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Continuous-Time Model Identification and State

Estimation Using Non-Uniformly Sampled Data

Rolf Johansson ∗

∗ Lund University, Dept Automatic Control,
PO Box 118, SE 22100 Lund, Sweden,

Tel: +46 462228791; Fax: +46 46138118;
Email Rolf.Johansson@control.lth.se

Abstract: This paper presents theory, algorithms and validation results for system identification of
continuous-time state-space models from finite non-uniformly sampled input-output sequences. The
algorithms developed are methods of model identification and stochastic realization adapted to the
continuous-time model context using non-uniformly sampled input-output data. The resulting model
can be decomposed into an input-output model and a stochastic innovations model. For state estimation
dynamics, we have designed a procedure to provide separate continuous-time temporal update and error-
feedback update based on non-uniformly sampled input-output data. Stochastic convergence analysis is
provided.

Keywords: System identification, Continuous-time identification, Non-uniform sampling

1. INTRODUCTION

The accurate knowledge of a continuous-time transfer function
is a prerequisite to many methods in physical modeling and
control system design. System identification, however, is often
made by means of time-series analysis applied to discrete-
time transfer function models. As yet, there is no undisputed
algorithm for parameter translation from discrete-time parame-
ters to a continuous-time description. Problems in this context
are associated with translation of the system zeros from the
discrete-time model to the continuous-time model whereas the
system poles are mapped by means of complex exponentials.
As a result, a poor parameter translation tends to affect both the
frequency response such as the Bode diagram and the transient
response such as the impulse response. One source of error in
many existing algorithms is that computation of the system ze-
ros is affected by the assumed and actual inter-sample behavior
of the control variables.

There are two circumstances that favor the traditional indirect
approach via discrete-time identification: Firstly, data are in
general available as discrete measurements. Another problem
is the mathematical difficulty to treat continuous-time random
processes. In the context of discrete-time measurements, how-
ever, it is in many cases sufficient to model disturbances as a
noise sequence of finite spectral range. A relevant question is,
of course, why there is no analogue to ARMAX models for
continuous-time systems. One reason is that polynomials in the
differential operator can not be used for identification imme-
diately due to the implementation problems associated with
differentiation. The successful ARMAX-models correspond to
transfer function polynomials in the z-transform variable z or
z−1—i.e., the forward or the backward shift operators, with
advantages for modeling and signal processing, respectively,
and translation between these two representations is not diffi-
cult. A related problem is how to identify accurate continuous-
time transfer functions from data and, in particular, how to

obtain good estimates of the zeros of a continuous-time transfer
function. The difficulties to convert a discrete-time transfer
function to continuous-time transfer function are well known
and related to the mapping f(z) = (log z)/h—for non-uniform
sampling, see (Marvasti 2001; Eng and Gustafsson 2008).

We derive an algorithm that fits continuous-time transfer func-
tion models to discrete-time non-uniformly sampled data and
we adopt a hybrid modeling approach by means of a discrete-
time disturbance model and a continuous-time transfer func-
tion.

2. A MODEL TRANSFORMATION

This algorithm introduces an algebraic reformulation of transfer
function models. In addition, we introduce discrete-time noise
models in order to model disturbances. The idea is to find a
causal, stable, realizable linear operator that may replace the
differential operator while keeping an exact transfer function.
This shall be done in such a way that we obtain a linear model
for estimation of the original transfer function parameters ai, bi.
We will consider cases where we obtain a linear model in all-
pass or low-pass filter operators. Actually, there is always a
linear one-to-one transformation which relates the continuous-
time parameters and the convergence points for each choice of
operator (Johansson 1994).

Then follows investigations on the state space properties of the
introduced filters and the original model. The convergence rate
of the parameter estimates is then considered. Finally, there
are two examples with applications to time-invariant and time-
varying systems, respectively. Consider a linear n−th order
transfer operator formulated with a differential operator p =
d/dt and unknown coefficients ai, bi.

