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Criteria for Global Stability of Coupled Systems with Application to Robust

Output Feedback Design for Active Surge Control

Anton S. Shiriaev, Rolf Johansson, Anders Robertsson, Leonid B. Freidovich

Abstract— The well-known and commonly accepted finite
dimensional model qualitatively describing surge instabilities in
centrifugal (and axial) compressors is considered. The problem
of global output feedback stabilization for it is solved. The
solution relies on two new criteria for global stability proposed
for a class of nonlinear systems exploiting quadratic constraints
for infinite sector nonlinearities. The constructive steps in
developing a family of output feedback controllers based on
these stability tests are presented. Performance of the closed-
loop systems are illustrated by simulations.

I. INTRODUCTION

This paper is focused on designing globally stabilizing

output feedback controllers for the following nonlinear sys-

tem

d
dt
φ = −ψ + 3

2 φ+ 1
2

[
1 − (1 + φ)3

]
(1)

d
dt
ψ =

1

β2
(φ− u) (2)

Here ψ and φ are state variables, u is a control input, and

β is a positive constant.

The model (1)–(2) is known for more than two decades

as the Greitzer model and has been used for approximating

the coupled behavior of pressure and flow in dynamics of

compressor systems [9], [3], [10], [2], [1], [4]. Difficulties

in developing feedback controllers are due to the presence

of the cubic nonlinearity in the equation (1). The key for our

development is the fact that this nonlinearity satisfy certain

quadratic constraints [13].

Both variables φ(·) and ψ(·) have physical meaning being

deviations of the averaged flow and pressure from their mean

values. Sometimes, both of them can be assumed as outputs

of the system. However, on-line measurements of the flow

require special instrumentation and are often not feasible.

Here we will consider the most difficult case when only ψ -

variable is available

y = ψ (3)

for feedback design. Presence of the nonlinearity in dynamics

of (1)–(2) makes the search for an output feedback controller
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and an associated Lyapunov function for the closed-loop sys-

tem to be quite a nontrivial mathematical problem. Clearly,

since the nonlinearity is not globally Lipschtz and depends on

φ -variable, designing a globally stabilizing output feedback

controller, relying on measurements of y = ψ only, is a

challenge. To the best of our knowledge, this problem has

remained open until now.

A. The Key Structural Transformation

To solve the posted problems, we consider a very particu-

lar class of output feedback controllers. The key assumption

is that after an appropriate change of coordinates, the closed-

loop systems can be written as
[
ẋ
ė

]

=

[
A11 A12

0 A22

][
x
e

]

+

[
B1

0

]

w1(Cx) +

[
0
B2

]

w2(x, e)

(4)

where x and e are components of the new state, v = Cx
is the scalar input to the nonlinearity of the first subsystem,

A11 , A12 , A22 , B1 , B2 , and C are constant matrices of

appropriate dimensions, w1(·) and w2(·) are static nonlin-

earities constructed from the cubic nonlinearity present in

the original dynamics (1)–(2).

The paper is organized as follows: In Section II we present

two criteria to verify global stability of (4) expressed as

conditions for stability of the x -and e-subsystems. We show

in Section III how both statements can be used for designing

output feedback controllers to stabilize (1)–(2). The results

of numerical simulation are discussed in Section IV, and

concluding remarks are made in Section V. This Section is

continued by discussion of important properties of (1)–(2).

B. Quadratic Constraints for the Nonlinearity in the Surge

Dynamics (1)-(2)

Let us discuss useful properties of the nonlinearity of the

dynamical system (1)-(2)

w(v) := 1 − (1 + v)3 (5)

Lemma 1: The static nonlinearity (5) satisfies the incre-

mental quadratic constraint (QC)
[

w(v2) − w(v1)
]

· (v1 − v2) ≥ 0, ∀ v1, v2 ∈ R
1 (6)

Proof: Substituting (5) into the left-hand side of (6) we obtain
[
(v1 + 1)3 − (v2 + 1)3

]
(v1 − v2) =

[

(v2 + 1)2 + (v1 + 1)2 + (v2 + 1)(v1 + 1)
]

(v1 − v2)
2
≥ 0
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Consider now the general form of a dynamic output

feedback control law

u = U(z, y), ż = F(z, y) (7)

where U(·) and F (·) are smooth.

