
LUND UNIVERSITY

PO Box 117
221 00 Lund
+46 46-222 00 00

Continuous-Time Model Identification and State Estimation Using Non-Uniformly
Sampled Data

Johansson, Rolf

Published in:
Proc. 19th Int. Symp. Mathematical Theory of Networks and Systems (MTNS2010)

2010

Link to publication

Citation for published version (APA):
Johansson, R. (2010). Continuous-Time Model Identification and State Estimation Using Non-Uniformly
Sampled Data. In Proc. 19th Int. Symp. Mathematical Theory of Networks and Systems (MTNS2010)

Total number of authors:
1

General rights
Unless other specific re-use rights are stated the following general rights apply:
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors
and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.
 • Users may download and print one copy of any publication from the public portal for the purpose of private study
or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove
access to the work immediately and investigate your claim.

https://portal.research.lu.se/en/publications/ff7e02fa-2e3c-4241-b369-416691b67a3d


Continuous-Time Model Identification and State Estimation Using

Non-Uniformly Sampled Data

Rolf Johansson

Lund University, Dept Automatic Control,

PO Box 118, SE 22100 Lund, Sweden,

Tel: +46 462228791; Fax: +46 46138118;

Email Rolf.Johansson@control.lth.se

Abstract— This contribution reviews theory, algo-
rithms, and validation results for system identification
of continuous-time state-space models from finite input-
output sequences. The algorithms developed are au-
toregressive methods, methods of subspace-based model
identification and stochastic realization adapted to the
continuous-time context. The resulting model can be
decomposed into an input-output model and a stochas-
tic innovations model. Using the Riccati equation, we
have designed a procedure to provide a reduced-order
stochastic model that is minimal with respect to system
order as well as the number of stochastic inputs, thereby
avoiding several problems appearing in standard appli-
cation of stochastic realization to the model validation
problem. Next, theory, algorithms and validation results
are presented for system identification of continuous-time
state-space models from finite non-uniformly sampled
input-output sequences. The algorithms developed are
methods of model identification and stochastic realization
adapted to the continuous-time model context using
non-uniformly sampled input-output data. The resulting
model can be decomposed into an input-output model
and a stochastic innovations model. For state estimation
dynamics and Kalman filters, we have designed a proce-
dure to provide separate continuous-time temporal up-
date and error feedback update based on non-uniformly
sampled input-output data.

I. INTRODUCTION

The accurate knowledge of a continuous-time trans-

fer function is a prerequisite to many methods in

physical modeling and control system design. System

identification, however, is often made by means of

time-series analysis applied to discrete-time transfer

function models. As yet, there is no undisputed al-

gorithm for parameter translation from discrete-time

parameters to a continuous-time description. Problems

in this context are associated with translation of the

system zeros from the discrete-time model to the

continuous-time model whereas the system poles are

mapped by means of complex exponentials. As a

result, a poor parameter translation tends to affect both

the frequency response such as the Bode diagram and

the transient response such as the impulse response.

One source of error in many existing algorithms is

that computation of the system zeros is affected by

the assumed and actual inter-sample behavior of the

control variables. Early contributions on continuous-

time identification can be found in [29], [2], [30], [31],

[8], [22], [23], [21], [6].

There are two circumstances, however, that favor the

traditional indirect approach via discrete-time identifi-

cation: Firstly, data are in general available as discrete

measurements. Another problem is the mathematical

difficulty to treat continuous-time random processes.

In the context of discrete-time measurements, however,

it is in many cases sufficient to model disturbances as

a noise sequence of finite spectral range. A relevant

question is, of course, why there is no analogue to

ARMAX models for continuous-time systems. One

reason is that polynomials in the differential operator

can not be used for identification immediately due to

the implementation problems associated with differen-

tiation. The successful ARMAX-models correspond to

transfer function polynomials in the z-transform vari-

able z or z−1—i.e., the forward or the backward shift

operators, with advantages for modeling and signal

processing, respectively, and translation between these

two representations is not difficult. A related problem

is how to identify accurate continuous-time transfer

functions from data and, in particular, how to obtain

good estimates of the zeros of a continuous-time trans-

fer function. The difficulties to convert a discrete-time

transfer function to continuous-time transfer function

are well known and related to the mapping f(z) =
(log z)/h—for non-uniform sampling [3], [19].