G0(p) =
b1p

n−1 + · · · + bn

pn + a1pn−1 + · · · + an
=

B(p)

A(p)
(1)

Preprints of the
15th IFAC Symposium on System Identification
Saint-Malo, France, July 6-8, 2009

1163



where it is assumed that A and B are coprime. It is supposed that
the usual isomorphism between transfer operators and transfer
functions, i.e., the corresponding functions of a complex vari-
able s, is valid. Because of this isomorphism, G0 will some-
times be regarded as a transfer function and sometimes as a
transfer operator. A notational difference will be made with p
denoting the differential operator and s denoting the complex
frequency variable of the Laplace transform.

On any transfer function describing a physically realizable
continuous-time system, it is a necessary requirement that be-
cause pure derivatives of the input cannot be implemented.
This requirement is fulfilled as lims→∞ G0(s) is finite, i.e.,
G0(s) has no poles at infinity. An algebraic approach to system
analysis may be suggested. Let a be point on the positive real
axis and define the mapping

f(s) =
a

s + a
, s ∈ C

Let C̄ = C∪∞ be the complex plane extended with the ‘infinity
point’. Then f is a bijective mapping from C̄ to C̄ and it maps
the ‘infinity point’ to the origin and −a to the ‘infinity point’.
The unstable region—i.e., the right half plane (Re s > 0)—
is mapped onto a region which does not contain the ‘infinity
point’. Introduction of the operator

λ = f(p) =
a

p + a
=

1

1 + pτ
, τ = 1/a (2)

This allows us to make the following transformation

G0(p) =
B(p)

A(p)
=

B∗(λ)

A∗(λ)
= G∗

0(λ)

with

A∗(λ) = 1 + α1λ + α2λ
2 + · · · + αnλn (3)

B∗(λ) = β1λ + β2λ
2 + · · · + βnλn (4)

An input-output model is easily formulated as

A∗(λ)y(t) = B∗(λ)u(t)

or on regression form

y(t) =−α1[λy](t) − · · · − αn[λny](t) (5)

+β1[λu](t) + · · · + βn[λnu](t)

This is now a linear model of a dynamical system at all points
of time. Notice that [λu], [λy] etc. denote filtered inputs and
outputs. The parameters αi, βi may now be estimated by any
suitable method for estimation of parameters of a linear model.
A reformulation of the model (5) to a linear regression form is

y(t) = ϕT
τ (t)θτ , θτ = (α1 α2 . . . αn β1 . . . βn)

T
(6)

ϕτ (t) = (−[λy](t), . . . − [λny](t), [λu](t), . . . [λnu](t))
T

(7)

with parameter vector θτ and the regressor vector ϕτ . We may
now have the following continuous-time input-output relations:

y(t) = G0(p)u(t) = G∗
0(λ)u(t),

Y (s) =L{ y(t)} = G∗
0(λ(s))U(s) (8)

y(t) = ϕT
τ (t)θτ

Y (s) = ΦT
τ (s)θτ where Φτ (s) = L{ϕτ (t)}(s) (9)

where L denotes a Laplace transform. As a consequence of
the linearity of the Laplace transform, one can conclude that
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Fig. 1. Non-uniformly sampled data from simulation of
continuous-time system of Example 1 with a1 = 2, b1 = 3
and continuous-time regressors for identification: Input
u (upper), disturbance-free output y (middle), regressors
[λu], [λy] (lower) for operator λ with τ = 1.

the same linear relation holds in both the time domain and the
frequency domain. Notice that this property holds without any
approximation or any selection of data.

