
LUND UNIVERSITY

PO Box 117
221 00 Lund
+46 46-222 00 00

Unsplittable max-min demand allocation - a routing problem

Nilsson, Pål; Pioro, Michal

2005

Link to publication

Citation for published version (APA):
Nilsson, P., & Pioro, M. (2005). Unsplittable max-min demand allocation - a routing problem. Paper presented at
HET-NETs '05 Third International working conference, ILkley, United Kingdom.

Total number of authors:
2

General rights
Unless other specific re-use rights are stated the following general rights apply:
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors
and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.
 • Users may download and print one copy of any publication from the public portal for the purpose of private study
or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove
access to the work immediately and investigate your claim.

https://portal.research.lu.se/en/publications/ccf0c66c-bde1-4d8f-aa62-8e574017a756


Unsplittable max-min demand allocation – a routing problem
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Abstract The end-to-end assignment of bandwidth to node-pairs (demands) in a communication network can be con-
sidered fair if it is distributed according to the max-min fair (MMF) principle. This paper investigates the problem of
obtaining an MMF allocation if each demand is required to useexactly one path (i.e., to use unsplittable flows). First it is
shown that the problem isNP-hard, both if each demand may use an arbitrary path and also if each demand is restricted
to use a path from a small, predefined (demand-specific) path-list. Then, a number of mixed integer programming models
are presented for the problem. These models constitute a basis for resolution techniques and are therefore examined in
terms of computation times on a set of randomly generated problem instances.

1 Introduction

In this paper a routing problem involving max-min fair allocation of bandwidth to demands in a communication
network is dealt with. The considered problem has been studied in its simplified form already in [1], and
has also, as a convex optimization problem, been solved for bifurcated (splittable) flows [8, 12, 11]. This
paper addresses a more difficult version when only non-bifurcated (unsplittable) flows are allowed. Such an
assumption, also called requirement of single-path flows, results in non-convex problem formulations which are
inherently hard [5] (the hardness was pointed out already in[7]). Unsplittable flows is often a realistic restriction
due to the used routing protocol, or simply an explicit management requirement, stipulating avoidance of packet
resequencing in receiving nodes. With the network given in terms of topology and link capacities, the following
traffic engineering problem is identified: the demand between each source-destination (S-D) node-pair must
be associated with a single path such that a sufficient volumeof flow can be routed on demands’ single paths
simultaneously, without exceeding the link capacities. By“sufficient volume” a volume that is equitable among
different S-D pairs is addressed, i.e., a fair sharing of resources. Particularly, we study the problem of assigning
a single-path flow to each demand, such that the flow distribution is Max-Min Fair (MMF). Consequently, once
each S-D pair is assigned a single path, the problem is reduced to max-min fair sharing of corresponding link
capacities, for which an efficient polynomial time algorithm exists [1]. Thus essentially, the considered problem
amounts to the very hard task of appropriate path selection.

1.1 Notation

The used notions will be defined in terms of graph theory, where a graph,G = (V,E), represents a network,
with the vertex set,V , modeling nodes and the set of edges,E, modeling links. A set of vertex-pairs called
demands,D, is assumed to be given. A demand is a requirement for communication between a node-pair in the
network. For each demandd, d ∈ D, it will sometimes be convenient to predefine a set of paths,Pd, where each
elementp, p ∈ Pd, defines a cycle-free set of edges that connects vertex-paird. Let elements of the index sets
{1, . . . , |E|}, {1, . . . , |D|} and{1, . . . , |Pd|} uniquely identify elements of the setsE, D andPd respectively.
As there will be no risk of ambiguity we will slightly abuse notation, indexing one, d, andp, as if they were
elements of these index sets. Each edgee, e ∈ E, is associated with a capacity,ce. A binary indicator,δedp, is
used for the path-edge incidence relation; letδedp = 1 if e ∈ p andp ∈ Pd, andδedp = 0 otherwise. The flow
allocated to demandd will be identified byXd, andxdp is used to denote its part that is allocated to pathp,
i.e.,