Lemma 2: Suppose [0, τmax) is the maximal interval of

existence of a solution

X(t) = [φ(t);ψ(t); z(t)]

of the closed-loop system (1), (2), (7), where τmax > 0 can

be finite or not. Let F (X) be a smooth function.

Then, there are following two possible cases.

1) There exists a sequence {tk}
∞

k=1 of time moments

with limk→∞ tk = τmax such that the integrals of

the quadratic form

G1 [v, w(v)] = w(v) · (−v) − 3
4 v

2 (8)

with w(·) defined in (5), along this solution with

v(t) = F (X(t)) are strictly positive, i.e.
∫ tk

tk−1

G1

[
v(t), w

(
v(t)

)]
dt > 0, k = 1, 2, . . . (9)

2) Along this solution,

either F (X(t)) ≡ 0 or F (X(t)) ≡ −
3

2

Moreover, the integral in (9) of the quadratic form

G1[v, w] identically equals zero for any t ∈ [0, τmax) .

Proof: To check (9), observe that

G1 [v, w(v)] = w(v)·(−v)− 3
4 v

2 =
(
v + 3

2

)2
·v2 ≥ 0 (10)

Clearly, if integrating this relation along a solution of the

closed-loop system over [tk, τ
max) with v(t) = F (X(t))

results in zero value for any tk ∈ [0, τmax) , then v(t) equals

either 0 or − 3
2 on [tk, τ

max) and it is just left to notice that

we can shift the time since the system is time-invariant.

II. STABILITY CRITERIA FOR DYNAMICAL SYSTEM (4)

Let us postpone the discussion on how to transform the

closed-loop system (1), (2), (7) into the form of (4) and

search for conditions, under which global stability of (4) fol-

lows from properties of the separated x and e-subsystems.

Loosely speaking, such conditions could be interpreted as

successful state feedback and reduce observer design criteria.

However, it is worth noting that neither x -nor e-subsystems

are independent, and just assuming asymptotic stability of

each of them will not necessary result in asymptotic stability

of (4). Stronger properties will be requested and features

of the nonlinear functions w1(·) and w2(·) will be used.

Namely, we will use the following.

Assumption 1: the nonlinearity w1(·) satisfies the relations

(9) and (10) similar to w(·) defined in (5);

Assumption 2: the nonlinearity w2(·) satisfies an infinite

sector quadratic constraint

G2 [e, w2(x, e)] = eTΠew2(x, e) ≥ 0, ∀x, e (11)

with Πe being a constant matrix, that is the relation similar

to (6) defined for the original nonlinearity w(·) .

The first stability condition will rely on quadratic stabili-

ties of both x and e-subsystems.

Theorem 1: Let Assumptions 1 and 2 hold. Suppose that:

1) There exist matrices P1 = P T

1 and Q1 = QT

1 > 0
such that the following inequality is valid

2xTP1

(
A11x+B1w̄1

)
+G1

[
Cx, w̄1

]
< −xTQ1x (12)

for all x 6= 0 and w̄1 6= 0. Moreover, there exists

a matrix K1 such that G1[Cx,K1x] ≥ 0 , ∀x , and

(A11 +B1K1) is Hurwitz.

2) There exist matrices P2 = P T

2 and Q2 = QT

2 > 0
such that

eT (AT

22P2 + P2A22) e < −eTQ2e,

eT (P2B2 + Πe) w̄2 = 0
(13)

for all e 6= 0 and w̄2 6= 0. Moreover, the matrix A22

is Hurwitz.

Then, the nonlinear system (4) is quadratically stable, i.e.

there are matrices P = PT > 0 and Q = QT > 0 such that

along any nontrivial solution [x(t); e(t)] of (4) we have

d
dt

[
x(t)
e(t)

]T

P

[
x(t)
e(t)

]

< −

[
x(t)
e(t)

]T

Q

[
x(t)
e(t)

]

(14)

Proof: It follows from the minimal stability conditions [13]

of Theorem 1, that the matrices P1 and P2 are positive def-

inite. Let us consider the positive definite quadratic function

W (x, e) =

[
x
e

]T

P

[
x
e

]

, P =

[
P1 0
0 γ · P2

]

, (15)

where γ is a positive constant, and compute the time-

derivative of W (·) along a solution of (4).

d
dt
W (x(t), e(t)) = 2xTP1

[
A11x+A12e+B1w1(Cx)

