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Glycemic Trend Prediction Using Empirical Model Identification

Marzia Cescon and Rolf Johansson

Abstract— Using methods of system identification and pre-
diction, we investigate near-future prediction of individual-
specific TIDM blood glucose dynamics with the purpose of
a decision-making tool development in diabetes treatment. Two
strategies were approached: Firstly, Kalman estimators based
on identified state-space models were designed; Secondly, direct
identification of ARX- and ARMAX-based predictors was done.
Predictions over 30 minutes look-ahead were capable to track
glucose variation even in sensible ranges for estimation data,
but not on validation data.

I. INTRODUCTION

Diabetes Mellitus is a chronic disease of disordered glu-
cose metabolism due to defects in either insulin secretion
from the pancreatic 3-cells or insulin action. Type-1 diabetes
(T1DM), also called insulin-dependent diabetes mellitus
(IDDM) is characterized by no production of insulin what
so ever, whereas type-2 diabetes is caused by decreased sen-
sitivity of the tissues to the metabolic effect of insulin. The
basic effect of insulin lack or insulin resistance is to prevent
the efficient uptake and utilization of glucose by most cells
of the body, resulting in abnormally high blood sugar levels
(hyperglycemia). Sustained hyperglycemia is associated with
acute ketoacidosis, nephropaty, rethinopaty, neuropathy and
damages to the cardio-vascular system [1], therefore inten-
sive insulin therapy aiming at near-normoglycemia (80-100
mg/dL) has been strongly promoted during the last decade,
following the results of the major Diabetes Control and
Complications Trial (DCCT) [2] and follow-up Epidemiol-
ogy of Diabetes Interventions and Complications (EDIC)
[3] studies. Focusing on tight blood glucose targets, the
strategy comprises test of blood glucose levels at least four
times a day, taking insulin at least three times a day by
injections or using a pump and patient assistance by health
care team through visits and phone calls. Meanwhile, the
lack of improved quality of life and above all, the occurence
of induced hypoglycemic events which may result in seizure,
coma and eventually death preclude the feasibility of such a
DCCT-like intensive therapy.

Diabetes treatment still strongly depends on patient daily
decisions and is mainly based upon empirical experience, a
major challenge being the need of adapting insulin regimens,
food intake and exercise to keep the glycemia within limits
during daily life activities. In practice, most patients are
rather conservative in order to prevent hypoglycemia, but
remain far from the optimal treatment. Hence, the develop-
ment of a prediction engine capable of personalized on-the-
spot decision making concerning the most adequate choice of
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Fig. 1.

DIAdvisor modeling and prediction [12]

insulin delivery, meal intake and exercise would be a valuable
initiative.

Currently, continuous glucose monitoring (CGM) devices
are the available technology able to provide high/low glucose
alarms when certain preset threshold levels have been crossed
and to deliver early-warnings of events that are likely to
occur if the current trend continues. To date many studies
have investigated the possibility of predicting blood glucose
concentration for the purpose of regulating glucose interven-
tion, most of this research being based on data generated by a
simulation model (e.g. [4], [5], [6], [7]). Originally developed
by [8] the idea of TIDM CGM time-series analysis has
been further pursued by [9] and [10] to predict near-future
glucose concentration from its past history. However, the
limited accuracy and the lack of exploitation of the dynamic
interplay between previously injected insulin, meal intake
and eventually exercise reduce or even eliminate the clinical
benefits of the approach.

Purpose of this paper is to expand on [11] and in-
vestigate individual-specific predictive models from TIDM
patient records. Two strategies were approached: Firstly,
Kalman estimators based on identified state-space models
were designed; Secondly, direct least-squares identification
of various order ARX- and ARMAX-based predictors was
done.

