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Abstract

In this paper, wave propagation of electromagnetic pulses in media that are
periodic in one spatial direction is analyzed by a time domain technique. The
special case of wave propagation in an inhomogeneous planar waveguide with
perfectly conducting walls is also discussed. The wave equation is reduced to
a set of one dimensional first order hyperbolic equations by an expansion in
a complete set of basis functions and by utilizing a wave splitting technique.
The method is especially useful for the propagation of broad pulses.

1 Introduction

The objective of this paper is to analyze pulse propagation in an infinitely wide
medium that is periodic in the transverse direction, or equivalently, a waveguide
with a variation of the permittivity in the transverse direction. For simplicity,
only the propagation of TE (transverse electric) modes is discussed, since the wave
equation is then scalar.

Ever since optical fibers have become important tools in transferring information,
the analysis of wave propagation in inhomogeneous waveguides has received much
attention. Much of this work deals with circular waveguides, even though both
rectangular and planar optical waveguides are of interest in telecommunication [1].
A good overview of recent techniques and results can be found in books on optical
waveguides, such as [2], [3] and [4]. These technqiues are often similar to those used
in analyzing propagation through periodic media [5]. While most of the work on
waveguides has been done in the frequency domain, several time-domain results, [6],
[7], [8] and [9] for example, have appeared. In applications where pulses or finite
wavetrains propagate through the waveguide, a time-domain analysis is relevant.
In optical fibers, light pulses are finite wave trains of time-harmonic waves, but the
beginning and ends of the pulses are transient. A detailed analysis of the propagation
of these pulses must be based upon either a time-domain method or a method in
the frequency domain which can handle a wide band of frequencies.

In the time domain method presented in this paper the wave equation for the
waveguide is reduced to a one-dimensional problem by expanding the propagation
speed c(x) and the electric field in a complete set of basis functions. This approach
has also been used in the frequency domain [1]. The time domain technique of wave
splitting is applied to the one-dimensional wave equation: the wave field is split
into left and right moving components. Since the medium is homogeneous in z,
there is no coupling between the split fields. To describe the propagation of these
fields, an operator, referred to as the propagator, is introduced. The propagator
maps a split field from one position to another in the waveguide and is represented
by a kernel satisfying a hyperbolic equation. The propagator is closely related to
the scattering operators used in invariant imbedding techniques, cf [10], [11], [12],
and to the operators used in the Green function approach [13]. The Green function
approach has recently been applied to transient wave propagation in a homogeneous
waveguide [7] and the present paper is partly based upon results in this paper.
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The paper is organized as follows: Section 2 contains the statement of the prob-
lem under consideration. In Section 3, the wave equation is cast into the appropriate
form for determining the electric field inside the waveguide. The internal field is rep-
resented by a propagation operation, described in Section 4, which allows for ease
and flexibility in the numerical solution. The reflected field and the boundary con-
dition at the end of the waveguide are presented in Section 5. Discretization of the
equations and the algorithm for solving the direct problem are outlined in Section 6.
Numerical results are presented in Section 7. Section 8 contains concluding remarks
and plans for extending the results of this paper.

2 Problem statement

Physical Model. Consider a half-space, z > 0, which has a periodic variation of
the material parameters in the x direction but no variation in the y and z directions.
The half-space is attached at z = 0 to the homogeneous half-space z < 0, which
has constant propagation speed ch = 1/

√
εhµ0, where εh is the permittivity. The

period in the x direction is p. In the analysis, the permittivity is assumed to be
x−dependent, while the permeability is constant and there is no conductivity. These
assumptions are not crucial for the analysis, but lead to a simple wave equation with
no lower order terms. The formulation of the problem as a periodic halfspace prob-
lem may ultimately provide a means of examining more general wave propagation
problems in three dimensions by wave splitting techniques.

The direct scattering problem under consideration is the following: an incident
transverse electric wave Ei(x, z, t) = f(x, t− z/ch)êy, traveling in the +z direction,
impinges at the boundary z = 0 at time t = 0. The resulting reflected field and
the internal field for z > 0 are to be calculated. Due to the geometry there is no
coupling to the transverse magnetic mode so that

E(x, z, t) = E(x, z, t)êy (2.1)

everywhere. The periodicity of the geometry implies the conditions E(x, z, t) =
E(x+ p, z, t) and ∂xE(x, z, t) = ∂xE(x+ p, z, t).

The equivalent waveguide problem is a wave guide of width p, homogeneous for
z < 0 and with an x−dependent permittivity such that ε(0) = ε(p) for z > 0.
A special case of this waveguide is the familiar planar waveguide with perfectly
conducting walls, in which case the walls are located at x = 0 and x = a = p

2
, where

the boundary conditions E(0, z, t) = E(a, z, t) = 0 are assumed. The incident wave
in the homogeneous part of the waveguide is taken to be a waveguide mode. This
important special case is discussed later in the paper.

