In the case with not
perfectly conducting walls, the mode looses energy when it propagates through the
waveguide, due to the losses in the walls. The power P is then a decreasing function
of z.

An equation for the attenuation of the power flow can be derived by combining
(7.2) with (7.3) and (7.6)

dP+
vp

dz
= − 1

2σδ

∮
Γ

|H+
vp|2 dl = −P+

vp2αvp. (7.7)

The solution to (7.7) can be written as

P+
vp(z) = P+

vp(0)e−2αvpz, (7.8)

where 2αvp is an attenuation constant for the power

αvp =
η0

2σδYvp

∮
Γ

{|HTvp|2 +
1

η2
0

|Hzvp|2} dl. (7.9)

This is the expression for the attenuation constant of a mode in a waveguide whose
walls have good, but not perfect, conductivity.

7.2 Numerical examples of losses in aperture walls

Numerical values of the power loss P loss
mw in the metallic walls of the waveguide

are presented in Table 6. The metallic walls are made of copper, and the power
losses are calculated at the apertures on both sides of the metallic screen. Five
different geometries are compared in the table; two types of crossed dipoles FSS,
two types of annular FSS, and a hexagonal FSS. The cross-sections are given by
Figure 8, and in the caption of that figure. The cross-sections of type 2 have about
twice as large apertures than cross-sections of type 1. In Table 6 dissipation in
the dielectric materials are also included. The complex permittivity for the puck is
ε1 = 4(1 + i tan δ) and for the dielectric layer ε2 = 2(1 + i tan δ). The loss tangent is
the same for both the puck and the layers. Four cases are studied with tan δ = 0,
0.001, 0.01 or 0.1. The power losses in the walls are calculated from the fields at the
apertures on both sides of the metallic plate. The upper number is the power loss
P loss

d in the dielectric medium and the lower is the power loss P loss
mw in the metallic

walls. The incident field is a TE-polarized plane wave at normal incidence, and the
field impinges from the left side. The power loss P loss

d in the table indicates how
much the incident field P inc is attenuated before it reaches the metallic screen.
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tan δ Aperture P loss
d [dB]

side P loss
mw [dB]

Crossed dipole Annular Hexagonal
1 2 1 2 1

0 Left 0 0 0 0 0
0.0074 0.0019 0.0089 0.0028 0.0053

Right 0 0 0 0 0
0.0074 0.0019 0.0089 0.0028 0.0053

0.001 Left 0.04 0.03 0.03 0.03 0.04
0.0072 0.0019 0.0088 0.0028 0.0052

Right 0.13 0.08 0.11 0.08 0.11
0.0072 0.0019 0.0088 0.0028 0.0052

0.01 Left 0.37 0.25 0.22 0.18 0.25
0.0061 0.0018 0.0079 0.0026 0.0047

Right 1.27 0.66 0.96 0.63 0.90
0.0061 0.0018 0.0078 0.0026 0.0047

0.1 Left 3.73 2.35 2.43 1.88 2.54
0.0020 0.0009 0.0033 0.0014 0.0020

Right 8.92 5.28 7.33 5.17 6.88
0.0019 0.0009 0.0032 0.0013 0.0019

Table 6: The power loss P loss
mw in the metallic walls of the waveguide. The walls have

finite conductivity and are made of copper. Dissipation in the dielectric material is
included with tan δ. The power losses in the walls are calculated with help of the
field at the apertures on both sides of the metallic screen. The upper number is the
power loss P loss

d in the dielectric medium and the lower is the power loss P loss
mw in the

metallic walls. The geometries are given by Figure 8.

In Table 6 it is seen that if tan δ ≤ 0.001, the power losses P loss
mw in the metallic

walls of the waveguide are almost independent of the loss tangent, tan δ, of the
dielectric medium. The power losses due to finite conductivity in the waveguide
walls can therefore be determined separately, i.e., the power loss P loss

mw is determined
by assuming a lossless dielectric medium.

When the geometries of type 1 and 2 are compared in Table 6, one sees that the
power loss P loss

mw for the metallic walls of the waveguide is much smaller for geometries
of type 2. The reason is that the fields must be much larger in a smaller aperture,
in order to give the same power flow. On a comparison between the losses in the
dielectric medium and the waveguide walls it is seen that, if tan δ > 0.001 the losses
in the dielectric medium is dominating.