The organization of the paper is as follows. Section II
presents the experimental data collection, the system mod-
elling and prediction and the metrics used for predictors eval-
uation. Section III covers the findings and main contributions
of the paper. Comments on the procedure adopted as well
as the results achieved are touched upon in Sec. IV. Finally,
Sec. V concludes the paper.
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Fig. 2. Patient data used for estimation: glucose profile measured by
CGMS (upper), glucose rate of appearance in plasma (middle), plasma
insulin (lower). Notice extra carbohydrates intake to cope with consecutive
hypoglycemic episodes for t = 180:300

II. METHODS

A. Data

In the framework of DIAdvisor’™, a European FP7-IST
research project on diabetic blood-glucose prediction and
improved blood-glucose management in patients (Fig 1),
acquisition of clinical diabetes data was accomplished in a
series of experiment sessions [12]. Due to ongoing study at
the time of manuscript preparation only one patient records
gathered during three days of hospitalization in the Clin-
ical Investigation Center participating in the DIAdvisor’™
Consortium were available. Collected data include: specific
patient anthropological parameters (i.e., gender = male, age
= 43 years old, BMI = 23.7, weight = 67 kg), characteristics
related to diabetes (i.e., disease duration = 10 years, insulin
delivery = external-pump), associated health conditions and
therapies, food intakes registered in a logbook, blood glucose
variations and plasma insulin profiles due to insulin therapy.
Abbott FreeStyle Navigator [13] was used as Continuous
Glucose Monitoring System (CGMS) for this study. Using
amperometry, the sensor utilizes a working electrode coated
with a sensing element that converts glucose concentration
to electrical current. The system measures glucose levels
once per minute and sends glucose information wirelessly
to the pager-sized receiver once every 10 minutes. To begin
data collection on Day 0 with a well-calibrated device, this
sensor was inserted in the patient skin by a nurse 48 hours
before the in-hospitalization. Calibrations against capillary
blood glucose values obtained with the HemoCue glucose
meter [14] were completed, as required by the Navigator
system. During the whole stay at the clinic, the patient kept
his current insulin therapy adjusting the boluses on his pump
by himself on the basis of the HemoCue outcomes. Standard

ThA11.1

meals for breakfast (8:00), lunch (13:00) and dinner (19:00)
were served to the subject, the amount of administered
carbohydrates being 42, 70 and 70 grams, respectively.
Table I presents the schedule followed. Extra carbohydrates

TABLE I
MEALS AND BOLUSES SCHEDULE

Day Meal time Insulin bolus time

1 08.00 08.00
13.00 12.55
19.00 19.00
2 08.00 08.00
13.00 13.45
19.00 19.00
3 08.00 08.00
13.00 14.00
19.00 20.15

Notice the splits between meal time and insulin injections in Day 2 and 3
to separate the effects of the inputs.

were administered to the patient in day 2 due to repeated
hypoglycemic episodes. Blood samples were collected by
nurses to measure blood glucose and insulin (free and total)
concentrations: every hour during day, every 2 hours during
night, every 15 minutes after meals for 2 hours. Specific
sampling schedule was adopted after breakfasts: 30 min
before, mealtime, 10, 20, 30, 60, 90, 120, 150, 180, 240,
300 min after.

B. Input modeling

Inputs to the model are the appearance of glucose in
plasma resulting from a meal and blood total insulin concen-
tration. In order to obtain the rate of appearance of glucose
in the blood after a meal the physiological model of glucose
intestinal absorption first presented in [15] was adopted. It
relies on a three-compartment model described as follows:

q.stol (t) = _k21 'QStol(t) +D- 8(t)

QStOZ(t) —Kempt 'QstoZ(t) + k21 'Qstol(t)

. (D
qut( ) kabs qgut (t) + kempt *{qsto2 (t)

Ra(t) = Lhabstaul)

mpw

where gg,1 [mg] and gy, [mg] are the amounts of carbohy-
drates in the stomach (solid and liquid phase, respectively),
D [mg] is the amount of ingested carbohydrates, g, [mg]
is the carbohydrate mass in the intestine, kp; is the rate of
grinding, ken, the rate of gastric emptying, kg the rate
of absorbtion, f the fraction of intestinal flux that actually
appears in plasma, mpw [kg] the body weight, ke the rate
of gastric emptying according to:

kempt (q‘vto) = kmin +k+ {tanh[a(qm, —b D)]

tanh[B ((gsro — ¢ - D)] + 2} 2)
kmax — Kmin o 5 o 5
k== *=spa-n P 30 @

Ra [mg/kg/min] the rate of appearance of glucose in plasma
and kpgy, kmin, b, ¢ are parameters as outlined in [15].
In this paper, given the impossibility of identifying and

3502



consequently adapting the above mentioned parameters to
the subject due to lack of data, mean population parameters
values were considered, as introduced in [11].