Notes on Notation. All partial derivatives are indicated by ∂. Matrix or
vector transposes are denoted by a superscript T . A superscript ‘e’ or ‘o’ indicates
a coefficient associated with a cosine (even) or sine (odd) term. In the description
of the matrix equation, k indicates the row (equation number) and n indicates the
column (mode number within the series representations).
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3 Problem Formulation

In this section, the wave equation is put into a form that is the basis for the intro-
duction of the propagator. The electric field and propagation speed are written in
terms of eigenfunction expansions, leading to a matrix formulation. Then the elec-
tric field is split into two components, which represent waves travelling along the +
or − z-axis. The result is a first order system; its principle part is diagonalized, so
that the unknowns correspond to the amplitudes of the modes that travel along the
waveguide. Equation (3.34) is the main result of this section.

3.1 Matrix form of the wave equation

The internal electric field (z > 0) satisfies the wave equation

0 = ∇2E(x, z, t)− 1

c2(x)
∂2
tE(x, z, t) (3.1)

Since the geometry is periodic in x with a period p, it is appropriate to expand
c−2 and E in terms of transverse eigenfunctions. In their most general form, the
expressions read

c−2(x) =
a0

2
+
∞∑
n=1

an cos(λnx) + bn sin(λnx) (3.2)

E(x, z, t) =
1

2
E0(z, t) +

∞∑
n=1

Ee
n(z, t) cos(λnx) + Eo

n(z, t) sin(λnx) (3.3)

=
∞∑
n=0

Ψn(z, t)vn(x)

where {λn = 2nπ/p, n = 0, 1, 2, . . .} is the set of eigenvalues, and Ψn and vn are
given by

Ψn : E0, E
e
1, E

e
2, . . . , E

o
1 , E

o
2 , . . . (3.4)

vn : 1
2
, cos(λ1x), cos(λ2x), . . . , sin(λ1x), sin(λ2x), . . . (3.5)

If the planar waveguide with perfectly conducting walls at x = 0 and x = a = p
2

is
considered, then E loses its cosine terms, but the eigenvalues are the same.

Substitute these expansions into the wave equation and use the orthogonality of
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the eigenfunctions to obtain the coupled system of equations

0 = (∂2
z − λ2

0)E0 −
a0

2
∂2
tE0 −

1

2

∞∑
n=1

an∂
2
tE

e
n + bn∂

2
tE

o
n (3.6)

0 = (∂2
z − λ2

k)E
e
k −

ak
2
∂2
tE0 −

1

2

∞∑
n=1

(an−k + an+k + ak−n − a0δnk)∂
2
tE

e
n

+(bn−k + bn+k − bk−n)∂2
tE

o
n ; k > 0 (3.7)

0 = (∂2
z − λ2

k)E
o
k −

bk
2
∂2
tE0 −

1

2

∞∑
n=1

(an−k − an+k + ak−n − a0δnk)∂
2
tE

o
n

+(−bn−k + bn+k + bk−n)∂
2
tE

e
n ; k > 0 (3.8)

These equations can be written in matrix form as

0 = ∂2
zΨ(z, t)− T 2∂2

tΨ(z, t)− Λ2Ψ(z, t) (3.9)

where Ψ = (Ψ0,Ψ1,Ψ2, . . .)
T . Λ2 is the diagonal matrix of squared eigenvalues

associated with each component of Ψ:

Λ2 =




λ2
0

λ2
1

λ2
2

. . .

λ2
1

λ2
2

. . .




(3.10)

T 2 is a symmetric matrix built exclusively from the coefficients in the expansion of
c−2(x). T 2 is banded for a c(x) whose expansion is finite, and is diagonal if c(x) is
constant. Nondiagonal elements of T 2 induce coupling among the modal coefficients
in Ψ. It is expected that T 2 is a positive definite matrix so that its square root,
denoted T , exists and is symmetric. While no proof of the existence of T has been
found in general, for any specific problem it is easy to check numerically that all
of the eigenvalues T 2, truncated to a finite size, are positive. Each eigenvalue of T
(the square root of the eigenvalue of T 2) represents the inverse of the propagation
speed of its corresponding mode. If the matrix T 2 is written as four submatrices,
U ee, U eo, U oe and U oo, i.e.,

T 2 =

(
U ee U eo

U oe U oo

)
(3.11)



5

it is seen that

U eek0 = U ee0k =
1

2
ak; k ≥ 0

U eekn =
1

2
(an−k + an+k + ak−n − a0δn,k); k > 0, n > 0

U eo0n = U oen0 =
1

2
bn; n ≥ 0

U eokn = U oenk =
1

2
(bn−k + bn+k − bk−n); k > 0, n > 0

U ookn =
1

2
(an−k − an+k + ak−n − a0δn,k); k > 0, n > 0

As an example, for

c−2(x) =
a0

2
+ a1 cos(λ1x) + a2 cos(λ2x) + b1 sin(λ1x) + b2 sin(λ2x),

and if the only modes retained in (3.3) are n = 0, 1, 2, 3, then the matrix T 2 has the
form

