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SOME CLASSICAL MIXING FORMULAS IN THE TIME DOMAIN
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Depurtment of Electromagnetic Theory, Lund University, P.O. Box 118, 5-221 00 Lund, Sweden
Ari H. Sihvola
Electromagnetics Laboratory, Helsinki University of Technology
P.0O. Bor 8000, FIN-02015 HUT, Finland

Abstract: ‘This paper discusses a time domain approach to the effective-medium modeling of dielectrically
heterogeneots materiais. Special emphasis is put on the dispersive hehavior of the mixture, Specifically, the
Debye model is treated. In termns of the geometry of the mixture, the present, analysis is carried out for inclusions

of ellipsoiclal or spherical form.

MIXTURE FORMULAS IN THE TIME DOMAIN
The classical mixing theorics use a static or quasistatic treatment of the inclusions embedded in a host
medium and the polarizabilities of the inclusions. In the time domain, the evaluation of the effective

permittivity operator requires evaluation of inverse Fourier transforms or calculation of convolutions

andl operator inverscs.
In the present paper we consider linear, isotropic, temporally dispersive dielectric materials. In a
time domain setting, the constitutive relations have the general form. see 25
Dir,t) = s [eB} (r. 1) = g0 {s-c (ME(r.t) + (x * E)(r.1}}
B{r.t) = poH(r.t)

where the vacuum permittivity is =g and the vacuum permeability

+ stauds for the temporal convolution. The function £oc(r) = 1 desert
response of the material. The dispersive part is described by the «‘1:(6')“1))]!(\ kernel x{r.t) as a
function of time. Due to causality, the susceptibility kernel \ vanishes for t < 0. but it can have a
discontinuity in the origin. . ¢., it can happen thar \(t = 07) # 0. Althiough this option of diir'ontinuit\'
ample {1, p. 31010 i), it does not

v pg. and the operation denoted by
Ho-
es the instantaneous {optical)

across the origin is sometimes doubted in the literature {see. for e
violate cansality. In fact, the Debye model. which models the dispersive behavior of polar liquids in
the microwave regime excellently, is an example of a case where x{t = U7y # 0.

NON-DISPERSIVE BACKGROUND—DEBYE MODEL FOR ELLIPSOIDAL INCLU-
SIONS

Consider a mixture of dispersive ellipsoidal inclusions in « dispersionless background. The ellipsoidal
inclusions are located in random positions with their axes aligned in the host medimmn. The time
domain Maxwell Garnett formula. writien for a non-dispersive background medium. ;. and dispersive
inclusions with optical response €5, and susceptibility kernel \ (¢) implies that the cffective permittivity
dvadic of the mixture i3

Cor = €oqdE + lpyy + iy =y
where the effective permittivity in the ith direction is
o = s’oc_ﬁ“- + ot = &b+ Sof (Eoe — S0+ Vi =Nl = fiexe — 2p+ )l

This expression is well defined uuless g5+ Ni (1-- /) (£e — 50 5= 0. The Uurmitri\'i-‘\' aperators (func-
tions) contain the d”polauz,dllml factors N of the ellipsoids {3]. Specifically. a Debve-mixture,

x(ti = Bexp[—1/7], t > 0, the optical response aud the suscej tibility functions are
P t ptibilit;




A MIXTURE OF TWO DISPERSIVE MATERIALS
if the background medium and the inclusions are both dispersive, the time domain Maxwell Garnett
formula can still be written in the standard form. For spherical inclusions we have

€off = Ecoeff + Xeﬂ'(t) *
where the optical response of the mixture is

€oc,i — Eoch

€00,i + 2500,b - f(gtx,i - Eoo,b)

Exoeft = €x0,b + 360(:.bf
We now focus on the special case of spherical Debye inclusions in a Debye background material,
which susceptibility kernels we denote by

£

ch — € t
xo(t) = Zzh 7 Coed exp (—;—) H(t) = ayexp () H(t)
b .

Ty »
€31~ €oci t \
xi(t) = _“_q__._ﬁi exp (~;>H(t) = o exp (—t0) H(¢) ; Figure
) " : : » and wat
In the case 7, # 73, we get the following explicit expression for the effective susceptibility kernel:
. . . . Lt Con
Nett{t) = crxs(t) + cox (8) + cax (8 + cax - (1) + CSX.‘)U); We alsc
2]
where the coefficients are
/ Qg a_ / oty a_3y ) - This in
ag=l+a {1~ —— +az | + S I
' ‘ ( A —p B - m) \Bs =3 " (3-—5)? : whereas
/ oy a_ Nun
=@ U T R 3) displaye
p o ap 3 kernels
'3 = e = —a - a2 — a3z PRy H [p—
¢3 el T Zoch Glpb 3 '35 s(JT SPAY: of Figw
+ ey Q; 0 andy after 40
C4 = —E€ooeit T Soch — @ 5 T A2 T G35 XY
4 co.eif x¢,b 1;31, — 3 3 =3 (3— — ,3b)2 : REFEI
. (e 2% Q. ) : [1] J.D
o=a3|i~ -
PEw (‘ Br— By B-—Br,
: 2] A K
where : eque
ar = Eooefl ~ Sooh  Cocelf T Zood (1 + 55.1.— fxi T ) Bl L.C
Ex b Eocd — Socb Socb Ti = Tp mon
Eocoff — & S Egh Ti ] :
g = oceff — ool (1 + s‘bA b : 1T ) : [4] W
Eooi — focd Zoch Ti— Ty : Elec
(Eco.ctf =~ 500.'))(55‘11 — €50}
ag = —

500,11(5304' - €oo.b)
205 = fici + Bi + foou + B £ \/(fiﬂi = Bi+ oo + 8p) + dfic (B; - By)
Bi— 5

Bx=0) _ (B2-8:)
(Bx~B) (B8

Oy =

and

x£(t) = apexp (—0<t) H(t)
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Figure 1: The susceptibility kernels for water, ethanol, ethanol-in-water mixture {20% ethanol),
and water-in—ethanol mixture (80% ethanol).

Consequently, xer(t) is a linear combination of four Debye kernels and one modified Debye kernel.
We also have that

min (8;, ) < f- < max (8, 8p) < By, oz >9

This implies that the relaxation time 7. = 1/3. is less than both the rvelaxation times 7 and 7,
whereas 7.. = 1/ assumes a value between 7; and 7.

Numerical results for a Debye-in-Debye medium (ethanol and water. 20-80% and 80-20%) are
displayed in Figure 1. The figure shows that although the mixture curves resemble in form the Debye-
kernels of water and ethanol, they are not exactly exponentially decaying. Another interesting detail
of Figure 1 is the fact that the water-in—ethanol mixture has a slightly stronger memory for times
after 40 ps compared to both water and ethanol, although the difference is very small.
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