A comparison between the incident powers in Tables 5 and 6 gives that the
conservation of power is fulfilled. The power that falls into the metallic layer is the
same as the power that propagates through the aperture.

In Table 7 the power and the attenuation constant for the first four modes are
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Pvp [W] & αvp [ mm−1]

Crossed dipole Annular Hexagonal
1 2 1 2 1

P00(0) — — 0.00 0.00 0.00
α00 — — 2.20 1.20 1.24
P11(0) 0.20 0.77 0.02 0.63 0.28
α11 0.27 0.15 0.36 0.19 0.21
P12(0) 0.79 0.22 0.98 0.37 0.72
α12 0.27 0.15 0.36 0.19 0.21
P13(0) 0.00 0.00 0.00 0.00 0.00
α13 0.30 0.22 0.00 0.00 0.00

Table 7: The incident powers, Pvp, through the aperture and the attenuation con-
stants, αvp, for the first four modes. The geometries are given by Figure 8.

shown. The power is the incident power Pvp(0) through the aperture, and the
attenuation constant αvp is due to dissipation in the walls of the waveguide, see
(7.8) and (7.9). The first mode (vp = 00) is the TEM-mode, and other three are
TE-modes (vp = 1p). The incident field is a TE-polarized plane wave at normal
incidence. The walls of the waveguide are made of copper.

8 Conclusions

The power transmission through two examples of FSS are depicted in Figure 17.
The metallic plate is made of copper and the dielectric medium has tan δ = 0.001.
In figure (a) the power transmission for the annular (type 1) FSS is shown, and in
(b) for the hexagonal FSS. The power decreases as it propagates through the FSS.
First the power is attenuated in the dielectric sheet (1), then there is losses in the
plane metallic surface (2), and after that the power is attenuated in the dielectric
puck (3). The losses in the metallic waveguide walls (4) are all plotted in the middle
of the waveguide, but in reality they are spread all over the walls of the waveguide.

The presence of dissipation in the dielectric mediums and on the metallic surfaces
in an FSS modifies the usual description of scattering by an FSS. This modifica-
tion takes the form of a complex rather than a real propagation constant, and by
introduction of a surface resistance. The transmitted power is approximately given
by

P trans = P inctdltdwtcLf , (8.1)

where tdl is the transmissivity due to dissipation in the dielectric layers, tdw is the
transmissivity due to dissipation in the dielectric waveguide puck , tc is the trans-
missivity due to finite conductivity in the metallic walls of the waveguide, and
Lf is the loss factor due to finite conductivity in the plane metallic surface. The
transmissivities and the loss factor can with good accuracy be determined sepa-
rately. The transmissivities due to dissipation in the dielectric medium, tdl and tdw,
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Figure 17: Power transmission through FSS, with copper plate and tan δ = 0.001
dielectric. (a) Annular FSS, (b) Hexagonal FSS. The geometries are given by Fig-
ure 8.

are determined by assuming infinite conductivity for the metallic surfaces, and the
transmissivity, tc, due to finite conductivity in the walls of the waveguide and the
loss factor, Lf , due to finite conductivity in the metallic medium are determined by
assuming lossless dielectric medium.

The losses in the dielectric material are rather small for common ”good di-
electrics”, but can be quite large for ”lossy dielectrics”, if the thickness of the layers
are large. The attenuation is proportionately larger in the dielectric waveguide puck
than in the dielectric layers, if the waveguide puck and the layer have the same tan δ.
This is because the fields, and therefore the power flow density, are much larger in
the aperture than in the the dielectric layer. The attenuation becomes smaller if the
size of the aperture becomes larger. This is because the power flow density is larger
in a smaller aperture, and therefore the dissipation is larger in a smaller aperture.

The losses due to finite conductivity in the metallic plate are also rather small,
if the metallic plate is made of a good conductor, such as copper or aluminium. The
losses in the metallic waveguide walls are proportionately larger than the losses in
the plane metallic surface. The reason is that the fields, especially the magnetic
field, are larger on the waveguide walls than on the plane metallic surface. The
losses on the plane metallic screen and losses on the waveguide walls are smaller, if
the aperture are larger. In general, the losses in the dielectric regions are dominating
over the losses due to finite conductivity in the metallic plate.
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