2.1 Example—Estimation of two constant parameters

Consider the system with input u, output y, and the transfer
operator G0

y(t) = G0(p)u(t) =
b1

p + a1
u(t) (10)

Use the operator transformation λ of (2) Use the operator
transformation λ of (2)

λ =
1

1 + pτ
(11)

This gives the transformed model

G∗
0(λ) =

b1τλ

1 + (a1τ − 1)λ
=

β1λ

1 + α1λ

A linear estimation model of the type (6) is given by

y(t) = −α1[λy](t) + β1[λu](t) = ϕT
τ (t)θτ (t) (12)

with regressor ϕτ (t) and the parameter vector θτ and

ϕτ (t) =

(
−[λy](t)
[λu](t)

)
, θτ =

(
α1

β1

)
(13)

The original parameters are found via the relations

(
a1

b1

)
=




1

τ
(α1 + 1)

1

τ
β1



 (14)

and their estimates from

(
â1

b̂1

)
=




1

τ
(α̂1 + 1)

1

τ
β̂1



 (15)

Sampling—e.g., non-uniform sampling—of all variables in Eq.
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Fig. 2. Continuous-time model identification of Example 1 with
a1 = 2, b1 = 3 and recursive least-squares identifi-
cation using continuous-time regressors for input u and

disturbance-free output y. The estimates â1, b̂1 converge to
the correct values a1 = 2, b1 = 3 for N = 1000 samples.

(12) and application of the recursive least-squares estimation
algorithm is obviously possible.

The filter constant a (or τ ) of the operator λ should be regarded
as a design parameter to be chosen appropriately. As the com-
ponents of the regressor vector ϕτ tend to become small for
high frequency input one should match the filter constant with
respect to the dynamics of the system investigated.

Remark—Operator Representation Singularities A relevant
question is, of course, how general is the choice λ and if it can,
for instance, be replaced by some other bijective mapping

µ =
bs + a

s + a
, b ∈ R, a ∈ R

+, and s =
µa − a

b − µ
(16)

One can treat this problem by considering the example

G0(s) =
1

s + a/b + ǫ
where ǫ ∈ R is small

Application of the operator translation µ gives

G0(s) =
1

s + a/b + ǫ
=

µ − b

−ǫb + (a(
1

b
− 1) + ǫ)µ

= G∗
0(µ)

Obviously, the zero-order denominator polynomial coefficient
will vanish for ǫ = 0 so that G∗

0(µ) exhibits a pole at z = 0.
The corresponding estimation model would be

y = α[µy] + β1[µu] + β0[u] (17)

= (
1

ǫ

a

b
(
1

b
− 1) +

1

b
)[µy] −

1

ǫb
[µu] +

1

ǫ
[u] (18)

which exhibits coefficients of very large magnitudes for small
ǫ. This would constitute a serious sensitivity problem—at least
for b > 0 for which G0(s) is stable. An operator µ with b < 0
according to Eq. (16) would give rise to large coefficients of
the transformed model only for unstable systems which might
be more ‘affordable’. By comparison, a model transformation
using λ would not exhibit any such singularities. Hence, use
of the operator µ should for sensitivity reasons be restricted
to cases with b = 0 (or bmin < b ≤ 0 for some number

bmin chosen according to some a priori information about the
system dynamics). Note that the set of polynomials associated
with b < 0 is related to the orthogonal Laguerre polynomials.

2.2 Parameter transformations

Before we proceed to clearcut signal processing aspects we
should make clear the relationship between the parameters
αi, βi of (2) and the original parameters ai, bi of the transfer
function (1). Let the vector of original parameters be denoted
by

θ = (−a1 −a2 . . . −an b1 . . . bn)
T

(19)

Using the definition of λ (2) and (2) it is straightforward to show
that the relationship between (6) and (19) is

θτ = Fτθ + Gτ (20)

where the 2n × 2n−matrix Fτ is

Fτ =

(
Mτ 0n×n

0n×n Mτ

)
(21)

and where

Mτ =




m11 0 · · · 0

...
. . .