]

+ 2 γ eTP2

[
A22e+B2w2(x, e)

]

Since the inequalities (10) and (11) are valid along any

solution of (4), we have

d
dt
W < 2xTP1

[
A11x+A12e+B1w1(Cx)

]

+ 2 γ eTP2

[
A22e+B2w2(x, e)

]

+G1[Cx,w1(Cx)] + 2 γ G2[e, w2(x, e)]

Taking into account the relations (12), (13), one can observe

that the right hand side of the last inequality becomes less

or equal to

−xTQ1x+ 2xTP1A12e− γ eTQ2e,

which after completing the squares becomes

− (R1x+ r1e)
2
− eT (γ Q2 − rT1 r1) e (16)

Here R1 is such that Q1 = RT

1R1 , and rT1 = AT

12P1R
−1
1 . If

γ is chosen large enough, then the quadratic form (16), which

serves as an upper bound for d
dt
W (x(t), e(t)) , is negative

definite.
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The second stability criteria is again based on quadratic

stability of the e-subsystem, but requires weaker properties

(only asymptotic stability) of the x -subsystem.

Theorem 2: Let Assumptions 1 and 2 hold. Suppose that:

1) There exist a square matrix P1 = P T

1 and a row matrix

q1 such that the following inequality is valid

2xTP1

(
A11x+B1w̄1

)
+G1 [Cx, w̄1] ≤ −|q1x|

2 (17)

for all x 6= 0 and w̄1 6= 0. Moreover, there exists

a matrix K1 such that G1[Cx,K1x] ≥ 0 , ∀x ,

the matrix (A11 + B1K1) is Hurwitz, and the pair

[q1, (A11 +B1K1)] is observable.

2) The system (4) has no nontrivial solution [x(t), e(t)]
along which e(t) ≡ 0 and C x(t) ≡ const ∈ {− 3

2 , 0} .

3) There exist matrices P2 = P T

2 and Q2 = QT

2 > 0
such that (13) is valid for all e 6= 0 and w̄2 6= 0.
Moreover, the matrix A22 is Hurwitz.

Then, the origin of nonlinear system (4) is locally exponen-

tially stable and globally asymptotically stable.

Proof is based on the following four claims.

Claim 1: Under the assumptions of Theorem 2 the x -

subsystem with e(t) ≡ 0 is globally asymptotically stable.

Indeed, the inequality (17) is valid for any vectors x and

w̄1 , hence it is valid when w̄1 = K1 x so that

2xTP1

(
A11x+B1K1x

)
≤ −|q1x|

2

This is a matrix Lyapunov inequality, and so the facts

that (A11 + B1K1) is Hurwitz and [q1, (A11 +B1K1)] is

observable imply that P1 > 0 . Let us consider the Lyapunov

function candidate V1(x) = xTP1x . Due to validity of (17)

and (10), its time derivative along a solution x(t) of the

x -subsystem with e(t) ≡ 0 satisfies the non-strict inequality

d
dt
V1(x(t)) = 2x(t)TP1(A11x(t) +B1w1(t))

≤ 2x(t)TP1(A11x(t) +B1w1(t)) +G1 [Cx(t), w1(t)]

≤ −|q1x(t)|
2 ≤ 0

(18)

It implies existence of the solutions of the x -subsystem with

e(t) ≡ 0 on an infinite interval of time [5, Theorem 3.3],

Lyapunov stability [5, Theorem 4.1], and their boundedness.

It is left to verify that x(t) converges to the origin. Let us

consider the integral form of (18)

V1(x(tk)) − V1(x(tk−1)) =

∫ tk

tk−1

2xTP1(A11x+B1w1) dt

<

∫ tk

tk−1

2xTP1(A11x+B1w1) +G1 [Cx(t), w1(t)] dt

≤ −

∫ tk

tk−1

|q1x(t)|
2dt ≤ 0

(19)

where the sequence {tk}
∞

k=1 is from (9), which by as-

sumption exists for any particular nontrivial solution1 of (4).

1Note that using these special intervals of time allows us to make one of
the inequalities strict. This is the key point of the proof.

