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Multi-step-ahead Multivariate Predictors: a Comparative Analysis

Marzia Cescon and Rolf Johansson

Abstract— The focus of this article is to undertake a compar-
ative analysis of multi-step-ahead linear multivariate predictors.
The approach considered for the estimation will be based on
geometrically reliable linear algebra tools, resorting to subspace
identification methods. A crucial issue is quantification of both
bias error and variance affecting the estimate of the prediction
for increasing values of the look ahead when only a small
number of samples is available. No complete theory is available
so far, nor sufficient numerical experience. Therefore, the
analysis of this paper aims at shading some lights on the topic
providing some insights and help to develop some intuitions.

I. INTRODUCTION

Predictor estimation is a significant problem in many
practical situations, from economics to social sciences, to
medicine. Traditionally, the design of an optimal linear
predictor for discrete-time systems is based on a model,
either from first principles or identified from data relying on
Prediction Error Methods (PEM) [1], [2]. In real application
such a model may not be attainable or the underlying dynam-
ics too complicated to be modeled by differential equations.
Furthermore, there may be the need of estimating the output
on a longer prediction horizon than just one sample look
ahead.

The identification of multi-step-ahead optimal predictors
of certain observed, i.e., available to measurements, variables
has been analyzed in the past by several authors (e.g. [3],
[4], [5], [6], [7]). However, results are still partial and not
conclusive.

Motivated by the above, in this paper we will consider
the problem of estimating data-driven multi-step-ahead lin-
ear multivariate predictors, without any prior knowledge of
the underlying mechanism generating the data sequences
and accounting for multiple-input multiple-output (MIMO)
systems. The core of our approach resorts to the so-called
state space identification methods (e.g. [8], [9], [10]) and it
is based on projection operations of certain structured data
matrices onto suitable subspaces spanned by the data. The
key interpretation lies on the first step of such methods,
namely, the construction of the state space. It is, indeed, the
procedure utilized to estimate a basis for the state space that
contains all the basic objects we need to our purposes ([1,
Appendix 4.A]).

When evaluating the capability of predicting new data a
crucial issue is quantification of both bias error and variance
affecting the estimates for increasing values of the look ahead
when the number of available samples is small, i.e., for a
finite observation interval. In particular, it is of interest to see
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what happens in the presence of feedback and when data are
noisy. Thus far, no complete theory is available nor sufficient
numerical experience. Therefore we believe this state of the
art is worth investigating.

Two illustrative examples are provided targeting a
performance-based evaluation of such predictors: the first one
is a simulation of a second-oder artificial model, whereas the
second is the case of a real Type 1 Diabetes Mellitus patient.

The paper is organized as follows. Section II introduces the
notation and provides the background for the sequel. In Sec.
III the derivation of the multi-step-ahead multivariate predic-
tors is carried out. Some results of computer simulations are
presented in Sec. IV. The discussion on the achievements is
presented in Sec. V. Finally, Sec. VI concludes the paper.

II. PRELIMINARIES

Consider a discrete-time time-invariant system
Sn(A,B,C,D,K) in innovation form

{

xk+1 = Axk +Buk +Kek

yk = Cxk +Duk + ek
(1)

with input uk ∈ R
m, output yk ∈ R

l, state vector xk ∈ R
n

and zero-mean white noise innovation process, i.e., one-step
ahead prediction error, ek ∈ R

l, k representing the current
time instant in the identification problem. Let us define
Ā = A−KC for future reference. Without loss of generality
we assume that the system is minimal in the sense that it
cannot be described by a state-space model of order less
than n. We let the input signal uk influence the output yk+1

but not earlier outputs, i.e., D = 0. Furthermore, we assume
that the joint input-output process denoted by zk = [uT

k y
T
k ]

is purely non-deterministic and has spectral density matrix
Szz(e

jω) bounded and bounded away from zero on the
unit circle [11], [12], [13] in order to guarantee persistently
exciting (PE) condition of sufficiently high order and let
the projection operations in the sequel be well defined. The
available data sequences uk, yk and the innovation process
ek will be organized in Hankel matrices and will be denoted
by capital letters. Subscript indices [i, j] of a matrix will be
used to indicate the argument of the upper-left and the lower-
left element, respectively, with the meaning of the interval
of time considered, e.g., U[t1,t1+t2] will contain in the first
column the inputs from time t1 to time t1+ t2. Accordingly,
process tails of finite length N will be represented by the
block rows of the block Hankel data matrices, e.g.,

