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Force Controlled Assembly of Emergency Stop Button

Andreas Stolt, Magnus Linderoth, Anders Robertsson, and Rolf Johansson

Abstract—Modern industrial robots are fast and have very
good repetitional accuracy, which have made them indispens-
able in many manufacturing applications. However, they are
usually programmed to follow desired trajectories and only
get feedback from position sensors. This works fine as long as
the environment is very well structured, but does not give good
robustness to objects not being positioned or gripped accurately.
A solution is to use additional sensing, such as force sensors
and vision. How to combine the data from the different sensors
and use it in a good way to control the robot is still an area of
research.

This paper describes an assembly scenario where a switch
should be snapped into place in a box. Force sensing is used
to resolve the uncertain position of the parts and detect the
snap at the end of the operation. During the assembly an
uncertain distance is estimated to improve the performance.
By performing the assembly several times, learning is used
to generate feed-forward data, which is used to speed up the
assembly.

I. INTRODUCTION

The traditional way of using industrial robots is to program

them to follow position trajectories and only use feedback

from position sensors, and this is something that is handled

very well by modern robot controllers. They are fast and

have good repetitional accuracy. This approach is however

not that good to use when uncertainties are introduced in the

task specification. Additional sensors are then necessary to

resolve the uncertainties and complete the task.

The incorporation of additional sensors in this paper

is done using the the constraint-based task specification

methodology [3]. It is a general framework that makes it easy

to algorithmically incorporate multiple sensors, geometric

uncertainties and to handle both redundant manipulators and

redundant tasks. The task specification is also easy to use

and to reuse.

An earlier framework for specifying end-effector based

motion tasks is the operational space formulation [9], where

generalized task specification matrices are used. A survey of

how robotic assembly should be performed is proposed in

[2].

Examples of sensor fusion of vision and force sensing is

given in [7], which describes an assembly scenario where

cylinders are to be inserted into a rotating engine. Another
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example is [4], where an unknown surface is tracked. In [10]

assembly was performed using sensorimotor primitives.

Previous work in robotic assembly can be found in [1],

where optimization of force control parameters with respect

to cycle time is made in assembly of a clutch. An exam-

ple from the automotive industry is [6], which describes

powertrain assembly. In [14] synchronized Petri nets are

used to model the assembly process and an experimental

evaluation is made with a peg-in-hole assembly. An example

of assembly from the construction industry where position

control is used is described in [5].

A survey of robotic manipulators in space with focus on

dynamics and control is [12]. A general framework for tool

planning in assembly tasks is given in [13]. An application

of force control in robotics other than assembly is [11],

where force control is used to avoid sliding movements when

drilling.

The assembly scenario in this paper is to assemble the

internals of an emergency stop button, see Fig. 1. A switch

should be placed in one of five available slots and has to

be snapped into the right position. The location and the

orientation of the bottom box is assumed to be uncertain,

as well as the grasping of the switch. Force sensing is used

to resolve these uncertainties.

The objective is to create a framework that enables the

operator to specify assembly tasks in an easy way, as a

step-by-step procedure. No exact modelling of the involved

parts is necessary, since finding contact points and following

surfaces can be handled by the force sensing

Fig. 1. The emergency stop button that is used as an experimental case.

II. TASK MODELING

A. Constraint-based task specification

A thorough explanation of the constraint-based task speci-

fication methodology is given in [3]. A summary of the parts

that are relevant for this paper are given below.
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The constraint-based task specification framework speci-

fies the relative motion of objects by imposing constraints.

To be able to specify these constraints a so called kinematic

chain is needed, and it consists of two object frames and two

feature frames. The first object frame is usually attached to

the object one wants to manipulate and the second object

frame is usually attached to the robot. The feature frames

should be attached to features on the object to manipulate

and on the robot. They should be chosen in such a way that

the task constraints become as easy as possible to specify. A

kinematic chain should have 6 degrees of freedom, and they

are distributed over the transformations between the feature

and the object frames. These six degrees of freedom are

represented by χf , the so called feature coordinates.

Aside from the feature coordinates there might also be

uncertainties in the pose between the previously defined coor-

dinate frames. To handle this problem an extra transformation

between each of the the previously mentioned coordinate

frames is introduced, and the degrees of freedom in these

transformations are χu, the uncertainty coordinates.

The variables one wants to constrain are chosen by spec-

ifying outputs y. In general, each output can be a function

of the feature and the robot joint coordinates, but if the

kinematic chains have been chosen properly the outputs will

in most cases directly correspond to some of the feature

coordinates.

