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Glycemic Trend Prediction Using Empirical Model Identification

Marzia Cescon and Rolf Johansson

Abstract—Using methods of system identification and pre-
diction, we investigate near-future prediction of individual-
specific T1DM blood glucose dynamics with the purpose of
a decision-making tool development in diabetes treatment. Two
strategies were approached: Firstly, Kalman estimators based
on identified state-space models were designed; Secondly, direct
identification of ARX- and ARMAX-based predictors was done.
Predictions over 30 minutes look-ahead were capable to track
glucose variation even in sensible ranges for estimation data,
but not on validation data.

I. INTRODUCTION

Diabetes Mellitus is a chronic disease of disordered glu-

cose metabolism due to defects in either insulin secretion

from the pancreatic β -cells or insulin action. Type-1 diabetes

(T1DM), also called insulin-dependent diabetes mellitus

(IDDM) is characterized by no production of insulin what

so ever, whereas type-2 diabetes is caused by decreased sen-

sitivity of the tissues to the metabolic effect of insulin. The

basic effect of insulin lack or insulin resistance is to prevent

the efficient uptake and utilization of glucose by most cells

of the body, resulting in abnormally high blood sugar levels

(hyperglycemia). Sustained hyperglycemia is associated with

acute ketoacidosis, nephropaty, rethinopaty, neuropathy and

damages to the cardio-vascular system [1], therefore inten-

sive insulin therapy aiming at near-normoglycemia (80-100

mg/dL) has been strongly promoted during the last decade,

following the results of the major Diabetes Control and

Complications Trial (DCCT) [2] and follow-up Epidemiol-

ogy of Diabetes Interventions and Complications (EDIC)

[3] studies. Focusing on tight blood glucose targets, the

strategy comprises test of blood glucose levels at least four

times a day, taking insulin at least three times a day by

injections or using a pump and patient assistance by health

care team through visits and phone calls. Meanwhile, the

lack of improved quality of life and above all, the occurence

of induced hypoglycemic events which may result in seizure,

coma and eventually death preclude the feasibility of such a

DCCT-like intensive therapy.

Diabetes treatment still strongly depends on patient daily

decisions and is mainly based upon empirical experience, a

major challenge being the need of adapting insulin regimens,

food intake and exercise to keep the glycemia within limits

during daily life activities. In practice, most patients are

rather conservative in order to prevent hypoglycemia, but

remain far from the optimal treatment. Hence, the develop-

ment of a prediction engine capable of personalized on-the-

spot decision making concerning the most adequate choice of
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Fig. 1. DIAdvisor modeling and prediction [12]

insulin delivery, meal intake and exercise would be a valuable

initiative.

Currently, continuous glucose monitoring (CGM) devices

are the available technology able to provide high/low glucose

alarms when certain preset threshold levels have been crossed

and to deliver early-warnings of events that are likely to

occur if the current trend continues. To date many studies

have investigated the possibility of predicting blood glucose

concentration for the purpose of regulating glucose interven-

tion, most of this research being based on data generated by a

simulation model (e.g. [4], [5], [6], [7]). Originally developed

by [8] the idea of T1DM CGM time-series analysis has

been further pursued by [9] and [10] to predict near-future

glucose concentration from its past history. However, the

limited accuracy and the lack of exploitation of the dynamic

interplay between previously injected insulin, meal intake

and eventually exercise reduce or even eliminate the clinical

benefits of the approach.

Purpose of this paper is to expand on [11] and in-

vestigate individual-specific predictive models from T1DM

patient records. Two strategies were approached: Firstly,

Kalman estimators based on identified state-space models

were designed; Secondly, direct least-squares identification

of various order ARX- and ARMAX-based predictors was

done.

