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Abstract The end-to-end assignment of bandwidth to node-pairs (dds)an a communication network can be con-
sidered fair if it is distributed according to the max-mirir fMMF) principle. This paper investigates the problem of
obtaining an MMF allocation if each demand is required toarsectly one path (i.e., to use unsplittable flows). Firsd it i
shown that the problem j&P-hard, both if each demand may use an arbitrary path andfasath demand is restricted
to use a path from a small, predefined (demand-specific)lgiti-hen, a number of mixed integer programming models
are presented for the problem. These models constituteis floagesolution techniques and are therefore examined in
terms of computation times on a set of randomly generatellg@moinstances.

1 Introduction

In this paper a routing problem involving max-min fair alktion of bandwidth to demands in a communication
network is dealt with. The considered problem has been estuinhi its simplified form already in [1], and
has also, as a convex optimization problem, been solvediforchted (splittable) flows [8, 12, 11]. This
paper addresses a more difficult version when only nondated (unsplittable) flows are allowed. Such an
assumption, also called requirement of single-path floagylts in non-convex problem formulations which are
inherently hard [5] (the hardness was pointed out alreafl§]jnUnsplittable flows is often a realistic restriction
due to the used routing protocol, or simply an explicit mamagnt requirement, stipulating avoidance of packet
resequencing in receiving nodes. With the network giveriims of topology and link capacities, the following
traffic engineering problem is identified: the demand betweach source-destination (S-D) node-pair must
be associated with a single path such that a sufficient volfiflew can be routed on demands’ single paths
simultaneously, without exceeding the link capacities.8fficient volume” a volume that is equitable among
different S-D pairs is addressed, i.e., a fair sharing afueses. Particularly, we study the problem of assigning
a single-path flow to each demand, such that the flow distoibbus Max-Min Fair (MMF). Consequently, once
each S-D pair is assigned a single path, the problem is rddoamax-min fair sharing of corresponding link
capacities, for which an efficient polynomial time algomittexists [1]. Thus essentially, the considered problem
amounts to the very hard task of appropriate path selection.

1.1 Notation

The used notions will be defined in terms of graph theory, eleegraphG = (V, E), represents a network,
with the vertex set}/, modeling nodes and the set of edgés,modeling links. A set of vertex-pairs called
demandsp, is assumed to be given. A demand is a requirement for contation between a node-pair in the
network. For each demantid € D, it will sometimes be convenient to predefine a set of pathswhere each
elementp, p € P,, defines a cycle-free set of edges that connects vertextphit elements of the index sets
{1,...,|E|}, {1,...,|D|} and{1,...,|P4|} uniquely identify elements of the sel§ D and P, respectively.
As there will be no risk of ambiguity we will slightly abuse tation, indexing ore, d, andp, as if they were
elements of these index sets. Each edgec FE, is associated with a capacity. A binary indicator,d.qp,, iS
used for the path-edge incidence relation;dlg}, = 1 if e € p andp € P, andd.q, = 0 otherwise. The flow
allocated to demand will be identified by X, andxzg, is used to denote its part that is allocated to gath
ie., Zpepd rap = Xg. Letx = (X3, Xo, ..., X|p|) denote the vector of all flows (also denoted the allocation

P26/1



vector), ande¢ be the allocation vector sorted in non-decreasing ordez. sbinted allocation vectat is said to
be lexicographically greater than the sorted allocatioetoreyj, £ >~ v, if the first non-zero entry of — 3 is
positive. Consequently¢ = 4 meanst > g or & — §j = 0, and&” = lexmax{& : x € Q} thatz™ = & for
allxz € Q.