1

2




a0 a1 a2 0 b1 b2 0
a1 a0 + a2 a1 a2 b2 b1 b2
a2 a1 a0 a1 −b1 0 b1
0 a2 a1 a0 −b2 −b1 0
b1 b2 −b1 −b2 a0 − a2 a1 a2

b2 b1 0 −b1 a1 a0 a1

0 b2 b1 0 a2 a1 a0




3.2 Wave Splitting

The matrix equation (3.9) can be converted into a system of first order equations,
hereafter called the dynamics, by splitting the electric field, and hence Ψ, into two
components as follows:

Ψ(z, t) = Ψ+(z, t) + Ψ−(z, t) (3.12)

Ψ±(z, t) =
1

2
(Ψ(z, t)∓ L∂zΨ(z, t)) (3.13)

The operator L and the dynamics are found by the following formal calculations.
First, write (3.9) in block matrix form:

∂z

[
Ψ
∂zΨ

]
=

[
0 I
T 2∂2

t + Λ2 0

] [
Ψ
∂zΨ

]
(3.14)

The first block row is an identity; the second block row is (3.9). Now, (3.13) can be
written as [

Ψ+

Ψ−

]
=

1

2

[
I −L
I L

] [
Ψ
∂zΨ

]
(3.15)



6

with formal inverse [
Ψ
∂zΨ

]
=

[
I I
−L−1 L−1

] [
Ψ+

Ψ−

]
(3.16)

Combining these equations yields

∂z

[
Ψ+

Ψ−

]
=

1

2

[
I −L
I L

] [
0 I
T 2∂2

t + Λ2 0

] [
I I
−L−1 L−1

] [
Ψ+

Ψ−

]

=
1

2

[
−L−1 − L(T 2∂2

t + Λ2) L−1 − L(T 2∂2
t + Λ2)

−L−1 + L(T 2∂2
t + Λ2) L−1 + L(T 2∂2

t + Λ2)

] [
Ψ+

Ψ−

]
(3.17)

The operator L is determined by forcing this system to be diagonal, so that
Ψ+ and Ψ− decouple. Setting the off-diagonal elements in (3.17) to zero yields
L−1 = L(T 2∂2

t + Λ2) so that L = (T 2∂2
t + Λ2)−1/2 and

L−1 = (T 2∂2
t + Λ2)1/2 (3.18)

The dynamics may now be written formally as

∂z

[
Ψ+

Ψ−

]
=

[
−

√
T 2∂2

t + Λ2 0

0
√
T 2∂2

t + Λ2

] [
Ψ+

Ψ−

]
(3.19)

To determine the precise form of the square root operator, assume that

L−1f(t) = T∂tf(t) +

∫ t

0

H(t− t′)f(t′) dt′ = T∂tf(t) +H ∗ f(t) (3.20)

where f(t) is a vector, H is a matrix depending only on t, and T is the square root
of the matrix T 2. Notice the notation ∗ for the convolution. This notation is used
throughout the paper. The lower integration limit is 0 since all fields are zero for
negative times and the upper limit is t due to causality. Then

(T 2∂2
t + Λ2)f =

√
T 2∂2

t + Λ2
√
T 2∂2

t + Λ2f = (T∂t +H∗)(T∂t +H∗)f(3.21)

Note that T and H do not commute. Integrate by parts to obtain the equation for
H,

0 = ∂tH(t)T + T∂tH(t) +H ∗H(t) (3.22)

with initial condition given by

Λ2 = H(0)T + TH(0) (3.23)

There is no closed form solution for H unless the waveguide is homogeneous [7],
but H may be numerically computed quite easily, as is shown in Section 6. The
dynamics may now be written as

∂z

[
Ψ+

Ψ−

]
=

[
−T∂t −H∗ 0

0 T∂t +H∗

] [
Ψ+

Ψ−

]
(3.24)
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3.3 Diagonalized System

By applying a similarity transform to diagonalize T , the system (3.24) can be con-
verted to one in which the components of the unknown vector represent the ampli-
tudes of the travelling modes supported by the waveguide.

Diagonalize T in this way:

D = QTQT (3.25)

where the columns of QT are the eigenvectors of T . The matrix D is diagonal; its
components represent the inverses of the propagation speeds of the wavefronts of
the travelling modes,

Dkk =
1

ck
(3.26)

Mode 0 is the fastest, with speeds decreasing with higher index (c0 > c1 > · · · >
cn > cn+1 > · · · ). Note that c0 does not represent the propagation speed in vacuum.
Now, let

A±(z, t) = QΨ±(z, t), A = A+ + A− (3.27)

K(t) = QH(t)QT (3.28)

Y = QΛ2QT (3.29)

The equation for K is

0 = ∂tK(t)D +D∂tK(t) +K ∗K(t) (3.30)

with initial condition given by

Y = K(0)D +DK(0) (3.31)

