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Observer Synthesis for Switched Discrete-Time Linear Systems using

Relaxed Dynamic Programming

Peter Alriksson1 and Anders Rantzer1

Abstract—In this paper, state estimation for Switched
Discrete-Time Linear Systems is performed using relaxed
dynamic programming. Taking the Bayesian point of view,
the estimation problem is transformed into an infinite di-
mensional optimization problem. The optimization problem
is then solved using relaxed dynamic programming. The
estimate of both the mode and the continuous state can then
be computed from the value-function. From an unknown
initial state the estimation error goes to zero as more
measurements are collected.

I. INTRODUCTION

The subject of this paper is state estimation for a class

of discrete-time hybrid systems referred to as Switching

Discrete-Time Linear Systems or SLS for short:

xk+1 = A(θk)xk + B(θk)uk + noise

yk = C(θk)xk + noise
(1)

In a SLS the discrete mode θk of the system switches in

an unknown way, which makes them somewhat different

from other types of hybrid systems such as piecewise-

linear systems or Markov Jump Linear Systems. The goal

is to compute an estimate of both the continuous state xk

and the discrete mode θk given measurements yk.

The area of Markov Jump Linear Systems has re-

ceived considerable attention in the literature the last three

decades, starting with the paper by Ackerson and Fu [1].

However, the filter derived in [1] requires infinite memory

and thus much attention has been devoted to deriving

finite memory approximations. One popular algorithm is

the Interacting Multiple Model (IMM) proposed by [2].

Other papers in this area include [3] and [4].

The estimation problem for a SLS without disturbances

has been studied under various assumptions on the discrete

modes. In [5] the modes are assumed to be known and

a classical Luenberger observer is designed for the SLS

using an LMI formulation. The assumption of known

modes is relaxed in [6] and [7], where observers are

derived using linear algebra methods. In [8] and [9] the

mode is estimated by comparing the residuals from a

bank of Luenberger observers. The continuous state is then

estimated using a Luenberger observer for the resulting

time-varying linear system, where the uncertainty in the

mode estimate is ignored.

The problem has also been approached from a receding

horizon point of view. In [10] the moving horizon esti-

mation problem is solved using mixed integer quadratic

program solvers. Recently, Alessandri ([11]) used linear

algebra methods to form a set of possible mode sequences,

each for which a quadratic program is solved. The method

was simplified further in [12].

When designing observers for SLS the concept of ob-

servability plays a central role. However the notion of

observability for a SLS is far more complex than for linear

systems. The concept has been treated in numerous papers

including [13] and [14].

The method proposed in this paper is not based on

residuals so no minimum number of time steps between

switches need to be assumed, as is the case in for example

[8]. Also there is no need to specify a time horizon as

in the receding horizon approaches. The complexity of

the algorithm can be influenced by the choice of a slack

parameter α.

The paper is organized as follows: Section II presents the

model under consideration and introduces some notation.

In the main Section III, the estimation problem is first

transformed to an optimization problem which is then

solved using relaxed dynamic programing. Section IV

deals with stability of the proposed observer. Finally Sec-

tion V demonstrates the algorithm for a simple example.

II. PROBLEM STATEMENT

The system under consideration is

xk+1 = A(θk)xk + B(θk)uk + wk

yk = C(θk)xk + vk

(2)

where xk ∈ R
n denotes the continuous state, uk ∈ R

m a

known input, wk ∈ R
n the process disturbance. The mode

of the system at time k is denoted θk and takes values

from a finite set I = {1, . . . , M}. The system is observed
through a continuous measurement yk ∈ R

p which is

corrupted by a measurement disturbance vk ∈ R
p.

The process and measurement disturbances are assumed

to be white zero mean Gaussian stochastic processes with

covariance Q ∈ R
n×n and R ∈ R

p×p respectively. It is

also assumed that wk is independent of vk.

The mode variable θk is modeled as an exogenous

variable governed by some unknown external process.

