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Abstract

This paper presents an analysis with the aim of characterizing an arbitrary
linear, bianisotropic material inside a metallic waveguide. The result is that if
the number of propagating modes are the same inside and outside the material
under test, it is possible to determine the propagation constants of the modes
inside the material by using scattering data from two samples with different
lengths. Some information can also be obtained on the cross-sectional shape
of the modes, but it remains an open question if this information can be used
to characterize the material. The method is illustrated by numerical exam-
ples, determining the complex permittivity for lossy isotropic and anisotropic
materials.

1 Introduction

In order to obtain a well controlled environment for making material measurements,
it is common to do the measurements in a metallic cavity or waveguide. The geo-
metrical constraints of the waveguide walls impose dispersive characteristics on the
propagation, i.e., the wavelength of the propagating wave depends on frequency in
a nonlinear manner. In order to correctly interpret the measurements, it is nec-
essary to provide a suitable characterization of the waves inside the waveguide.
This is well known for isotropic materials |2, 3,7, 16|, bi-isotropic (chiral) materi-
als [5,13], and even anisotropic materials where an optical axis is along the wave-
guide axis [1,6,11,12], but for general bianisotropic media with arbitrary axes there
are so far very few results available. In principle, an optimization approach as
in [7,12] can be designed, where the material parameters are found by minimizing
the distance between measured and simulated S-parameters. However, this method
is typically plagued by non-uniqueness and similar numerical issues, and we seek a
more direct method, providing physical insight to the problem.

We present in this paper a partial solution to an inverse scattering problem
in a waveguide geometry. First, the direct problem is solved by defining modes
in an arbitrary linear material. This solution helps us define an N-port model of
the scattering problem, which is then utilized in the inverse problem. Most of the
references mentioned so far only treats the single-mode case, but the formalism
in this paper is ready for an arbitrary number of modes. However, in practical
applications the single-mode case is usually preferable since it is difficult to measure
higher order modes.

General results corresponding to the analysis presented in Section 4 of this pa-
per can be found in [4,17]. In these papers, the fundamental eigenvalue problem
defining the modes in a bianisotropic material is defined and explored for general
orthogonality properties, but it is not applied to a scattering problem. There is a
scattering formalism for discontinuities in |17], but it is rather vague and there is
also some confusion about propagating and evanescent modes in this paper. This is
better accounted for in [4], but the formalism is only used to study the excitation
of modes, not in a scattering problem. In [18,19], a coupled-mode analysis is per-
formed for bianisotropic waveguides, i.e., the fields inside the material are expanded



in terms of modes corresponding to an isotropic material. The scattering problem
is not treated here either, but there are some graphs of dispersion relations in [18].

In this paper, we use an eigenvalue problem of the form used in [4,17] to de-
fine modes propagating in a metallic waveguide filled with a bianisotropic material.
The approach is related to similar spectral decompositions used in homogenization
theory [14,15], where the boundary conditions of the waveguide are replaced by
periodic boundary conditions. Using these modes, we define an expansion of the
electromagnetic field, which is then used in a mode-matching analysis of the scat-
tering problem. In order to deduce the general properties of this formulation, the
quasi-orthogonality results from [4,17] are used heavily, and they are repeated in
Section 4.

When dealing with bianisotropic materials, notation is often an issue. In this
paper, we use a six-vector notation which substantially reduces the length of the
paper [10]. This is introduced in Section 2. In Section 3 we illustrate what makes
the isotropic case so simple, namely that it is possible to define an eigenvalue problem
independent of both frequency and propagation constant. As is seen in Appendix A,
where we derive the corresponding second order equations, this seems impossible for
a general bianisotropic material. In Section 4 we define the general eigenproblem
in terms of a first order differential equation. A particularly important result is the
quasi-orthogonality (4.6), which is also derived in [4], and in a different formulation
in [17]. The forward scattering problem is treated in Section 5, and the inverse
scattering problem in Section 6. The resulting algorithm is tested in a numerical
example for a non-magnetic, isotropic lossy dielectric medium in Section 7, and some
conclusions are given in Section 8.

2 Notation

We consider time-harmonic waves in a waveguide of infinite extent in the z-direction,
as in Figure 1. The electromagnetic fields then satisfy (time convention e™?)