Hence, V1(x(T )) → c ≡ const as T → ∞ . It follows

from (18) that the ω -limit set of any solution is nonempty,

compact, and invariant [5, Lemma 4.1]. Taking a solution

x∞(t) of x -subsystem with e(t) ≡ 0 from an ω -limit set

and applying (18) and (19) to it, we conclude that c = 0
and so x(T ) → 0 as T → ∞ .

Claim 2: There are no solutions of (4) that escape to

infinity in finite time.

The time-derivative of the function W (·) defined by (15)

with γ = 1 along any solution of (4) satisfies the inequality

d
dt
W (x(t), e(t))≤−x(t)T qT1 q1x(t) + 2x(t)TP1A12e(t)

−e(t)TQ2e(t) ≤ ε1W (x(t), e(t))
(20)

for some ε1 > 0 . Hence, solutions cannot grow faster than

exponentially, see e.g. [5, Lemma 3.4].

Claim 3: Along any (even unbounded) solution

[x(t), e(t)] of (4), e(t) exponentially converges to zero.

This fact immediately follows from (13).

Claim 4: All solutions of (4) are bounded.

The first inequality in (20) can be rewritten as

d
dt
W (x(t), e(t)) ≤ ε2 ·

√

W (x(t), e(t)) · β(t)

with β(t) = e(t) and some ε2 > 0 . Integrating the last

inequality results in the following one

√

W (x(T ), e(T )) −
√

W (x(0), e(0)) ≤ ε3 ·

∫ T

0

β(t)dt

Exponential convergence of β(t) to zero implies that β(·) ∈
L1[0,+∞) . In turn, integrability of β(t) over the interval

[0,+∞) implies the boundedness of W (·) and so of the

solution [x(t), e(t)] .

To finish the proof of Theorem 2, one can observe that any

solution [x(t), e(t)] of (4) will have a non-empty ω -limit set,

while on this set e-variable should be zero. That is, this set

consists of solutions of x -subsystems with e(t) ≡ 0 , which

are asymptotically stable. This implies that all solutions of

(4) converge to the origin. Furthermore, it is readily seen

that with the conditions of Theorem 2 the origin is locally

exponentially stable by linearization2. Hence, it is globally

asymptotically stable.

III. ROBUST OUTPUT FEEDBACK DESIGN FOR (1), (2)

A. Output Feedback Controller Design: Example 1

Consider the family of output feedback controllers

u = λ1ψ + λ2z + αu

(

1 − [1 + cψψ + czz]
3
)

ż = λ3ψ + λ4z + αz

(

1 − [1 + cψψ + czz]
3
) (21)

2Note that the QC in the form of sector conditions imply that for all
the linear functions w1(·) , w2(·) satisfying the quadratic constraints, i.e.
those that appear after linearization, the dynamics of x and e -subsystems
are quadraticaly stable.
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where z is a scalar and eight constant parameters λ ’s, α ’s

and c ’s are to be determined. The closed loop system (1),

(2) with the controller (21) has the form






φ̇

ψ̇

ż







=







3
2 −1 0

1
β2 −λ1

β2 −λ2

β2

0 λ3 λ4













φ

ψ

z







+







0

−αu
β2

αz






wψ,z+







1
2

0

0






wφ,

wφ = 1 − (1 + φ)3 (22)

wψ,z = 1 − (1 + cψψ + czz)
3

To meet the structure of the system (4), introduce vectors x
and e as follows

x = [ψ; z], e = φ− cψψ − czz, (23)

and consider, first, e-subsystem of (4), which is now a scalar

differential equation

ė = A22e+B2w2(x, e), eΠew2(x, e) ≥ 0, ∀x, ∀ e (24)

Definition of e(·) in (23) and equations (22) allow to proceed

with computing d
dt
e as

ė =
(

3
2 −

cψ
β2

)

φ+
(
cψλ1

β2 − czλ3 − 1
)

ψ+

+
(
cψλ2

β2 − czλ4

)

z + 1
2wφ +

(
cψαu
β2 − czαz

)

wψ,z

To match the first term on the right hand side of (24), the

coefficients should obey the identities

A22 =
(

3
2 −

cψ
β2

)

, −A22 · cψ=
(
cψλ1

β2 − czλ3 − 1
)

−A22 · cz=
(
cψλ2

β2 − czλ4

) (25)

To meet the structure of nonlinearity (infinite sector condi-

tion) in (24), we obtain one more equation

1
β2 cψαu − czαz = − 1

2 (26)