The organization of the paper is as follows. Section II

presents the experimental data collection, the system mod-

elling and prediction and the metrics used for predictors eval-

uation. Section III covers the findings and main contributions

of the paper. Comments on the procedure adopted as well

as the results achieved are touched upon in Sec. IV. Finally,

Sec. V concludes the paper.
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Fig. 2. Patient data used for estimation: glucose profile measured by
CGMS (upper), glucose rate of appearance in plasma (middle), plasma
insulin (lower). Notice extra carbohydrates intake to cope with consecutive
hypoglycemic episodes for t = 180:300

II. METHODS

A. Data

In the framework of DIAdvisorTM , a European FP7-IST

research project on diabetic blood-glucose prediction and

improved blood-glucose management in patients (Fig 1),

acquisition of clinical diabetes data was accomplished in a

series of experiment sessions [12]. Due to ongoing study at

the time of manuscript preparation only one patient records

gathered during three days of hospitalization in the Clin-

ical Investigation Center participating in the DIAdvisorTM

Consortium were available. Collected data include: specific

patient anthropological parameters (i.e., gender = male, age

= 43 years old, BMI = 23.7, weight = 67 kg), characteristics

related to diabetes (i.e., disease duration = 10 years, insulin

delivery = external-pump), associated health conditions and

therapies, food intakes registered in a logbook, blood glucose

variations and plasma insulin profiles due to insulin therapy.

Abbott FreeStyle Navigator [13] was used as Continuous

Glucose Monitoring System (CGMS) for this study. Using

amperometry, the sensor utilizes a working electrode coated

with a sensing element that converts glucose concentration

to electrical current. The system measures glucose levels

once per minute and sends glucose information wirelessly

to the pager-sized receiver once every 10 minutes. To begin

data collection on Day 0 with a well-calibrated device, this

sensor was inserted in the patient skin by a nurse 48 hours

before the in-hospitalization. Calibrations against capillary

blood glucose values obtained with the HemoCue glucose

meter [14] were completed, as required by the Navigator

system. During the whole stay at the clinic, the patient kept

his current insulin therapy adjusting the boluses on his pump

by himself on the basis of the HemoCue outcomes. Standard

meals for breakfast (8:00), lunch (13:00) and dinner (19:00)

were served to the subject, the amount of administered

carbohydrates being 42, 70 and 70 grams, respectively.

Table I presents the schedule followed. Extra carbohydrates

TABLE I

MEALS AND BOLUSES SCHEDULE

Day Meal time Insulin bolus time

1 08.00 08.00
13.00 12.55
19.00 19.00

2 08.00 08.00
13.00 13.45
19.00 19.00

3 08.00 08.00
13.00 14.00
19.00 20.15

Notice the splits between meal time and insulin injections in Day 2 and 3
to separate the effects of the inputs.

were administered to the patient in day 2 due to repeated

hypoglycemic episodes. Blood samples were collected by

nurses to measure blood glucose and insulin (free and total)

concentrations: every hour during day, every 2 hours during

night, every 15 minutes after meals for 2 hours. Specific

sampling schedule was adopted after breakfasts: 30 min

before, mealtime, 10, 20, 30, 60, 90, 120, 150, 180, 240,

300 min after.

B. Input modeling

Inputs to the model are the appearance of glucose in

plasma resulting from a meal and blood total insulin concen-

tration. In order to obtain the rate of appearance of glucose

in the blood after a meal the physiological model of glucose

intestinal absorption first presented in [15] was adopted. It

relies on a three-compartment model described as follows:





q̇sto1(t) = −k21 ·qsto1(t)+D ·δ (t)

q̇sto2(t) = −kempt ·qsto2(t)+ k21 ·qsto1(t)

q̇gut(t) = −kabs ·qgut(t)+ kempt ·qsto2(t)

Ra(t) =
f ·kabs·qgut(t)

mBW

(1)

where qsto1 [mg] and qsto2 [mg] are the amounts of carbohy-

drates in the stomach (solid and liquid phase, respectively),

D [mg] is the amount of ingested carbohydrates, qgut [mg]
is the carbohydrate mass in the intestine, k21 is the rate of

grinding, kempt the rate of gastric emptying, kabs the rate

of absorbtion, f the fraction of intestinal flux that actually

appears in plasma, mBW [kg] the body weight, kempt the rate

of gastric emptying according to:

kempt(qsto) = kmin + k+{tanh[α(qsto−b ·D)]

− tanh[β ((qsto− c ·D)]+2} (2)

k =
kmax− kmin

2
, α =

5

2 ·D · (1−b)
, β =

5

2 ·D · c
(3)

Ra [mg/kg/min] the rate of appearance of glucose in plasma

and kmax, kmin, b, c are parameters as outlined in [15].

