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Abstract

Robotic trajectory generation is reformulated as a controller design problem. For
minimum-jerk trajectories, an optimal controller using the Hamilton-Jacobi-Bellman
equation is derived. The controller instantaneously updates the trajectory in a closed-
loop system as a result of the changes in the reference signal. The resulting trajectories
coincide with piece-wise fifth-order polynomial trajectories for piece-wise constant target
states. Since having hard constraints on the final time poses certain robustness issues,
a smooth transition between the finite-horizon and an infinite-horizon problem is devel-
oped. This enables to switch softly to a tracking mode when a moving target is reached.

1. Introduction

A fundamental problem in robotics is planning the motion for a task. At the lowest level,
a movement is described by a trajectory, i.e., a mapping from the time to the position. An
important class of motion planning problems is concerned with point-to-point trajectory
generation. In this case, the objective can for instance be to reach a final state in the
minimum time given certain constraints (Macfarlane & Croft 2003; Haschke et al. 2008)
or in a fixed time. The fixed-time problems are of importance when a less aggressive
strategy than a minimum-time solution is sufficient. Moreover, fixed-time motions lend
themselves to the coordination between several degrees of freedom or entities.

Several approaches to dealing with fixed-time problems have been suggested. A com-
mon approach is fitting a piece-wise polynomial between the starting point and a final
point (Taylor 1979; Lin et al. 1983). von Stryk and Schlemmer (1994) suggested the opti-
mization of the energy or the power consumption and minimizing the effort was proposed
by Martin and Bobrow (1997). The solutions were obtained by numerical methods either
by discretization or parameter optimization over a set of basis functions. A sub-optimal
solution to the fixed-time trajectory planning considering a more generic cost function
was derived by Dulgba (1997).

For trajectory generation, polynomials play an important role. They show up for ex-
ample as partial solutions to the minimum-time problems or they are used as the basis
functions. Specially, fifth-order polynomials are solutions to a minimum-jerk model sug-
gested by Flash and Hogan (1985). An important feature of this model is that it provides
a kinematic description of the motion of the human hand in planar scenarios. The model
is able to predict the bell-shaped velocity profiles in point-to-point movements as well
as the qualitative features of the curvature in via-point movements. According to this

1 The authors are members of the LCCC Linnaeus Center and the ELLIIT Excellence Center
at Lund University.
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model, the cost functional to be minimized is:

do
1 [ e m w  BX . PY
0_2/()( —i—Y)dt, K= V= (1.1)
0

where X and Y represent the coordinates and dg the duration of the movement. Assuming
that the X and the Y coordinates are decoupled, it is possible to break (1.1) into two
one-dimensional optimization problems. Using the variational principle, the solution is
shown to be a fifth-order polynomial (Shadmehr 2005).

As a motivating example for this article, consider a quadcopter task to follow/catch
flying objects as soon as they cross a border. A camera system detects the objects and
estimates of the current position, velocity, and acceleration as well as an estimate of
the arrival of the objects are provided. We choose a minimum-jerk trajectory profile to
generate smooth motion. This application falls under the fixed-time trajectory planning.
Moreover, it requires to replan the trajectory online, i.e., as soon as new estimates are
obtained.

Earlier works have focused on computationally efficient solutions to time-optimal prob-
lems for online trajectory generation (Kroger and Wahl 2010; Hehn and D’Andrea 2011).
A generic way to deal with the online trajectory generation is to buffer each segment of
the trajectory (or its parameters) and implement switching between the pieces. However,
this approach becomes inefficient if the update rate of the trajectory is high. Thus, rather
than considering trajectories as solely a function of time, we propose an alternative view
based on dynamical systems. This allows for a fully reactive trajectory generation method
with continuous reactions to the changes in the target.

2. Problem formulation

This article concerns the one-dimensional minimum-jerk trajectory-generation problem
given a fixed time. The main motivation is to update trajectories immediately as a
result of changes in the (moving) target while ensuring the continuity of the position,
velocity and acceleration of the trajectory. Moreover, we require a smooth transition
between trajectory planning and tracking modes. In contrast to mathematically designed
or optimal trajectories purely as a function of time, we regard a trajectory as an output
of a dynamical system. The exogenous input signal defines the set-point for the trajectory
generator.