Since Y and D are symmetric it follows that K(0) is symmetric. By integrating
(3.30) in time, the following equation is obtained

K(0)D +DK(0) = K(t)D +DK(t) +

∫ t

0

K ∗K(t′)dt′ (3.32)

where the left hand side is symmetric. Using the theory for Volterra equations,
this equation is seen to be uniquely solvable. The solution can be obtained by an
iteration scheme that starts with K0(t) = K(0), and with Ki(t) being the solution
to

K(0)D +DK(0) = Ki(t)D +DKi(t) +

∫ t

0

Ki−1 ∗Ki−1(t′)dt′ (3.33)

At every step, the matrix
∫ t

0
Ki−1 ∗ Ki−1(t′)dt′ is symmetric, so that Ki(t) is a

symmetric matrix for all i. Thus K(t) is a symmetric matrix.
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Now, left-multiply (3.24) by Q to obtain

∂z

[
A+

A−

]
=

[
−D∂t −K∗ 0

0 D∂t +K∗

] [
A+

A−

]
(3.34)

This equation is in a form suitable for numerical solution. The matrix operator
on the right hand side is fairly simple because the A+ components are decoupled
from the A− components and K is symmetric. By diagonalizing the system, the
characteristics gain physical significance – their slopes are the inverse propagation
speeds of the waveguide modes – and the unknowns represent the amplitude of the
modes. In Section 6, (3.34) is solved numerically using the propagator representation
described in Section 4.

3.4 Planar waveguide with perfectly conducting walls: or-
thogonality of modes

A special case of the theory in the preceeding sections is the planar waveguide with
perfectly conducting walls at x = 0 and x = a = p

2
. The boundary conditions imply

that the expansion of the electric field (3.3) contains only sine functions. Thus only
the submatrix T oo appears in (3.9). Also, for the unitary matrix Q (3.25), only the
odd-odd submatrix, Qoo appears. The electric field for the guided modes is thus
constructed as

E(x, z, t) =
∞∑
n=1

Eo
n(z, t) sinλnx (3.35)

If only modes traveling in the +z direction are considered, it follows that

Eo
n(z, t) =

∞∑
m=1

A+
m(z, t)Qoomn (3.36)

Now define the waveguide mode e+m(x, z, t) as

e+m(x, z, t) =
∞∑
n=1

A+
m(z, t)Qoomn sin(λnx) (3.37)

The set of functions {e+m(x, z, t)}∞m=1 is a complete orthogonal set of functions
over the region 0 < x < a. The completeness follows from the fact that the set
{sinλnx}∞n=1 is a complete set over the region 0 < x < a for functions with homoge-
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neous boundary conditions. The orthogonality is seen from the following relations

a∫
0

e+m(x, z, t)e+n (x, z, t)dx

=
∞∑
�=1

A+
m(z, t)Qoom�

∞∑
k=1

A+
n (z, t)Qoonk

a∫
0

sin(λ�x) sin(λkx) dx

=
∞∑
�=1

A+
m(z, t)Qoom�Q

oo
n�A

+
n (z, t)

a

2

= (A+
m(z, t))2a

2
δmn

(3.38)

The energy flux per unit length through the waveguide for a mode that propa-
gates in the +z direction is obtained by integrating the Poynting vector, S = E×H ,
over the cross section. From Maxwell’s equations, it is seen that

P (t) =

a∫
0

S · ẑdx = − 1

µ0

a∫
0

E(x, z, t)

t∫
0

∂E

∂z
(x, z, t′)dt′dx

From the dynamics in (3.34), it is seen that

∂ze
+
n (x, z, t) = −dn∂te+n (x, z, t)−

∞∑
m=1

Knm ∗ A+
m(z, t)

∞∑
�=1

Qn� sin(λ�x) (3.39)

and thus

P (t) =
a

2µ0

∞∑
n=1

dn(A
+
n (z, t))2 +

a

2µ0

∞∑
n=1

∞∑
m=0

A+
n (z, t)

t∫
0

(Knm ∗ A+
m)(t′)dt′ (3.40)

Notice that there is coupling between the modes in the expression for the energy
flux even though the modes are orthogonal.