V x H = —-iwD = —iw(eE + £H) (2.1)
VX E =iwB =iw(uH + CE)

for (z,y) € Q and z arbitrary, with the boundary conditions n x E = 0 and
n x H = Jg, where Jg is the surface current. The surface current is usually
unknown, and the boundary condition n x H = Jg should be considered as a
means of determining Jg, not as a restrictive condition on H. The PEC condition
n x E = 0 is sufficient to calculate the fields. To shorten the notation, we introduce

the fields . D 5
() QG IE

V x Je = (v(l L I) (f,—) (2.4)

and the operator



Figure 1: Geometry of the waveguide. The “complex” material may be anisotropic,
bianisotropic, lossy, etc, but has to be linear.

Maxwell’s equations with boundary conditions can then be written
—J
V x Je =iwMe, (z,y) € Q; n X Je = ( OS)’ (x,y) € 0Q (2.5)

In the typical case when the material parameters do not depend on z, it is natural
to introduce the Fourier transform pair

&(z,y,B) = /OO e Pe(x,y, 2)dz (2.6)
e(w,y,7) = - / éP4(z,y, 3) A3 (2.7)

Maxwell’s equations are then (where V| = 20, + 90,)

(Vi +i8z) x Je =iwMe, (x,y) € Q; n x Je = ( 6]8), (x,y) € 00 (2.8)
If M is a hermitian symmetric positive definite matrix, i.e., M¥ = M and e['Me, >
fleg|? for some positive constant § and all six-vectors ey, this is a well posed eigen-
value problem for a self-adjoint operator for each fixed (3, w being the eigenvalue. A
detailed account in the homogenization setting, where the PEC boundary condition
is replaced by periodic boundary conditions, can be found in [15].

Should M not be hermitian symmetric, a similar analysis of the well-posedness
can be made using a singular value decomposition. Though, we shall assume that



(2.8) defines suitable modes even in the nonhermitian case, where the typical effect
is that properties such as orthogonality disappear [4].

3 Isotropic materials

The equation (2.8) defines the eigenvalue w as a function of the parameter 5. To
illustrate how this problem corresponds to the classical approach to isotropic wave-
guides, we now digress a bit to treat this special case.

The first order system (2.8) can be written as a second order system,

(V. +i82) x IM™H(V | +i82) x Jé = —w’Mé (3.1)

We now assume the material matrix models a “classical” material, i.e., only using
permittivity and permeability,
e O
M= 2
(6 ) (3.2)

The second order equations then decouple into
(V. +i82) x [u (V. +i82) x E] = w?eE (3.3)
(V. +i82) x [e (VL +i82) x H| = w’uH (3.4)

Further assuming the material is isotropic, 7.e., € = el and g = ul, the left hand
side of the first equation becomes proportional to

(V1 +iB2) x (V1 +1B2) x E]
= (VL +iB2)[(VL+i82)- E]— (V2 - B)E = V2 E + °E (3.5)

where the last equality follows since the divergence of E is zero from the original
equation. By V2 we denote the Laplace operator in the xy variables, V3 = 0> +3§.
A similar expression holds for the magnetic field, and we obtain

—ViE = (wep — ﬁQ)E (3.6)
—Viﬁ = (wWeu — ﬁQ)ﬁ (3.7)

We see that by treating w?ey — 5% as a new eigenvalue A, an eigenvalue problem
independent of both w and 3 can be formulated and precomputed, which provides
us with dispersion relations as w = W, (8) = /(A + 82)/(eu), where ), depends
only on the shape of the boundary. Usually two different eigenvalue problems are
formulated: one for the z component of the electric field with Dirichlet conditions
E. = 0 on the boundary (TM modes), and one for the z component of the magnetic
field with Neumann conditions 7 - V H, = 0 on the boundary (TE modes).

The dispersion relation w = +/(\, + 42)/(eu) immediately demonstrates the
important phenomenon of a cutoff frequency. For a hollow waveguide (consisting of
a simply connected region 2 enclosed by PEC walls), the smallest eigenvalue \g is
always positive. This means that there exists a cutoff frequency w. = /Ao/(ep),
below which there can be no fixed frequency propagating waves (corresponding to
real wave numbers [3).




4 Bianisotropic materials

It is very difficult, maybe impossible, to derive an eigenvalue problem independent
of both w and 3 for a general bianisotropic material. In Appendix A we derive
a second order differential equation which may be suitable for special cases, for
instance when the material has an optical axis along the waveguide axis. However,
in the general case, when nothing is a priori known about the structure of the
material, this formulation offers little simplification.