Now introduce the following notation:

X[t0,T ] := {xt0 , . . . , xT } = {xk}T
k=t0

denotes the sequence of continuous states at time t0 up to

time T . Further let XT = X[0,T ] and define ΘT and YT

in the same way.



III. OBSERVER SYNTHESIS USING RELAXED DYNAMIC

PROGRAMMING

In a general estimation problem the conditional proba-

bility

P [XT , ΘT |YT ] (3)

of the unknown variables, in this case the state and mode,

given all measurements up to now plays a central roll. If

this quantity is known all different types of estimates can

be computed. Here we focus on the maximum a posteriori

Bayesian estimate

{X̂T , Θ̂T } = arg max
XT ,ΘT

P [XT , ΘT |YT ] (4)

If the disturbances acting on the system are assumed to be

Gaussian and independent the estimation problem can be

cast as the following optimization problem (see [15])

minXT ,ΘT
JT

subject to (6)
(5)

where

JT = ||x0 + x̌0||2P−1
0

+

T
∑

k=0

||vk||2R−1 +

T−1
∑

k=0

||wk||2Q−1

vk = yk − C(θk)xk

wk = xk+1 − A(θk)xk − B(θk)uk

(6)

and ‖x‖2
Q = xT Qx. However this optimization problem

grows with time making it practically impossible to solve.

Using forward dynamic programming the problem can be

transformed to (see [16])

V ∗
j+1(xj+1) = min

xj,θj

{

V ∗
j (xj) + L(vj , wj)

}

(7)

As the value function,V ∗
j , summarizes all previous infor-

mation up to now it can be interpreted as a measure of the

unlikeliness of a particular estimate. In the case of a linear

system without switches the conditional probability is a

Gaussian distribution and the corresponding value function

just a quadratic function. This allows for the value iteration

to be solved analytically which yields the Kalman filter.

Next, we will show that the value function for the SLS

estimation problem can be expressed as a minimum of

quadratic functions

V ∗
j (xj) = min

π∈Πj

[

xj

1

]T [
π11 π12

πT
12 π22

] [

xj

1

]

(8)

However the size of the finite set of matrices Πj grows

exponentially with time which makes an exact value it-

eration practically impossible. As proposed in [17] the

value iteration can be relaxed if the Bellman equality is

replaced by two inequalities instead. This allows for the

optimization problem to be solved efficiently. The resulting

value function fulfills the following inequalities compared

to the optimal value function.

αV ∗
j (xj) ≤ Vj(xj) ≤ αV ∗

j (xj) (9)

A smoothed estimate can be computed by solving a

small optimization problem involving the computed value

function. Next the different steps described above will be

discussed in detail.

A. Bayesian Estimation

Following the developments in for example [16] and

[15], Bayes rule is used to rewrite (3) as

P [XT , ΘT |YT ] =
P [YT |XT , ΘT ] P [XT , ΘT ]

P [YT ]
(10)

Expressions for the different parts of (10) will be de-

rived next. Using (2) and the fact that vk are mutually

independent gives

P [YT |XT , ΘT ] =

T
∏

k=0

pv(vk) (11)

Here pv(·) denotes the probability density function of the
measurement disturbance vk.

Because of the Gaussian measurement noise assumption

the conditional probability (11) reduces to

P [YT |XT , ΘT ] = k1 exp

{

−1

2

T
∑

k=0

||vk||2R−1

}

(12)

where

k1 =

(

1

(2π)n/2
√

det R

)T+1

is a data and state independent normalization constant.