Uk := [uk uk+1 · · · uk+N−1]

Yk := [yk yk+1 · · · yk+N−1]
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In the sequel, the orthogonal projection of the rows of a
given matrix A onto the row space of a given matrix B will
be denoted by Ê{A | B}, whereas the symbol Ê‖C{A | B}
will denote the oblique projection of the row space of A

onto the row space of B along the row space of C, the
projection operator being Ê{·}. Past and future horizon in the
identification problem which represent the number of block
rows in the processed data Hankel matrices will be p and f ,
respectively, with p ≥ f . Finally, the number of steps in the
look ahead will be denoted by τ .

III. MULTI-STEP-AHEAD MULTIVARIATE
PREDICTOR ESTIMATION

A. Construction of the predictors

Let a finite input sequence {uk}
t+1+f
k=t−p and a corresponding

output sequence {yk}
t+1+f
k=t−p be generated by the system (1).

Consider the following block Hankel matrices:

Up : = U[t−p,t] ∈ R
p·m×N (2)

=











ut−p ut−p+1 · · · ut−p+N

ut−p+1 ut−p+2 · · · ut−p+1+N

...
... · · ·

...
ut ut+1 · · · ut+N











and

Uf : = U[t+1,t+f+1] ∈ R
f ·m×N (3)

=











ut+1 ut+2 · · · ut+1+N

ut+2 ut+3 · · · ut+2+N

...
... · · ·

...
ut+1+f ut+2+f · · · ut+1+f+N











called the past and future input data matrices, respectively.
Similarly, consider

Y p := Y[t−p,t] ∈ R
p·l×N (4)

and
Y f := Y[t+1,t+f+1] ∈ R

f ·l×N (5)

past and future output data matrices, respectively. The integer
p is chosen so to satisfy the following condition:

p ≥ max{n, τ} (6)

in order for the system (1) to be observable and to guarantee
predictions up to the largest future horizon we wish to
investigate. Introduce the unknown, i.e., not yet observed,
future output tails:

Yj , t+ f + 2 < j ≤ M (7)

Our aim is to predict such future tails using linear com-
bination of the rows of (2), (3), (4), (5). We remind that,
although the names may lead to misunderstandings, future
input-output matrices contain data already measured hence
belonging to the actual past.

As first step, we will look for an estimator of the known
future tails:

Yi, t+ 1 < i ≤ t+ 1 + f (8)

Mathematically, this can be formulated as the following least-
squares problem:

Γ̂, Λ̂ = argmin
Γ ∈ R

lp×(l+m)p

Λ ∈ R
lp×mf

|| Yi −
[

Γ Λ
] [

Zp Uf
]T

||2F (9)

where || · ||F stands for the Frobenius norm of a matrix.
Geometrically, it can be interpreted as the orthogonal

projection of Yi onto
[

Zp Uf
]T

, i.e.

Ŷi = Ê [Yi |
[

Zp Uf
]T

] (10)

As a matter of fact, the orthogonal projection (10) corre-
sponds to the sum of two oblique projections ([12], Lemma
1):

Ŷi = Ê‖Uf [Yi | Z
p] + Ê‖Zp [Yi | U

f ] (11)

Now, taking conditional expectation up to time t to elim-
inate the effect of yet unknown inputs, the output predictor
for each vector Yi as linear combination of past input and
output amounts to computing an oblique projection, i.e.,

Ŷi|t = Ê‖Uf [Yi | Z
p] (12)

≃ OiXi (13)

where Oi is the extended observability matrix and Xi is the
state sequence. Stacking all the predictors on top of each
other, the sought matrix of multi-step ahead predictors is
obtained:

Ŷ f =











Ŷt+1|t

Ŷt+2|t

...
Ŷt+f+1|t











(14)

Subsection III-B will deal with the computational details,
suffices it here to mention that Ŷ f will be calculated as
follows:

Ŷ f = Γ̂1Z
p (15)

In the sequel the approach illustrated above applying (10)
and (11) will be referred to as projection-based.
Let us now consider the innovation model (1) in predictor
form:

{

xk+1 = Āxk +Buk +Kyk

ŷk|k−1 = Cxk

(16)

By iteration of (16) it is possible to express the output tails
at time i, t + 1 ≤ i ≤ t + f − 1 making use of the true

Markov parameters:

Yi = ŌiĀXp + ΞiZ
p + Ψ̄iZ

f + Ei (17)

where the first term depends on the initial conditions of the
state, the second term depends upon past input-output data
and the third on future input-output data. Matrices Ōi, Ψ̄i

and Ξi are given in (20) and (21). Solving a least-squares
problem equivalent to that of the estimation of the long VARX

model:
Yi = Ξ0Z

p + Ei (18)
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Ōi =















C

CĀ

CĀ2

...
CĀi−1















,Ψi =















0 · · · · · · · · · · · · 0
C[B K] 0 · · · · · · · · · 0
CĀ[B K] C[B K] 0 · · · · · · 0

...
. . .

. . .
. . .

. . . 0
CĀi−2[B K] · · · · · · · · · C[B K] 0















, (20)

Ξi =











CĀp−1[B K] CĀp−2[B K] · · · · · · · · · C[B K]
0 CĀp−1[B K] · · · · · · · · · CĀ[B K]
...

. . .
. . .

. . .
. . .

...
0 · · · 0 CĀp−1[B K] · · · CĀi−1[B K]











(21)

Ξ̂0 = argmin
Ξ0

|| Yi − Ξ0Z
p ||2F (19)

where || · ||F stands for the Frobenius norm of a matrix, the
Markov parameters of the system (1) are obtained.

Assuming that the effects of the unknown initial states in
(19) vanishes for sufficiently large p and, as before, taking
conditional expectation up to time t, the output predictors
are expressed by:











Ŷt+1|t

Ŷt+2|t

...
Ŷt+f+1|t











=











Γt+1

Γt+2

...
Γt+f+1











Zp (22)

with

Γi = Ξ̂i +
i−1
∑

j=0

Ĉ ˆ̄Ai−j−1K̂ΓP
j

t+ 1 ≤ i ≤ t+ f + 1

(23)

obtained from the estimated Ξ̂0. In a more compact notation:

Ŷ f = Γ̂PZ
p (24)

This approach will be referred to as PBSID-based.
Once the operator Γ̂1 and Γ̂P have been estimated, they

can be applied to new, still generated by the same underlying
mechanisms, data to forecast the actual future.

B. Numerical Implementation: computing projections

As we have seen in Subsec. III-A, as far as the projection-
based approach is concerned, the calculation of multi-step-
ahead predictors from given input-output data corresponds
to the computation the oblique projection of future outputs
Y f onto the joint input-output past Zp along the future
inputs Uf (12). The starting point is the linear regression
type of problem (9) which may be numerically implemented
by means of an LQ decomposition [10], [8]. In this section
we will present two such implementation methods.

Consider the LQ decomposition:




Zp

Uf

Y f



 =





L11 0 0
L21 L22 0
L31 L32 L33









Q1
T

Q2
T

Q3
T



 (25)

Define

L =
[

L31 L32

]

[

L11 0
L21 L22

]†

=
[

Γ̂1 Λ̂1

]

(26)

where Γ̂1 = L31L11
† and Λ̂1 = (L32 −L21L11

†L31)L22
−1.

According to subsection III-A, the future output can, thus,
be expressed in terms of the joint input-output past Zp in
the following way:

Ŷ f = Γ̂1Z
p (27)

Alternatively, organizing the data differently:





Uf

Zp

Y f



 =





L11 0 0
L21 L22 0
L31 L32 L33









Q1
T

Q2
T

Q3
T



 (28)

Define

L =
[

L32 L31

]

[

L22 0
L21 L11

]†

=
[

Γ̂2 Λ̂2

]

(29)

where Γ̂2 = L32L21
† and Λ̂2 = (L31 − L32L22

†L21)L11
−1.