. . .
...

mn1 · · · mnn



 , mij = (−1)i−j

(
n − j

i − j

)
τ j

(22)
Furthermore, the 2n × 1−vector Gτ are given by

Gτ = (g1 . . . gn 0 . . . 0)
T

; gi =

(
n

i

)
(−1)i (23)

The matrix Fτ is invertible when Mτ is invertible, i.e. for all
τ > 0. The parameter transformation is then one-to-one and

θ = F−1
τ (θτ − Gτ )

We may then conclude that the parameters ai, bi of the conti-
nuous-time transfer function G0 may be reconstructed from the
parameters αi, βi of θτ by means of basic matrix calculations.
As an alternative we may estimate the original parameters ai, bi

of θ from the linear relation

y(t) = θT
τ ϕτ (t) = (Fτθ + Gτ )T ϕτ (t) (24)

where Fτ and Gτ are known matrices for each τ . Furthermore,
elaborated identification algorithms adapted for numerical pur-
poses sometimes contain some weighting or orthogonal linear
combination of the regressor vector components by means of
some linear transformation matrix T . Thus, one can modify
(24) to

y(t) = (Tϕτ (t))T T−T Fτθ + (Tϕτ (t))T T−T Gτ

Hence, the parameter vectors θτ and θ are related via known
and simple linear relationships so that translation between
the two parameter vectors can be made without any problem
arising. Moreover, identification can be made with respect to
either θ or θτ .

2.3 Orthogonalization and Numerics

In some cases, independent regressor variables are chosen at
the onset of identification so as to be orthogonal in order to
save computational effort. The case of polynomial regression
provides an example of the use of orthogonalized independent
variables. Orthogonal expansions are suitable and advantageous
for of MA-type (FIR) and AR-type models but cannot be fully
exploited in the case of regression vectors containing both input
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and output data, e.g, ARX and ARMAX models. A suitable
approach to orthogonalization is to consider an asymptotically
stable state space realization (A,B,C) by means of computa-
tion of the correlation between the impulse responses of the dif-
ferent state vector components xi. As these impulse responses
can be written x(t) = eAtB one finds that

Pc =

∫ ∞

0

x(t)xT (t)dt =

∫ ∞

0

eAtBBT eAT tdt (25)

It is well known that Pc of (25) fulfills the Lyapunov equation

APc + PcA
T = −BBT (26)

with a unique positive semidefinite solution Pc. If Pc were di-
agonal, one could conclude from Eq. (26) that the components
of x(t) be orthogonal. To the purpose of orthogonalization, let
Pc be factorized according to the Cholesky factorization

Pc = RT
1 R1

and choose T = R−T
1 . Now introduce the state-space transfor-

mation
z = Tx

with the dynamics

ż = A1z + B1, where

{
A1 = TAT−1

B1 = TB
(27)

By means of (26) it can be verified that

A1 + AT
1 = −B1B

T
1 , and Pz =

∫ ∞

0

z(t)zT (t)dt = I

which implies that the components of z = Tx are mutually
orthogonal over the interval [0,∞). As Pz is diagonal, it is clear
that the components of z(t) be orthogonal.

Thus, the λ-operator is still effective for higher-order systems,
the upper order limit of application being determined by the
quality of the numerical solvers of Lyapunov equations and
numerical Cholesky factorization.

Example—Orthogonalization Let λ(s) = 1/(s + 1) and
consider the third order state-space realization


λ(s)U(s)
λ2(s)U(s)
λ3(s)U(s)



 = X(s) =

(
s + 1 0 0
−1 s + 1 0
0 −1 s + 1

)−1(
1
0
0

)
U(s)

(28)
The solution of the Lyapunov equation (26) gives

Pc =

(
0.5000 0.2500 0.1250
0.2500 0.2500 0.1875
0.1250 0.1875 0.1875

)
> 0 (29)

so that

T =

(
1.0000 0 0
−1.0000 2.0000 0
1.0000 −4.0000 4.0000

)
(30)

As a result of orthogonality there is no need to solve a set of
linear equation for MA-models with white-noise inputs. This
might be advantageous for special purpose hardware implemen-
tation or when the linear equations become nearly singular or
when the model order increases.

