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Direct Continuous Time System Identification of MISO Transfer
Function Models applied to Type 1 Diabetes

Harald Kirchsteiger, Stephan Pölzer, Rolf Johansson, Eric Renard, Luigi del Re

Abstract— This paper shows an application of continuous
time system identification methods to Type 1 diabetes. First,
a general MISO transfer function structure with individual
nominator and denominator polynomials for each input is
assumed and a parameter estimation procedure via an iterative
prediction error method presented. Then, the proposed identifi-
cation method is evaluated on a simple simulation example and
finally applied on real-life data from Type 1 diabetes patients
with the purpose of modeling blood glucose dynamics. To this
aim, the method was extended to consider the time-varying
nature of the system.

I. INTRODUCTION

There are several advantages of continuous time (CT)
system identification compared to discrete time (DT) system
identification, e.g., data do not need to be sampled equidis-
tantly [1] and the parameters of the estimated models can
be interpreted according to their physical meaning, giving
insight into the process under consideration [2]. When a
physically motivated CT model structure is transformed into
DT, the DT parameters are functions of the CT parameters
and the sample time, and in general there is no unique re-
transformation.

One may distinguish between direct and indirect CT iden-
tification methods, where in the latter case DT models are
estimated using standard techniques [3] [4] and transformed
afterwards into CT, rising problems like the correct transfor-
mation of system zeros as mentioned in [5]. An overview
of existing algorithms and their comparison was given in [6]
focusing on transfer function system representations. The CT
state space identification approach was considered in [7].
More recent developments are instrumental variables (IV)
techniques to identify MISO transfer functions with indi-
vidual denominator polynomials [8] and errors in variables
methods [9].

This paper presents a way of identifying MISO transfer
function models in Section 2. We assume an output error
structure although we do not take directly into account the
effect of noise as treated e.g. in [5]. The method is validated
in a simulation example in Section 3 and thereafter applied
to a real-world problem, the identification of blood glucose
(BG) traces of Type 1 diabetes patients in Section 4.
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There has been a strong effort in modeling blood glucose
dynamics from Type 1 diabetes patients in the last centuries,
mainly driven by the quest for the artificial pancreas [10].
This system should automatically deliver the correct dosage
of insulin (control variable) into the subcutaneous tissue in
order to reach a target of the BG concentration (controlled
output). Advanced control strategies such as model predictive
control, which was intensively analyzed in this context [11]
[12] require accurate simulation models or at least prediction
models with horizons in the magnitude of the dominant
system dynamics which is several hours. The modeling effort
was devoted to both physiology based modeling [13] and
pure data based modeling [14] [15].

The complexity of the human body, non-repeatable mea-
surement conditions and the very limited availability of long
term, high quality measurement data of single patients are—
among other reasons [10]—the major difficulties and reasons
why until now, no simulation models tuned to single patients
are validated with reasonable accuracy. See e.g., [16] for an
overview of diabetes signals, modeling and control.

One major premise in successfully applying system iden-
tification techniques is the persistent excitation (PE) property
of the input signals. Here, the two most important inputs—
food intake and insulin injection—usually appear at almost
the same time and can be considered as single impulses in
time, which means they are not PE of any order. This might
be a reason—at least it is the experience of the authors—
why many data based modeling approaches result in accurate
short term predictions but fail to give reasonable long term
predictions. Analyzing those models it can be frequently
seen that impulse responses from a carbohydrate or insulin
input to an blood glucose output are not compatible with
physiology and clinical practice—either in the magnitude or
the time scale—or the inputs even do not have any effect on
the output. In those cases the high predictive performance is
achieved solely through an auto-regressive part in the model.

Here, we chose the CT system identification approach
because of two reasons: it is guaranteed that the impulse
inputs have an effect on the output and due to the assumed
model structure, the estimated parameters can be directly
linked to physiological parameters which are of high signif-
icance in BG control design, the insulin sensitivity and the
carbohydrate sensitivity.