1.2 Problem Description

This study concerns the problem of obtaining MMF singldap@e., unsplittable) flows in a capacitated net-
work. In an MMF allocation of flows each demand is assigned & #iad a routing such that it holds for
the sorted allocation vector that an entry can be increasgdai the cost of decreasing a previous entry,
or by making the allocation vector infeasible. It can be shdhat obtaining an allocation vectar, =
(X1, Xa,..., X|p), with this characteristic is equivalent to solving

lex max&; x € Q, (@D)]
where(Q is the set of feasible solutions [11]. A solutian> 0 is considered feasible; € Q, if

() > dep 2_pep, dedpTap < ce , foralle € E and
(ii) forall d € D, zqy = X, for some pathy’, p’ € P;, andz4, = 0 for all other pathg, p € Py, p # p/,

i.e., if the sum of flows on a link does not exceed the link'sazdy, and no demand has flows on more than
one path.

2 Computational complexity

In this section it will be shown that solving (1) /8§ P-hard. This is accomplished by proving that the corre-
sponding decision problem j§P-complete. It will be convenient to divide the problem inteotcases: the
case when a demand may use any one path to connect its nodetipaiinlimited path-sets casand the case
when a demand may select a path only from a limited, predefieedf paths — thémited path-sets caseA
somewhat different version of the former decision probleas imdeed provep/P-complete in [6].

2.1 Unlimited path-sets

When a demand may use any (simple) path that connects itspaiiehere is clearly no reason to predefine its
path-set, as it is directly implied by = (V, E'). This is the case for all demands if path-sets are unlimitéel.
will refer to the decision problem corresponding to the m@ation problem of obtaining a maximized minimal
flow on single paths with unlimited path-sets MAXIMIZING MINIMAL SINGLE-PATH FLOW (MMSPP). If

the set of feasible solutions), admits usage of any path for each demand, such an optionizatbblem is
indeed equivalent to finding a maximal first entryafz € Q, i.e., certainly a subproblem of (1).

MAXIMIZING MINIMAL SINGLE-PATH FLOW

INSTANCE: GraphG = (V, E), an edge capacity, for eache, e € E, a set of demands (vertex-pails) and
a numberkK > 0.

QUESTION: Is there a set of simple paths, containing examtky path for each demamnkld € D, such that
for each demand it is possible to assign a floi;, with X; > K, on the path corresponding to demafhd
without violating any edge capacity, e € E?

It is a straightforward exercise to shaWP-completeness ofMMSPF, e.g. by transforming it tEDGE-
DISJOINT PATHS[9]. The main problem — lexicographically maximizing « € ) (not only considering
the MMSPF subproblem), corresponds to the following decision pnobienotedLEX MAX SINGLE PATH

FLOWS (LMSPP:

LEX MAX SINGLE PATH FLOWS
INSTANCE: GraphG = (V, E), an edge capacity. for eache, e € E, a set of demands (vertex-paiB) and
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a target vectory, of length|D|.

QUESTION: Is there a set of simple paths, containing examtly path for each demankid € D, such that
for each demand it is possible to assign a flow; on the path corresponding to demafdvithout violating
any edge capacity., e € E, and such that it = [X4]4ep, thenZ = § ?

Proposition 1 LMSPFis A'P-complete.

Proof. As MMSPFis a subproblem of MSPF, the same transformation is valid here. O

It is possible to prove this fact exploiting another invahdifficulty, namely packing. This can be done with a
transformation fronPARTITION, as will be shown in the following section.

2.2 Limited path-sets

The previous section had the assumption that the selectiarsimgle path could be made from all possible
paths for a demand. In many cases such an assumption migho lgeherous and not practical. For these
cases a more realistic assumption would be that each demaign with a predefined, bounded (in terms of
cardinality) path-set. We will assume such a setting ingbigtion. Clearly, if the sizes of the predefined path-
sets are very large, this will differ only academically fréhe unlimited path-sets case. However, in practice
the number of admissible paths will be substantially smahan the number of all possible paths. We will

show thatLMSPF with predefined path-sets /§"P-complete. The cardinality of the predefined path-sets will
be limited to 2, resulting in the decision problémmX MAX SINGLE PATH FLOWS-2 (LMFSP2):

LEX MAX SINGLE PATH FLOWS-2

INSTANCE: GraphG = (V, E), an edge capacity. for eache, e € E, a set of demands (vertex-pai®) two
simple paths for each demand, and a target vegtaf length|D|.