We derive an algorithm that fits continuous-time trans-

fer function models to discrete-time non-uniformly

sampled data and we adopt a hybrid modeling ap-

proach by means of a discrete-time disturbance model

and a continuous-time transfer function.

II. A MODEL TRANSFORMATION

This algorithm introduces an algebraic reformu-

lation of transfer function models. In addition, we

introduce discrete-time noise models in order to model

disturbances. The idea is to find a causal, stable, real-

izable linear operator that may replace the differential

operator while keeping an exact transfer function. This

shall be done in such a way that we obtain a linear

model for estimation of the original transfer function

parameters ai, bi. We will consider cases where we

obtain a linear model in all-pass or low-pass filter

operators. Actually, there is always a linear one-to-

one transformation which relates the continuous-time
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parameters and the convergence points for each choice

of operator [10].

Then follows investigations on the state space pro-

perties of the introduced filters and the original model.

The convergence rate of the parameter estimates is

then considered. Finally, there are two examples with

applications to time-invariant and time-varying sys-

tems, respectively. Consider a linear nth order transfer

operator formulated with a differential operator p =
d/dt and unknown coefficients ai, bi.

G0(p) =
b1p

n−1 + · · · + bn

pn + a1pn−1 + · · · + an
=

B(p)

A(p)
(1)

where it is assumed that A and B are coprime. It is

supposed that the usual isomorphism between transfer

operators and transfer functions, i.e., the corresponding

functions of a complex variable s, is valid. Because of

this isomorphism, G0 will sometimes be regarded as a

transfer function and sometimes as a transfer operator.

A notational difference will be made with p denoting

the differential operator and s denoting the complex

frequency variable of the Laplace transform.

On any transfer function describing a physically re-

alizable continuous-time system, it is a necessary

requirement that because pure derivatives of the input

cannot be implemented. This requirement is fulfilled

as lims→∞ G0(s) is finite, i.e., G0(s) has no poles at

infinity. An algebraic approach to system analysis may

be suggested. Let a be point on the positive real axis

and define the mapping

f(s) =
a

s + a
, s ∈ C

Let C̄ = C ∪∞ be the complex plane extended with

the ‘infinity point’. Then f is a bijective mapping from

C̄ to C̄ and it maps the ‘infinity point’ to the origin

and −a to the ‘infinity point’. The unstable region—

i.e., the right half plane (Re s > 0)—is mapped onto

a region which does not contain the ‘infinity point’.

Introduction of the operator

λ = f(p) =
a

p + a
=

1

1 + pτ
, τ = 1/a (2)

This allows us to make the following transformation

G0(p) =
B(p)

A(p)
=

B∗(λ)

A∗(λ)
= G∗

0(λ)

with

A∗(λ) = 1 + α1λ + α2λ
2 + · · · + αnλn (3)

B∗(λ) = β1λ + β2λ
2 + · · · + βnλn (4)

An input-output model is easily formulated as

A∗(λ)y(t) = B∗(λ)u(t) (5)

or on regression form

y(t) = −α1[λy](t) − · · · − αn[λny](t) (6)

+β1[λu](t) + · · · + βn[λnu](t)