∑

p∈Pd
xdp = Xd. Let x = (X1,X2, . . . ,X|D|) denote the vector of all flows (also denoted the allocation
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vector), and~x be the allocation vector sorted in non-decreasing order. The sorted allocation vector~x is said to
be lexicographically greater than the sorted allocation vector ~y, ~x ≻ ~y, if the first non-zero entry of~x − ~y is
positive. Consequently,~x � ~y means~x ≻ ~y or ~x − ~y = 0, and~x∗ = lexmax{~x : x ∈ Q} that~x∗ � ~x for
all x ∈ Q.

1.2 Problem Description

This study concerns the problem of obtaining MMF single-path (i.e., unsplittable) flows in a capacitated net-
work. In an MMF allocation of flows each demand is assigned a flow and a routing such that it holds for
the sorted allocation vector that an entry can be increased only at the cost of decreasing a previous entry,
or by making the allocation vector infeasible. It can be shown that obtaining an allocation vector,x =
(X1,X2, . . . ,X|D|), with this characteristic is equivalent to solving

lex max~x; x ∈ Q, (1)

whereQ is the set of feasible solutions [11]. A solutionx ≥ 0 is considered feasible,x ∈ Q, if

(i)
∑

d∈D

∑

p∈Pd
δedpxdp ≤ ce , for all e ∈ E and

(ii) for all d ∈ D, xdp′ = Xd for some pathp′, p′ ∈ Pd, andxdp = 0 for all other pathsp, p ∈ Pd, p 6= p′,

i.e., if the sum of flows on a link does not exceed the link’s capacity, and no demand has flows on more than
one path.

2 Computational complexity

In this section it will be shown that solving (1) isNP-hard. This is accomplished by proving that the corre-
sponding decision problem isNP-complete. It will be convenient to divide the problem into two cases: the
case when a demand may use any one path to connect its node-pair – theunlimited path-sets case, and the case
when a demand may select a path only from a limited, predefinedset of paths – thelimited path-sets case. A
somewhat different version of the former decision problem was indeed provenNP-complete in [6].

2.1 Unlimited path-sets

When a demand may use any (simple) path that connects its node-pair, there is clearly no reason to predefine its
path-set, as it is directly implied byG = (V,E). This is the case for all demands if path-sets are unlimited.We
will refer to the decision problem corresponding to the optimization problem of obtaining a maximized minimal
flow on single paths with unlimited path-sets asMAXIMIZING MINIMAL SINGLE-PATH FLOW (MMSPF). If
the set of feasible solutions,Q, admits usage of any path for each demand, such an optimization problem is
indeed equivalent to finding a maximal first entry of~x, x ∈ Q, i.e., certainly a subproblem of (1).

MAXIMIZING MINIMAL SINGLE-PATH FLOW
INSTANCE: GraphG = (V,E), an edge capacityce for eache, e ∈ E, a set of demands (vertex-pairs)D, and
a numberK > 0.
QUESTION: Is there a set of simple paths, containing exactlyone path for each demandd, d ∈ D, such that
for each demandd it is possible to assign a flowXd, with Xd ≥ K, on the path corresponding to demandd,
without violating any edge capacityce, e ∈ E?

It is a straightforward exercise to showNP-completeness ofMMSPF, e.g. by transforming it toEDGE-
DISJOINT PATHS[9]. The main problem – lexicographically maximizing~x; x ∈ Q (not only considering
the MMSPF subproblem), corresponds to the following decision problem denotedLEX MAX SINGLE PATH
FLOWS(LMSPF):

LEX MAX SINGLE PATH FLOWS
INSTANCE: GraphG = (V,E), an edge capacityce for eache, e ∈ E, a set of demands (vertex-pairs)D, and
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a target vector,y, of length|D|.
QUESTION: Is there a set of simple paths, containing exactlyone path for each demandd, d ∈ D, such that
for each demandd it is possible to assign a flowXd on the path corresponding to demandd, without violating
any edge capacityce, e ∈ E, and such that ifx = [Xd]d∈D, then~x � ~y ?