Equation (2.8) can be used as an eigenvalue problem determining w for a fixed
[, but in most practical applications it is more relevant to study a fixed frequency
w. In this case, we assume a z dependence on the form e, where v = o + i3 is
a complex number. Since V(f(z,y)e"*) = *(V +v2)f(x,y), we postulate an
eigenvalue problem for the propagation constant ~ as

Yz X J&m = (=V 1 x J+iwM) &, (4.1)

This almost looks like an eigenvalue problem on generalized standard form, i.e.,
Au = ABu, except that the mass matrix B = z X J is not positive definite, which is
usually required. The eigenvalues of the matrix 2 x J are —1,0, 1, all with double
multiplicity. The mathematical problem of showing that this problem is well posed
seems to be an open issue, but we assume this does not cause any problems.

The idea with this eigenvalue problem is to expand the electromagnetic field in
the eigenmodes, and insert them into the z-dependent Maxwell’s equations which
then produces ordinary differential equations for the expansion coefficients. It then
turns out that the solution is simply an expansion in these modes multiplied by
exponential functions €, and the expansion coefficients can be determined from
the boundary condition that the total transverse electromagnetic field is continuous.

We now demonstrate some general properties for the solutions of the eigenprob-
lem (4.1). We use the following short hand notation for the integral over the cross
section:

(e,d):/Qe-d*dS:/Q(E-D*JrH-B*)dS (4.2)

which satisfies (e,d) = (d,e)*, i.e., it is a scalar product for the fields. A lossless
material is characterized by a hermitian symmetric material matrix, M = M, As
we shall see, it is convenient to have a means of characterizing the losses in a general
material matrix M. This is related to the anti-hermitian part, and we use the
notation

M — MH
om = —in (4.3)
The matrix o) is postulated to be non-negative hermitian symmetric. The notation

is motivated by the following example. Consider an isotropic medium with electric

conductivity:
_[le+=) 0 (ol 0O

We now derive the important quasi-orthogonality relation for the modes. Multiply-
ing the equation (4.1) with the solution corresponding to another eigenvalue 7, and



integrating over the cross section, we obtain

Y (2 X Jem,8,) = (—=V 1 x J+iwM)é,,, &,)
= ((=VL x J+iwMMe,, &,) + (iwM — Mg, &,)

= (&, (V. x J+iwM)e) +]§ (—h x J&) - & dl —2(Tmém, &)
=0

= —(&n, Tz x J&,) — 2(omem, &,) = —7i (2 X Jé,,8,) — 2(omém, &,) (4.5)

This implies the quasi-orthogonality relation (see also [4])
(Ym +70)(Z2 X Jém, e,) = —2(oMém, €n) (4.6)

The number (2 x Jé&,,,&,) represents the time average of the mutual power flow in
the z direction, since

(2 % Jom, &,) = / 2 (E,xH,+E, xH,)dS (4.7)
0
Setting m = n in (4.6), we have v, + 7} = 2Re(v,) and find

Re(vn) (2 x Jé,,e,) = —(omén, €,) (4.8)

A lossless waveguide is characterized by oy = 0. In this case, either Re(y,) = «, is
equal to zero, i.e., the mode propagates undamped with v, = i(3,,, or the time average
of the power flow in the z direction, (2 x Jé,,&,), is zero. In a lossy waveguide, the
sign of Re(7,) is the opposite of the sign of the power flow (2 x Jé,,, &,), since oy is
non-negative. This last property implies that we can split the modes according to
the signs of Re(y,) and (2 x Je,,e,),

if Re(v,) <0 and (2 x Je,,e,)

> (4.9)
if Re(v,) >0 and (2 x Je,,e,) <

(4.10)

This splitting is unique in lossy waveguides, and can be introduced in lossless wave-
guides by considering the modes as limits of modes in lossy waveguides when the
loss oy — 0. We use this splitting when analyzing the scattering problems.

In lossless waveguides, the quasi-orthogonality relation (4.6) demonstrates that
the mutual power flow (2 x Jé,,,&,) can be non-zero only if ~,, +~: = 0. This is
achieved when m = n for propagating modes, v, = if3,, but also for pairs of evanes-
cent modes where 7,, = a and v, = —a. This condition demonstrates how evanes-
cent modes decaying in opposite directions can couple and carry power through a
structure, which is known as the tunnelling effect in quantum mechanics. These
modes are called twin-conjugate modes in [4].