This is now a linear model of a dynamical system at

all points of time. Notice that [λu], [λy] etc. denote

filtered inputs and outputs. The parameters αi, βi

may now be estimated by any suitable method for

estimation of parameters of a linear model. A refor-

mulation of the model (6) to a linear regression form

is

y(t) = ϕT
τ (t)θτ ,

θτ =
(
α1 α2 . . . αn β1 β2 . . . βn

)T

ϕτ (t) = (−[λy](t), . . . − [λny](t),

[λu](t), . . . [λnu](t))T

(7)

with parameter vector θτ and the regressor vector

ϕτ . We may now have the following continuous-time

input-output relations:

y(t) = G0(p)u(t) = G∗
0(λ)u(t),

Y (s) = L{y(t)} = G∗
0(λ(s))U(s) (8)

y(t) = ϕT
τ (t)θτ

Y (s) = ΦT
τ (s)θτ where Φτ (s) = L{ϕτ (t)}(s) (9)

where L denotes a Laplace transform. As a conse-

quence of the linearity of the Laplace transform, one

can conclude that the same linear relation holds in both

the time domain and the frequency domain. Notice that

this property holds without any approximation or any

selection of data.

A. Example—Estimation of two constant parameters

Consider the system with input u, output y, and the

transfer operator G0

y(t) = G0(p)u(t) =
b1

p + a1
u(t) (10)

Use the operator transformation λ of (11) Use the

operator transformation λ of (11)

λ =
1

1 + pτ
(11)

This gives the transformed model

G∗
0(λ) =

b1τλ

1 + (a1τ − 1)λ
=

β1λ

1 + α1λ
(12)

A linear estimation model of the type (6) is given by

y(t) = −α1[λy](t) + β1[λu](t) = ϕT
τ (t)θτ (t) (13)

with regressor ϕτ (t) and the parameter vector θτ and

ϕτ (t) =

(
−[λy](t)
[λu](t)

)
, θτ =

(
α1

β1

)
(14)

The original parameters are found via the relations

(
a1

b1

)
=




1

τ
(α1 + 1)

1

τ
β1



 (15)

and their estimates from

(
â1

b̂1

)
=




1

τ
(α̂1 + 1)

1

τ
β̂1



 (16)
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Fig. 1. Non-uniformly sampled data from simulation of continuous-
time system of Example 1 with a1 = 2, b1 = 3 and continuous-time
regressors for identification: Input u (upper), disturbance-free output
y (middle), regressors [λu], [λy] (lower) for operator λ with τ = 1.
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Fig. 2. Continuous-time model identification of Example 1 with
a1 = 2, b1 = 3 and recursive least-squares identification using
continuous-time regressors for input u and disturbance-free output

y. The estimates ba1, bb1 converge to the correct values a1 = 2,
b1 = 3 for N = 1000 samples.

Sampling—e.g., non-uniform sampling—of all vari-

ables in Eq. (13) and application of the recursive least-

squares estimation algorithm is obviously possible.

The filter constant a (or τ ) of the operator λ should

be regarded as a design parameter to be chosen ap-

propriately. As the components of the regressor vector

ϕτ tend to become small for high frequency input one

should match the filter constant with respect to the

dynamics of the system investigated.

Remark—Operator Representation Singularities: A

relevant question is, of course, how general is the

choice λ and if it can, for instance, be replaced by

some other bijective mapping

µ =
bs + a

s + a
, b ∈ R, a ∈ R

+, and s =
µa − a

b − µ
(17)

One can treat this problem by considering the example

G0(s) =
1

s + a/b + ǫ
where ǫ ∈ R is small

Application of the operator translation µ gives

G0(s) =
1

s + a/b + ǫ
(18)

=
µ − b

−ǫb + (a(
1

b
− 1) + ǫ)µ

= G∗
0(µ) (19)

Obviously, the zero-order denominator polynomial co-

efficient will vanish for ǫ = 0 so that G∗
0(µ) exhibits

a pole at z = 0. The estimation model would be

y = α[µy] + β1[µu] + β0[u] (20)

= (
1

ǫ

a

b
(
1

b
− 1) +

1

b
)[µy] −

1

ǫb
[µu] +

1

ǫ
[u] (21)

which exhibits coefficients of very large magnitudes

for small ǫ. This would constitute a serious sensitivity

problem—at least for b > 0 for which G0(s) is stable.

An operator µ with b < 0 according to Eq. (17)

would give rise to large coefficients of the transformed

model only for unstable systems which might be more

‘affordable’. By comparison, a model transformation

using λ would not exhibit any such singularities.