B. Kinematic chain in the specific task

One kinematic chain is used in the assembly task and the

object and feature frames related to it are shown in Figs. 2

and 3. An overview of how the frames are connected by the

feature coordinates is given in Fig. 4.

• Object frame o1 is attached to the box. It is related to the

world coordinate frame by a constant transformation.

• Feature frame f1 is attached to one end of the switch.

The orientation is the same as o1.

• Feature frame f2 has its origin in the same position as

f1, but the orientation is the same as the robot flange

frame.

• Object frame o2 coincides with the robot flange frame.

x
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Fig. 2. Illustration of the different
coordinate frames in the assembly
task.

o2

y

z

y

z
f2

zu

Fig. 3. Illustration of the uncer-
tainty coordinate zu between the
two frames f2 and o2.

χfI

χfII

χfIII

q

w

constant

transformation o1 f1

f2o2

Fig. 4. Schematic description of the kinematic chain in the assembly
task. w denotes the world coordinate frame and q denotes the robot joint
coordinates.

The feature coordinates χf are divided into three groups

depending on which frames they relate. The coordinates used

are
χfI = (x, y, z) o1 → f1
χfII = (ϕ, θ, ψ) f1 → f2
χfIII = (−) f2 → o2

The coordinates χfI give the position of the origin of f1
using Cartesian coordinates in o1. χfII describe the rotation

from f1 to f2 using Euler ZYX-angles. χfIII has no feature

coordinates, since the transformation between f2 and o2 is

fix.

In this task all feature coordinates are chosen as outputs,

according to
y1 = x y2 = y y3 = z
y4 = ϕ y5 = θ y6 = ψ

Uncertainties in the task include the exact location of the

box and its orientation. They are however resolved using

guarded search motions, i.e., the motion is velocity controlled

in the search direction and stopped when a contact force is

detected. Once contact is made, it is maintained by using

force control, and hence no explicit uncertainty coordinates

are used to model this uncertainty. The exact position of

the grasp is also assumed to be uncertain, and the z-distance

from f2 to o2 (Fig. 3) is therefore modeled as an uncertainty

coordinate zu. The distance in x and y are also uncertain,

but they are small compared to the z-distance and therefore

considered to be known with sufficient accuracy.

C. Uncertainty estimation

An illustration of the uncertainty coordinate zu is given

in Fig. 3. It can be estimated by performing a rotation in

ψ (rotation around f2 x-axis, see Fig. 5) while keeping

the switch in contact with the box. If zu is known exactly,

the contact forces at the origin of f2 will remain constant

during the rotation without any force control. In practice the

contact forces will change and force controllers will modify

the velocity references in the y and z directions to maintain

the forces.

Let us assume that there is an estimation error z̃u =
zu− ẑu, illustrated in Fig. 5, where ẑu is an estimate of zu.

This estimation error gives rise to attempted rotations around

the origin of frame f2′ instead of around the origin of f2.

Since the contact is force controlled the actual rotation will,

however, be made around the origin of f2, and the velocity

of o2 in its y-direction will be v = −ψ̇zu.

This can be used to set up a dynamical model for zu,

according to (1), where the state s = zu and the measurement

m = v is the velocity of o2 in its y-direction, g and n are

Gaussian noise.
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Fig. 5. Illustration of the uncertainty coordinate zu.

{

ṡ = g(t)

m = −ψ̇s+ n(t)
(1)

A Kalman filter [8] can be used to estimate zu. A

discretized model of (1) is (2), with system matrices defined

in (3). The noise covariances are assumed to be given by (4).

{

s(k + 1) = As(k) + w(k)
m(k) = C(k)s(k) + e(k)

(2)

A = 1 , C = −ψ̇ (3)

E
[

w(k)wT (k)
]

= Q(k)
E
[

w(k)eT (k)
]

= 0
E
[

e(k)eT (k)
]

= R(k)
(4)

A Kalman filter for the model (2) is given by (5)-(11).

ŝ(k|k − 1) = Aŝ(k − 1|k − 1) (5)

P (k|k − 1) = AP (k − 1|k − 1)AT +Q(k) (6)

m̃(k) = m(k)− C(k)ŝ(k|k − 1) (7)

S(k) = C(k)P (k|k − 1)CT (k) +R(k) (8)

K(k) = P (k|k − 1)CT (k)S−1(k) (9)

ŝ(k|k) = ŝ(k|k − 1) +K(k)m̃(k) (10)

P (k|k) = (I −K(k)C(k))P (k|k − 1) (11)

D. Transient detection

During the final stage of the assembly the switch snaps

in place on the box. Empirical studies of the transients

originating from the snap show that a distinct signature

is present. Sharp dips can be seen both in the z-force

and the ψ-torque (around f2 x-axis). A way to detect the

snap is to assume that the expected snap signature and its

probability distribution are known. A measured sequence of

force and torque samples can then be seen as an outcome

of a multivariate random variable. By further assuming that

this random variable is Gaussian it is possible to calculate

the probability for a certain sequence of force and torque

samples to be the outcome of a snap.