Figure 2: The scattering geometry in the waveguide. The material under test
(MUT) is confined to the region 0 < z < d with material parameters M, and the
surrounding parts of the waveguide are filled with material My, usually air.

5 The forward scattering problem

The purpose of this section is to provide a formulation for the forward scattering
problem that can be used to solve the inverse scattering problem. We assume a
scattering geometry as in Figure 2. The time harmonic field amplitudes in the
different regions can then be expanded as

N o)

D (Afefe™or + Aje e ®0T) £ Y " AL e e 2<0  (5.1)
n=1 n=N-+1

Z < SEACE f;é;e7’73> 0<z<d (5.2)

i
I

(B:{é:oei’g"(’(z_d) + B_éfloe_w”()(z_d)) + Z Bfefjemomd g <y (5.3)

n

] =

I
—

n n=N-+1

Here, we have explicitly splitted the modes in the surrounding lossless waveguide
in propagating and evanescent waves. Note that the reference plane for the B
coefficients is chosen to be the right boundary through the shift 2 — 2z — d in the
exponentials.

The boundary conditions are that the tangential E and H fields should be
continuous. This is ensured by requiring the following equations to hold, where we
have made extensive use of the quasi-orthogonality relations (4.6) in the surrounding

lossless medium (remember that for evanescent waves (2 x JéX, &5 ,) = 0, but the



combination (2 x J&E . &7 ) may be nonzero)

AL x Jef6ho) = 3 (1 (5 x Jei &ha) + £ (5 % Jey &) (5.0
n=1

A (3% Jar,.67,) = i (FF(2 x J&f emg) + £ (2 % J&r, 600)) (5.5)
n=1

AL (2 x Jé . 600) = f: (f+(z x J&r érg) + f (2 % Jé,;,é;rw)) (5.6)
n=1

0= i (fi(z xJ&f &) + fr (2 x J&, &) (5.7)
n=1

B (2 x Jet, 60) = i (f;eﬁd(z x Jet eh )+ frend(z x Jao et ) (5.8)
n=1

B x Jepntno) = 3 (FM(a x St ) + 704z x e 6r))  (59)
n=1

Bl(zx J&' .8, = i (f,jeﬁd(é x Jeb e )+ fremi(z x Je, &, ) (5.10)
n=1

0= i (f;eﬁd(z x Jet et )+ frend(z x Jao ety ) (5.11)

The equations for { A, B} (propagating modes, i.e., (5.4), (5.5), (5.8), and (5.9))
are valid for 1 < m < N, and the others (evanescent modes, i.e., (5.7), (5.6), (5.10),
and (5.11)) are valid for m > N.

In the forward scattering problem, the coefficients {AF}Y_| and {B, }Y_, are
known, and the remaining coefficients are to be determined assuming full knowledge
of the modes inside and outside the MUT. Based on the reasoning that equations
(5.7) and (5.11) span all degrees of freedom except the 2N propagating modes in
the surrounding medium, we assume that they can be used to eliminate all of the
modes in the material except 2N ones (the first N plus modes and the first N minus
modes inside the MUT), i.e.,

N

£=> (@t + Roufo) p>N  (512)

n=1

N
fp_e”’;d:Z( DIt QP foen ) p>N  (513)

n=1



Inserting the relations (5.12) and (5.13) into (5.4), we find

:Z{frir [(2X € mO Z Q ZXJ ) mO)]

p=N-+1

+ f [(szen7 eo) Z RA szep, eto)

p=N+1

} (5.14)

and a corresponding expression for (5.9), both valid for 1 < m < N. This corre-
sponds to two N x N systems of linear equations, from which {f, £ }2_, can be
determined from {A B, }N

When all the modes in the MUT contribute to the coupling between the inter-
faces, the coefficients Q;;" and R/:P depend on all the propagation constants ;-
and the length d of the slab, but not on the excitation. However, if the number of
propagating modes inside the MUT is equal to the number of propagating modes
outside, N, and the length is large enough so that only the propagating modes con-
tribute to the coupling (the evanescent modes are sufficiently damped when reaching
the opposite interface), the equations (5.7) and (5.11) take the following form:

N
Z f+z><Jen> mO Zf+ZXJen? m0)+f (zXJen? m())) (515)
n=1

n=N+1
N
Z fremd(z x e, eh) Z (ere% Zx Je) er0) + fem (2 x Je, e :10)>
n=N+1 n=1

(5.16)

From this it is deduced that the matrices ;f‘nB and RAB are independent of the
propagation constants and the slab length in this approx1mat10n, since each equation

can be solved independently.