II. MISO SYSTEM IDENTIFICATION ALGORITHM

Consider the description of a system (1) with nu inputs,
u(1)(t), . . . , u(nu)(t), t ∈ R and the polynomials defined
according to (2) where nai and nbi is the maximum order
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of the A(i)(p)– and B(i)(p) polynomial, respectively.

ŷ(t) =
B(1)(p)

A(1)(p)
u(1)(t) + · · ·+ B(nu)(p)

A(nu)(p)
u(nu)(t) (1)

A(i)(p) = 1 + a
(i)
1 p+ · · ·+ a(i)nai

pnai (2a)

B(i)(p) = b
(i)
0 + b

(i)
1 p+ · · ·+ b(i)nbi

pnbi , (2b)
i = 1 . . . nu

Here, we make use of the differential operator p, defined by
px(t) = dx(t)/dt.

Note that beside the nominator also the denominator
polynomials are allowed to be individual for each input
and the maximum order of the polynomials, na and nb can
also be different for each input, hence we introduce the
notation nai and nbi. The problem considered is to find a
parameter vector (3) that minimizes the criterion (4), where
ε is the difference between measurements and the output of
the proposed model structure, evaluated at the (discrete) time
instances k ∈ Z where measurements are available with N
being the total number of measurements.

θ =
[
θ(1)

T · · · θ(nu)
T
]T

(3a)

θ(i) =
[
a
(i)
1 · · · a

(i)
nai b

(i)
0 · · · b

(i)
nbi

]T
, i = 1 . . . nu (3b)

J =

N∑
k=1

ε2(k, θ) (4)

Assuming an output error structure (5), where y(t) denotes
the measured process output, we can write the equation error
as (6).

y(t) = ŷ(t) + ε(t) (5)

A(1)(p) · · ·A(nu)(p)ε(t, θ) = A(1)(p) · · ·A(nu)(p)y(t)

−A(2)(p) · · ·A(nu)(p)B(1)(p)u(1)(t)− · · ·
−A(1)(p) · · ·A(nu−1)(p)B(nu)(p)u(nu)(t) (6)

A standard method to minimize criterion (4) is the Gauss
Newton Algorithm [3], (7) where j indicates the iteration
step and the step length αj may change in every iteration.

θ̂(j+1) = θ̂(j) + αj

(
N∑
k=1

ψ(k, θ̂(j))ψT (k, θ̂(j))

)−1
N∑
k=1

ψ(k, θ̂(j))ε(k, θ̂(j)) (7)

The method makes use of a gradient ψ which can be
calculated straightforward under the model assumption (1)
via (8).

ψ(k, θ̂) = −
(
∂ε(t, θ)

∂θ

)T ∣∣∣t=k,θ=θ̂ (8)

Taking the partial derivatives of (6) with respect to all model
parameters allows us to find the components of the gradient

(8) which are described in a condensed way in (9) for h =
0 . . . nbi and (10) for h = 1 . . . nai. Both equations are valid
for all inputs, i = 1 . . . nu.

∂ε(t, θ)

∂b
(i)
h

= − 1

A(i)(p)

∂B(i)(p)

∂b
(i)
h

u(i)(t) (9)

∂ε(t, θ)

∂a
(i)
h

= yF,i(t, θ)− εF,i(t, θ)−
nu,l 6=i∑
l=1

u(l)F (t) (10)

Computing the gradients with respect to the model parame-
ters a(i)h involves the filter operations (11).

yF,i(t, θ) =
1

A(i)(p)

∂A(i)(p)

∂a
(i)
h

y(t) (11a)

εF (t, θ) =
1

A(i)(p)

∂A(i)(p)

∂a
(i)
h

ε(t, θ) (11b)

u(l)F (t, θ) =
1

A(l)(p)A(i)(p)

∂A(i)(p)

∂a
(i)
h

B(l)(p)u(l)(t) (11c)

To robustify the iterative search algorithm (7), a regular-
ization factor λ ∈ R+ multiplied by an identity matrix I of
proper dimension is added (12).