The probability density distribution can be learned by

manually marking where the snap has occurred for a number

of snaps. This makes it possible to calculate the expectation

value and the covariance matrix. The probability density

function for a measured sequence x ∈ R
n is given by (12),

where µ is the expectation value and Σ the covariance matrix.

f(x) =
1

(2π)
n/2

|Σ|
1/2

exp

(

−
1

2
(x− µ)

T
Σ−1 (x− µ)

)

(12)

A way to detect a snap is to check whether x lies inside

the hyper-ellipsoid defined by (13).

(x− µ)T Σ−1 (x− µ) < c2 (13)

Using this condition can be motivated by the fact that

all points inside the hyper-ellipsoid have higher probability

density than all points outside the hyper-ellipsoid, which

can easily be verified by inserting (13) into (12). For even

dimensions n the probability p of a sample x resulting from

a snap to be inside the hyper-ellipsoid (13) is given by

p =

∫

(x−µ)TΣ−1(x−µ)<c2
f(x)dx

= 1−





n/2−1
∑

i=0

(c2/2)i

i!



 exp

(

−
c2

2

)

(14)

A good feature of this detection method is that it is well

suited for a real-time implementation. Since the sample size

n and the desired probability p are the same for all samples

during execution, the constant c in (13) can be calculated

in advance using (14). Furthermore, µ and Σ are calculated

offline using training data. So all that has to be done in real-

time is to insert x in (13) and check whether the inequality

is satisfied. Sequences of nine force samples and nine torque

samples were considered. Before the method was applied to

the data the offset was removed by considering a weighted

average value.

E. Learning

When searching for contact during assembly, there is a

delay between the moment when the contact is first sensed

by the force sensor and the time when the robot actually

stops. If the contacting material is stiff, then the contact force

increases very rapidly during this delay and the components

may break. Hence, the approach phases have to be made

quite slow.

A learning strategy can be used to speed up the assembly.

During a number of assemblies the positions where the com-

ponents make contact are recorded. When the distribution of

the contact points is known the speed profile of the approach

can be changed so the speed is high in the beginning and

then decreases when it comes to the region where the contact

is expected to be made.

III. ASSEMBLY SCENARIO

The assembly strategy chosen was to methodically elim-

inate all uncertainties by guarded search motions. A state

machine describing the assembly operation is given in Fig. 6.

In Fig. 7 snapshots from the execution are shown with red

arrows indicating the direction of movement.
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It was assumed that the position and orientation of the box

was known well enough for an initial search operation (state

2) to hit the bottom of the box in front of the slot to mount

the switch in, see the red area in Fig. 8. Once contact was

made, linear searches were performed to find the slot (states

3 and 4). Next, the switch was rotated to make contact on

the opposite side of the switch (state 5) and then turned

until it fell into the slot on that side (state 6). The initial

pose should be such that it was known which way to turn to

find the slot. Once this was done the remaining step was to

push the switch down and wait for the snap (state 7).

Fig. 6. State machine describing the assembly sequence.

IV. EXPERIMENTAL RESULTS

A. Uncertainty estimation

The estimation scheme described in Section II-C was

implemented in the assembly scenario. The time spent in

the estimation state was rather short though, which made

it hard to draw any conclusions. Another experiment was

therefore performed to try out the estimation. Initial contact

was searched for in z-direction and then in y-direction. The

contact forces were controlled and a rotation in ψ (around

the x-axis) was started. Two different initial guesses were

used and the result is found in Fig. 9.

The y-force was controlled to 3 N and the z-force to 5 N.

The estimator converged to about the same distance in both

experiments. The forces approached the references and the

velocities, the force control modifications due to an incorrect

estimate, approached zero during the experiments.

Fig. 7. Snapshots of the assembly sequence. The search directions in the
different states of the assembly are indicated with red arrows.

B. Transient detection

A typical snap can be seen in Fig. 10 at t = 1.65 s. Snaps

from two different switches have been logged, ten snaps from

each switch. The training data is presented in Fig. 11, where

also the point-wise mean snap is given. It is clearly seen in

the torque diagram that two different signatures are present,

originating from the different switches. The result of the snap

detection method when applying it to three new snaps from

each switch is shown in Fig. 12. The inverse of the test value

(left hand side of (13)) is plotted over time for the six snaps.