QUESTION: Is there a set of paths, containing exactly onéhefttvo admissible paths for each demahd
d € D, such that for each demadt is possible to assign a floi; on the path corresponding to demaf)d
without violating any edge capacity, e € F, and such that it = [X|4ep, thenZ = ¢ ?

Proposition 2 LMSPF2is N"P-complete.

Proof. LMSPF2belongs to\V/'P since a nondeterministic algorithm needs only to guess btiedwo paths for
each demand and apply the well-known polynomial time atfori(e.g. see [1]) to obtain the allocation vector
x, and check itz = 3. We will transformPARTITION into a single-source multiple-sinks instanceLbfSPF2,
essentially using an idea from [4].

PARTITION
INSTANCE: Finite setA of items, and a size(a) € Z™ for eacha € A.
QUESTION: Is there a subsell C A suchthal’ ., s(a) =3 ,c 4\ 4 5(a)?

Consider an arbitrary instance BARTITION and construct a graph as follows: let two “core vertices”,
andx,., be connected by 2 “core edges”ande’, both of which has capacit% > aca s(a). For each element
a € A, connect by an edge of capacityu) a vertext,, to the right core vertex;,. Lety = [s(a)]sca. Now
consider eaclix;, t,)-pair,a € A, in the resulting graph as a demand (see Figure 1). Each,)-pair has ex-
actly two admissible paths; one traversingnd one traversing'. This construction, which is apparently done
in polynomial time, is indeed a valid instancelofiSPF2(with | A| demands). Now assume that there is a posi-
tive answer tdPARTITION. This implies existence of a subsét C A such thad®, 4/ s(a) = >_ ¢ 4\ 4 S(@).-
Assign to eaclix, t,)-pair a flow of X, = s(a). If a € A’ let the demand use edgg and ifa € A\ A’ edge

e, together with its dedicated edge connectipgandt,. ASc, = co = % > aca s(a), no link capacities are
exceeded. We have thus an allocationfor which X, = s(a) for all a € A, and consequently that = y,
implying a positive answer toMSPF2 Conversely, suppose that there is a positive answer farahstructed
instance oLMSPF?2 i.e., that there exists a set of single paths for which atation vectore, with £ = v, is
obtainable. In particular, this means that there exist flalyssuch thatX,, = s(a) forall a € A. Thus the total
flow betweenx; andx, is >, 4 s(a). Butce = co = 33, 4 s(a) and flows are unsplittable so there must
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Figure 1: The resulting graph.

exista subset’ C A, suchthad_ . 4 s(a) =3 ,ca\ 4 s(a) = 23" 4ea s(a), which answers thBARTITION
question positively. Therefore, sin@ARTITION is A'P-complete [2]LMSPF2must also beé\’P-complete.0

In the unlimited path-sets case it was possible to ptb\e-completeness even of the subproblem of maxi-
mizing the minimal single path-flow. A natural question t& &sif this is possible also if path-sets are limited.
Indeed, this is the case, as is shown by a transformation 3r&TISFIABILITY in [9].

3 MIP Models

Because of the underlying application, we will from now omoentrate on the limited path-sets case. It will
thus be assumed that for each instance, each dedyand D, is given with a predefined (limited) set of paths,
P;. In this section, focus is put on representing subproblefmd)oas Mixed-Integer Programming (MIP)
problems. Particularly, each MIP is designed to computesaifip entry, say entry, of Z. We will sometimes
denote this entry by thgth level It will become clear that the full problem can be solved @me different
ways) essentially by resolving a sequence of these MIPs.