As far as the insulin is concerned, despite the fact that
there are quite well-known models for insulin dynamics in
the literature [16], [17], no modeling for subcutaneous insulin
absorption was embraced. Indeed, exploitation of the subject
data records made it possible to use the insulin blood total
concentration measured in hospital. Originally non-uniformly
sampled, the insulin signal was linearly interpolated and
uniformly resampled, the resampling period of the system
being 10 minutes.

C. Empirical models and predictors

Aim of the work is to develop optimal 7-steps-ahead
predictions of blood glucose evolution based on clinical
experiments, the problem being tackled according to two
different strategies: first, computing a Kalman predictor
based on a previously identified state-space input-output
model; secondly, preoceeding with direct low order ARX-
and ARMAX -based predictor identification. Hence, denoting
with u, € R? glucose and insulin in the blood stream, y; € R
plasma glucose concentration and e¢; € R the innovation
process, i.e., the one-step-ahead prediction error, state space
innovation models of the form

{X]ﬁq = Ax; + Bui + Key,

4)
Yk = Cxp + e

shall be identified from T1DM patient data. Furthermore,
since e, = yr — ¥k, reconstructing the innovation sequence
e from the observation sequence y; the state-space of the
output predictor §; based on the past joint data may be
written:

{xk+l = (A — KC)x¢ + Buy + Ky, )

Jik—1 = Cxx

It is a well-known fact that 4 and 5 have the same state-space,
making the predictor realization a more general framework
for subspace identification [18]. Throughout this work, the
n4sid routine and the recently proposed PBSID,; algorithm
[19] based on predictor identification were compared.

Secondly, consider an ARMAX model in the following
form:

Az Ny =Bz N +C " wi (6)
where
A(zY l+aiz ' Fapz ™ (7
BzY) = bz 'dbyz ™ (8)
Cz") = 1+cz '+ Fen ™ )

ux, yx as above and wy denotes the coloured noise. By
expanding the C-polynomial according to the Diophantine
equation

Clz ) =A@ F(E ")+ G (10)
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with T accounting also for the relative input-output delay, we
have

Bz )F(z") G
cz N iz )"

where the first term depends on future noise components
only, the second and third term on data up to time k. Solving
for {wy} from input-output data, the 7-step-ahead prediction
results to be given by the conditional expectation of y;, .
based on data up to time k:

Bz WF@") | GE)
i ch™
By means of parameter estimation it is possible to deter-

mine the parameter vector minimizing the sum of squared
prediction errors:

Yerr =F (@ Wi+ uy + (11)

Vit = E Wit} = u+ (12)

Vertk = —O0Vkpr—1k—1 ="~ Ong Ykt t—nglk—ng (13)
+PBouk + -+ + Pugitk—ng + (14)
FYYk + - Yy Yk—ny (15)
The following relationships hold:
azhy = cizh (16)
Bz = BEHF@E (17)
') = G (18)
with compatible polynomial degrees: ny = nc, ng =ng+nr,

ny = ng.

Our methodology consisted in estimating ARX-based predic-
tors (i.e., when a(z7!) =C(z7!) = 1) of various orders and
then building on this with pseudo-linear regression strategy
to obtain the polynomial parameters of ot (z ™).