For minimizing the jerk, each decoupled degree of freedom can be represented by a
triple integrator. Let u denote the jerk and y(t) the trajectory, then

T 01 0 1 0
gl =(0 0 1] 2] +|0]u (2.1)
is 0 0 0/ \as 1

y = (2.2)

We define the reference signal 7(t) € R3 such that r1(t), ro(t), r3(t) denote the current
position, velocity and acceleration of the target, respectively. Given the reference signal
r(t) and the desired time ty, we wish to design u(z,r,t) that produces the solution to

u

tr
minimize / u? dt (2.3)
to

subject to (2.1), z(to) = xo, and x(t) = r(t), for t > t;.
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3. Optimal Controller

Starting from model (2.1), we have
. T
i=(r2 a3 u) :=f(t,z,u). (3.1)

According to the Pontryagin maximum principle (Pontryagin et al. 1962; Liberzon 2011),

& = Hpy(z",u", p,po) (3.2)
p = _Hm(x*7U*7pvp())
z*(to) = o, a*(ty) =r(ty) (34)

Here, H denotes the Hamiltonian, the subscripts denote partial derivatives with respect
to the given variable, x and p are the states and the costates, respectively, to and
denote the initial and final time, respectively, and variables with star correspond to the
optimal solution. The optimal control maximizes the Hamiltonian, that is

H(x* (t), u* (t)7p(t),p0) < H(x*(t)v u,p(t)7p0) (3'5)

Denoting the running cost by L(z,u), for problem (2.3), the Hamiltonian is

H{(z,u,p,po) = (p, f(x,u)) + poL(z,u) (3.6)
€2

=(p1 p2 p3) |3 + pou?. (3.7)
u

By the partial differentiation of H with respect to u, we find the extremum to be

o0H p3
— =2 =0=u"=—=—. 3.8
G = Zpoutps u 20 (3.8)
Consequently, the Hamiltonian along the optimal trajectory is
3
H($*7U*7p7p0) :pl'rz +p2.’1}§ - T’ (39)
Po
where
p1=—Hy =0 (3.10)
]52 = _HCL'Q = D1 (311)
pg = 7H$3 = —p2. (312)
These equations combined with (3.8) give us
U* = k1t2 + k’gt + ]{537 (313)

with coefficients k1, ko, and k3 to be determined. Integrating the control signal three times
results in x1, which is apparently a fifth-order polynomial. For the sake of simplicity, we
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assume top = 0 and z(ty) = 0. By matching the initial and final conditions, we obtain
y =2 = yo(1 — 10t + 15t — 6t2) + vodot, (1 — 612 + 83 — 3t4) (3.14)
+ ‘;idgt;m — 3t + 32 —13)

j=a} = z—o(—?)()ti 6085 — 30t3) + vo(1 — 18t2 + 32¢3 — 15t4) (3.15)
0
9 5
+ apdot, (1 — 3in + 612 — 575;”1)
i=a}= %(—6% 4 180t2 — 1203 ) + %(—36% + 9612 — 60t2) (3.16)
0 0

+ag(1 — 9t, + 18t2 — 10t3),

and the optimal control signal is

V=t = %(—60 + 360, — 3602) + 2—2(—36 +192t, — 1802)
0 0
+ %(—9 + 36t, — 3012) (3.17)
0
where ¢, := (t — ¢9)/dp is the normalized elapsed time with respect to the duration

do =ty —tg and yo, vo, and ag are initial position, velocity, and acceleration, respectively.
Let us now consider the Hamilton-Jacobi-Bellman (HJB) equation (Bellman & Kalaba
1965; Liberzon 2011)

-Vi(t,z) = uirellfJ{L(t, zou) + (Va(t, x), f(t, z,u)}, (3.18)

with the cost function J and the value function V' defined as
J(t, x,u) = /tf L(s,z(s),u(s))ds + K(x(ts)) (3.19)
V(t,z) = u%ttr}ff] J(t, x,u). (3.20)