Proposition 1 LMSPFisNP-complete.

Proof. As MMSPF is a subproblem ofLMSPF, the same transformation is valid here. 2

It is possible to prove this fact exploiting another involved difficulty, namely packing. This can be done with a
transformation fromPARTITION, as will be shown in the following section.

2.2 Limited path-sets

The previous section had the assumption that the selection of a single path could be made from all possible
paths for a demand. In many cases such an assumption might be too generous and not practical. For these
cases a more realistic assumption would be that each demand is given with a predefined, bounded (in terms of
cardinality) path-set. We will assume such a setting in thissection. Clearly, if the sizes of the predefined path-
sets are very large, this will differ only academically fromthe unlimited path-sets case. However, in practice
the number of admissible paths will be substantially smaller than the number of all possible paths. We will
show thatLMSPF with predefined path-sets isNP-complete. The cardinality of the predefined path-sets will
be limited to 2, resulting in the decision problemLEX MAX SINGLE PATH FLOWS-2(LMFSP2):

LEX MAX SINGLE PATH FLOWS-2
INSTANCE: GraphG = (V,E), an edge capacityce for eache, e ∈ E, a set of demands (vertex-pairs)D, two
simple paths for each demand, and a target vector,y, of length|D|.
QUESTION: Is there a set of paths, containing exactly one of the two admissible paths for each demandd,
d ∈ D, such that for each demandd it is possible to assign a flowXd on the path corresponding to demandd,
without violating any edge capacityce, e ∈ E, and such that ifx = [Xd]d∈D, then~x � ~y ?

Proposition 2 LMSPF2isNP-complete.

Proof. LMSPF2belongs toNP since a nondeterministic algorithm needs only to guess one of the two paths for
each demand and apply the well-known polynomial time algorithm (e.g. see [1]) to obtain the allocation vector
x, and check if~x � ~y. We will transformPARTITION into a single-source multiple-sinks instance ofLMSPF2,
essentially using an idea from [4].

PARTITION
INSTANCE: Finite setA of items, and a sizes(a) ∈ Z

+ for eacha ∈ A.
QUESTION: Is there a subsetA′ ⊂ A such that

∑

a∈A′ s(a) =
∑

a∈A\A′ s(a)?

Consider an arbitrary instance ofPARTITION and construct a graph as follows: let two “core vertices”,κl

andκr, be connected by 2 “core edges”,e ande′, both of which has capacity12
∑

a∈A s(a). For each element
a ∈ A, connect by an edge of capacitys(a) a vertexta, to the right core vertex,κr. Let y = [s(a)]a∈A. Now
consider each(κl, ta)-pair,a ∈ A, in the resulting graph as a demand (see Figure 1). Each(κl, ta)-pair has ex-
actly two admissible paths; one traversinge and one traversinge′. This construction, which is apparently done
in polynomial time, is indeed a valid instance ofLMSPF2(with |A| demands). Now assume that there is a posi-
tive answer toPARTITION. This implies existence of a subsetA′ ⊂ A such that

∑

a∈A′ s(a) =
∑

a∈A\A′ s(a).
Assign to each(κl, ta)-pair a flow ofXa = s(a). If a ∈ A′ let the demand use edgee′, and ifa ∈ A \ A′ edge
e, together with its dedicated edge connectingκr andta. As ce = ce′ = 1

2

∑

a∈A s(a), no link capacities are
exceeded. We have thus an allocationx, for which Xa = s(a) for all a ∈ A, and consequently that~x = ~y,
implying a positive answer toLMSPF2. Conversely, suppose that there is a positive answer for theconstructed
instance ofLMSPF2, i.e., that there exists a set of single paths for which an allocation vectorx, with ~x � ~y, is
obtainable. In particular, this means that there exist flowsXa, such thatXa = s(a) for all a ∈ A. Thus the total
flow betweenκl andκr is