4 The propagation operator representation

The propagation operator, or propagator, G±(q) is defined to be the operator that
maps a field moving in the +z direction from position z > 0 to position z + q > 0

A+(z + q, t+ q/c0) = G(q)A+(z, t) (4.1)

Here, t is measured in wavefront time, so t = 0 at position z when the wavefront
first arrives at that position. Since the half-space z > 0 is homogeneous in z, the
propagator depends only on q. It has the representation

A+
n (z+q, t+q/c0) = A+

n (z, t+q(1/c0−1/cn))+
∞∑
m=0

Gnm(q, t)∗A+
m(z, t), n ≥ 0 (4.2)
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The first term on the right hand side corresponds to the part of A+
n present at

position z that has propagated with speed cn without coupling to the other modes.
The other term corresponds to the contribution to A+

n from the coupling between
modes. The fastest component of that term travels as an A+

0 mode with speed c0
that couples to A+

n at position z + q. The matrix G(q, t) satisfies the boundary
condition

Gnm(0, t) = 0, n,m ≥ 0 (4.3)

The representation, (4.2), describes the total electric field inside the waveguide;
because the medium is homogeneous in z, there is no internal reflection to generate
waves moving in the −z direction. In addition, since the medium is homogeneous
in z, the propagator satisfies the rule

G(q1 + q2) = G(q1)G(q2) (4.4)

By applying this rule to (4.2), it is easy to see that the matrix kernel Gnm satisfies

Gnm(q1 + q2, t) = Gnm(q1, t+ q2(1/c0 − 1/cn)) +Gnm(q2, t+ q1(1/c0 − 1/cm))

+
∑
�

Gn�(q1, t) ∗G�m(q2, t) (4.5)

This equation is useful in numerical calculations – after computing G for z ∈ [0, q],
the field can determined for z ∈ [0, nq] by repeated use of the formula.

Note that the inverse of the operator G(q) can be defined from (4.4). By putting
q1 = −q2 = q it is seen that

(G(q))−1 = G(−q) (4.6)

The operator G(−q) has the representation given by (4.2) and its kernel G(−q, t) is
related to G(q, t) by the resolvent equation (4.5).

Two independent equations can be derived for the matrix kernel Gnm, one de-
scribing the change in Gnm as the thickness q of the slab [z, z + q] changes with z
remaining constant, and the other describing the change in Gnm as the position of
the slab changes, with the thickness remaining constant.

The first equation is obtained by differentiating (4.2) with respect to q. The
q-derivative of the left hand side of (4.2) is

d

dq

[
A+
n (z + q, t+ q/c0)

]
= ∂zA

+
n (z + q, t+ q/c0) +

1

c0
∂tA

+
n (z + q, t+ q/c0) (4.7)

The partial z-derivative is eliminated by using the dynamic equation (3.24), giving

d
dq
A+
n (z + q, t+ q/c0) =

(
1

c0
− 1

cn

) (
∂tA

+
n (z, t+ q(1/c0 − 1/cn)) (4.8)

+
∑
m

Gnm(q, 0)A+
m(z, t) +

∑
m

∂tGnm(q, t) ∗ A+
m(z, t)

)
−

∑
m

Knm(t) ∗ A+
m(t+ q(1/c0 − 1/cm))

−
∑
�

∑
m

Kn� ∗G�m ∗ A+
m(t)
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The q-derivative of the right hand side of (4.2) reads

d

dq
(rhs) =

(
1

c0
− 1

cn

)
∂tAn(z, t+ q(1/c0 − 1/cn)) +

∑
m

∂qGnm ∗ Am(t) (4.9)

Equating (4.8) and (4.9) yields

∂qGnm(q, t) =

(
1

c0
− 1

cn

)
∂tGnm(q, t) (4.10)

−Knm(t+ q(1/c0 − 1/cm))−
∑
�

Kn� ∗G�m(t)

with initial condition (
1

c0
− 1

cn

)
Gnm(q, 0) = 0 (4.11)

The second equation for Gnm is obtained by differentiating (4.2) with respect to
z. The derivation is analogous to the derivation of (4.10); it follows that(

1

cm
− 1

cn

)
∂tGnm(q, t) = Knm(t+ q(1/c0 − 1/cm))−Knm(t+ q(1/c0 − 1/cn))

+
∑
�

(Kn� ∗G�m −Gn� ∗K�m)(t) (4.12)

with initial condition (
1

cn
− 1

cm

)
Gnm(q, 0) = 0 (4.13)

Equations (4.10) and (4.12) along with initial conditions (4.11) and (4.13) and
boundary condition (4.3) provide a complete description of the propagation of modes
generated by an incident impulse. If the incident field is not an impulse, it can be
inserted into the right hand side of (4.2) to determine the modes.

Some properties of G can be determined by examining the two equations to-
gether. First, by letting n = m in (4.12), it is easy to see that∑

(Kn� ∗G�n −Gn� ∗K�n)(t) = 0 (4.14)

Since K(t) is a symmetric matrix it follows that G(t) is symmetric.
Second, combining the two initial conditions yields

Gnm(q, 0) = 0, (n,m) �= (0, 0) (4.15)

The initial condition for G00 is determined below.
Third, a propagation of singularities argument shows that Gnm has no discon-

tinuities if n �= m. Each diagonal element Gnn does have a discontinuity along its
characteristic, t = q(1/cn−1/c0), induced by the source termKnn(t+q(1/c0−1/cn)).
The value of the jump along the line t = q(1/cn−1/c0) is found by subtracting (4.10)
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with t− = q(1/cn−1/c0)−0+ from the same equation with t+ = q(1/cn−1/c0)+0+.
Then

d

dq
[Gnn(q, q(1/cn − 1/c0))] = −Knn(0) (4.16)

where [Gnn(q, q(1/cn − 1/c0))] = Gnn(q, t
+)−Gnn(q, t−) denotes the jump. Thus

[Gnn(q, q(1/cn − 1/c0))] = −Knn(0)q (4.17)