θ̂(j+1) = θ̂(j) + αj

(
N∑
k=1

ψ(k, θ̂(j))ψT (k, θ̂(j)) + λI

)−1
N∑
k=1

ψ(k, θ̂(j))ε(k, θ̂(j)) (12)

III. SIMULATION EXAMPLE
The algorithm outlined in the previous section is now

applied to a process defined by (13).

y(t) =
K1

(1 + T1p)2p
u(1)(t) +

K2

(1 + T2p)2p
u(2)(t) + e(t) (13)

The process parameters θ = (K1, K2, T1, T2)
T along with

the estimates for different noise levels are summarized in
Table I. The table shows the estimated parameter values and
standard deviations after 50 iterations of the Gauss Newton
algorithm for different noise covariances η and the corre-
sponding signal to noise ratio (SNR). For this comparison,
two rectangular signals of 150s length, sampled at 5 Hz
with u(1) having an amplitude of 0.5 and period 30s and
u(2) having an amplitude of 1 and period 20s were used as
inputs and e(t) ∼ N(0, η2). As initial parameter estimate,
we chose θ̂(0) = (0.1, −0.1, 0.1, 0.1)T , the regularization
parameter λ was 0.2 and mean values of 20 Monte Carlo
simulations with individual noise realizations are presented.
The chosen value for λ decreased the dependency of the
results on the initial parameter values and still maintained
almost the same performance as if no regularization would be
used. A graphical representation is given in Fig.1. The results
give evidence that the method can give accurate parameter
estimates under the reported conditions.

One might notice that (13) does not exactly lie within the
structure defined in (1), as we assumed monic denominator
polynomials. To represent an integral behavior, the term 1
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TABLE I
SIMULATION EXAMPLE RESULTS

Parameter True Value η = 0.1 η = 0.5 η = 1.0
SNR= 72.9dB SNR= 43.9dB SNR= 32.9dB

K1 1 1.0002 1.0050 1.0016
(±0.0022) (±0.0104) (±0.0270)

K2 -2 -2.0001 -2.0036 -1.9987
(±0.0017) (±0.0086) (±0.0220)

T1 2 1.9999 2.0165 2.0227
(±0.0036) (±0.0282) (±0.0837)

T2 4 3.9999 4.0053 4.0040
(±0.0042) (±0.0207) (±0.0436)

in (2a) has to be replaced by an additional parameter a(i)0

which makes the transfer function non-univoke, or directly
set a(i)0 to zero, what we did here. In this case, the gradients
involved in the computation of (12) are given in (14). The
reason for choosing this specific transfer function for our
simulation example is explained in the following section.

∂ε(t, θ)

∂K1
= − 1

(1 + T1p)2p
u(1)(t) (14a)

∂ε(t, θ)

∂K2
= − 1

(1 + T2p)2p
u(2)(t) (14b)

∂ε(t, θ)

∂T1
= − 2K2

(1 + T1p)(1 + T2p)2
u(2)(t) +

2p

(1 + T1p)
(y(t)− ε(t, θ)) (14c)

∂ε(t, θ)

∂T2
= − 2K1

(1 + T1p)2(1 + T2p)
u(1)(t) +

2p

(1 + T2p)
(y(t)− ε(t, θ)) (14d)
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Fig. 1. Simulation example: inputs (upper panel) and simulated model
output vs. noisy (η = 1) measurements (bottom panel)

IV. APPLICATION: MODELING TYPE 1 DIABETES

In [17] it was shown that a reduced order linear transfer
function of the form (13) with the inputs u(1)(t) representing

the carbohydrate amount ingestion and u(2)(t) the fast acting
insulin quantity injected in the subcutaneous tissue is well
suited to capture the main blood glucose dynamics after
breakfast. Furthermore the parameter K1 is directly linked
to the carbohydrate sensitivity—the BG change after a 1g
carbohydrate meal—and K2 to the insulin sensitivity—the
BG change after injection of 1 insulin unit—two parameters
that are of uttermost importance for calculating the correct
insulin advice for diabetes therapy.