∑

a∈A s(a). But ce = ce′ = 1
2

∑

a∈A s(a) and flows are unsplittable so there must
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Figure 1: The resulting graph.

exist a subsetA′ ⊂ A, such that
∑

a∈A′ s(a) =
∑

a∈A\A′ s(a) = 1
2

∑

a∈A s(a), which answers thePARTITION
question positively. Therefore, sincePARTITION isNP-complete [2],LMSPF2must also beNP-complete.2

In the unlimited path-sets case it was possible to proveNP-completeness even of the subproblem of maxi-
mizing the minimal single path-flow. A natural question to ask is if this is possible also if path-sets are limited.
Indeed, this is the case, as is shown by a transformation from3-SATISFIABILITY in [9].

3 MIP Models

Because of the underlying application, we will from now on concentrate on the limited path-sets case. It will
thus be assumed that for each instance, each demandd, d ∈ D, is given with a predefined (limited) set of paths,
Pd. In this section, focus is put on representing subproblems of (1) as Mixed-Integer Programming (MIP)
problems. Particularly, each MIP is designed to compute a specific entry, say entryj, of ~x. We will sometimes
denote this entry by thej:th level. It will become clear that the full problem can be solved (in some different
ways) essentially by resolving a sequence of these MIPs.

3.1 The first level

The first level, i.e, the first element of~x (calledh1), can be obtained by solving

maximize h1 (2)

subject to
∑

p∈Pd

udp = 1 d ∈ D (3)

∑

d∈D

∑

p∈Pd

δedpudph1 ≤ ce e ∈ E (4)

h1 ≥ 0, udp ∈ {0, 1} . (5)

Apparently, this formulation has a difficulty of being nonlinear, containing multiplication of two variables
(constraint (4)). However, by defining a new variable,µ = 1

h1
, this problem can be avoided. Of course, it is

then necessary to presume thath1 > 0, which is reasonable. Clearly,µ will be minimal when (and only when)
h1 is maximal. Further, if we restate the problem in variableµ, the nonlinearity is eliminated, making use of
that neitherh1 norµ are demand-dependent;

minimize µ (6)

subject to
Pd
∑

p=1

udp = 1 d ∈ D (7)

∑

d∈D

∑

p∈Pd

δedpudp ≤ µce e ∈ E (8)

µ ≥ 0, udp ∈ {0, 1}. (9)
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The last formulation is a (linear) mixed 0-1 program. The advantages of the “inverted approach” taken in (6)-(9)
has been exploited in [8], although for the splittable pathscase.

3.2 Finding all levels – an explicit approach

The formulation presented in this section can be used as a quite straightforward way of expressing all the higher
MMF-levels,h∗

k, k = 2, . . . , |D|. Given the first level (computed e.g. by (6)-(9)), resolution of the presented
MIP provides a solution to the studied problem. Definingzk = hk −

∑k
i=2 h∗

i−1, and lettingM be a sufficiently
large number, e.g.,M = maxe{ce}, we may solve

maximize zk (10)

subject to
∑

d∈D

∑

p∈Pd

xdp = (|D| − (k − 1))zk (11)

∑

p∈Pd

xdp ≤ zk d ∈ D (12)

xdp ≤ Mw
(k)
dp p ∈ Pd, d ∈ D (13)

∑

d∈D

∑

p∈Pd

w
(k)
dp = |D| − (k − 1) (14)

w
(2)
dp ≤ udp p ∈ Pd, d ∈ D (15)

w
(r+1)
dp ≤ w

(r)
dp p ∈ Pd, d ∈ D,

r ∈ {2, . . . , k − 1} (16)
∑

d∈D

∑

p∈Pd

w
(r)
dp = |D| − (r − 1) r ∈ {2, . . . , k − 1} (17)

∑

p∈Pd

udp = 1 d ∈ D (18)

∑

d∈D

∑

p∈Pd

δedp(udph
∗
1 +

k−1
∑

r=2

w
(r)
dp z∗r + xdp) ≤ ce e ∈ E (19)

udp ∈ {0, 1}, w
(r)
dp ≥ 0, xdp ≥ 0, zk ≥ 0. (20)

It should be noted that the correctness of (10)-(20) relies entirely on thatw(i)
dp is forced binary for alli =

2, . . . , k, although there is no such explicit constraint.