In this paper, given the impossibility of identifying and
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consequently adapting the above mentioned parameters to

the subject due to lack of data, mean population parameters

values were considered, as introduced in [11].

As far as the insulin is concerned, despite the fact that

there are quite well-known models for insulin dynamics in

the literature [16], [17], no modeling for subcutaneous insulin

absorption was embraced. Indeed, exploitation of the subject

data records made it possible to use the insulin blood total

concentration measured in hospital. Originally non-uniformly

sampled, the insulin signal was linearly interpolated and

uniformly resampled, the resampling period of the system

being 10 minutes.

C. Empirical models and predictors

Aim of the work is to develop optimal τ-steps-ahead
predictions of blood glucose evolution based on clinical

experiments, the problem being tackled according to two

different strategies: first, computing a Kalman predictor

based on a previously identified state-space input-output

model; secondly, preoceeding with direct low order ARX-

and ARMAX-based predictor identification. Hence, denoting

with uk ∈R
2 glucose and insulin in the blood stream, yk ∈ R

plasma glucose concentration and ek ∈ R the innovation

process, i.e., the one-step-ahead prediction error, state space

innovation models of the form
{
xk+1 = Axk +Buk +Kek

yk =Cxk + ek
(4)

shall be identified from T1DM patient data. Furthermore,

since ek = yk − ŷk, reconstructing the innovation sequence

ek from the observation sequence yk the state-space of the

output predictor ŷk based on the past joint data may be

written:
{
xk+1 = (A−KC)xk +Buk +Kyk

ŷk|k−1 =Cxk
(5)

It is a well-known fact that 4 and 5 have the same state-space,

making the predictor realization a more general framework

for subspace identification [18]. Throughout this work, the

n4sid routine and the recently proposed PBSIDopt algorithm

[19] based on predictor identification were compared.

Secondly, consider an ARMAX model in the following

form:

A(z−1)yk = B(z−1)uk +C(z−1)wk (6)

where

A(z−1) = 1+a1z
−1 + · · ·+anaz

−na (7)

B(z−1) = b1z
−1 + · · ·+bnbz

−nb (8)

C(z−1) = 1+ c1z
−1 + · · ·+ cncz

−nc (9)

uk, yk as above and wk denotes the coloured noise. By

expanding the C-polynomial according to the Diophantine

equation

C(z−1) = A(z−1)F(z−1)+ z−τG(z−1) (10)

with τ accounting also for the relative input-output delay, we

have

yk+τ = F(z−1)wk+τ +
B(z−1)F(z−1)

C(z−1)
uk +

G(z−1)

C(z−1)
yk (11)

where the first term depends on future noise components

only, the second and third term on data up to time k. Solving

for {wk} from input-output data, the τ-step-ahead prediction

results to be given by the conditional expectation of yk+τ

based on data up to time k:

ŷk+τ|k = E {yk+τ|k} =
B(z−1)F(z−1)

C(z−1)
uk +

G(z−1)

C(z−1)
yk (12)

By means of parameter estimation it is possible to deter-

mine the parameter vector minimizing the sum of squared

prediction errors:

ŷk+τ|k = −α1ŷk+τ−1|k−1−·· ·−αnα ŷk+τ−nα |k−nα
(13)

+β0uk + · · ·+ βnβ
uk−nβ

+ (14)

+γ0yk + · · ·+ γnγ yk−nγ (15)

The following relationships hold:

α(z−1) = C(z−1) (16)

β (z−1) = B(z−1)F(z−1) (17)

γ(z−1) = G(z−1) (18)

with compatible polynomial degrees: nα = nC, nβ = nB+nF ,

nγ = nG.

Our methodology consisted in estimating ARX-based predic-

tors (i.e., when α(z−1) =C(z−1) = 1) of various orders and

then building on this with pseudo-linear regression strategy

to obtain the polynomial parameters of α(z−1).