Then, indeed, we can define B2 and w2(·) in (24) as 1
2 and

w2(·)
△
= wφ(·) − wψ,z(·) respectively, so that the inequality

(24) is achieved

e · w2(x, e) = (φ− cψψ − czz)×
×

[
(1 + cψψ + czz)

3 − (1 + φ)3
]
≤ 0

with Πe = −1 . To match the structure of dynamics of the

x -subsystem in (4) with x defined as in (23), the differential

equation for ψ in (22) should be rewritten in coordinates ψ ,

z and e instead of the original ones ψ , z and φ . Namely

ψ̇ = 1
β2

(
φ− λ1ψ − λ2z − αuwψ,z

)
(27)

= 1
β2 e+ 1

β2 (cψ − λ1)ψ + 1
β2 (cz − λ2) z −

1
β2αuwψ,z

Summing up the manipulations made with the closed-loop

system (22), we obtain the next claim.

Lemma 3: Suppose coefficients – λ ’s, α ’s and c ’s – of

the controller (21) satisfy the relations (25), (26). Then

1) The closed-loop system (22) can be equivalently writ-

ten as (4), where x and e are defined by (23),

A22 =
(

3
2 −

cψ
β2

)

, B2 = 1
2 , w1(x) = wψ,z ,

w2(x, e) = wφ − wψ,z , and

A11 =

[
cψ−λ1

β2

cz−λ2

β2

λ3 λ4

]

, A12 =

[ 1
β2

0

]

, B1 =

[
−αu
β2

αz

]

;

2) The nonlinear function w2(·) is defined by w2(x, e) =
wφ − wψ,z and satisfies the infinite sector condition

(24) with Πe = −1 ;

3) The nonlinearity w1(·) defined by w1(x) := wψ,z and

the linear fictitious output

v1 = −cψψ − czz = C1x (28)

of the x -dynamics satisfies the QC (9)

w1(x) · v1 ≥ 3
4 v

2
1 , ∀ψ, z

with the redefined state and the linear output.

Once the coefficients of the controller (21) are found such

that following a change of coordinates the closed-loop sys-

tem (22) can be rewritten as (4), we can apply Theorem 1 and

search for a set of parameters corresponding to stabilizing

controllers (21). The result based on applying the Frequency

Theorem [13] to verify (12) is formulated next.

Proposition 1: Consider the closed-loop system (22).

Suppose that the parameters λ ’s, α ’s, and c ’s are such

that the relations (25), (26) are satisfied and the following

conditions hold:

1) The inequality

Re
{

T (jω)
}

− 3
4 |T (jω)|2 < 0 (29)

is valid for all ω ≥ 0 , where

T (s) = C1

(

sI2 −A11

)−1

B1 (30)

=
− 1

2s+
czαz(cψ−λ1)+czαuλ3−cψαuλ4−cψ(cz−λ2)αz

β2

s2 − s
{

λ4 +
cψ−λ1

β2

}

+
λ4(cψ−λ1)−λ3(cz−λ2)

β2

2) The matrix

A11+
3
4B1C1 =

[
cψ−λ1

β2

cz−λ2

β2

λ3 λ4

]

+3
4

[
−αu
β2

αz

] [
−cψ

−cz

]T

is Hurwitz;

3) The constant A22 =
(

3
2 − 1

β2 cψ

)

is negative.

Then with any sets of these parameters the closed loop

system (22), i.e. the surge subsystem (1), (2) with the defined

by these parameters dynamic output feedback controller (21),

is quadratically stable.

B. Output Feedback Controller Design: Example 2

Consider the following modification of the family of

output feedback controllers (21)

u = λ1ψ + λ2z + αu
(
1 − (1 + cψψ + czz)

3
)

+ εuq
ż = λ3ψ + λ4z + αz

(
1 − (1 + cψψ + czz)

3
)

+ εzq
q̇ = −(cψψ + czz)

(31)
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where λ1 –λ4 , αu , αz , cψ , cz , εu and εz are constant

parameters to be determined. The closed-loop system (1)–

(2) with any of such controllers is then






φ̇

ψ̇
ż
q̇







=







3
2 −1 0 0
1
β2 − 1

β2λ1 − 1
β2λ2 − 1

β2 εu

0 λ3 λ4 εz
0 −cψ −cz 0













φ
ψ
z
q







+

+







0
− 1
β2αu
αz
0






wψ,z +







1
2
0
0
0






wφ

wφ = 1 − (1 + φ)3 (32)

wψ,z = 1 − (1 + cψψ + czz)
3

To meet the structure of the system (4), introduce vectors x
and e as follows

xT = [ψ, z, q]T , e = φ− cψψ − czz. (33)