Here, we use data collected from 15 Type 1 diabetes
patients over a period of three days each recorded at the
endocrinology department of the university hospital in Mont-
pellier, France. Details on the clinical protocol, subjects
included, datasets and measurement devices can be found
in [17]. As model inputs, we used directly the information
coming from the patient, the amount of carbohydrates of the
meals and the quantity of insulin injected. Both inputs are
zero most of the time and appear as single impulses typically
3-6 times per day. We do not use any filter for those impulse
inputs when applying the identification algorithm. As output
for the model identification, we use the BG measurements
performed at times tm = {0, 10, 20, 30, 45, 60, 90, 120} after
a meal using a Hemocue R©glucometer.

A. Modeling individual responses

Straightforward application of the algorithm described in
the previous section to single meal responses gives results
as presented in Fig. 2. for one individual. The signals re-
ferred to as measurements are the spline-interpolated discrete
BG measurements in whole blood at non-uniform sample
intervals. Responses are due to ingestion of a 45g carbo-
hydrate breakfast (mixed meal) and insulin injection based
on patients own decision. The high intra-patient variability is
evident in the estimated parameter values for the 3 breakfasts
on 3 different days (15).

θd1 =


5.47
−69.29
20.79
62.86

 θd2 =


4.38
−48.35
18.27
70.42

 θd3 =


5.65
−76.44
20.59
56.28

 (15)

B. Modeling collective responses

Focusing on breakfasts, the parameter vectors should be at
least similar up to the extent of the day to day variability, as
patients received identical meals for the 3 days. To tighten
the parameter estimates, several responses of one patient are
considered at the same time with additional constraints on
the parameter estimates. Instead of criterion (4) we now
make use of (16) in the case of an estimation for 2 days.
The parameters θd1 are those estimated for the first day and
θd2 those for the second day. The cost function (16) can
be easily extended to more days. The additional penalty on
the parameter differences with a weight as defined in (17) is
used to reduce the distance between the parameter vectors
for the different days. Note that we still assume different
parameter vectors for different experiments which makes
the method different than a multi-experiment identification.
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Fig. 2. Simulated model outputs (black dashed) compared with BG
measurements (blue solid) for 3 breakfasts of one individual (P0103)

By increasing a specific entry in (17) we can enforce the
parameter related to it to be more close for all experiments
than the other parameters.

J =
N∑
k=1

ε2d1(k, θd1) +
N∑
k=1

ε2d2(k, θd2)

+2pT (θd1 − θd2)2 (16)

p =
[
pK1 pK2 pT1 pT2

]T
(17)

A multi-experiment optimization like this—one experiment
is equivalent to one meal—is easily incorporated in the
framework of the algorithm in Section II as it results in a de-
coupled optimization problem with the only interconnection
being the additional penalty on the distance of the parameter
estimates. Specifically, gradients are calculated similarly to
(14) for both experiments with the difference that now one
constant—in the sense of time-invariant—term according to
the parameter penalty has to be added per component. This
term is given in (18) and the gradient is (19).

ψp(θd1, θd2) = 4


pK1

(
Kd1

1 −Kd2
1

)
pK2

(
Kd1

2 −Kd2
2

)
pT1

(
T d11 − T d21

)
pT2

(
T d12 − T d22

)
 (18)

ψ(k, θd1, θd2) =

[
∂εd1(k,θd1)

∂θd1
+ ψp(θd1, θd2)

∂εd2(k,θd2)
∂θd2

− ψp(θd1, θd2)

]
(19)

In the following, we will denote with ψ1 the first element
and with ψ2 the second element of (19). Substituting (19)
into (12) and extension to the 2 experiment case leads to
(20) where the Hessian Matrix H is defined according to
(21) and f as in (22).