Developing an expression for P [XT , ΘT ] requires some
additional probability theory, which will be repeated here

for clarity. Recall the following relation

P [A ∩ B ∩ C] = P [A] P [B|A] P [C|A ∩ B]

and identify the different parts of P [XT , ΘT ] as

A = {XT−1, ΘT−1} B = xT C = θT (13)

The joint probability P [XT , ΘT ] can thus be rewritten as

P [XT , ΘT ] = P [XT−1, ΘT−1] P [xT |XT−1, ΘT−1]

× P [θT |XT , ΘT−1] (14)

Using the Markov property of a state-space equation and

that θT is assumed to change arbitrary, it is possible to

remove the dependence on old state information

P [XT , ΘT ] = P [XT−1, ΘT−1]

× P [xT |xT−1, θT−1]P [θT ] (15)

Repeating this procedure one obtains

P [XT , ΘT ] = P [x0, θ0]

×
T−1
∏

k=0

P [xk+1|xk, θk] P [θk+1] (16)



Now assuming that that all modes are equally probable,

that x0 and θ0 are independent and that wk are mutually

independent makes it is possible to rewrite (16) as

P [XT , ΘT ] =
1

M
px0(x0)

T−1
∏

k=0

1

M
pw(wk) (17)

where px0 and pw are probability density functions andM

is the number of possible modes.

Under the assumption that wk and x0 are normally

distributed (17) can be rewritten as

P [XT , ΘT ] = k2 exp

{

−1

2
||x0 − x̌0||2P−1

0

− 1

2

T−1
∑

k=0

||wk||2Q−1

}

(18)

where

k2 =
1

MT+1
√

detP0(2π)n/2

(

1√
det Q(2π)n/2

)T

Above P0 denotes the covariance matrix of the initial

distribution of x0 and x̌0 its mean.

B. The optimization problem

Now all the pieces are there to formulate the optimiza-

tion problem. Given the conditional probability of the state

given the measurements a maximum a posteriori Bayesian

estimate can be formulated as

{X̂T , Θ̂T } = arg max
XT ,ΘT

P [XT , ΘT |YT ]

which is equivalent to the following minimization problem

{X̂T , Θ̂T} = arg min
XT ,ΘT

− logP [XT , ΘT |YT ] (19)

After noting that P [YT ] in the expression (10) for
P [XT , ΘT |YT ] does not depend on XT or ΘT we can

rewrite (19) as

{X̂T , Θ̂T } = arg min
XT ,ΘT

− logP [YT |XT , ΘT ] P [XT , ΘT ]

(20)

Using the previously derived expressions for

P [YT |XT , ΘT ] and P [XT , ΘT ], that is (12) and (18), the
following optimization problem can be stated:

minXT ,ΘT
JT

subject to (22)
(21)

where

JT = ||x0 + x̌0||2P−1
0

+

T
∑

k=0

||vk||2R−1 +

T−1
∑

k=0

||wk||2Q−1

(22)

The maximum a posteriori Bayesian estimation problem

has now been transformed into a minimization problem.

C. Forward dynamic programming formulation

The optimization problem (21) grows with time which

makes it practically unsolvable. Instead it is desirable

to proceed sequentially and compute an estimate of the

present state given measurements up to (and including)

now. This problem is referred to as the filtering problem.

The optimization problem (21) can be solved using forward

dynamic programing.

Using the same arguments as in [16] it is convenient to

first consider the prediction problem, that is to estimate

xT+1 given measurements up to and including yT . So

instead of minimizing JT we minimize

JT + ||wT ||2Q−1 (23)

To proceed sequentially a value function is introduced

V ∗
j+1(xj+1) = min

Xj ,Θj

{

j
∑

k=0

L(vk, wk) + Γ(x0)

}

(24)

where

L(vk, wk) = ||vk||2R−1 + ||wk||2Q−1

Γ(x0) = ||x0 − x̌0||2P−1
0

(25)

Using forward dynamic programing it is possible to write

(24) as

V ∗
j+1(xj+1) = min

xj,θj

{

V ∗
j (xj) + L(vj , wj)

}

(26)

with

V ∗
0 (x0) = Γ(x0)

To find a good parameterization of the value-function

first assume that the value function is parameterized as

follows:

V ∗
j (xj) = min

π∈Π∗

j

[

xj

1

]T [
π11 π12

πT
12 π22

] [

xj

1

]

(27)

Note that the value-function depends on the sequenceΘj−1

implicitly in the matrices π ∈ Πj , that is, each matrix in

Πj is associated with a particular sequence Θj−1. With

this parameterization, (26) can be written as

V ∗
j+1(xj+1) =

min
θj,π∈Π∗

j

min
xj





xj+1

1
xj





T 



U11 U12 U13

UT
12 U22 U23

UT
13 UT

23 U33









xj+1

1
xj



 (28)

If U33 is positive definite the solution is unique and the

minimization over xj gives a new Vj+1 on the form (27).