D. Prediction evaluation

The quality of the predictors developed was assessed
by statistical model validation and mathematical metrics in
order to quantify the error between the predicted profile vs.
the original one and diabetes-specific metrics to show their
impact in terms of clinically-relevant detected events. Thus,
the predicted profile precision was evaluated with respect to
the following:

o Percentage FIT
o Percentage Variance Accounted For (VAF)
o Root Mean Squared Error (RMSE) [mg/dL]

The clinical accuracy of the predictions was evaluated in
terms of both correctness of predicted glucose values and
ability to capture the direction and rate of change of glucose
fluctuations by the continuous glucose-error grid analysis
(CG-EGA) which comprises a point-error grid and a dy-
namic rate-of-change error grid [20]. In both of them each
prediction-measured value pair is assigned to one of A-E
labeled zones. Points falling into Zone A are considered
clinically accurate; points in Zone B are benignly erroneous;
points in Zone C may lead to an overcorrected treatment
whereas point in Zone D may lead to undercorrected mea-
sures. Last, points in Zone E are highly erroneous.
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ITII. RESULTS

As far as the entire three-days data sequence is concerned,
state-space models of fifth order were selected according to
the most significant singular values and have been subse-
quently used in a Kalman filter for prediction, their predictive
capabilities being compared with first order ARX - and second
order ARMAX-based predictors. Table II offers a quantitative
assessment of 30, 60, 90, 120 minutes ahead predictions
on estimation data achieved with the above mentioned ap-
proaches. The superiority of the state-space model-based
predictor identification strategy appears clearly over all the
prediction horizons. The most significant achievement is a
root-mean-squared error of 17.06 [mg/dL] on the short 30
minutes look ahead by PBSID, ;. In order to assess delays,
the table reports the zero-order-hold (ZOH) for comparison.
It is, indeed, important for alert generation to detect changes
with a delay smaller than the prediction horizon. Table III is
concerned with the point error grid analysis for the evaluation
of prediction performances over 30 minutes prediction hori-
zon on calibration data. State-space model-based predictions
exhibit the best performances. Notice the bigger accuracy
obtained in comparison to what achieved by projecting the
last value with a ZOH.

In a second phase the data was, then, randomly splitted
into two parts: one for estimation and the other for validation.
Model order was fixed to 2. Figure 4 shows for prediction
horizons of 30 minutes, the real (dotted line) versus the
predicted (solid line) glucose curve for state-space model-
based predictors: n4sid (top left) and PBSID,, (top right);
and direct identification of ARX- (bottom left) and ARMAX -
based predictors (bottom right) on validation data. From a
qualitative point of view, Fig.4 suggests that none of the
approaches is clearly superior to the other. Nevertheless,
the predictor-based subspace identification strategy, namely
PBSID,p;, seems to outperform the other methods, being
more prompt in tracking ascending as well as descending
trends with clinically tolerable delays. However, in order
for the approach to be consider useful in practice, wrong
forecasts leading to the generation of false hypo- and hyper-
glycemic alarms need to be avoided. In the case examined,
such an event is visible at + = 65 with an unacceptable
mismatch of 75[mg/dL]. Figure III quantifies the accuracy
of validation data prediction by means of the continuous
glucose-error grid analysis in the case of the ARMAX-based
predictor. The grid on the left shows that 82% points fell
into the A zone and 16.5% into the B zone. Dynamic
characteristics of the prediction, namely the rate-of-change
accuracy, are shown in Fig. III right grid.

IV. DISCUSSION

Over the last decades, a wealth of models describing the
insulin-to-glucose system dynamics was developed for the
purpose of simulation and glycemic control, the approach
being physiology based [6], [5], [21]. Very recently the
problem of identifying such a model has been tackled from
a data-driven perspective mainly using simulated data from
model in the literature [22], [23]. Indeed, fitting actual TIDM

ThA11.1

TABLE III
EVALUATION OF PREDICTOR PERFORMANCES ON 30 MIN PREDICTION
HORIZON
Predictor zone A zone B zone C zone D  zone E
ndsid 88.0282  10.7981 0 1.1737 0
PBSID,,;  87.0892  10.5634 0 2.3474 0
ARX 77.9621  20.3791 0 0.9524 0
ARMAX 86.1905  12.6190 0 1.6588 0
ZOH 82.8638  14.0845 0 23474  0.7042

Percentage of point falling within regions. Fifth order n4sid and PBSID,,
based models ; first order ARX and second order ARMAX.

subject data to the models has been treated to a much less
extent (e.g., [11], [24], [25], [26]) given the difficulties in
gathering appropriate patient records.