Specifically, then, the initial condition for G00 is

G00(q, 0
+) = −K00(0)q (4.18)

Finally, the time delays in the source terms in (4.10) and (4.12) are easily ex-
plained. The term Knm(t+ q(1/c0− 1/cm)) represents a mode m source originating
at point z that travels along the source characteristic to the point z + q, where it
couples to observation mode n. The term q(1/c0 − 1/cm) is, in wavefront time, the
time lag at z+ q between the arrival of the source and the first arrival of any signal
coming from z. The term Knm(t+ q(1/c0− 1/cn)) represents a mode m source that
originates at point z, immediately couples to observation mode n and travels along
the observation characteristic n to the point z + q.

5 Boundary condition and reflected field

When an incident electric field Ei, travelling through the homogeneous region z < 0
with speed ch, hits the waveguide boundary at z = 0, it generates a reflected field
Er and a transmitted field Et. The reflected field propagates in the −z direction
in the manner described in [7]. The transmitted field at the boundary is used in
Section 4 as the input field to the propagator representation (A+

m(z, t) in (4.2)).
In this paper, only the TE (transverse electric) polarization is considered. The

boundary conditions at z = 0 are

Ei(0, t) + Er(0, t) = Et(0, t) (5.1)

∂zE
i(0, t) + ∂zE

r(0, t) = ∂zE
t(0, t) (5.2)

As before, let the incident field be a plane wave polarized along the y-axis, i.e.
a TE-mode:

Ei(z, t) = f(t− z/ch)êy =
1

2
Γ+

0 (z, t)êy (5.3)

The reflected and transmitted fields may be represented as

Er(x, z, t) =

[ ∞∑
n=0

Γ−n (z, t)vn(x)

]
êy (5.4)

Et(x, z, t) =

[ ∞∑
n=0

Ψ+
n (z, t)vn(x)

]
êy (5.5)
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where the Γ−n and Ψ+
n must be determined. The terms of Er exist in z < 0 and

correspond to the (uncoupled) TE-modes that can exist in a homogeneous planar
waveguide. The terms of Et correspond to the modes that exist in z > 0. These
modes couple to each other as they travel in the +z direction within the waveguide.

Boundary condition (5.1) yields directly

Γ+
0 (0, t) + Γ−0 (0, t) = Ψ+

0 (0, t) (5.6)

Γ−n (0, t) = Ψ+
n (0, t) n = 1, 2, 3, . . . (5.7)

Once all the Ψ+
n (0, t) are known, these equations are used to determine the Γ−n (0, t),

which in turn are used with Kristensson’s propagator [7] to give the reflected field
at any point in z < 0:

Γ−n (z, t− z/ch) = G(0)[Γ−n (0, t)](z, t) (5.8)

= Γ−n (0, t) + chλnz

∫ t

0

J1

(
λn

√
c2h(t− t′)2 − 2zch(t− t′)

)
√
c2h(t− t′)2 − 2zch(t− t′)

Γ−n (0, t′) dt′

where J1 is the Bessel function of first order. Since these waves travel in the negative
direction, Kristensson’s z is replaced here with −z. For use below, denote Kristens-
son’s splitting kernel H(0), with the diagonal matrix representation (cf (3.20))

H(0)
nm = δnmchλnJ1(chλnt)/t (5.9)

Note that H
(0)
00 = 0 since λ0 = 0.

Boundary condition (5.2), combined with the nondiagonalized dynamics (3.24)
to remove z derivatives, gives

− 1

2ch
∂tΓ

+
0 (0, t) +

1

2ch
∂tΓ

−
0 (0, t) = −1

2

∞∑
m=0

T0m∂tΨ
+
m(0, t) +H0m ∗Ψ+

m(0, t) (5.10)

1

ch
∂tΓ

−
n (0, t) + H(0)

nn ∗ Γ−n (0, t) (5.11)

= −
∞∑
m=0

Tnm∂tΨ
+
m(0, t) +Hnm ∗Ψ+

m(0, t), n > 0

Equations for the Ψ+
m(0, t) are obtained by eliminating the Γ−n ( Γ−0 = Ψ+

0 − Γ+
0 ,

Γ−n = Ψ+
n for n > 0), resulting in(

T (0) + T
)
∂tΨ

+(0, t) +
(
H(0) +H

)
∗Ψ+(0, t) = U(t) (5.12)

with matrix T (0) =
1

ch
I and vector U(t) = ((2/ch)∂tΓ

+
0 (0, t), 0, 0, 0, . . . , 0)T .