Hence, use of the operator µ should for sensitivity

reasons be restricted to cases with b = 0 (or bmin <
b ≤ 0 for some number bmin chosen according to some

a priori information about the system dynamics). Note

that the set of polynomials associated with b < 0 is

related to the orthogonal Laguerre polynomials.

B. Parameter transformations

Before proceeding, we should make clear the rela-

tionship between the parameters αi, βi of (4) and the

original parameters ai, bi of the transfer function (1).

Let the vector of original parameters be denoted by

θ =
(
−a1 −a2 . . . −an b1 . . . bn

)T
(22)

Using the definition of λ (11) and (11) it is straightfor-

ward to show that the relationship between operator-

transformed parameters (7) and original parameters

(22) is

θτ = Fτθ + Gτ (23)

where the 2n × 2n−matrix Fτ is

Fτ =

(
Mτ 0n×n

0n×n Mτ

)
(24)

and where Mτ is the Pascal matrix

Mτ =




m11 0 · · · 0

...
. . .

. . .
...

mn1 · · · mnn



 , (25)

mij = (−1)i−j

(
n − j

i − j

)
τ j (26)

Furthermore, the 2n × 1−vector Gτ are given by

Gτ =
(
g1 . . . gn 0 . . . 0

)T
; gi =

(
n

i

)
(−1)i

(27)
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The matrix Fτ is invertible when Mτ is invertible, i.e.

for all τ > 0. The parameter transformation is then

one-to-one and

θ = F−1
τ (θτ − Gτ ) (28)

We may then conclude that the parameters ai, bi of the

continuous-time transfer function G0 may be recon-

structed from the parameters αi, βi of θτ by means

of basic matrix calculations. As an alternative we may

estimate the original parameters ai, bi of θ from the

linear relation

y(t) = θT
τ ϕτ (t) = (Fτθ + Gτ )T ϕτ (t) (29)

where Fτ and Gτ are known matrices for each

τ . Furthermore, elaborated identification algorithms

adapted for numerical purposes sometimes contain

some weighting or orthogonal linear combination of

the regressor vector components by means of some

linear transformation matrix T . Thus, one can modify

(29) to

y(t) = (Tϕτ (t))T T−T Fτθ + (Tϕτ (t))T T−T Gτ

Hence, the parameter vectors θτ and θ are related via

known and simple linear relationships so that transla-

tion between the two parameter vectors can be made

without any problem arising. Moreover, identification

can be made with respect to either θ or θτ .

C. Orthogonalization and Numerics

In some cases, independent regressor variables are

chosen at the onset of identification so as to be

orthogonal in order to save computational effort. The

case of polynomial regression provides an example

of the use of orthogonalized independent variables.

Orthogonal expansions are suitable and advantageous

for of MA-type (FIR) and AR-type models but cannot

be fully exploited in the case of regression vectors

containing both input and output data, e.g, ARX and

ARMAX models. A suitable approach to orthogonal-

ization is to consider an asymptotically stable state

space realization (A,B,C) by means of computation

of the correlation between the impulse responses of the

different state vector components xi. As these impulse

responses can be written x(t) = eAtB one finds that

Pc =

∫ ∞

0

x(t)xT (t)dt =

∫ ∞

0

eAtBBT eAT tdt (30)

It is well known that Pc of (30) fulfills the Lyapunov

equation

APc + PcA
T = −BBT (31)

with a unique positive semidefinite solution Pc. If Pc

were diagonal, one could conclude from Eq. (31) that

the components of x(t) be orthogonal. To the purpose

of orthogonalization, let Pc be factorized according to

the Cholesky factorization

Pc = RT
1 R1 (32)

and choose T = R−T
1 . Now introduce the state-space

transformation

z = Tx (33)

with the dynamics

ż = A1z + B1, where

{
A1 = TAT−1

B1 = TB
(34)

By means of (31) it can be verified that

A1 + AT
1 = −B1B

T
1 , Pz =

∫ ∞

0

z(t)zT (t)dt = I

which implies that the components of z = Tx are

mutually orthogonal over the interval [0,∞). As Pz

is diagonal, it is clear that the components of z(t) be

orthogonal.