The e-dynamics are then

d
dt
e = d

dt
φ− cψ

d
dt
ψ − cz

d
dt
z

=
[

3
2 − 1

β2 cψ

]

︸ ︷︷ ︸

= A22

e+ 1
2

︸︷︷︸

= B2

[wφ − wψ,z]
︸ ︷︷ ︸

= w2(x, e)

(34)

where the last equality holds provided that the coefficients

λ ’s, c ’s, α ’s, ε ’s satisfy (25), (26) and new relation

1
β2 cψεu = czεz (35)

Rewriting ψ -dynamics in e instead of φ -variable, similar to

(27), allows us to meet the structure of the system (4).

Lemma 4: Suppose coefficients – λ ’s, c ’s, α ’s, ε ’s – of

the controller (31) satisfy the relations (25), (26), (35). Then

1) The closed-loop system (32) can be equivalently writ-

ten as (4), where x and e are defined by (23),

A22 =
(

3
2 −

cψ
β2

)

, B2 = 1
2 , w1(x) = wψ,z ,

w2(x, e) = wφ − wψ,z , and

A11 =





1
β2 [cψ − λ1]

1
β2 [cz − λ2] − 1

β2 εu
λ3 λ4 εz
−cψ −cz 0





A12 =





1
β2

0
0



 , B1 =





− 1
β2αu
αz
0



;

(36)

2) The nonlinear function w2(·) is defined by

w2(x, e) := wφ − wψ,z and satisfies the infinite

sector condition (24) with Πe = −1 ;

3) The nonlinear function w1(·) is defined by w1(x) :=
wψ,z and the linear fictitious output

v1 = −cψψ − czz = [−cψ, −cz, 0]
︸ ︷︷ ︸

= C1

x (37)

of the x -dynamics satisfies the QC (9)

w1(x) · v1 ≥ 3
4 v

2
1 , ∀ψ, z, q

with the redefined state and the linear output.

With coefficients of the controller as in Lemma 4, we can

apply Theorem 2 using the Frequency Theorem [13] to verify

(17), and describe stabilizing controllers in the family (31).

Proposition 2: Consider the closed-loop system (32).

Suppose that the parameters λ ’s, α ’s, c ’s, and ε ’s are such

that the relations (25), (26), (35) are valid and the next

conditions hold:

1) The inequality

Re
{

T (jω)
}

− 3
4 |T (jω)|2 ≤ 0 (38)

is valid for any ω ≥ 0 , where

T (s)=C1 (sI2−A11)
−1
B1 =

− 1
2 s

2 + p1s

s3 + l2s2 + l1s+ l0
(39)

with l0 = 1
β2 εu and

p1 = 1
2β2

[
cψ
cz
λ2 − λ1 − 2αu

]

l2 = − 3
2 + 1

β2

[

λ1 −
cψ
cz
λ2

]

l1 = 1
β2 − 3

2β2λ1 + 1
β2

[
3cψ
2cz

−
1

cz

]

λ2

2) The matrix A11 + 3
4B1C1 is Hurwitz, and the pair

([1, 0, 0], A11) is observable;

3) The constant A22 =
(

3
2 − 1

β2 cψ

)

is negative.

Then, with any sets of these parameters the closed-loop

system (32), i.e. the surge subsystem (1), (2) with the defined

by these parameters dynamic output feedback controller (31),

is globally asymptotically stable.

IV. COMPUTER SIMULATIONS

A. Example 1

The set of stabilizing controllers (21) described in Proposi-

tion 1 is not empty. For instance, if β = 1 then the following

coefficients

λ1 = −17, λ2 = −4, λ3 = − 207
2 , λ4 = − 47

2
αu = −1, αz = − 9

2 , cψ = 5, cz = 1
(40)

satisfy all the requirements. In particular, the transfer func-

tion (30) is

T (s) =
−s/2 − 1/2

s2 + 3s/2 + 1/2
.