To obtain the form that is consistent with the diagonalized dynamics (3.24),
apply the matrix Q on the left:(

T (0) +D
)
∂tA

+(0, t) +
(
QH(0)QT +K

)
∗ A+(0, t) = QU(t) (5.13)
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or

S∂tA
+ +W ∗ A+ = B (5.14)

The initial condition is

A+(0, 0) = 0 (5.15)

The solution of (5.14) is discussed in Section 6.

6 Direct problem algorithm and discretization of

equations

It is convenient to introduce dimensionless variables z ← z/a and t← tch/a, which
corresponds to scaling a and ch to one. These dimensionless variables are used in
this and the following Section. The algorithm to solve the direct problem is:

1. Specify the incident plane wave as Ei(x, 0, t) = f(t) = 1
2
Γ+

0 (0, t).

2. Determine the effect of the boundary at z = 0 on the field by solving (5.14).
This gives the reflected field in z < 0 (Γ−n (0, t) in (5.8)) and the boundary
condition for the internal field at z = 0+.

3. Determine the propagator by solving (6.7), presented below, the discrete form
of the propagator equation (4.10).

4. Determine the internal field by convolving the propagator with the boundary
field at z = 0+.

For the discretization of the equations that follow, set up the grid of points
(zi, tk) = (ih, kh), where h is chosen a priori, as shown in Figure 2.

6.1 Discretization of boundary condition equation

Equation (5.14) is discretized by combining the forward difference at tk−1 and the
backward difference at tk and approximating the convolution by the trapezoid rule
to give

Bk +Bk−1 =
2

h
S(A+

k − A+
k−1)

+
h

2
(W0A

+
k +WkA

+
0 + 2

k−1∑
n=1

Wk−nA
+
k ) + (W ∗ A+)k−1 (6.1)

Subscripts denote evaluation at the indicated time step. Note that S is independent
of time. Since z = 0, the only variable is t. This is rearranged to solve for A+

k
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assuming that Wk and all quantities at step k − 1 (in particular, (W ∗ A+)k−1) are
known, as follows:

(2S + 1
2
h2W0)A

+
k = h(Bk +Bk−1) + 2SAk−1 (6.2)

−1

2
h2WkA

+
0 − h2

k−1∑
n=1

Wk−nA
+
k − h(W ∗ A+)k−1

The matrix 2S+ 1
2
h2W0 is independent of time, so with the initial condition A+

0 = 0,
the system is solved for all time steps by inverting the matrix once and iterating.
The result is the vector of mode coefficients A+(0, tk), k = 0, 1, 2, . . ., which are used
in Step 4.

6.2 Discretization of K-matrix equation

Equation (3.30) is discretized using a forward difference at tk to give

Kk+1D +DKk+1 = KkD +DKk − h(K ∗K)k (6.3)

Because D is diagonal, the standard algorithm for solving this type of matrix equa-
tion ( [14], section 6.4) reduces the system to a set of decoupled equations, which
are trivial to solve. The elements of K at time tk are given by

Kij(tk) =
Cij(tk)

Dii +Djj

(6.4)

with

Ck = Kk−1D +DKk−1 − h(K ∗K)k−1 (6.5)

Equation (6.4) is iterated over time index k starting with the discretized initial
condition

Kij(0) =
Yij

Dii +Djj

(6.6)

6.3 Discretization of propagator equation

Equation (4.10) is solved numerically by adding the forward difference at point B
(zi−1, tk − h/cn) (indicated in Figure 2) and the backward difference at point A
(zi, tk). These points lie on a line parallel to characteristic n, so B is not generally
a grid point, necessitating the use of linear interpolation. The system of discrete
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Figure 1: The geometry and permittivity profile. The incident field approaches
from the left, along the +z axis.

equations is

2

h
Gnm(zi, tk) =

2

h
Gnm(zi−1, tk − h(1/cn − 1/c0))−Knm(tk − zi(1/cm − 1/c0))

− Knm(tk + zi/c0 − h/cn − zi−1/cm)− h
∑
p

k−1∑
�=1

Knp(tk−�)Gpm(zi, t�)

− h

2

∑
k

[Knk(tk)Gkm(zi, 0) +Knk(0)Gkm(zi, tk)]

−
∑
k

Knk ∗Gkm(zi−1, tk − h(1/cn − 1/c0)) (6.7)

It is awkward to write these equations in matrix form because the time delays in
the source term vectors are different for each component, but the system is straight-
forward to solve.

7 Numerical Examples

In the first part of this section, some general aspects of the numerical calculations
are discussed. Then an explicit numerical example is presented together with several
figures.

The main part of the numerical calculation is the calculation of the splitting
matrix K(t) and the propagator G(z, t). The computation of K is virtually instan-
taneous, while the computation of G is considerably more time-consuming.