Thus, the λ-operator is still effective for higher-

order systems, the upper order limit of application be-

ing determined by the quality of the numerical solvers

of Lyapunov equations and numerical Cholesky fac-

torization.

Example—Orthogonalization: Let λ(s) = 1/(s+1)
and consider the third order state-space realization

X(s) =




λ(s)U(s)
λ2(s)U(s)
λ3(s)U(s)



 (35)

=




s + 1 0 0
−1 s + 1 0
0 −1 s + 1




−1 


1
0
0



 U(s)

The solution of the Lyapunov equation (31) gives

Pc =




0.5000 0.2500 0.1250
0.2500 0.2500 0.1875
0.1250 0.1875 0.1875



 > 0 (36)

so that

T =




1.0000 0 0
−1.0000 2.0000 0
1.0000 −4.0000 4.0000



 (37)

As a result of orthogonality there is no need to solve

a set of linear equation for MA-models with white-

noise inputs. This might be advantageous for special

purpose hardware implementation or when the linear

equations become nearly singular or when the model

order increases.

D. Non-uniform Sampling

Assume that data acquisition has provided finite

sequences of non-uniformly sampled input-output data

{y(tk)}N
0 , {u(tk)}N

0 at sample times {tk}
N
0 , where

tk+1 > tk for all k.

As the regression model of Eq. (6) is valid for all

times, it is also a valid regression model at sample

times {tk}
N
0

y(tk) = −α1[λy](tk) − · · · − αn[λny](tk) (38)

+β1[λu](tk) + · · · + βn[λnu](tk)

R. Johansson • Continuous-Time Model Identification and State Estimation Using Non-Uniformly Sampled Data 

350



Introduce the following brief notation for non-

uniformly sampled filtered data

[λju]k = [λju](tk), 0 ≤ j ≤ n, 0 ≤ k ≤ N (39)

[λjy]k = [λjy](tk) (40)

so that

yk = −α1[λy]k − · · · − αn[λny]k (41)

+β1[λu]k + · · · + βn[λnu]k

Introduce the regressor-state dynamics

xu =





[λ1u]
[λ2u]

...

[λnu]




, xy =





[λ1y]
[λ2y]

...

[λny]




(42)

with dynamics

1

τ
ẋu =





−1 0 0 · · · 0

1 −1
. . .

. . . 0

0 1 −1
...

...
. . .

. . .
. . .

0 · · · 0 1 −1





xu+





1
0
0
...

0




u (43)

1

τ
ẋy =





−1 0 0 · · · 0

1 −1
. . .

. . . 0

0 1 −1
...

...
. . .

. . .
. . .

0 · · · 0 1 −1





xu+





1
0
0
...

0




y (44)

or

1

τ
ẋu = Aλxu + Bλu,

1

τ
ẋy = Aλxy + Bλy (45)

Adopting a zero-order-hold (ZOH) approximation, the

non-uniformly sampled discretized model will be

xu(tk+1) = Akxu(tk) + Bku(tk) (46)

xy(tk+1) = Akxy(tk) + Bky(tk) (47)

where

Ak = eAλ(tk+1−tk)/τ (48)

Bk =

∫ (tk+1−tk)/τ

0

eAλsBλds (49)

Summarizing the regressor model of Eq. (41) in-

cluding the regressor filtering, we have

φ(tk) =

(
xy(tk)
xu(tk)

)
(50)

φ(tk+1) =

(
Ak 0
0 Ak

)
φ(tk) (51)

+

(
−Bk 0

0 Bk

)(
y(tk)
u(tk)

)
(52)

θ =
(
α1 · · ·αn β1 · · ·βn

)T
(53)

y(tk) = φ(tk)θ + w(tk) (54)

where {w(tk)} represents an uncorrelated non-

uniformly sampled noise sequence.
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Fig. 3. Non-uniformly sampled data used for continuous-time
model identification: Input {uk} (upper), output {yk} with stochas-
tic disturbance (middle), regressors {[λu]k}, {[λy]k} (lower).
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Fig. 4. Continuous-time model identification of Example 1 with
a1 = 2, b1 = 3 and recursive least-squares identification using non-
uniformly sampled input u and disturbance-contaminated output y.