6 The inverse scattering problem

In the inverse scattering problem the aim is to infer information on the scattering
system from scattering data. In our case, the ultimate goal is to determine the
material matrix M from reflection and transmission coefficients, or S-parameters,
which can be measured using a network analyzer. This is very difficult, but we can
at least obtain partial information on the wave propagation characteristics.
Assume that in the full problem, the interfaces are so widely separated that
only propagating modes contribute to the coupling between the interfaces. Further
assume the number of propagating modes in the MUT is the same as in the sur-
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rounding medium, that is, N. From Section 5 we then have the following equations

Ai(szemO, Zf+ (szen, m() Z Q ZXJ p? itno)
L p=N+1 i
+an_ (2 x J&, ,&t)) Z RA (2 x Je, e ) (6.1)
= B p=N+1 i
Bi(z X Je m0> mO Zere'Yn (Z X Jen’ mO + Z RB Z X Jep’ 7in0)
L p=N+1 J
—l—an_e%;d (2 x Jen, o) Z Q (2 x Je, io) (6.2)
n=1 L p=N+1 _

As explained in the discussion of the forward problem, the matrices Q4 and QB
strongly related to each other, as are R? and R” . The coefficients {A£ BE}MN_| can
be determined from measurements, and the expressions inside the square brackets
and the propagation constants {% MV are independent of the excitations. This
means the equations can be written

Ai(z X JemO? itnO) - Z( n mn + fnb ) (63)

1

S
Il

Bi(z x Jet, ef,) =

m0> mO

] =

(fierdes, + o ds,) (6.4)
1

If Q= Q5 = Ry, = R} =0, it is seen that aff,, = ¢, and b, = d . For a fixed
n, assume the A-coefficients are chosen so that only the Coefﬁment fF is nonzero.
The B-coefficients are then equal to the A-coefficients multiplied by ed This
means the exponential factors e d are the eigenvalues of the operator mapping
A-coefficients to B-coefficients, and the vectors aX, = (2 x J&t &) etc are the
eigenvectors. This is the case for isotropic media, and possibly some more special
cases. Thus, for these cases, it is sufficient to determine the operator between A-
and B-coefficients to determine the propagations constants. With no assumptions
on the material, we need to generalize this idea.

S
Il

6.1 Determining the dispersion relations and modes

In what remains of this section, We use an index ¢ to denote summation over the +
index. Thus, 1nstead of writing a | we write a?  , where the only possibilities for ¢
are ¢ ="+ or g ="—

With n fixed, and m and ¢ free indices, we identify aZ
We then assume that the 2N vectors {a,,,b? }N | are linearly independent. An
adjoint basis {aZl 097 IV can then be defined, such that |9, p. 12|

Z ag:{namn = 571”’7 Z bgrinbgrm’ = 571”” Z aﬂnbgrm’ Z bmn mn! 07 (65)
m,q m,q

m7q

mn?

in C2N
4. as a vector in C
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where 6, is the Kronecker delta, i.e., 0,,, = 0 if n # n’ and 0,,, = 1. Multiplying
(6.4) by vectors from this adjoint basis, this means the mode coefficients in the
material can be expressed as

f:e% Zcﬂntz Z x J&l g, €n0) (6.6)
fn_e,yn ngr]:ntn Z X JemO’ gn(]) (67)

and we have the following relation between the A- and B-coefficients from (6.3)

N
q _E E —vidq 41 Yndpa g9t 4 (3 a0l
Aj (Z X JemO’ mO) e " amncmn+e " bmndmn Bm’(z X Jem’07em’0>

m/,q’ Ln=1

ZT‘” BY, (2 x J&7,.,62, ) (6.8)

The matrix TT‘;‘IT;/ is independent of the excitation. By varying the input coeffi-
cients {A B }N_, and measuring the response coefficients {A_ B}V _  the S-
parameters describing the mapping {Af B }N_| — {A;,Bﬂ;}m:l can be deter-
mined. This is what a network analyzer typically measures. The T-parameters are
then found by rearranging the S-parameters to obtain the mapping {B;", B }~¥_ —
{AF AN _ . An example of this procedure for the single-mode case is given in
Section 7.