3.1 The first level

The first level, i.e, the first element @f(calledh,), can be obtained by solving

maximize hy 2
subject to > ug =1 deD (3)
pEPy
Z Z 6edpudph1 <ce eck (4)
derEPd
hi1 >0, ug, € {0,1} . 5)

Apparently, this formulation has a difficulty of being nomar, containing multiplication of two variables
(constraint (4)). However, by defining a new variahle= hl—l this problem can be avoided. Of course, it is
then necessary to presume that> 0, which is reasonable. Clearly, will be minimal when (and only when)
hy is maximal. Further, if we restate the problem in variah)ghe nonlinearity is eliminated, making use of
that neitherh; nor . are demand-dependent;

minimize I (6)
Py
subjectto Y ugy =1 deD 7)
p=1
Z Z 6edpudp < pce eck (8)
deD pePy
p=>0, ugy € {0,1}. 9)
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The last formulation is a (linear) mixed 0-1 program. Theaadages of the “inverted approach” taken in (6)-(9)
has been exploited in [8], although for the splittable patse.

3.2 Finding all levels — an explicit approach

The formulation presented in this section can be used agasithightforward way of expressing all the higher
MMF-levels, b}, k = 2,...,|D|. Given the first level (computed e.g. by (6)-(9)), resolntaf the presented
MIP provides a solution to the studied problem. Definipg= h; — ZfZQ hi_,, and letting)M be a sufficiently
large number, e.gM = max.{c.}, we may solve

maximize z 10
k (10)
subjectto Y ) wg, = (ID| = (k- 1))z (11)

derePd
> a4y <z de D (12)

PEPy
zap < M) pePy,deD (13)
k

S wl) =Dl = (k-1) (14)

dEDpEPd
wl) < ugy peP,deD (15)

(TH) < w(;) pe Py, de D,

re{2,....k—1} (16)
SN W) =D - (r-1) re{2,....k—1} (17

derEPd
> ugp =1 deD (18)

PEPy

Z Z Oedp(uaphi + dep 2y + xgp) < Ce ecE (19)

derEPd
ugp € {0, 1}, wdp >0, xgp >0, 2, > 0. (20)

It should be noted that the correctness of (10)-(20) relresedy on thatw&;) is forced binary for ali =
., k, although there is no such explicit constraint.

Property 1 If A} and all 2}, 2 = 1,...,k — 1, are optimal, then for any feasible solution to (10)-(20hatds
thatw() € {0,1}, foralli = 2,... k.

Proof. Suppose tham;gfl) €{0,1},p € P;, d € D, forsomer,3 <r < k. As wg;U € {0,1}, and since

>deD 2-peP, wdp =|D|—r + 2, there exist exactlyD| — r + 2 non-zero variablewé;_l), all of which
must be equal to 1. By (164)ud > wép) SOw((ip Vo impIieSwé;) = 0. Now for z}_, to be optimal there
must exist &d, p), p € P;, d € D, such thatw( D andwé’") = 0 (otherwisez;_, could be increased).

Combined with the constrait . . wg) |D| —r+1, this implies that there must exidd| —r+ 1 non-zero
varlabIeSw(T) that sum up t¢D| —r+ 1. Since0 < wép) < 1, it follows thatwdp € {0,1}. Anidentical argu-

ment can be used showing the same relation be\mé?randudp, implying thatw((ii) € {0,1} asug, € {0,1}
by definition. Thus by induction overthe general result follows. O

A procedure to solve (1) is thus to solve (6)-(9) for the fiestell, 17, and then to iteratively solve (10)-(20), for
zf, i =2,3,...,|D|, and compute corresponding level$,= h} + E

Zi s J2J
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3.3 Cumulated values — an implicit method