The estimates ba1, bb1 converge towards the correct values a1 = 2,
b1 = 3 (N = 1000).

E. Example (cont’d)—A first-order system

A simulated example of Ex. II-A is shown in Figs.

1-4 for parameters a1 = 2, b1 = 3 and with operator

time constant τ = 1. A histogram of the sampling

intervals is shown in Fig. 5. Whereas a least-squares

estimate based on the N = 1000 deterministic data

of Figs. 1-2 reproduced the exact parameters a1 = 2,

b1 = 3, the estimates â1 = 1.988, b1 = 3.168 were

obtained for a signal-to-noise ratio equal to one of

inputs (input u and noise w) in Figs. 3-4.

F. Innovations Model and Prediction

Adopting a standard continuous-time innovations

model to complement the system model of Eq. (1),

we have

ẋ = Ax + Bu + Kw, G0(s) = C(sI − A)−1B (55)

y = Cx + w (56)
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with the innovations model inverse (or Kalman filter)

˙̂x = (A − KC)x̂ + Bu + Ky (57)

ŵ = y − Cx̂ (58)

Updates for non-uniformly sampled input-output data

can be made as the non-uniformly sampled discrete-

time system

x̂(tk+1) = Fkx̂(tk) +
(
Gk Hk

) (
u(tk)
y(tk)

)
(59)

ŵ(tk) = y(tk) − Cx̂(tk) (60)

for

Fk = e(A−KC)(tk+1−tk) (61)

Gk =

∫ tk+1−tk

0

e(A−KC)sBds (62)

Hk =

∫ tk+1−tk

0

e(A−KC)sKds (63)

which permits state estimation and standard resid-

ual analysis for purposes of validation [9, Ch.9]. In

prediction-correction format, separate time update and

error update can be made as follows

x̂(tk|k) = x̂(tk|k−1) + κk(y(tk) − Cx̂(tk|k−1))(64)

x̂(tk+1|k) = Φkx̂(tk|k) + Γku(tk) (65)

ŵ(tk|k) = y(tk) − Cx̂(tk|k) (66)

for {Φk,Γk, κk}
N
k=0 obtained from non-uniform dis-

cretization of Eqs. (55-56).

III. STATE-SPACE MODEL IDENTIFICATION

Consider a continuous-time time-invariant system

Σn(A,B,C,D) with the state-space equations

ẋ(t) = Ax(t) + Bu(t) + v(t)

y(t) = Cx(t) + Du(t) + e(t) (67)

with input u ∈ R
m, output y ∈ R

p, state vector x ∈
R

n and zero-mean disturbance stochastic processes

v ∈ R
n, e ∈ R

p acting on the state dynamics and

the output, respectively. The continuous-time system

identification problem is to find estimates of system

matrices A, B, C, D from finite sequences {uk}
N
k=0

and {yk}
N
k=0 of input-output data. The underlying

discretized state sequence {xk}
N
k=0 and discrete-time

stochastic processes {vk}
N
k=0, {ek}

N
k=0 correspond to

disturbance processes v and e which can be repre-

sented by the components

vk =

∫ tk

tk−1

eA(tk−s)v(s)ds, k = 1, 2, ..., N (68)

ek = e(tk) (69)

with the covariance Q ≥ 0, q = rank(Q)

E{

[
vi

ei

] [
vj

ej

]T

} = Qδij =

[
Q11 Q12

QT
12 Q22

]
δij , (70)

Consider a discrete-time time-invariant system

Σn(A,B,C,D) with the state-space equations with

input uk ∈ R
m, output yk ∈ R

p, state vector xk ∈ R
n

and noise sequences vk ∈ R
n, ek ∈ R

p acting on the

state dynamics and the output, respectively.