Here, U C R defines the control set, L(-) and K(-) denote the running cost and the
terminal cost, respectively. For the minimum-jerk problem, we have

L(t,z,u) = u? K(z(t;)) =0 (3.21)
—Vi(t,x) = ing{uz + (Va(t, @), f(t,z,u))} (3.22)
= mei]g{uz + Vo, 20 + Vo3 + Vaud (3.23)

The optimum is achieved for

O(u? + Vo + Vi, a3 + Vyyu) — 0oy = _VQL-3 . (3.24)
ou 2
Therefore,
V2
~Vi(t,z) = —f + Vo, 2o + Vi, 3. (3.25)

As a result of the application of the maximum principle, (3.17) gives us an expression
for ¥ along the optimal path. Now, considering the value function in (3.20), i.e., the cost
to go, and using the definition of the cost function in (3.19), we conclude

V(t,z) = /t N Y2 (s) ds. (3.26)
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FIGURE 1. Block diagram of trajectory generation. Real Axis

F1GURE 2. Closed-loop poles for var-
ious values of the remaining time
d=1[1:-0.05:0.05].

Note that to calculate (3.26), the initial state is the current state, the duration dj is equal
to the remaining time t; — ¢, and the normalized elapsed time ¢, is (s —t)/(ty — t). It
is straightforward to verify that the resulting value function satisfies the HJB equation.
Accordingly, from (3.24) we derive

* st Z1 ) T3
=——=—160 36 9 . 3.27
! 2 < (tr —1)? - (ty —1)? * tf—t> (3.27)

This reformulation gives us a control law for generating the trajectory. The feedback
signal is linear in the states, but nonlinear with respect to the time.

4. Servo Problem

The previous section outlined the optimal solution to the problem with the final state
located at the origin. However, to solve the original problem (2.3), it is necessary to
generalize the final state. This corresponds to the servo problem for following an arbitrary
reference (Glad & Ljung 2000).

Assuming that our best estimate of the value of the target in d seconds depends only on
the current state of the target, it is possible to use the transformation e(t) = r(t) — z(t)
depicted in Fig. 1. In this case, the reference signal can be absorbed into the initial
conditions of the model. Hence, the new variable e; (t) generated by the controller fulfills
the minimum-jerk criterion and e(ty) = 0. Since r;(t) does not impact the jerk (it is a
polynomial in time of maximum order two) and 1 (t) = r1(t) — e1(¢), the cost functional
in this special case is invariant under this transformation. Therefore, the solution after
the transformation is optimal for the new boundary conditions.

5. Switching to Tracking

An obvious issue with (3.27) is that it is sensitive to the errors in the states when the
time approaches ty. Without loss of generality, assume there is some noise €(t) in the
velocity measurement. In this case, the closed-loop system obeys the differential equation
y j j e(t)
Yy =—1{60 + 36 +9 — 36 . 5.1
( (ty —1)? (ty—t)*  ty— t) (ty —1)? &)
Thus, as t approaches ¢, a very small noise level can blow up the control signal. A remedy
to this problem is to switch to an infinite-horizon problem when d = tf —t becomes small.
In the following, we show that this transition can be done smoothly.
Consider the plot of the closed-loop poles of the system for fixed values of d (Fig. 2).
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FIGURE 3. Experiment 1: on the left, curves resulting from the control law (6.1), starting from
zo = —1, vo = {-2,0,2}, and ap = {-5,0,5} with ¢y = 1 s and r(¢) = 0. On the right, the
corresponding phase portrait.

The characteristic equation of the closed-loop system for a fixed remaining time d is
d*s® 4+ 9d?s* + 36ds + 60 = 0. (5.2)

If p is a solution of (5.2) for d = 1, then p/d is a solution for any given d. Thus, arg(p) is
independent of the remaining time while the poles move toward infinity as the remaining
time approaches zero. Furthermore, we can rewrite the characteristic equation as

(5 + aw)(s? + 2¢ws + w?) = 0, (5.3)

where (wd)? = 12 — 2V/3% + 6V/3 ~ 16.493, ¢ = (6 — /32 + /3)/2wd ~ 0.66, and
a = (34 V32 — ¥/3)/w ~ 0.896d. Considering these values and the knowledge of the
noise in the system, it is possible to find a minimum acceptable value for d. Accordingly,
a smooth transition is achieved by limiting d from below.