2.4 Non-uniform Sampling

Assume that data acquisition has provided finite sequences of
non-uniformly sampled input-output data {y(tk)}N

0 , {u(tk)}N
0

at sample times {tk}
N
0 , where tk+1 > tk for all k.

As the regression model of Eq. (5) is valid for all times, it is
also a valid regression model at sample times {tk}

N
0

y(tk) =−α1[λy](tk) − · · · − αn[λny](tk) (31)

+β1[λu](tk) + · · · + βn[λnu](tk)

Introduce the following brief notation for non-uniformly sam-
pled filtered data

[λju]k = [λju](tk), 0 ≤ j ≤ n, 0 ≤ k ≤ N (32)

[λjy]k = [λjy](tk) (33)

so that

yk =−α1[λy]k − · · · − αn[λny]k (34)

+β1[λu]k + · · · + βn[λnu]k

Introduce the filter states

xu =





[λ1u]
[λ2u]

...
[λnu]




, xy =





[λ1y]
[λ2y]

...
[λny]




(35)

with dynamics

1

τ
ẋu =





−1 0 0 · · · 0

1 −1
. . .

. . . 0

0 1 −1
...

...
. . .

. . .
. . .

0 · · · 0 1 −1




xu +





1
0
0
...
0




u (36)

1

τ
ẋy =





−1 0 0 · · · 0

1 −1
. . .

. . . 0

0 1 −1
...

...
. . .

. . .
. . .

0 · · · 0 1 −1




xu +





1
0
0
...
0




y (37)

or

1

τ
ẋu = Aλxu + Bλu,

1

τ
ẋy = Aλxy + Bλy (38)

Adopting a zero-order-hold (ZOH) approximation, the non-
uniformly sampled discretized model will be

xu(tk+1) = Akxu(tk) + Bku(tk) (39)

xy(tk+1) = Akxy(tk) + Bky(tk) (40)

where

Ak = eAλ(tk+1−tk)/τ (41)

Bk =

∫ tk+1−tk

0

eAλs/τ 1

τ
Bλds =

∫ (tk+1−tk)/τ

0

eAλsBλds

Summarizing the regressor model of Eq. (34) including the
regressor filtering, we have
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Fig. 3. Non-uniformly sampled data used for continuous-time
model identification: Input {uk} (upper), output {yk}
with stochastic disturbance (middle), regressors {[λu]k},
{[λy]k} (lower).

φ(tk) =

(
xy(tk)
xu(tk)

)
(42)

φ(tk+1) =

(
Ak 0
0 Ak

)
φ(tk) +

(
−Bk 0

0 Bk

)(
y(tk)
u(tk)

)
(43)

θ = (α1 · · ·αn β1 · · ·βn)
T

(44)

y(tk) = φ(tk)θ + w(tk) (45)

where {w(tk)} represents an uncorrelated non-uniformly sam-
pled noise sequence.

2.5 Example (cont’d)—Identification of a first-order system

A simulated example of Ex. 2.1 is shown in Figs. 1-4 for
parameters a1 = 2, b1 = 3 and with operator time constant
τ = 1. A histogram of the sampling intervals is shown in Fig.
5. Whereas a least-squares estimate based on the N = 1000
deterministic data of Figs. 1-2 reproduced the exact parameters
a1 = 2, b1 = 3, the estimates â1 = 1.988, b1 = 3.168 were
obtained for a signal-to-noise ratio equal to one of inputs (input
u and noise w) in Figs. 3-4.