That is

V ∗
j+1(xj+1) = min

π∈Π∗

j+1

[

xj+1

1

]T [
π11 π12

πT
12 π22

] [

xj+1

1

]

(29)

The expressions for the matrices π ∈ Π∗
j+1 and U are given

in Appendix B. Thus, the parameterization (27) yields a

new value-function on the same form, so theoretically it is

possible to continue the value iteration. However the size

of the set Π∗
j+1 could possibly beM times the size of Π∗

j ,

so the size will grow exponentially with j.



D. Relaxing the Value Iteration

As proposed in [17] the value iteration (26) can be

relaxed if the Bellman equality is replaced by two inequal-

ities instead. First define upper and lower bounds on Vj+1

as

V j+1(xj+1) = min
xj ,θj

Vj(xj) + αL(vj , wj)

V j+1(xj+1) = min
xj ,θj

Vj(xj) + αL(vj , wj)
(30)

Now it is possible to replace (26) with the two inequalities

V j+1(xj+1) ≤ Vj+1(xj+1) ≤ V j+1(xj+1) (31)

Here the scalars α > 1 and α < 1 are a slack parameters
that can be chosen to determine the distance to optimality.

By the introduction of inequalities instead of equalities it

is in principle possible to fit a simpler cost-to-go function

between the upper and lower bounds.

If, in each step, (31) holds with the upper (V j+1) and

lower (V j+1) bounds computed as in (30) the obtained

solution will satisfy

αV ∗
j (xj) ≤ Vj(xj) ≤ αV ∗

j (xj) (32)

which gives guarantees on how far from the optimal

solution the approximate solution is.

If the approximate value function is parameterized in the

same way as V ∗
j , the approximate value function Vj+1 can

be constructed by selecting matrices from the lower bound

V j+1 until (31) is satisfied, see Figure 1 for an illustration.

Note that adding a matrix to the set Πj+1 decreases

the overall function value because of the parametrization

used. As in the exact value iteration, each matrix in the

parameterization of Vj+1 is associated with a particular

sequence Θ̂j . For a detailed discussion on how to check

that (31) is fulfilled see for example Procedure 1 in [17].

The one step head prediction of the state xj+1 is given

by the value for which value function Vj+1(xj+1) has its
minimum. As each matrix π ∈ Πj+1 is associated with a

particular sequence Θj an estimate of the most probable

mode sequence is given by the sequence associated with

the minimizing value of Vj+1(xj+1).

E. Filtering and Smoothing

To solve the filtering problem information about the last

measurement needs to be incorporated in the minimization

problem. An estimate of xj+1 and the sequence Θj+1

given all data up to yj+1 is thus given by the values of

which the following function has its minimum

Sj+1 = Vj+1(xj+1) + ||vj+1||2R−1 (33)

Note that this is somewhat different from how the value-

function is normally used. Here each matrix in the param-

eterization of Sj+1 provides the history of θ and not just

the last value θj+1.

To achieve an estimate of xT−N given measurements up

to yT−1, that is smoothing, the following procedure can

be used. If the value-function from time T − N together

Vj

V j+1 V j+1

Vj+1

Exact
computation

Simplification

Fig. 1. 1-D illustration of how the value function is approximated using
quadratic functions.

with the measurement sequence Y[T−1,T−N ] is saved, a

smoothed estimate can be computed as the solution of the

following optimization problem

SN
T = min

X[T−N,T ]

Θ[T−N,T−1]

{

VT−N (xT−N )

+

T−1
∑

k=T−N

L(vk, wk)

}

(34)