The matrix K is an analog of Kristensson’s propagation kernel given in (5.9).
Although no explicit expression for the matrix element Knm(t) is known, each el-
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Figure 2: The grid. Solid dots represent the grid points (zi, tj), i, j = 0, . . . , N .
The lines represent the characteristics for the two fastest modes. The hollow dot is
the interpolation point used in (6.7).

ement exhibits behavior similar to Kristensson’s kernel (J1(τ)/τ), cf (5.8)). The
closer c(x)/ch is to 1, the more diagonally dominant K is.

Generally, the size of the truncated matrix kernel G has to increase with depth
into the medium. The reason for this is that since G is the response from a delta
pulse, all frequencies are represented and infinitely many modes can propagate. As
the delta pulse propagates through the medium, more and more power is transferred
to the higher modes, which need to be included in G. However, due to computer
memory limitations, it is impractical for G to be too large.

It is convenient to assume an incident pulse at z = 0 that is regular in the sense
that its Fourier transform is neglibly small for sufficiently high frequencies. Then,
the incident pulse gives rise to only a finite number N of propagating modes. The
matrix kernel G can then be truncated to N × N , and calculated as far into the
medium as the desired accuracy will allow. Next, the field at this depth (call it
z = q) can be calculated using (4.2) with (5.3) as the input. Because the waveguide
is homogeneous in z, G(q, t) is independent of position, so the field at z = q can
be considered the incident field for the slab (q, 2q). Applying (4.2) again has the
effect of propagating the field from z = q to z = 2q. This process is repeated until
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Figure 3: Reflected modes at the boundary z = 0. The other modes are essentially
zero.

the field has been calculated at the required position. It is sufficient to truncate G
to a size just slightly larger than the number of propagating modes induced by the
incident pulse.

The example presented here is based upon the following profile for the normalized
permittivity in the half-space z > 0

ε(x)

εh
=

(
ch
c(x)

)2

= 1 + .5 cos(λ1x) + .01 (cos(λ2x) + sin(λ1x) + sin(λ2x))(7.1)

As before, εh and ch are the permittivity and the wavefront speed in the half-space
z < 0. Thus there is a factor of 3 between the largest and smallest values of the
permittivity in the profile, which can be considered to be quite strong. The incident
field is a plane wave with dimensionless time behavior

Γ+
0 (0, t) =

t2

2
(7.2)

The Fourier transform of this field then falls off as 1/ω3. Since the incident field is
not very regular, it is expected that as z gets large, the truncation for the propagator
matrix has to be large. The truncation for the matrices in the example is nmax = 10,
which means that the matrix sizes are 21 × 21. The stepsize is h = 0.002 for both
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Figure 4: Transmitted modes at z = .10. The other modes are essentially zero.

t and z. The modes have been calculated for the first 100 steps, both in time and
space. The propagator equation (4.10) has been solved from z = 0 to z = 0.20.
On a fast workstation, such a computation takes on the order of 10 minutes. The
truncation needed to compute G accurately at z = .20 is larger than that needed
for z = .10, so it would be better to use the recursive method described above to
calculate the field deeper in the medium; however, this has not been done in the
examples.

In Figure 3, some of the reflected modes are presented. Notice that there is not
much reflection into the fundamental mode Γ−0 . The reason for this is that the mean
values of the impedance in the two half-spaces z < 0 and z > 0 are the same. Most
of the reflected energy is instead channeled into the first cosine mode Γ−1 . This is
not surprising since the coefficient in the cos(λ1x) term in the permittivity is large.
Also, note that the coupling to the sine modes is weak, since the coefficients of the
sine terms in the permittivity are small. The other modes are essentially zero. In
Figure 3, the modes are shown only up to time t = 0.20. However, there is no
problem in calculating the reflected modes for larger times.

Figure 4 shows the same modes that are shown at the boundary in Figure 3 at
the position z = .10. The other modes are essentially zero. There is more coupling
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Figure 5: Cosine mode 1, Ψ+
1 = Ee

1 in (3.3), at various depths.

to the higher modes here than at the boundary, and this coupling increases with
depth into the medium. This fact is illustrated by the graphs in Figure 5, where
the first cosine mode, Ψ+

1 = Ee
1 in (3.3), is given at different depths. With a matrix

truncation of nmax = 10 and the time behavior of the incident field, it seems that
z = .20 is the largest value the algorithm can handle in this case without using the
recursive method.

8 Conclusion

The propagation of an electric field along a waveguide that is homogeneous in depth
but has a transverse variation in propagation speed is examined in the time domain.
Expressions for the internal field and the reflected field are presented in terms of a
propagation operator representation. Numerical results indicate that the method is
practical.

The method can be extended to more complicated problems – direct problems
include the study of waveguides with depth-dependent propagation speed c(z, x),
homogeneous waveguides with incident TM modes, waveguides with polar geom-
etry, and media that are periodic in both x and y. Also, the inverse problems
corresponding to these direct problems can be considered. Finally, by examining
the formulation in the limit as the period goes to infinity, it may be possible to
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develop a wave splitting technique valid in three spatial dimensions.
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