This paper dealt with a unique dataset which is being
collected [12] and looks promising for future exploitation.

As far as meal modeling is concerned, the proposed
strategy in [11] seems to be a theoretically sound attempt
to account for differences in meal compositions. However, it
was not possible to apply it in this context due to unavailable
meal composition information. Moreover, the adaptation of
parameter values of the physiological model representing
gut absorption to the specific subjects could lead to better
estimates of the overall dynamic model.

The use of subspace-based algorithms for identification
of linear-time-invariant systems was investigated, the reason
being these methods do not require parameterization of
the model class, are non-iterative and numerically robust;
moreover, they have been proven to be suitable in identifying
MIMO systems. Among those, a new class of methods based
on identification of a predictor model in a prediction error
method (PEM) fashion was considered [18]. In particular,
the PBSID,; algorithm in [19] was used. This algorithm
requires the choice of three parameters by the user: the model
order n, the length of the past horizon p and the length of
the future horizon f. In particular, it is not clear how the
future horizon affects the quality of the estimation, albeit it
has been shown that its optimal choice can lead to better
estimates [27]. Hence, parameter values were decided in a
trial-and-error manner. It was empirically noticed, however,
that decreasing the future horizon worsens the estimation,
increasing the past horizon improves up to a limit. As
for the model order, the selection was made on the basis
of the singular values of the system. Model order n =5
appeared to describe the input-output behaviour sufficiently
well. However, for validation data the model order was
chosen smaller than the prediction steps.

In addition to model-based predictors, direct predictor
identification was pursued, given its relevance in contexts
where models are poor or not available.

In order to assess robustness of the proposed models for
prediction, population studies and cross validation over dif-
ferent subjects are needed. Moreover, further improvements
of the state-of-the-art in identification, e.g., the ability of
handling non-uniformly sampled data, reduction of sensitiv-
ity to initial conditions and automatic selections of model
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TABLE 11
EVALUATION OF PREDICTOR PERFORMANCES OVER PREDICTION HORIZONS OF 30, 60, 90, 120 MINUTES USING ESTIMATION DATA

Predictor 30min 60min 90min 120min
FIT VAF RMSE FIT VAF RMSE FIT VAF RMSE FIT VAF RMSE
nésid 73.78  93.12 17.72 | 6192  85.50 2573 | 54.38 79.19 30.83 | 47.02 7193 35.81
PBSID,, | 74775  93.70 17.06 | 63.50 87.01 24.67 | 57.11 82.36 28.98 | 51.34 77.54 32.89
ARX 61.03 87.19 26.42 | 38.39 76.28 41.86 | 15.36  53.96 59.56 526 18.71 78.33
ARMAX 7228 9249 18.82 | 5545 80.88 35.28 | 50.16 75.22 5448 | 27.72 67.21 61.39
ZOH 59.67 84.41 27.26 | 41.55 63.15 41.06 | 26.26  39.41 52.64 | 1340 13.53 62.93

fifth-order n4sid— and PBSID,p-based predictors; second-order ARX- and ARMAX-based predictors.

parameters, would be valuable.

V. CONCLUSIONS

The present contribution was concerned with short-term
model-based prediction of blood glucose evolution. Predic-
tion results for a representative TIDM patient were shown.
Predictors showed capability of predicting hance allowing
for preventing both hypoglycemic and hyperglycemic events
with a prediction horizon of 30 minutes with a root mean
squared error of 17.06 [mg/dL] on calibration data and of
18.08 [mg/dL] on validation data. However, consistency and
robustness of the proposed approach across different subjects
was not demonstrated and is, thus, left for future work.
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