It is positive real, and hence satisfies (29). The eigenvalues of

the matrix A11 + 3
4B1C1 are {−1, −0.875} . Fig. 1 depicts

the evolution of φ and ψ variables for one of a typical

solutions of the closed-loop system.

1025



0 5 10 15 20
−3

−2.5

−2

−1.5

−1

−0.5

0

0.5

1

time

φ
(t

)

0 5 10 15 20
−3

−2.5

−2

−1.5

−1

−0.5

0

0.5

time

ψ
(t

)

Fig. 1. The solution of the closed-loop system with the dynamical controller
(22) when coefficients are chosen as in (40).

B. Example 2

The set of stabilizing controllers (21) described in Propo-

sition 2 is not empty. For instance, if β = 1 , then the

controllers with coefficients (40) and

εu = 4/5, εz = 4 (41)

satisfy all the requirements. Fig. 2 depicts the evolution of

φ and ψ variables for the closed-loop system with the same

initial conditions as in Example 1 above.

V. CONCLUDING REMARKS

We suggest here two new families of robust output (drop-

in-pressure) feedback controllers that stabilize the well-

known finite dimensional model for surge instability of com-

pressor systems. Theoretical results are rigorously proved

using quadratic constraints. Controllers from the first family

ensure global exponential stabilization. The ones from the

second family provide integral action but only ensure local

exponential and global asymptotic stability. Performance is

verified by simulations.

REFERENCES

[1] D. Fontaine, S. Liao, J.D. Paduano, & P.V. Kokotovic, “Nonlinear
control experiments on axial flow compressor”, IEEE Trans. on

Automatic Control, vol. 12, pp. 683–693, 2004.

0 5 10 15 20
−3

−2.5

−2

−1.5

−1

−0.5

0

0.5

1

time

φ
(t

)

0 5 10 15 20
−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0

0.5

time

ψ
(t

)

Fig. 2. The solution of the closed-loop system with the dynamical controller
(32) when coefficients are chosen as in (40), (41).

[2] J.T. Gravdahl & O. Egeland, Compressor surge and rotating stall:

Modeling and control, London: Springer-Verlag, 1999.
[3] E.M. Greitzer & F.K. Moore, “A theory of post-stall transients in axial

compressor systems: Part II-Application.”, J. Eng. Gas Turbines &

Power, 108, pp. 231–239, 1986.
[4] J. van Helvoirt, Centrifugal compressor surge, modeling and identifi-

cation for control, Ph.D. thesis, Techn.Universiteit Eidhoven, 2007.
[5] H. Khalil, Nonlinear systems (3rd ed.), Prentice Hall, Upper Saddle

River, 2002.
[6] M. Krstic, D. Fontaine, P.V. Kokotovic, & J.D. Paduano, “Useful

nonlinearities and global stabilization of bifurcations in a model of
jet engine surge and stall”, IEEE Trans. on Automatic Control, vol.
43, pp. 1739–1745, 1998.

[7] M. Krstic, I. Kanellakopoulos, & P.V. Kokotovic, Nonlinear and

adaptive control design, New York: Wiley, 1995.
[8] M. Maggiore & K.M. Passino, “A separation principle for a class of

non-UCO systems”, IEEE Trans. on Automatic Control, vol. 48(7),
pp. 1122–1133, 2003.

[9] F.K. Moore, “A theory of rotating stall of multistage axial compressors:
Parts I-III”, J. Eng. Gas Turbines & Power, 106, pp. 313–336, 1984.

[10] F.K. Moore & E.M. Greitzer, “A theory of post-stall transients in axial
compressor systems: Part I-Development of equations,” J. Eng. Gas

Turbines & Power, 108, pp. 68–76, 1986.
[11] J.D. Paduano, L. Valavani, A. Epstein, E. Greitzer, & G.R. Guenette,

“Modeling for control of rotating stall”, Automatica, vol. 30(9), pp.
1357–1373, 1994.

[12] A. Shiriaev , R. Johansson, & A. Robertsson, “Some comments on
output feedback stabilization of Moore-Greitzer compressor model,”
in Proc. of 43rd Conf. on Decision & Control, pp.4465–4466, 2004.

[13] V.A. Yakubovich, G.A. Leonov, & A.Kh. Gelig, Stability of stationary

sets in control systems with discontinuous nonlinearities, Singapore:
World Scientific, 2004.

1026