Property 1 If h∗
1 and all z∗i , 2 = 1, . . . , k − 1, are optimal, then for any feasible solution to (10)-(20) itholds

thatw(i)
dp ∈ {0, 1}, for all i = 2, . . . , k.

Proof. Suppose thatw(r−1)
dp ∈ {0, 1}, p ∈ Pd, d ∈ D, for somer, 3 ≤ r ≤ k. As w

(r−1)
dp ∈ {0, 1}, and since

∑

d∈D

∑

p∈Pd
w

(r−1)
dp = |D| − r + 2, there exist exactly|D| − r + 2 non-zero variablesw(r−1)

dp , all of which

must be equal to 1. By (16),w(r−1)
dp ≥ w

(r)
dp , sow

(r−1)
dp = 0 impliesw

(r)
dp = 0. Now for z∗r−1 to be optimal there

must exist a(d, p), p ∈ Pd, d ∈ D, such thatw(r−1)
dp = 1 andw

(r)
dp = 0 (otherwisez∗r−1 could be increased).

Combined with the constraint
∑

p∈Pd
w

(r)
dp = |D|−r+1, this implies that there must exist|D|−r+1 non-zero

variablesw(r)
dp , that sum up to|D|−r+1. Since0 ≤ w

(r)
dp ≤ 1, it follows thatw(r)

dp ∈ {0, 1}. An identical argu-

ment can be used showing the same relation beweenw
(2)
dp andudp, implying thatw(2)

dp ∈ {0, 1} asudp ∈ {0, 1}
by definition. Thus by induction overr the general result follows. 2

A procedure to solve (1) is thus to solve (6)-(9) for the first level,h∗
1, and then to iteratively solve (10)-(20), for

z∗i , i = 2, 3, . . . , |D|, and compute corresponding levels,h∗
i = h∗

1 +
∑i

j=2 z∗j .
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3.3 Cumulated values – an implicit method

The MIP model outlined in this section is based on the method of describing a non-convex MMF prob-
lem presented in [10], under the notion ofconditional means. It is referred to as animplicit method, since
its original form constitutes a general way of expressing a wide range of non-convex MMF problems. Let
(h1, h2, . . . , h|D|) = ~x, x = (X1,X2, . . . ,X|D|), whereXd =

∑

p∈Pd
xdp, d ∈ D, is the total flow assigned

to demandd. We are interested in the lexicographic maximization of this vector, i.e.,

lex max(h1, h2, . . . , h|D|) , (21)

such thatx ∈ Q. Define thek:th cumulated ordered value, Hk, k ≤ |D|, asHk =
∑k

j=1 hj . Then, for a given
outcome vectorx, this entity can be computed as

Hk = min
∑

d∈D

Xdakd (22)

s.t.
∑

d∈D

akd = k (23)

0 ≤ akd ≤ 1, d ∈ D. (24)

The optimization problem that is dual to (22)-(24) may be directly stated as

Hk = maxkrk −
∑

d∈D

λkd (25)

s.t. rk − Xd ≤ λkd, d ∈ D (26)

λkd ≥ 0, d ∈ D, (27)

which is linear even ifx is a variable. In terms of the solution, lexicographic maximization of all the cumulated
ordered values,Hk, k ∈ {1, . . . , |D|}, with x ∈ Q (x is a variable), can in fact be shown equivalent to
lexicographic maximization of the sorted allocation vector, ~x, with x ∈ Q [10]. This yields the following
representation of the studied problem:

lex max
(

H1,H2, . . . ,H|D|

)