The MIP model outlined in this section is based on the methibdegcribing a non-convex MMF prob-
lem presented in [10], under the notion afnditional means It is referred to as aimplicit method since
its original form constitutes a general way of expressingidgewange of non-convex MMF problems. Let
(h1,ha,...,hyp|) = &, = = (X1, X2,..., X|p|), whereXy = Zpepd Zap, d € D, is the total flow assigned
to demandi. We are interested in the lexicographic maximization dof tréctor, i.e.,

lex max(hi, ha, ..., hyp|), (21)

such thate € Q). Define thek:th cumulated ordered valuéiy, k < |D|, asH, = Z?Zl h;. Then, for a given
outcome vectot, this entity can be computed as

H; = min Z X4gQkd (22)
deD

st.Y awa=k (23)
deD

0<arg <1,deD. (24)

The optimization problem that is dual to (22)-(24) may bedlily stated as

H; = maxkr, — Z Akd (25)
deD

Stry—Xg< g, d€ D (26)

Aka > 0, d € D, (27)

which is linear even ifc is a variable. In terms of the solution, lexicographic maxation of all the cumulated
ordered valuesHy, k € {1,...,|D|}, with x € Q (x is a variable), can in fact be shown equivalent to
lexicographic maximization of the sorted allocation vectd, with x € ) [10]. This yields the following
representation of the studied problem:

lex max ( Hy, Ha, ..., Hp| ) (28)

s.t. HkaT’k—Z)\kdy ke{l,...,|D[} (29)
deD

e — Xa < Mg, k€{1,...,|D|}, de D (30)

Mea >0, ke{l,...,|D|}, de D (31)

x € Q. (32)

For the purpose of solving problem (28)-(32), withconstituted by the single-path and the link-load con-
straints, it is possible to solve the following MIP iteraty fork = 2,...,|D]:

maximize H; (33)
subjectto  Hy <krp— » A (34)
deD
Hf <= A le{l,....k—1} (35)
deD
r— Y Tap < A le{l,....k},deD (36)
pEP,
Tap < udpM pe Py, deD (37)
pEPLy
Z Z OedpTap < Ce ece F (39)
dEDpEPd
Ldp >0 5 >\id >0 y Udp € {0? 1}7 (40)
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where)M is a sufficiently large number, e.¢4 = max.{c.}, andH;, | € {1,...,k — 1}, are the cumulated
ordered values obtained in previous iterations. On purpibée MIP does not cover computation of the first
level, H; = hy, which may be more efficiently computed by (6)-(9).

3.4 The distribution approach — finite outcome set

In many cases, especially in the communication networkesanit is very reasonable to assume that the flow
volume allocated to demanéimay take on only a limited set of discrete values. Such aicéetr results in
essentially the same problem, but witfirdte outcome set

Property 2 If the flow volumesX, for all demands! € D, only can assume values from a finite set of levels,
v1,9,..., Uy, then

lex max@; = € Q, (41)
is equivalent to
lex mln( ZdeDth’ZdeDt3d"“7ZdeDt7"d ) (42)
s.t. vk—XdStkd,k‘E{Q,...,T},dED (43)
tha >0, ke {2,...,r},de D (44)
T EeQ. (45)

This property is derived formally in [10]. Intuitively, isinot hard to see that (42)-(45) first assures that as many
demands as possible are raised to the first non-zero levél; = 0). Keeping this many demand volumes
greater or equal tham, it is then assured that as many demands as possible are taisg and so on. The
obvious benefit is that if the demand volumes are bound to ldutag then (42)-(45) may be solved to get a
solution to the studied problem. This can be done by soliegdllowing MIP iteratively.

minimize Z thd (46)
deD
subjectto v — Y @y < tug deD,le{2,....k—1} (47)
pEP,
< le{2,...k—1} (48)
deD
Vi — Z Tdp < g deD (49)
pEPy
Tap < ugpM pe Py, deD (50)
> gy =1 deD (51)
pEP,
Z Z OedpTdp < Ce eelk (52)
dEDpEPd
Tagp >0, t;g >0, ug, € {0,1}, (53)

whereM is a sufficiently large number, e.g/ = vy.