D. Prediction evaluation

The quality of the predictors developed was assessed

by statistical model validation and mathematical metrics in

order to quantify the error between the predicted profile vs.

the original one and diabetes-specific metrics to show their

impact in terms of clinically-relevant detected events. Thus,

the predicted profile precision was evaluated with respect to

the following:

• Percentage FIT

• Percentage Variance Accounted For (VAF)

• Root Mean Squared Error (RMSE) [mg/dL]

The clinical accuracy of the predictions was evaluated in

terms of both correctness of predicted glucose values and

ability to capture the direction and rate of change of glucose

fluctuations by the continuous glucose-error grid analysis

(CG-EGA) which comprises a point-error grid and a dy-

namic rate-of-change error grid [20]. In both of them each

prediction-measured value pair is assigned to one of A-E

labeled zones. Points falling into Zone A are considered

clinically accurate; points in Zone B are benignly erroneous;

points in Zone C may lead to an overcorrected treatment

whereas point in Zone D may lead to undercorrected mea-

sures. Last, points in Zone E are highly erroneous.
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III. RESULTS

As far as the entire three-days data sequence is concerned,

state-space models of fifth order were selected according to

the most significant singular values and have been subse-

quently used in a Kalman filter for prediction, their predictive

capabilities being compared with first order ARX- and second

order ARMAX-based predictors. Table II offers a quantitative

assessment of 30, 60, 90, 120 minutes ahead predictions

on estimation data achieved with the above mentioned ap-

proaches. The superiority of the state-space model-based

predictor identification strategy appears clearly over all the

prediction horizons. The most significant achievement is a

root-mean-squared error of 17.06 [mg/dL] on the short 30

minutes look ahead by PBSIDopt. In order to assess delays,

the table reports the zero-order-hold (ZOH) for comparison.

It is, indeed, important for alert generation to detect changes

with a delay smaller than the prediction horizon. Table III is

concerned with the point error grid analysis for the evaluation

of prediction performances over 30 minutes prediction hori-

zon on calibration data. State-space model-based predictions

exhibit the best performances. Notice the bigger accuracy

obtained in comparison to what achieved by projecting the

last value with a ZOH.

In a second phase the data was, then, randomly splitted

into two parts: one for estimation and the other for validation.

Model order was fixed to 2. Figure 4 shows for prediction

horizons of 30 minutes, the real (dotted line) versus the

predicted (solid line) glucose curve for state-space model-

based predictors: n4sid (top left) and PBSIDopt (top right);

and direct identification of ARX- (bottom left) and ARMAX-

based predictors (bottom right) on validation data. From a

qualitative point of view, Fig.4 suggests that none of the

approaches is clearly superior to the other. Nevertheless,

the predictor-based subspace identification strategy, namely

PBSIDopt, seems to outperform the other methods, being

more prompt in tracking ascending as well as descending

trends with clinically tolerable delays. However, in order

for the approach to be consider useful in practice, wrong

forecasts leading to the generation of false hypo- and hyper-

glycemic alarms need to be avoided. In the case examined,

such an event is visible at t = 65 with an unacceptable

mismatch of 75[mg/dL]. Figure III quantifies the accuracy

of validation data prediction by means of the continuous

glucose-error grid analysis in the case of the ARMAX-based

predictor. The grid on the left shows that 82% points fell

into the A zone and 16.5% into the B zone. Dynamic

characteristics of the prediction, namely the rate-of-change

accuracy, are shown in Fig. III right grid.

IV. DISCUSSION

Over the last decades, a wealth of models describing the

insulin-to-glucose system dynamics was developed for the

purpose of simulation and glycemic control, the approach

being physiology based [6], [5], [21]. Very recently the

problem of identifying such a model has been tackled from

a data-driven perspective mainly using simulated data from

model in the literature [22], [23]. Indeed, fitting actual T1DM

TABLE III

EVALUATION OF PREDICTOR PERFORMANCES ON 30 MIN PREDICTION

HORIZON

Predictor zone A zone B zone C zone D zone E

n4sid 88.0282 10.7981 0 1.1737 0
PBSIDopt 87.0892 10.5634 0 2.3474 0

ARX 77.9621 20.3791 0 0.9524 0
ARMAX 86.1905 12.6190 0 1.6588 0

ZOH 82.8638 14.0845 0 2.3474 0.7042

Percentage of point falling within regions. Fifth order n4sid and PBSIDopt

based models ; first order ARX and second order ARMAX .

subject data to the models has been treated to a much less

extent (e.g., [11], [24], [25], [26]) given the difficulties in

gathering appropriate patient records.