(28)

s.t. Hk = krk −
∑

d∈D

λkd, k ∈ {1, . . . , |D|} (29)

rk − Xd ≤ λkd, k ∈ {1, . . . , |D|}, d ∈ D (30)

λkd ≥ 0, k ∈ {1, . . . , |D|}, d ∈ D (31)

x ∈ Q. (32)

For the purpose of solving problem (28)-(32), withQ constituted by the single-path and the link-load con-
straints, it is possible to solve the following MIP iteratively for k = 2, . . . , |D|:

maximize Hk (33)

subject to Hk ≤ krk −
∑

d∈D

λkd (34)

H∗
l ≤ lrl −

∑

d∈D

λld l ∈ {1, . . . , k − 1} (35)

rl −
∑

p∈Pd

xdp ≤ λld l ∈ {1, . . . , k}, d ∈ D (36)

xdp ≤ udpM p ∈ Pd, d ∈ D (37)
∑

p∈Pd

udp = 1 d ∈ D (38)

∑

d∈D

∑

p∈Pd

δedpxdp ≤ ce e ∈ E (39)

xdp ≥ 0 , λid ≥ 0 , udp ∈ {0, 1}, (40)
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whereM is a sufficiently large number, e.g.M = maxe{ce}, andH∗
l , l ∈ {1, . . . , k − 1}, are the cumulated

ordered values obtained in previous iterations. On purpose, this MIP does not cover computation of the first
level,H1 = h1, which may be more efficiently computed by (6)-(9).

3.4 The distribution approach – finite outcome set

In many cases, especially in the communication network context, it is very reasonable to assume that the flow
volume allocated to demandd may take on only a limited set of discrete values. Such a restriction results in
essentially the same problem, but with afinite outcome set.

Property 2 If the flow volumesXd, for all demandsd ∈ D, only can assume values from a finite set of levels,
v1, v2, . . . , vr, then

lex max~x; x ∈ Q, (41)

is equivalent to

lex min
(

∑

d∈D t2d,
∑

d∈D t3d, . . . ,
∑

d∈D trd

)

(42)

s.t. vk − Xd ≤ tkd, k ∈ {2, . . . , r}, d ∈ D (43)

tkd ≥ 0, k ∈ {2, . . . , r}, d ∈ D (44)

x ∈ Q. (45)

This property is derived formally in [10]. Intuitively, it is not hard to see that (42)-(45) first assures that as many
demands as possible are raised to the first non-zero level,v2 (v1 = 0). Keeping this many demand volumes
greater or equal thanv2, it is then assured that as many demands as possible are raised to v3, and so on. The
obvious benefit is that if the demand volumes are bound to be modular, then (42)-(45) may be solved to get a
solution to the studied problem. This can be done by solving the following MIP iteratively.

minimize
∑

d∈D

tkd (46)

subject to vl −
∑

p∈Pd

xdp ≤ tld d ∈ D, l ∈ {2, . . . , k − 1} (47)

∑

d∈D

tld ≤ τ∗
l l ∈ {2, . . . , k − 1} (48)

vk −
∑

p∈Pd

xdp ≤ tkd d ∈ D (49)

xdp ≤ udpM p ∈ Pd, d ∈ D (50)
∑

p∈Pd

udp = 1 d ∈ D (51)

∑

d∈D

∑

p∈Pd

δedpxdp ≤ ce e ∈ E (52)

xdp ≥ 0 , tld ≥ 0 , udp ∈ {0, 1}, (53)

whereM is a sufficiently large number, e.g.M = vk.