IV. OBSERVER STABILITY

Switched systems have two very different types of

states, the continuous state xk and the discrete mode θk,

thus what is meant by stability needs to be specified. In

this section, the properties of the continuous state estimate

will be studied. Particularly the following type of stability

will be addressed:

Definition 1: An estimator is an asymptotically stable

observer for the noise-free system

xk+1 = A(θk)xk + B(θk)uk

yk = C(θk)xk

(35)

if there exists an integer N such that for every initial

condition x0 and θ0 the estimate x̂T |T+N → xT as

T → ∞.
Next, a few concepts concerning observability need to

be established. The field of observability for switched

systems is very young and thus there are quite a few

notions of observability. Here the definition of State

Observability from [13] will be used.

Definition 2: (State Observability (SO)) The system (2)

is SO if there exists an integer N0 (the smallest being the



index) such that ∀x ∈ R
n and all ΘN0 ,

x 6= x′ ⇒ Y (ΘN0 , x) 6= Y (Θ′
N0

, x′) ∀Θ′
N0

(36)

where Y (ΘN0 , x) denotes the noise free output of (2) for
the mode sequence ΘN0 and initial state x when wk = 0.
That is, a system is SO if any N0 consecutive measure-

ments Y (ΘN0 , x) yield x uniquely without knowledge of

ΘN0 . According to [13] adding a known input does not

change the SO of a system.

In the following proposition a technical condition on the

function L(vk, wk) is needed, so we first give the following
definition.

Definition 3: A function η : R+ → R+ is a K-function
if it is continuous, strictly monotone increasing, η(x) > 0
for x 6= 0, η(0) = 0 and limx→∞ η(x) = ∞.
We are now ready to formulate a proposition claiming

that, that if the system is initiated in an unknown initial

condition and is not subject to any disturbances the esti-

mation error approaches zero as more measurements are

collected.

Proposition 1: Suppose that the system is State Observ-

able with index N0, there exists a class K-function η(·)
such that η(‖v, w‖) ≤ L(v, w), vk = wk = 0, α = 1
and that N ≥ N0. Then the proposed method yields an

asymptotically stable observer for (35).

Proof: The idea is to bound SN
T from above and prove

that the sequence SN
T is non-decreasing. First introduce the

notation Lk = L(vk, wk). Using the assumption that α = 1
the difference SN

T − SN
T−N can be bounded by

SN
T − SN

T−N

≥ min
X[T−2N,T ]

Θ[T−2N,T−1]

{

VT−N (xT−N ) +
T−1
∑

k=T−N

Lk

− VT−2N (xT−2N ) −
T−N−1
∑

k=T−2N

Lk

}

≥ min
X[T−2N,T ]

{

VT−2N (xT−2N ) +

T−N−1
∑

k=T−2N

αLk

+

T−1
∑

k=T−N

Lk − VT−2N (xT−2N ) −
T−N−1
∑

k=T−2N

Lk

}

=

T−1
∑

k=T−N

L(v̂k|T−1, ŵk|T−1)

(37)

To bound the sequence SN
T from above, an upper bound

on the sequence V ∗
T,N is first derived as

V ∗
T (xT ) ≤

T−1
∑

k=0

L(vk, wk) + Γ(x0) = Γ(x0) (38)

The first inequality above holds for any vk and wk due

to optimality, and in particular it holds for the actual

Fig. 2. Plot of the function Ĩ5 ∼ exp(−V5(x5)) which represents the
conditional probability of x5. The non-Gaussian and multi modal shape
is due to the discrete modes in the system.

noise sequences, which are assumed to be zero. Using the

argument above rewrite (34) using (38) as

SN
T ≤ VT−N (x̂T−N |T−1) +

T−1
∑

k=T−N

L(vk, wk)

≤ VT−N (x̂T−N |T−1) ≤ αV ∗
T−N (x̂T−N |T−1)

= αΓ(x0).

(39)

Thus SN
T is bounded from above and non-decreasing so

T−1
∑

k=T−N

L(v̂k|T−1, ŵk|T−1) → 0 (40)

as T → ∞. If N ≥ N0 Lemma 1 in Appendix A with

δw = δv = 0 states that
∥

∥xT−N − x̂T−N |T−1

∥

∥→ 0 (41)

as claimed.