3.5 Upper and Lower bounds

In a communication network, it is often a reasonable assomghat each demand € D is given with
acceptation limitsg; and @4, where it is required that the allocation vector satisfigs< X, < @Qq, for all

d € D. The upper limit,Q4, can be incorporated in a natural fashion in all of the preesseMIP models. This

is just a matter of substituting the constraints of the typg < ug,M, with x4, < ug,Qq for all p € Py,

d € D. The lower limit, ¢4, has to be added as explicit constraintg,< X, for all d € D. Note that the
acceptation limits have to be carefully a priori determirgidce otherwise there is a large risk that they make
the MIP model infeasible.
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4 Some numerical experiments

As has been shown, the studied problem suffers from heavypuatational complexity. This is mainly due to
the single-paths requirement and the fact that it embodiesltcriteria optimization problem. Therefore, it is
indeed interesting to study and compare computation timmedifferent instances and for different resolution
techniques.

4.1 Exact methods

In this section we give a flavour of the computation times eisged with solving
lex max®; x € Q,

with the two different approaches described in sectionsaB®3.3, respectively. Both these approaches offer
exact methods for solving the considered problem. Paaibyilwe present two algorithms, called tbeplicit
and theémplicit methods. The explicit method (Algorithm 1) invokes the Mdfiulated by (10)-(20), whereas

Algorithm 1 The explicit method

: solve (6)-(9) forh]

: for k:=2to|D| do

solve (10)-(20) forz;;

. end for

: Computeh), from 2z, k= 2,...,|D|

[EnY

a b~ wN

the implicit method (Algorithm 2) invokes the MIP of (33)d@% Both methods require resolution of a sequence

Algorithm 2 The implicit method

: solve (6)-(9) forh] = HY

: for k:=2to|D| do

solve (33)-(40) forH

. end for

: computez from H;, k= 1,...,|D|

[EnY

a s w N

of MIPs. The frameworks of the algorithms are implemente®i\TLABG6.5, and the MIPs are solved us-
ing a MATLAB interface to CPLEX 9 (mex-function), called CEKXINT (downloadable freeware [3]). This
means that the generic CPLEX 9 MIP-solver is used for resgllIPs (6)-(9), (10)-(20), and (33)-(40). The
computations were carried out on a PC with an Intel PllI-1GHAJ, RAM of 256 MB, and Windows 2000
OS. Table 1 contains computation times for the two differmapthods, for a number of small instances. The
instances are characterized by that there is a demand lreevery node-pair and that link capacities are uni-
formly distributed over 10, 20, 30, 40,50}. For the first 7 instances there are two paths per demand,cand f
the 5 last instances there are three paths per demand. This dsTable 1 suggest that the implicit method is
slightly faster than that of the explicit method. If we sumthp usage of variables and constraints for the MIP
corresponding to iteratioh in the two different approaches, this is reasonable to éxpec

4.2 The distribution approach

In this section we investigate numerically the method dbsedrin Section 3.4. This method can be viewed as
a resolution technique for the studied problem if demandmas only can assume some predefined, discrete
levels. Furthermore, it can also be regarded as an approximethod for solving the studied problem without
restrictions on demand volumes. From the latter viewpaiistinteresting how much faster the problem can be
solved if this approximate method is used, i.e., how muchpaation time that can be saved if we predefine
agrid,{v1, va,...,v,}, and require that demand volumes only can assume valuesfiispand to what cost,

in terms of deviation from optimum, this may be done. Aldurit 3 is based on the distribution approach.
The hardware and software constellations are identicahdeet of Section 4.1. In Table 2, the distribution
approach is applied to a number of different instances. Wdaik capacities are uniformly distributed over
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Algorithm 3 The distribution approach
1.1 :=2, A:=true, xcllp :=0forallpe P;, de D
2: whilel < r andA = true do

3. solve (46)-(53) for7;", x}y, andug, forallp € Py, d € D
4 Y ep, @y — Y pep, vyt = 0foralld e D then