The percentages on the horizontal lines indicate the ratio of

the snaps that will be detected if that line is used as the

threshold.

As Fig. 12 indicates the method is well suited for the snap

detection. As the influence from the noise is low it is easy to

find a suitable threshold that decides when there has been a

snap. One choice could be the 99 % threshold, which means

that it is chosen so that 99 out of 100 snaps will be detected

by the method.

Different structures of the covariance matrix were eval-

uated. In Fig. 12 it has been tested to let the random

variables be independent of each other, i.e., the covariance

matrix was diagonal. Experiments were performed using both

band-diagonal and full covariance matrices, but both variants

caused a degradation of the results. The reason for this might

be that the estimated covariance is not accurate enough, when

only relying on twenty measured snaps.

C. Learning

The learning strategy described in Section II-E was imple-

mented on the system. The controllers were already tuned

to give the fastest possible assembly without risking to

damage the components. When the system had been trained

to know the distribution of the contact points, the speed of the

approach was increased by a factor of 4 outside the expected

contact region. This decreased the assembly time from 8.6 s
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to 3.6 s. Diagrams of the states over time with and without

training can be seen in Fig. 13.

D. Assembly sequence

Force data from an experimental execution is given in

Fig. 14, together with the corresponding state in the assembly

sequence. The first three states shown are linear search

motions in z, y and x (state 2 has been divided into two

substates, where 2 is a fast z-search and 2.5 a slow z-

search). The transition conditions are large contact forces

in the corresponding search directions, which is easily seen

in the force plot. States 5 and 6 are rotational searches, the

transition conditions are large corresponding torques. Notice

how the ψ-torque (around f2 x-axis) drops around t = 10 s.

This is because the switch slides down into the slot in the

box. State 7 is the push-down state, and when the snap occurs

(at t = 11.7 s) a transition to the last state is made, where

the robot lifts the switch and the box to show that it has

finished the assembly.

More insight is given in Fig. 15, where velocity data from

the experiment is shown. Measured data is given when the

corresponding coordinates are position or velocity controlled,

but the control signal (the desired velocity) is given when

the coordinates are force controlled. The search motions are

easy to recognize on the non-zero velocity, and also the push

down state can be interpreted as a search (in ψ).

V. DISCUSSION

The uncertainty estimation performed in Section IV-A did

not converge to a distinct value, which probably was caused

by that the rotation was made around a rounded edge, rather

than a point contact. The deviation from zero in the velocity

diagram was probably caused by a small error in the y-

distance, which was assumed to be known. The estimation

was corrupted in the end of the experiments when the switch

made contact at a second point, which was not covered by

the model.

The forces and torques are controlled to a constant value

once contact is made in the assembly task. The diagrams

in Section IV-D, however, show something else. The reason

for this is probably the relatively large search speeds, that

introduce disturbances for the orthogonal force controlled

directions.

The assembly speed can be substantially increased when

Fig. 8. Illustration of where the initial search
should make contact (red area) and the following
search directions, green first and then blue.
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using the learning approach described in Section II-E. This

strategy will however only speed up the assembly to a

certain point, because it does not include the actual search

motions that make contact. The contact stiffness together

with unavoidable time delays in the control system requires

search speeds to be slow and force controllers can not be too

aggressive. There are however ways to use learning to speed

up the sequence even more. The positional and orientational

uncertainty of the box can be learned, which can then be

used to choose an appropriate initial pose. This approach

can also be implemented using a vision system.

The feature coordinate system chosen in this paper con-

tains a representation singularity, and in the current imple-

mentation it is left to the user to avoid problems with this,

by choosing a representation such that the singularity is

never reached in the specific task. This is however something

that an implementation should be able to take care of. An

alternative solution would be to use an internal singularity-

free representation.

The snap detection algorithm has only been trained using

two different switches. These have shown slightly different

signatures, and there is therefore a risk that the algorithm be

overtrained. In a real assembly scenario each switch would

be a new one, so the training data would probably be more

representative if a new switch was used for each training

snap.

VI. CONCLUSIONS

Force control was used to successfully perform the as-

sembly of two components with uncertain positions. The

task was conveniently specified using constraint-based task

specification methodology. Online estimation of an uncertain

parameter was used to improve performance. A learning

strategy was used to speed up the assembly significantly by

performing the assembly many times and generating better

feed-forward data.
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