V. NUMERICAL EXAMPLE

In this section the proposed algorithm was applied to

a oscillatory second order system with two modes. The

system used is a continuous time system

ẋ =

[

−2ζω 1
−ω2 0

]

x +

[

0
ω2

]

u

y =
[

1 0
]

x

(42)

with two modes; ω = 1 and ω = 2. The relative damping
ζ is equal to 0.4 in both modes. The system was sampled
with sampling interval h = 0.5 under the assumption of
constant input signal between samples. This resulted in a

system is on the form (35). Note that the system has unit

stationary gain in both modes.

The system was simulated for 90 samples with mea-
surement noise covariance R = 0.01 and process noise
covariance Q = 0.001. The discrete mode was randomly
generated as uniformly distributed number rounded to



either 1 or 2. The input was filtered white noise with unit
variance.

In the algorithm the slack parameters where chosen as

α = 1 and α = 1.5. The parametersQ andR where chosen

equal to the real noise covariance matrices. The smoothing

parameter N was chosen equal to 2.

Recall that the value function Vk is proportional

to the negative logarithm of the function Ik(xk) =
maxXk−1,Θk−1

P [Xk, Θk|Yk]. Now introduce a function

Ĩk = c exp(−Vk(xk)), where c is a normalization constant

chosen such that maxxk
Ĩk(xk) = 1. Thus, the function

Ĩk is a scaled approximation of the true conditional proba-

bility function Ik(xk). Figure 2 shows the function Ĩk for

k = 5. Note the non-Gaussian and multi modal shape of
the function.

One way to evaluate the performance of the algorithm

is to compare the norm of the continuous estimation error

with a time-varying Kalman filter, where the mode is

assumed to be known. This of course gives an upper bound

on achievable performance.

In Figure 3 the output yk, the norm of the continuous

estimation error ‖xk − x̂k−2|k‖ with unknown modes, the
norm of the continuous estimation error for the time-

varying Kalman filter, the estimate of the mode θ̂k−2|k

together with the actual mode θk are plotted.

Note that when the mode is estimated correctly, the error

is close to the lower bound achieved by the time-varying

Kalman filter.

VI. CONCLUSIONS AND FUTURE WORK

In this paper we synthesize an observer by solving the

optimization problem associated with maximum posteriori

Bayesian estimation for switched discrete-time linear sys-

tems. The optimization problem is solved using relaxed

dynamic programming. The resulting value function stays

within a pre-specified factor from the optimal one.

The main contribution is to revisit the reformulation

of maximum posteriori Bayesian estimation as dynamic

programming and apply relaxed dynamic programming to

the resulting optimization problem.

The dynamic programming formulation presented here

is somewhat different from how dynamic programming is

normally used. Here the value function, even theoretically,

can not be computed off-line because the set of matrices Πj

depends on measurements. Thus the iteration described in

Section III-D must be performed on-line. This can be view

in relation to moving horizon estimation where a finite

dimensional optimization is solved on-line in each step.

Here we have moved the computational effort from the

optimization problem to the problem of finding a good

representation of past data, often referred to as arrival cost

in moving horizon estimation literature.

We also prove that for a system where the only unknown

parameter is the initial condition the continuous estimation

error goes to zero as more measurements are collected. The

method is demonstrated using a second order example,
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Fig. 3. Plots of the output yk , the norm of the continuous estimation
error ‖xk − x̂k−2|k‖ with unknown modes, norm of the continuous
estimation error for a standard time-varying Kalman filter, the estimate

of the mode θ̂k−2|k and the actual mode θk . Note that the performance
is comparable to the case of known modes when the mode is estimated
correctly.

where the system is subject to both measurement and

process noise.