This paper dealt with a unique dataset which is being

collected [12] and looks promising for future exploitation.

As far as meal modeling is concerned, the proposed

strategy in [11] seems to be a theoretically sound attempt

to account for differences in meal compositions. However, it

was not possible to apply it in this context due to unavailable

meal composition information. Moreover, the adaptation of

parameter values of the physiological model representing

gut absorption to the specific subjects could lead to better

estimates of the overall dynamic model.

The use of subspace-based algorithms for identification

of linear-time-invariant systems was investigated, the reason

being these methods do not require parameterization of

the model class, are non-iterative and numerically robust;

moreover, they have been proven to be suitable in identifying

MIMO systems. Among those, a new class of methods based

on identification of a predictor model in a prediction error

method (PEM) fashion was considered [18]. In particular,

the PBSIDopt algorithm in [19] was used. This algorithm

requires the choice of three parameters by the user: the model

order n, the length of the past horizon p and the length of

the future horizon f. In particular, it is not clear how the

future horizon affects the quality of the estimation, albeit it

has been shown that its optimal choice can lead to better

estimates [27]. Hence, parameter values were decided in a

trial-and-error manner. It was empirically noticed, however,

that decreasing the future horizon worsens the estimation,

increasing the past horizon improves up to a limit. As

for the model order, the selection was made on the basis

of the singular values of the system. Model order n = 5

appeared to describe the input-output behaviour sufficiently

well. However, for validation data the model order was

chosen smaller than the prediction steps.

In addition to model-based predictors, direct predictor

identification was pursued, given its relevance in contexts

where models are poor or not available.

In order to assess robustness of the proposed models for

prediction, population studies and cross validation over dif-

ferent subjects are needed. Moreover, further improvements

of the state-of-the-art in identification, e.g., the ability of

handling non-uniformly sampled data, reduction of sensitiv-

ity to initial conditions and automatic selections of model
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TABLE II

EVALUATION OF PREDICTOR PERFORMANCES OVER PREDICTION HORIZONS OF 30, 60, 90, 120 MINUTES USING ESTIMATION DATA

Predictor 30min 60min 90min 120min
FIT VAF RMSE FIT VAF RMSE FIT VAF RMSE FIT VAF RMSE

n4sid 73.78 93.12 17.72 61.92 85.50 25.73 54.38 79.19 30.83 47.02 71.93 35.81
PBSIDopt 74.75 93.70 17.06 63.50 87.01 24.67 57.11 82.36 28.98 51.34 77.54 32.89

ARX 61.03 87.19 26.42 38.39 76.28 41.86 15.36 53.96 59.56 5.26 18.71 78.33
ARMAX 72.28 92.49 18.82 55.45 80.88 35.28 50.16 75.22 54.48 27.72 67.21 61.39

ZOH 59.67 84.41 27.26 41.55 63.15 41.06 26.26 39.41 52.64 13.40 13.53 62.93

fifth-order n4sid− and PBSIDopt-based predictors; second-order ARX- and ARMAX-based predictors.

parameters, would be valuable.

V. CONCLUSIONS

The present contribution was concerned with short-term

model-based prediction of blood glucose evolution. Predic-

tion results for a representative T1DM patient were shown.

Predictors showed capability of predicting hance allowing

for preventing both hypoglycemic and hyperglycemic events

with a prediction horizon of 30 minutes with a root mean

squared error of 17.06 [mg/dL] on calibration data and of

18.08 [mg/dL] on validation data. However, consistency and

robustness of the proposed approach across different subjects

was not demonstrated and is, thus, left for future work.
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