3.5 Upper and Lower bounds

In a communication network, it is often a reasonable assumption that each demandd ∈ D is given with
acceptation limits,qd andQd, where it is required that the allocation vector satisfiesqd ≤ Xd ≤ Qd, for all
d ∈ D. The upper limit,Qd, can be incorporated in a natural fashion in all of the presented MIP models. This
is just a matter of substituting the constraints of the typexdp ≤ udpM , with xdp ≤ udpQd for all p ∈ Pd,
d ∈ D. The lower limit,qd, has to be added as explicit constraints,qd ≤ Xd for all d ∈ D. Note that the
acceptation limits have to be carefully a priori determined, since otherwise there is a large risk that they make
the MIP model infeasible.
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4 Some numerical experiments

As has been shown, the studied problem suffers from heavy computational complexity. This is mainly due to
the single-paths requirement and the fact that it embodies amulti-criteria optimization problem. Therefore, it is
indeed interesting to study and compare computation times for different instances and for different resolution
techniques.

4.1 Exact methods

In this section we give a flavour of the computation times associated with solving

lex max~x; x ∈ Q,

with the two different approaches described in sections 3.2and 3.3, respectively. Both these approaches offer
exact methods for solving the considered problem. Particularly, we present two algorithms, called theexplicit
and theimplicit methods. The explicit method (Algorithm 1) invokes the MIP formulated by (10)-(20), whereas

Algorithm 1 The explicit method
1: solve (6)-(9) forh∗

1

2: for k := 2 to |D| do
3: solve (10)-(20) forz∗k
4: end for
5: Computeh∗

k from z∗k, k = 2, . . . , |D|

the implicit method (Algorithm 2) invokes the MIP of (33)-(40). Both methods require resolution of a sequence

Algorithm 2 The implicit method
1: solve (6)-(9) forh∗

1 = H∗
1

2: for k := 2 to |D| do
3: solve (33)-(40) forH∗

k

4: end for
5: compute~x from H∗

k , k = 1, . . . , |D|

of MIPs. The frameworks of the algorithms are implemented inMATLAB6.5, and the MIPs are solved us-
ing a MATLAB interface to CPLEX 9 (mex-function), called CPLEXINT (downloadable freeware [3]). This
means that the generic CPLEX 9 MIP-solver is used for resolving MIPs (6)-(9), (10)-(20), and (33)-(40). The
computations were carried out on a PC with an Intel PIII-1GHzCPU, RAM of 256 MB, and Windows 2000
OS. Table 1 contains computation times for the two differentmethods, for a number of small instances. The
instances are characterized by that there is a demand between every node-pair and that link capacities are uni-
formly distributed over{10, 20, 30, 40, 50}. For the first 7 instances there are two paths per demand, and for
the 5 last instances there are three paths per demand. The results of Table 1 suggest that the implicit method is
slightly faster than that of the explicit method. If we sum upthe usage of variables and constraints for the MIP
corresponding to iterationk in the two different approaches, this is reasonable to expect.

4.2 The distribution approach

In this section we investigate numerically the method described in Section 3.4. This method can be viewed as
a resolution technique for the studied problem if demand volumes only can assume some predefined, discrete
levels. Furthermore, it can also be regarded as an approximate method for solving the studied problem without
restrictions on demand volumes. From the latter viewpoint it is interesting how much faster the problem can be
solved if this approximate method is used, i.e., how much computation time that can be saved if we predefine
a grid,{v1, v2, . . . , vr}, and require that demand volumes only can assume values fromthis, and to what cost,
in terms of deviation from optimum, this may be done. Algorithm 3 is based on the distribution approach.
The hardware and software constellations are identical to those of Section 4.1. In Table 2, the distribution
approach is applied to a number of different instances. Again, link capacities are uniformly distributed over
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Algorithm 3 The distribution approach