Several extensions to the proposed algorithm are possi-

ble. For example, the model of the discrete mode could

easily be changed to restrict the set of possible sequences

using for example a state machine. More difficult mod-

ifications includes modeling the discrete variable with a

Markov chain or allowing the noise covariances to be

dependent on the discrete variable.
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APPENDIX

A. Lemma 1

Lemma 1: Suppose that the system is State Observable

with index N0, there exists a class K-function η(·) such
that η(‖v, w‖) ≤ L(v, w), ‖wk‖ ≤ δw, ‖vk‖ ≤ δv and



N > N0 then there exists a class K-function κ such that

∥

∥xT−N − x̂T−N |T−1

∥

∥

≤ κ

(∥

∥

∥

∥

∥

T−1
∑

k=T−N

L(v̂k|T−1, ŵk|T−1), δw, δv

∥

∥

∥

∥

∥

)

(43)

Proof: The proof is inspired by the work of Rao

in [18]. However some assumptions used in the proof of

Lemma 2.5 in [18] are not fulfilled for the system (2),

thus some modifications had to be made. In particular, the

time index of the estimation error is restricted to T − N

instead of {T − N, T − N + 1, . . . , T}. Also the notion
of observability is different which changes some technical

details in the proof. The complete proof will be given here

for clarity and it will be pointed out where proofs the differ.

First recall that xk denotes the actual state of the

system (2) and yk the measured output of it. Next

some notation is introduced; x(k, x0, t0, Θ[t0,k], U[t0,k])
denotes the solution of (35) at time k when the

system is initialized with x0 at time t0 and sub-

ject to the input sequence U[t0,k] and mode sequence

Θ[t0,k]. Further introduce y(k, x0, t0, Θ[k,t0], U[to,k]) =
C(θk)x(k, x0, t0, Θ[t0,k], U[t0,k]) in the same way. Using
the definitions above introduce

xk = x(k, x̂T−N |T−1, T − N, Θ̂[T−N,k], U[T−N,k])

yk = y(k, x̂T−N |T−1, T − N, Θ̂[T−N,k], U[T−N,k])

x̃k = x(k, xT−N , T − N, Θ[T−N,k], U[T−N,k])

ỹk = y(k, xT−N , T − N, Θ[T−N,k], U[T−N,k])

v̂k|T−1 = C(θk)xk + vk − C(θ̂k)x̂k|T−1

ŵk|T−1 = x̂k+1|T−1 − A(θ̂k|T−1)x̂k|T−1 − B(θ̂k|T−1)uk

(44)

Using the triangle inequality a bound for ‖xi − x̂i|T−1‖ is
obtained as

‖xi−x̂i|T−1‖ ≤ ‖xi−x̃i‖+‖x̂i|T−1−xi‖+‖xi−x̃i‖ (45)

Next upper bounds for the right hand terms of (45) will

be derived. Starting with ‖x̂i|T−1 − xi‖, first note that
using the definition of ŵk|T−1, the estimate x̂i|T−1 can

be expressed as

x̂i|T−1 =

(

i−1
∏

m=T−N

A(θ̂m|T−1)

)

x̂T−N |T−1+

+
i−1
∑

m=T−N

(

i−1
∏

n=m+1

A(θ̂n|T−1)

)

ŵm|T−1

+

i−1
∑

m=T−N

(

i−1
∏

n=m+1

A(θ̂n|T−1)

)

B(θ̂m|T−1)um (46)

and that

xi =

(

i−1
∏

m=T−N

A(θ̂m|T−1)

)

x̂T−N |T−1

+

i−1
∑

m=T−N

(

i−1
∏

n=m+1

A(θ̂n|T−1)

)

B(θ̂m|T−1)um (47)

which gives

‖x̂i|T−1 − xi‖ ≤
i−1
∑

m=T−N

Ãi−m−1‖ŵm|T−1‖ (48)

where Ã = maxθ∈I ‖A(θ)‖. Using similar arguments a
bound for ‖xi − x̃i‖ is given by

‖xi − x̃i‖ ≤
i−1
∑

m=T−N

Ãi−m−1‖wm‖ (49)

Both (48) and (49) holds for i = T − N . . . T . Because

the state update equation is not Lipschitz continuous, the

techniques used to bound ‖x̂i|T−1 − xi‖ and ‖xi − x̃i‖
differs from the proof in [18].