5: A= false

6: endif

7. l:=1+1

8: end while

{10, 20, 30, 40,50}, and there is a demand between every node-pair in the netwbhle elements of the
predefined gridy, vs, ..., v,, are all the numbers; that can be writtenag, = m -z, 2z € Z,0 < v; < 50,
wherem is called the module size. The computation times are giveAligorithm 3 with m = 2 (dist-2) and

m = 5 (dist-5). Application of the best exact method (Algorithf) @id not finish in less than half an hour
for any of the instances in Table 2. Comparison of the exa¢hoas and the distribution approach, by the

#paths/ computation timess) #paths/ | computation timess

#nodes| #links | demand| explicit method | implicit method #nodes| #links | demand dist-2 dist-5
5 8 2 0.8130 0.4710 10 22 3 58.518 5.3940
6 12 2 1.1230 1.3730 11 23 3 180.81 2.5340
7 12 2 10.098 4.7190 12 24 3 50.954 1.5780
8 13 2 16.420 21.139 13 26 3 51.781 2.5780
9 18 2 1.6210° 327.92 14 24 3 16.640 1.2200
10 18 2 1.61:103 327.11 15 25 3 47.485 2.4700
11 19 2 1.92108 107.41 16 33 3 59.623 5.6410
4 6 3 0.4220 0.1080 16 34 3 29.400 3.1260
5 8 3 1.1560 0.7020 17 36 3 99.595 12.333
6 12 3 8.8550 13.077 18 40 3 358.72 5.5310
7 17 3 26.738 28.999 19 38 3 1.838103 4.9680
8 12 3 236.49 46.704 20 36 3 108.31 8.0770
Table 1: The explicit and implicit methods. Table 2: The distribution approach.

computation times given in Table 1 and Table 2, strongly satgthat the distribution approach should be used
whenever its deviation from the true optimum is accepta@lertainly, such an error tolerance will depend on
the details of the application. Even though it is possiblgite an artificial example for where the deviation is
larger, we observe that an entry of the sorted distributjjgr@ach solution vector practically always differs by
at most the module size from an entry of the sorted optimatation vector. Besides, if the demand volumes
are restricted to be modular, the distribution approacletisadly an exact method.

5 Conclusion

This paper investigates a problem of obtaining a max-mindamand bandwidth assignment in a communi-
cation network, when only unsplittable (single-path) flaws allowed. First, we show that if for each demand
(node-pair), any single path can be used, the problem isoablyi NVP-hard. Since in a communication net-
work it is often quite unreasonable to assume that a demagduseany path connecting its end nodes, this
result is not sufficient in showing the associated computaticomplexity. Therefore, it is then assumed that
each demand is given a predefined (limited) path-set. We #aivthis problem, with cardinalities of path-sets
limited to as little as 2, is als&/P-hard.

Having established the computational complexity for thasidered problem, we proceed to resolution
techniques. This is done by representing subproblems asdariteger programs (MIP). Particularly, each
MIP is constructed to compute a consecutive entry of thexatMMF allocation vector. In essence, the full
problem is treated by resolving a sequence of such MIPs.idrsfirit, a problem-specific resolution technique
is developed. This technique is then compared with a geregalution technique for non-convex lexicographic
maximization. In its current status the problem-specifsphation technique turns out to be somewhat slower
than the general approach. Further developments may howleaage this observation. Finally, we examine
a resolution technique called the distribution approachichvassumes that flow allocated to a demand may
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take on only a limited set of discrete values, i.e., we assaingite outcome set. This models the modularity
of flow in a communication network. Moreover, for the contias flow case, this approach may serve as an
approximation technique. It is shown that even with very Ibnalative to link capacities) module sizes, the
distribution approach is substantially faster than itsntetparts that assume non-modularity. Consequently,
we conclude that the distribution approach is advantageoaddressing the studied problem, both because its
approximation ability, and as an exact solver in the casesofahd volumes being multiples of a module.
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