1: l := 2, A := true, x1
dp := 0 for all p ∈ Pd, d ∈ D

2: while l ≤ r andA = true do
3: solve (46)-(53) forτ∗

l , xl
dp andudp for all p ∈ Pd, d ∈ D

4: if
∑

p∈Pd
xl

dp −
∑

p∈Pd
xl−1

dp = 0 for all d ∈ D then
5: A := false

6: end if
7: l := l + 1
8: end while

{10, 20, 30, 40, 50}, and there is a demand between every node-pair in the network. The elements of the
predefined grid,v1, v2, . . . , vr, are all the numbersvi that can be written asvi = m · z, z ∈ Z, 0 ≤ vi ≤ 50,
wherem is called the module size. The computation times are given for Algorithm 3 with m = 2 (dist-2) and
m = 5 (dist-5). Application of the best exact method (Algorithm 2), did not finish in less than half an hour
for any of the instances in Table 2. Comparison of the exact methods and the distribution approach, by the

#paths/ computation times (s)
#nodes #links demand explicit method implicit method

5 8 2 0.8130 0.4710
6 12 2 1.1230 1.3730
7 12 2 10.098 4.7190
8 13 2 16.420 21.139
9 18 2 1.62·103 327.92
10 18 2 1.61·103 327.11
11 19 2 1.92·103 107.41
4 6 3 0.4220 0.1080
5 8 3 1.1560 0.7020
6 12 3 8.8550 13.077
7 17 3 26.738 28.999
8 12 3 236.49 46.704

Table 1: The explicit and implicit methods.

#paths/ computation times (s)
#nodes #links demand dist-2 dist-5

10 22 3 58.518 5.3940
11 23 3 180.81 2.5340
12 24 3 50.954 1.5780
13 26 3 51.781 2.5780
14 24 3 16.640 1.2200
15 25 3 47.485 2.4700
16 33 3 59.623 5.6410
16 34 3 29.400 3.1260
17 36 3 99.595 12.333
18 40 3 358.72 5.5310
19 38 3 1.838·103 4.9680
20 36 3 108.31 8.0770

Table 2: The distribution approach.

computation times given in Table 1 and Table 2, strongly suggests that the distribution approach should be used
whenever its deviation from the true optimum is acceptable.Certainly, such an error tolerance will depend on
the details of the application. Even though it is possible togive an artificial example for where the deviation is
larger, we observe that an entry of the sorted distribution approach solution vector practically always differs by
at most the module size from an entry of the sorted optimal allocation vector. Besides, if the demand volumes
are restricted to be modular, the distribution approach is actually an exact method.

5 Conclusion

This paper investigates a problem of obtaining a max-min fair demand bandwidth assignment in a communi-
cation network, when only unsplittable (single-path) flowsare allowed. First, we show that if for each demand
(node-pair), any single path can be used, the problem is obviouslyNP-hard. Since in a communication net-
work it is often quite unreasonable to assume that a demand may use any path connecting its end nodes, this
result is not sufficient in showing the associated computational complexity. Therefore, it is then assumed that
each demand is given a predefined (limited) path-set. We showthat this problem, with cardinalities of path-sets
limited to as little as 2, is alsoNP-hard.

Having established the computational complexity for the considered problem, we proceed to resolution
techniques. This is done by representing subproblems as mixed-integer programs (MIP). Particularly, each
MIP is constructed to compute a consecutive entry of the optimal MMF allocation vector. In essence, the full
problem is treated by resolving a sequence of such MIPs. In this spirit, a problem-specific resolution technique
is developed. This technique is then compared with a generalresolution technique for non-convex lexicographic
maximization. In its current status the problem-specific resolution technique turns out to be somewhat slower
than the general approach. Further developments may however change this observation. Finally, we examine
a resolution technique called the distribution approach, which assumes that flow allocated to a demand may
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take on only a limited set of discrete values, i.e., we assumea finite outcome set. This models the modularity
of flow in a communication network. Moreover, for the continuous flow case, this approach may serve as an
approximation technique. It is shown that even with very small (relative to link capacities) module sizes, the
distribution approach is substantially faster than its counterparts that assume non-modularity. Consequently,
we conclude that the distribution approach is advantageousin addressing the studied problem, both because its
approximation ability, and as an exact solver in the case of demand volumes being multiples of a module.
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