[
θ̂
(j+1)
d1

θ̂
(j+1)
d2

]
=

[
θ̂
(j)
d1

θ̂
(j)
d2

]
+ αj (H + λI)

−1
+ f (20)

TABLE II
INDIVIDUAL VS COLLECTIVE MODEL PARAMETERS

Individual Modeling
Day1 Day2 Day3 mean STD

K1 3.26 16.55 9.79 9.87 6.64
K2 -254.42 -187.54 -78.89 -173.62 88.59
T1 22.77 26.20 22.00 23.65 2.24
T2 425.70 30.43 31.99 162.71 227.76

Collective Modeling
Day1 Day2 Day3 mean STD

K1 7.66 6.36 8.71 7.58 1.18
K2 -67.80 -68.81 -69.96 -68.86 1.08
T1 34.18 21.58 20.99 25.58 7.45
T2 49.11 34.35 33.47 38.98 8.78

H =

[
H11 0
0 H22

]
=


N∑
k=1

ψ1ψ
T
1 0

0
N∑
k=1

ψ2ψ
T
2

 (21)

f =


N∑
k=1

ψ1εd1(k, θd1)

N∑
k=1

ψ2εd2(k, θd2)

 (22)

As per experiment essentially 4 more gradients have to
be calculated and one symmetric matrix of dimension 4
inverted, these multiple experiment extensions do not signifi-
cantly increase the computational cost. Note that the Hessian
can be inverted efficiently due to the block-diagonal structure
(23).

(H + λI)
−1

=

[
(H11 + λI)

−1
0

0 (H22 + λI)
−1

]
(23)

C. Simulation results on real life data

In general, the methodology of modeling collective re-
sponses will give worse results in terms of fitting individual
traces than modeling individual responses as performance
is traded against a compact parameter set. This is however
not always the case, as can be seen in Fig. 3., where
the individual model of day 2 (middle panel) optimized
according to the prediction error does not capture the peak
BG response. In contrast, the collective model captures the
peak accurately. In the first two breakfasts (upper and middle
panel), the BG concentration first decreases slightly before
it starts the increase caused by the meal at t = 7 on the first
day and t = 2 on the second day. This behavior, which can
be observed in several of the responses in our database gives
evidence that in a future work, the model structure might be
extended with a time delay.

Parameter values for both cases are given in Table II for all
3 breakfasts for patient P0111. The simulation results were
obtained using a regularization parameter λ = 1, step size
αj = 0.075 and parameter penalty p = (2, 2, 0.5, 0.5)T .

One remaining question is how to make use of the param-
eter sets for a single patient when the model shall be used
for predicting the BG excursions after a meal intake. In this
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Fig. 3. Simulated model outputs for individual modeling (black dashed)
compared with measurements (blue solid) and collective modeling (red dash-
dot) for 3 breakfasts of one patient (P0111)

case we assume the parameters for a single experiment be
unknown. The estimated parameter intervals (24) calculated
over several days can be used to compute upper and lower
boundaries i.e., worst case scenarios according to (26) and
(27). Here, θ = (K1,K2, T 1, T 2) is the parameter vector
constructed of all the individual minimum values of all
estimated parameter vectors for dn days, (25); similarly θ
consists of all the maximum values.

θ ∈
[
θ, θ

]
(24)

θ =


min{Kd1

1 , . . . ,Kdn
1 }

min{Kd1
2 , . . . ,Kdn

2 }
min{T d11 , . . . , T dn1 }
min{T d12 , . . . , T dn2 }

 (25)

ŷmax(t) =
K1

(1 + T 1p)
2p
u(1)(t) +

K2

(1 + T 2p)2p
u(2)(t) (26)

ŷmin(t) =
K1

(1 + T 1p)2p
u(1)(t) +

K2

(1 + T 2p)
2p
u(2)(t) (27)

An example of such boundaries is given in Fig. 4., again for
3 breakfasts of one patient. Additionally, the response of the
model using the collective modeling parameters is given. The
bottom panel shows that the measurements do not always lie
within the maximum and minimum responses.