Observing that L is bounded below by a K-function

η(‖w, v‖) ≤ L(v, w) (50)

Assumption 2 gives the following bounds

‖ŵk|T−1‖ ≤ η−1

(

T−1
∑

k=T−N

L(ŵk|T−1, v̂k|T−1)

)

‖v̂k|T−1‖ ≤ η−1

(

T−1
∑

k=T−N

L(ŵk|T−1, v̂k|T−1)

) (51)

From the definition (44) of v̂k|T−1 the following equality

is obtained

T−1
∑

k=T−N

‖v̂k|T−1‖ =

T−1
∑

k=T−N

‖C(θk)xk + vk − C(θ̂k|T−1)x̂k|T−1‖ (52)

Applying the inverse triangle inequality on (52) results in

the following inequality

T−1
∑

k=T−N

‖v̂k|T−1‖ + ‖vk‖ + ‖C(θ̂k|T−1)x̂k|T−1 − yk‖

+ ‖C(θk)xk − ỹk‖ ≥
T−1
∑

k=T−N

‖yk − ỹk‖ (53)

Because the notion of observability differs from the one

used in [18] the bound for ‖xi − x̃i‖ is restricted to i =
T − N . Now introduce the vector notation

Y =







yT−N
...

yT−1






Ỹ =







ỹT−N

...

ỹT−1






(54)



From the assumption that the system is SO with index

N0 < N it is possible to bound ‖xT−N − x̃T−N‖ with
T−1
∑

k=T−N

‖yk − ỹk‖ ≥
∥

∥

∥
Y − Ỹ

∥

∥

∥

≥ ǫ ‖xT−N − x̃T−N‖ (55)

where ǫ is defined as

ǫ = min
Θ,Θ̂

min
‖xT−N−x̃T−N‖=1

‖Y − Ỹ ‖
‖xT−N − x̃T−N‖ (56)

Using the definition of yk and ỹk the following bounds are

obtained
∥

∥

∥
C(θ̂k|T−1)x̂k|T−1 − yk

∥

∥

∥
≤ C̃‖x̂k|T−1 − xk‖

‖C(θk)xk − ỹk‖ ≤ C̃ ‖xk − x̃k‖
(57)

where C̃ = maxθ∈I ‖C(θ)‖. Combining (45), (55), (53),
(57) and (51) the smoothed estimation error can be

bounded by a K-function κ

∥

∥xT−N − x̂T−N |T−1

∥

∥

≤ κ

(∥

∥

∥

∥

∥

T−1
∑

k=T−N

L(ŵk|T−1, v̂k|T−1), δw, δv

∥

∥

∥

∥

∥

)

(58)

For the details of the last step see [18].

B. Expressions for U and π

For each element π ∈ Π∗
j the matrix U in (28) is computed

as

U11 = Q−1

U12 = −Q−1B(θj)uj

U13 = −Q−1A(θj)

U22 = uT
j B(θj)

T Q−1B(θj)uj + yT
j R−1yj + π22

U23 = uT
j B(θj)

T Q−1A(θj) − yT
j R−1C(θj) + πT

12

U33 = π11 + C(θj)
T R−1C(θj) + A(θj)

T Q−1A(θj)
(59)

For time j ≥ 1 the matrices π ∈ Π∗
j in (29) are given by

π =

[

U11 U12

UT
12 U22

]

−
[

U13

U23

]

U−1
33

[

U13

U23

]T

and for j = 0 by

π11 = P−1
0 + C(θ0)R

−1C(θ0)

π12 = P−1
0 x0 − C(θ0)

T R−1y0

π22 = xT
0 P−1

0 x0 + yT
0 R−1y0

(60)

When computing the upper bound (30), the matrices Q−1

and R−1 are replaced with αQ−1 and αR−1 respectively.

The lower bound is computed in the same way but with α

replaced by α.
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