2.6 Innovations Model and Prediction

Adopting a standard continuous-time innovations model to
complement the system model of Eq. (1), we have

ẋ = Ax + Bu + Kw, G0(s) = C(sI − A)−1B (46)

y = Cx + w (47)

with the innovations model inverse (or Kalman filter)

˙̂x = (A − KC)x̂ + Bu + Ky (48)

ŵ = y − Cx̂ (49)

Updates for non-uniformly sampled input-output data can be
made as the non-uniformly sampled discrete-time system

x̂(tk+1) = Fkx̂(tk) + (Gk Hk)

(
u(tk)
y(tk)

)
(50)

ŵ(tk) = y(tk) − Cx̂(tk) (51)
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Fig. 4. Continuous-time model identification of Example 1 with
a1 = 2, b1 = 3 and recursive least-squares identification
using non-uniformly sampled input u and disturbance-

contaminated output y. The estimates â1, b̂1 converge
towards the correct values a1 = 2, b1 = 3 (N = 1000).

for

Fk = e(A−KC)(tk+1−tk) (52)

Gk =

∫ tk+1−tk

0

e(A−KC)sBds (53)

Hk =

∫ tk+1−tk

0

e(A−KC)sKds (54)

which permits state estimation and standard residual analy-
sis for purposes of validation (Johansson 1993; Ch. 9). In
prediction-correction format, separate time update and error
update can be made as follows

x̂(tk|k) = x̂(tk|k−1) + κk(y(tk) − Cx̂(tk|k−1)) (55)

x̂(tk+1|k) = Φkx̂(tk|k) + Γku(tk) (56)

ŵ(tk|k) = y(tk) − Cx̂(tk|k) (57)

for {Φk,Γk, κk}
N
k=0 obtained from non-uniform discretization

of Eqs. (46-47).

3. DISCUSSION AND CONCLUSIONS

We have formulated an identification method for continuous-
time transfer function models and equivalent to ARMAX
models for discrete-time systems. The main differences be-
tween this method and traditional models of ARMAX-model
identification consists of a different estimation model and a
new parametrization of the continuous-time transfer function
whereas the parameter estimation method—i.e., least-squares
estimation or maximum-likelihood estimation, is the same as
that used in ARMAX-model identification. The hybrid ap-
proach involves a discrete-time model of the stochastic distur-
bances with little specification of the continuous-time noise, the
properties of which are not known or measured in detail. With
reference to the central limit theorem, this approach appears
to be an appropriate assumption in physical modeling contexts
where small continuous-time disturbances add up to a normally
distributed disturbance on the sampled signals. The resulting
model thus has the same modeling power of the stochastic
environment as that of an ARMAX model.
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Fig. 5. Histogram of sampling intervals

The methodology presented requires implementation of opera-
tors λ1, . . . , λn which serve as filters in the estimation model by
operations on input-output data. Maximum-likelihood identi-
fication based on the parametric model derived results in con-
sistent and asymptotically efficient estimates under the assump-
tion of normally distributed noise (Johansson 1994).

The transformation by means of λ allows an exact reparametri-
zation of a continuous-time transfer function. High-frequency
dynamics and low-frequency dynamics thus appear without
distortion in the mapping from input to output. The low-pass
filters implemented for the estimation model have a filtering
effect in producing regressor variables for identification. Also
orthogonal regressor variables can be used in this context. Both
the operator translation and filtering approaches such as the
Poisson moment functional (PMF) or the Laguerre polynomials
give rise to similar estimation models for the deterministic case
(Saha and Rao 1983), (Unbehauen and Rao 1987), (Haber and
Unbehauen 1990), (Young 1969, 1981), (Garnier 2003). Imple-
mentation of the operator λ may be done as continuous-time
filters, discrete-time filters or by means of numerical integra-
tion methods. Other discretization policies may be considered.
As elaborated by Middleton and Goodwin (1990), it may be
valuable to replace z by the δ−operator

δ =
z − 1

h
(58)

in order to improve on numerical accuracy in discrete-time
implementation. Whereas ZOH only was studied here, inter-
sample behavior is significant for approximation properties.
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