6. Simulations

In this section, we present the simulation results of the closed-loop trajectory generation.
The results are generated using a modified control law in (3.27)

w=— (60% +365 + 9%”) . d=max(t; — t,0.06). (6.1)
In the first experiment, the reference is set to zero and the initial position to —1. The
initial velocity and the initial acceleration are varied. With ¢y = 1 s, the control law
is expected to result in fifth-order polynomials with zero velocity and acceleration at
the origin in one unit of time. Figure 3 visualizes the evolution of the states in a phase
portrait. Note that the trajectories in the phase plane cross each other since the state
space has a higher dimension than two and the system is time-variant.

The second experiment illustrates the result of the trajectory generation for a moving
target. Every second, a new target is activated. The objective is to intercept the target
in 0.8 s and to continue tracking it until a new target is detected. In Fig. 4, the solid
blue and dashed green curves correspond to the robot and the active target, respectively.
As seen in the figure, there is a smooth transition to a tracking mode when the target
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FIGURE 4. Experiment 2: intercepting a moving target in 0.8 s: positions, velocities vs. time
on the left and acceleration and jerk vs. time on the right. The solid blue and the dashed
green curves correspond to the robot and the target, respectively. Every second, a new target is
activated. The trajectory generation softly switches to a tracking mode before the deadline. As
expected, x, v, and a are continuous.

is almost reached and the position, velocity, and acceleration of the generated trajectory
are continuous.

7. Discussion

Considering the online trajectory generation for a moving target, there are at least two
strategies. One can estimate a time ¢ 7 and a desired future value for the states 7y, such
that the generated trajectory meets this target state, i.e., ﬂc(ff) = 7. The procedure is
repeated as soon as a better estimate is obtained. The other strategy is that the generated
trajectory tracks the current value of the target but additionally superimposes a motion
that eliminates the initial offset. These strategies do not necessarily lead to the same
solution. The first strategy works better if an accurate estimation of the target’s final
state is possible. On the other hand, the second strategy naturally leads to a smooth
transition between trajectory planning and tracking modes. Since the states in many
physical systems cannot change discontinuously, the second strategy is advantageous
when the time horizon is short. This justifies the developed method in this article, where
the trajectory generation depends only on the error r(t) — y(¢). In case of the minimum-
jerk trajectories, the second strategy does not affect the optimality of the solution if at
any time instant r(¢) and ¢; provide the best estimate of the target state.

It is necessary to pay attention to the source of changes when designing a closed-loop
trajectory generator. Variations in the target state do not necessarily have to impact the
trajectory in the same way as the disturbances on the robot. This requires a controller
with two degrees of freedom. For this reason, we did not include the state feedback from
the robot or an observer in Fig. 1. However, when the deviation between the states of
the internal model and the actual system becomes large, it is reasonable to update the
state of the model.

Minimum-jerk trajectories can be time scaled to accommodate limitations on the kine-
matic variables similarly to the approach by Dahl and Nielsen (1990). If the constraints
are constant, the solution to the minimum-time problem provides the lowest allowable
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t; (Hehn and D’Andrea 2011), i.e., any trajectory generated with a larger time interval
than the minimum time satisfies the constraints. For more discussion about handling
state constraints by adjusting the time, see (Ghazaei A. 2015).

8. Conclusions

A controller model for trajectory generation with continuous reactions to the changes
in the target is proposed. We solve the Hamilton-Jacobi-Bellman equation in order to
find the optimal minimum-jerk controller. The result is a time-varying linear feedback
law, which produces fifth-order polynomials for piece-wise constant target states. For
this controller, we show that limiting the remaining time from below naturally leads to
a smooth transition between trajectory planning and tracking modes. Thus, we have
obtained a fully reactive trajectory generation method for possibly moving targets with
the desirable properties of minimum-jerk trajectories.
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