Then

Ŷ f = Γ̂2Z
p (30)

Last implementation issue is concerned with the least-
squares problem (19). Similarly to (9) we perform an LQ-
decomposition

[

Zp

Yi

]

=

[

L11 0
L21 L22

] [

Q1
T

Q2
T

]

(31)

from which the estimate Ξ̂0 can be computed as

Ξ̂0 = L21L
−1
11 (32)

IV. EXAMPLES

Two algorithms were used for simulation:

• proj-1: compute the predictions according to (27)
• pbsid: compute the predictions according to (24)
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Fig. 2. Example 2. Patient data records. Top Continuous Glucose Mon-
itoring Sensor data [mg/dl], Upper Center Heart Rate [beats/min], Lower

Center Respiration [breaths/min], Bottom Skin Temperature [◦C] vs. Time
[min]

A. Example 1: Artificial Data

We tested the algorithms on two different setups: first,
when the system is operating in open loop and second, when
the system is operating under negative unity feedback. Inputs
to the system are either zero-mean unit-variance white noise,
or zero-mean unit-variance white noise passed through the
filter

H(z) =
1 + 0.8z−1 + 0.55z−2

1− 0.5z−1 + 0.9z−2

for the first case and uk = rk−yk for the second case, where
the reference signal rk is white noise with unit variance. The
system considered is described by

yk =
0.21z−1 + 0.07z−2

1− 0.6z−1 + 0.8z−2
uk +

1

1− 0.5z−1
wk

where wk is Gaussian white noise with mean 0.5 and
variance 2. We report results obtained over 100 Monte
Carlo simulations, the number of input-output data points
generated at each run being N = 3000. At any run, the
estimates Γ̂1, Γ̂P were obtained exploiting the first 1500
samples. Then, the predictions were computed by applying
the above mentioned operators to the remaining data. Past
and future horizons in the identification were set to 50 and
30, respectively. A 5-th order model was estimated with
N4SID [16] and then used to derive predictors by means
of the Matlab R© System Identification Toolbox compare.m

routine. Performances were assessed with respect to the
average empirical prediction error variance. Figure 1 shows
such variances on τ = 1, 10, 20, 30 steps ahead for all of the
three simulation setups.

B. Example 2: Type 1 Diabetes Mellitus Patient

A major challenge for a person with diabetes is to
adapt insulin dosage regimens, food intake and exercise
to keep blood glucose within tolerable limits during daily

life activities. As a matter of fact the diabetic subject has
usually inadequate understanding and overview of the actual
physiological state at any time. The development of a reliable
and accurate blood glucose predictor will provide the patients
with invaluable informations for appropriate on-the-spot de-
cision making concerning the management of the disease.
The example shows how the predictors developed in Sec. III
can be use to the purpose. We consider data records of a rep-
resentative patient (Fig. 2) collected complying with a signed
protocol over a 72-hours in-hospital trial which belongs to
DIAdvisor, a major European research project [14]. For the
duration of the whole study, the subject was equipped with
an Abbott FreeStyle NavigatorTM Continuous Glucose Mea-
surement Sensor (CGMS) [15] which provides estimation
of glycemia levels from interstitial glucose measurements
every 10 minutes. In addition, the Clinical LifeShirt R© from
VivoMetrics was used to gather several vital signs measured
by sensors woven into the shirt around chest and abdomen.
Standard meals were served for breakfast, lunch and dinner.
Our aim was to estimate multi-step-ahead predictors of blood
glucose levels from measurements of heart rate, respiration
and skin temperature. We compared the different estimation
strategies with respect to prediction capability on new data,
i.e., not used for the construction of the prediction matrices.
In particular we are interested in evaluating the performances
on different look ahead τ , 10[min] ≤ τ ≤ 30[min], with
respect to the magnitude of the prediction errors.