Remark: As computation and statistical tests deal with

discrete-time data, we assume the original sampled

stochastic disturbance sequences to be uncorrelated

with a uniform spectrum up to the Nyquist frequency,

thereby avoiding the mathematical problems associ-

ated with Brownian motion [10].

Continuous-Time State-Space Linear System

From the set of first-order linear differential equa-

tions of Eq. (67) one finds the Laplace transform

sX = AX + BU + V + sx0, x0 = x(t0)

Y = CX + DU + E (71)

Introduction of the complex variable transform

λ(s) =
1

1 + sτ
(72)

corresponding to a stable, causal operator permits an

algebraic transformation of the model

X = (I + τA)[λX] + τB[λU ] + τ [λV ] + (1 − λ)x0

Y = CX + DU + E (73)

Reformulation while ignoring the initial conditions to

linear system equations gives
[
ξ
y

]
=

[
I + τA τB

C D

] [
x
u

]
+

[
τv
e

]
, x(t) = [λξ](t)

=

[
Aλ Bλ

C D

] [
x
u

]
+

[
τv
e

]
,

{
Aλ = I + τA

Bλ = τB
(74)

the mapping between (A,B) and (Aλ, Bλ) being

bijective. Provided that a standard positive semi-

definiteness condition of Q is fulfilled so that the

Riccati equation has a solution, it is possible to replace

the linear model of Eq. (74) by the innovations model
[
ξ
y

]
=

[
Aλ Bλ

C D

] [
x
u

]
+

[
Kλ

I

]
w, Kλ = τK (75)

By recursion it is found that

y = Cx + Du + w (76)

= CAλ[λx] + CBλ[λu] + Du + CKλ[λw] + w

...

= CAk
λ[λkx] +

k∑

j=1

CAk−jBλ[λk−ju] + Du

+

k∑

j=1

CAk−jKλ[λk−jw] + w (77)

To the purpose of subspace model identification, it is

straightforward to formulate extended linear models

for the original models and its innovations form

Y = ΓxX + ΓuU + ΓvV + E (78)

Y = ΓxX + ΓuU + ΓwW (79)
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Fig. 5. Histogram of sampling intervals

with state variables X = [λi−1x] and input-output

variables

Y =





[λi−1y]
[λi−2y]

...

[λ1y]
y(t)




, U =





[λi−1u]
[λi−2u]

...

[λ1u]
u(t)




, (80)

and stochastic processes of disturbance

V =





[λi−1v]
[λi−2v]

...

[λ1v]
v(t)




, E =





[λi−1e]
[λi−2e]

...

[λ1e]
e(t)




,W =





[λi−1w]
[λi−2w]

...

[λ1w]
w(t)




(81)

and parameter matrices of state variables and input-

output behavior

Γx =





C
CAλ

...

CAi−1
λ




∈ R

ip×n (82)

Γu =





D 0 · · · 0

CBλ D
. . .

...
...

...
. . . 0

CAi−2
λ Bλ CAi−3

λ Bλ · · · D




∈ R

ip×im

and for stochastic input-output behavior

Γv =





0 0 · · · 0 0
τC 0 0 0

τCAλ τC
. . .

...
...

...
...

. . . 0 0

τCAi−2
λ τCAi−3

λ · · · τC 0




∈ R

ip×im

and

Γw =





I 0 · · · 0 0

CKλ I
. . .

...
...

... CKλ
. . . 0 0

CAi−3
λ Kλ

...
. . . I 0

CAi−2
λ Kλ CAi−3

λ Kλ · · · CKλ I





(83)

It is clear that Γx of Eq. (82) represents the extended

observability matrix as known from linear system

theory [26], [25], [24].

System Identification Algorithms

The theory provided permits formulation of a variety

of algorithms with the same algebraic properties as

the original discrete-time version though with applica-

tion to continuous-time modeling and identification.

Below is presented one realization-based algorithm.

Subspace-based algorithms and theoretical justification

is to be found in [13].