V. DISCUSSION

A. Variability

The first property to highlight is the comparatively high
variability in the blood glucose responses to meals of similar
composition and quantity even in the same patient in consec-
utive days under hospitalized conditions. Here, we analyzed
in total data from 15 patients over a time period of 3 days
each, i.e., 3 breakfasts, 3 dinners and 3 lunches for each
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Fig. 4. Simulated ”worst case” model outputs (black dashed) compared
with measurements (blue solid) and collective modeling (red dash-dot) for
3 breakfasts of one patient (P0107)

individual giving in total 135 experiments. Out of this data
pool, 20 experiments did not fit into the proposed model
class (13) and in 4 experiments data were partially missing.
A common problem in clinical data, as some variables
like the carbohydrate content of the meal and the insulin
quantity administered is written in a log-book and afterwards
manually transferred into an electronic format. To account
for the intra-day variability we analyzed breakfast lunch and
dinner experiments separately. Considering the design of the
study, the variability introduced by varying meal components
was minimized at breakfast times as the same breakfast was
served at all 3 days where as for lunch and dinner meals of
comparable size but different nutrients were prescribed.

B. Collective modeling

The remaining 111 experiments gave reasonable results
and were considered further in the collective modeling. This
approach essentially ties together the parameter estimates of
the several days when increasing the tuning parameters in
(18) but at the same time decreases the fit of the model
output to the data. Simulation results showed that up to some
extent, the fit is changing only minimally when imposing
the parameter difference penalty with a moderate weight.
We justify the approach by considering an application of the
model in glucose control, where it is not required neither to
achieve accurate setpoint tracking nor to have high dynamic
disturbance rejection. This means requirements on the model
can be relaxed. The accurate description of the BG peak
value and time after a meal when it occurs is already
sufficient for patients who deliver insulin via multiple daily
injections (typically one injection per mean) to decide on the
insulin dose to compensate the meal.

As mentioned before, the regularization parameter λ was
constant for all simulations. In a further step, the algorithm
might be extended to find an optimal λ for each patient
which decreases the performance by a given percentage.
Graphically, we are then trying to find a level set of a
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given performance in the 4-dimensional parameter space for
all experiments. The higher λ, the more likely the various
level sets will overlap each other and we can find a unique
parameter vector which describes all experiments with the
same error. Simulations showed that such a high λ will
lead to unacceptable performance and thus smaller values
have to be used and the parameter set could be described
by the borders of the individual level sets delimited by
perpendicular hyperplanes between them.

C. Parameter intervals

Focusing on the breakfast data only, we were able to
obtain compact parameter sets for each patient describing
the measurements accurately. However, this was not the case
for lunch and dinner modeling. In this case the individual
parameter vectors for the 3 days typically have a large
variability and much of the performance is lost to make them
compact. As an example, we present results for the lunch of
patient P0109 in Fig. 5. where both the performance of the
model to capture the measurements is bad and the difference
between minimum and maximum response is big because of
a non-compact parameter set. In this particular case, note the
BG response on day 3 in the lower panel, which does not
increase after the lunch was eaten. Also note that in this case,
the patient had a small snack after the lunch at t around 160
min. Consequently, the simulated upper and lower bounds of
the BG concentrations change here, whereas the parameter
intervals are the same for the whole experiment.
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Fig. 5. Simulated ”worst case” model outputs (black dashed) compared
with measurements (blue solid) and collective modeling (red dash-dot) for
3 lunches of one patient (P0109)

D. Use of the model

Insulin bolus calculators, which are currently clinical
standard in intensive insulin therapy calculate insulin needs
based on the insulin sensitivity and carbohydrate correction
factors. These two factors are directly given by our model
assumption. After the model parameters are fixed, a single
BG measurement is necessary to determine the offset of the
simulated model output. The time of this measurement is

the beginning of a meal, where measurements are typically
taken. The formulation in terms of parameter intervals might
be used in a robust control setup.
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