The sample size was N = 4000 data points, of which the
first 2000 were used for identification and the second 2000
for validation. Lacking prior knowledge of the underlying
physiological system, the choice of the horizons in the
identification step was made by a trial-and-error procedure.
First, they were set to p = f = 40, second, to p = 60, f =
30, the lower bound on p being determined by the maximum
value of τ . Furthermore, a state space model of order n = 4
was estimated from input-output data with N4SID [16] and
then used to derive predictors by means of the Matlab R©

System Identification Toolbox compare.m routine, with the
purpose of comparison.

Figure 3 reports the prediction error using validation data
on a 10-min-ahead prediction horizon (left) and 40-min-
ahead prediction horizon (right), with the horizons set to
p = f = 40. Figure 4 illustrates the predictions on a 10-
min-look ahead (top) and on a 30-min-look ahead (bottom),
with the horizons set to p = 60, f = 30.

V. DISCUSSION

This paper dealt with a comparative analysis of subspace-
based multi-step-ahead multivariate predictors. Predictor co-
efficients were directly obtained from input-output data,
with no need of the determination of the model structure.
However, parameter p representing the size of the past
Hankel data matrices has strong connections with model
order, and is given by the user from knowledge or intuitions
on the system dynamics. Moreover, the lower bound on p is
represented by the maximum prediction horizon τ one wish
to investigate. Experience from simulation suggests that for
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Fig. 1. Example 1. Prediction errors for performances on validation data: Left 1-step-ahead prediction, Center-Left 10-step-ahead prediction, Center-Right

20-step-ahead prediction, Right 30-step-ahead prediction. Horizons p = 50, f = 30. Top panel First case: system operating in open loop. Input is zero-mean
unit-variance white noise, Middle panel First case: system operating in open loop. Input is colored noise, Bottom panel Second case: system operating in
closed loop

prediction a small number of samples ahead it suffices to
choose p double of the expected model order. As far as a
longer prediction horizon is concerned, much care needs to
be taken. As may be expected, the longer the past horizon,
the better the performances. However, the investigation that
we carried out suggests instead the contrary and even if
apparently less crucial also the choice of the future horizon
matters. Example 1 gave a system operating in open loop
driven by a white input and a colored input, respectively.
Simulations results suggest that the proposed algorithms
compare favorably in the first case and are in general less
efficient in the second case. A set of experiments carried
out with a sinusoidal input showed, albeit unsatisfactory,
still better prediction capabilities of the proposed methods
compared to the classical model-based predictor, in particular
they suggested superiority of the PBSID approach. More-
over, the feedback seems not to affect the behavior of the
predictions, when the reference signal is white. The second
example considered a challenging system, namely, the hu-
man glucoregulatory system. On the short look-ahead the
prediction errors associated with the multi-step data-based
predictors are within the same order of magnitude of the

ones associated with the model-based approach, namely 2−3
[mg/dL]. On the contrary, for bigger τ , proj-1 breaks down
exhibiting very poor performance, whereas pbsid proves to
be remarkably robust. Besides being of interest on its own,
the quest for an optimal multi-step-ahead predictor is of
importance in many control applications, being used in the so
called receding horizon type of control strategies [17], [18]
and in the estimation of the extended observability matrix in
subspace identification methods [19], [20].

VI. CONCLUSIONS AND FUTURE WORK

A. Conclusions

In this contribution we have considered multi-step-ahead
linear multivariate output predictors. No fixed model struc-
ture was postulated but predictor coefficients were directly
estimated from input-output data. From an implementation
point of view, the approach is attractive, amounting only to
LQ decomposition of appropriately organized input-output
Hankel matrices. All the algorithms investigated shared the
advantageous properties that they may be applied to MIMO
systems where very little is known.
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B. Future Work

The results presented so far while providing insights and
intuitions on how multi-step-ahead linear multivariate output
predictors works in real applications do not lead to a rigorous
mathematical analysis. In addition, they were obtained for
particular applications thus being far from general. Whether
or not these results depend on the particular example or can
be generalized will be subject of future research.
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