Algorithm 1 (System realization [7], [13]):

1) Use least-squares identification to find a multi-

variable transfer function

G(λ(s)) = D−1
L (λ)NL(λ) =

∞∑

k=0

Gkλk (84)

where DL(λ), NL(λ)are polynomial matrices

obtained by means of some identification method

such as linear regression with

ε(t, θ) = DL(λ)y(t) − NL(λ)u(t) (85)

G(λ) = D−1
L (λ)NL(λ) (86)

DL(λ) = I + D1λ + · · · + Dnλn (87)

NL(λ) = N0 + N1λ + · · ·Nnλn (88)

2) Solve for the transformed Markov parameters

Gk = Nk −
k∑

j=1

DjGk−j , k = 0, . . . , n (89)

Gk = −

n∑

j=1

DjGk−j , k = n + 1, . . . , N (90)

3) For suitable numbers q, r, s such that r+s ≤ N
arrange the Markov parameters in the Hankel

matrix

G(q)
r,s =





Gq+1 Gq+2 · · · Gq+s

Gq+2 Gq+3 · · · Gq+s+1

...
...

. . .
...

Gq+r Gq+r+1 · · · Gq+r+s−1




(91)

4) Determine rank n and resultant system matrices

G(0)
r,s = UΣV T (SVD) (92)

ET
y = [Ip×p 0p×(r−1)p] (93)

ET
u = [Im×m 0m×(s−1)m] (94)

Σn = diag {σ1, σ2, . . . , σn} (95)

Un = matrix of first n columns of U (96)

Vn = matrix of first n columns of V (97)

Finally, calculate the state-space matrices

An = Σ−1/2
n UT

n G(1)
r,sVnΣ−1/2

n , Â =
1

τ
(An − I) (98)

Bn = Σ1/2
n V T

n Eu, B̂ =
1

τ
Bn (99)

Cn = ET
y UnΣ1/2

n , Ĉ = Cn (100)

Dn = G0, D̂ = Dn (101)

which yields the nth-order state-space realization

ẋ(t) = Âx(t) + B̂u(t)

y(t) = Ĉx(t) + D̂u(t) (102)
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IV. DISCUSSION AND CONCLUSIONS

We have formulated an identification method for

continuous-time transfer function models and equiv-

alent to ARMAX and state-space models for discrete-

time systems [9]. The transformation by means of

λ allows an exact reparametrization of a continuous-

time transfer function. High-frequency dynamics and

low-frequency dynamics thus appear without distortion

in the mapping from input to output. The low-pass

filters implemented for the estimation model have a

filtering effect in producing regressor variables for

identification. Also orthogonal regressor variables can

be used in this context. Both the operator translation

and filtering approaches such as the Poisson moment

functional (PMF) or the Laguerre polynomials give

rise to similar estimation models for the deterministic

case [22], [21], [6], [30], [31], [4]. Implementation

of the operator λ may be done as continuous-time

filters, discrete-time filters or by means of numerical

integration methods [1]. As elaborated by Middleton

and Goodwin [20], it may be valuable to replace z
by the δ−operator in order to improve on numerical

accuracy in discrete-time implementation. Whereas

ZOH only was studied here, inter-sample behavior is

significant for approximation properties.

The main differences between this method and pre-

vious approaches to continuous-time model identifi-

cation consist of a different estimation model and a

new parametrization of the continuous-time transfer

function whereas the parameter estimation method—

i.e., least-squares estimation or maximum-likelihood

estimation, is the same as that used in ARMAX-model

identification [10]. The hybrid approach involves a

discrete-time model of the stochastic disturbances with

little specification of the continuous-time noise, the

properties of which are not known or measured in

detail. With reference to the central limit theorem, this

approach appears to be an appropriate assumption in

physical modeling contexts where small continuous-

time disturbances add up to a normally distributed

disturbance on the sampled signals. Thus, the resulting

model has the same modeling power of the stochastic

environment as that of an ARMAX model [10]. Anal-

ysis of convergence and statistical consistency was

presented in [10].
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