Performing this procedure for two different sample lengths d; and dy, we can
determine two matrices 7'(dy) and T'(dy). Now consider the linear combination
T(dy) — NT'(ds), where X is a complex scalar. From the definition of the adjoint
basis vectors {cil  d9t 1N we see that

ST () — AT (dy)]e,, = (77 — Ae )l (6.9)

1l
m7q

This means that the matrix T'(dy) — AT'(d») has a null space for A = e (22=41)_ This
means we can determine the propagation constant ;" by searching for A such that
this matrix has a null space, which is equivalent to solving the eigenvalue problem

T(dy) ' T(dy)uy = Mty (6.10)

which is a well-defined numerical procedure once the matrices 7'(d;) and T'(dy) are
given. Following the previous reasoning, the eigenvalues and eigenvectors are

)\n = {e’ﬁ{(d27d1)7efyg(d27dl)}7 Up = { mn’ din} (611)
Another eigenvalue problem can be defined by

T(d)T(dy) v, = Kpvn (6.12)
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where the eigenvalues and eigenvectors are

i = {0 ) gu(damd) gy L pE (6.13)
The eigenvectors are determined only up to a multiplicative constant. This corre-
sponds to the normalization of the modes &°, which we have left undefined since
we do not need it. The idea for employing this data in determining the material,
as discussed at the end of Section 6.2, does not seem to need such a normalization
either.

We finally note that if we are only interested in obtaining the propagation con-
stants, i.e., the eigenvalues of T'(dy) ™'T'(d;), the reference plane for the measurement
does not need to be at the material boundary. This is due to the fact that a shift of
reference plane in a lossless waveguide simply corresponds to 7' — UTVY, where U
and V' are unitary matrices. This means

T(dy) T (dy) — VT(do)*URUT (dy )V = VT (dy) T (dy)VH (6.14)

which does not change the eigenvalues, only the eigenvectors. Thus, if we are only
interested in the propagation constants, the reference plane on each side of the
sample is arbitrary as long as it is the same for both samples. But if we want
information related to the eigenvectors, it is necessary to calibrate the reference
plane to be at the material boundary.

The same reasoning also applies to the circumstance that we do not really mea-
sure the mode coefficient, but rather how this mode couples to a probe and is fed
back in a cable; such transformations are modeled by transformations of the kind
T — FTG™!, where F' and G are matrices (or error boxes) modeling the probes at
each end. Obviously, this does not change the situation compared to the previous
paragraph.

6.2 Determining the material

From the previous subsection, we conclude that under the assumptions
e There are precisely N propagating modes inside and outside the MUT.

e Measurements are performed for two sample lengths d; and dy where each
sample is sufficiently long so that only the first N modes inside the MUT
contribute to the coupling between the interfaces.

e The measurements are versatile enough to explore all available degrees of free-
dom, i.e., determine the matrices 7'(d;) and T'(dy).
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the propagation constants {'yn }N ; and numerical vectors proportional to the fol-
lowing quantities can be determined (with m and ¢ as free indices):

al = (2 x J&F el ) Z Qo (2 x Jef &) (6.15)
p=N+1

b= (%2 x J&;,8l)) Z Ro (2 x Je, &0 ) (6.16)
p=N+1

= (2 x J&f el ) Z R (2 x Jef &) (6.17)
p=N+1

dgnn = ('% xJ € mO Z Q Z X Jep’ mO) (618)
p=N+1

This is all information that can be determined from this kind of measurements,
since this represents a complete description of the N-port scattering matrix. These
quantities can be used as follows to determine an interesting quantity, containing
information on M. The modes inside and outside the MUT are defined by the
equations
viz x Jel = (=V x J+iwM)el (6.19)
V2 x Jel = (=V x J+iwMp)e? (6.20)
This implies

V(2 x J&l, el ) = (V1 x J +iwM)et, &l )
= (iw(M — My)é? 7égno) (VL x J+iwMg)el, mO)
= (iw(M — Mg)é?, éfno) — (&2 (=V . x J+ iwl\/lo)emo)
= (iw(M — M), &%) — (&%, 7iox x J&l,) (6.21)
or

(72_’_ (fygr/LO) )(Z X ‘Jenv m(]) (1w<M M ) € m(]) (622)

Since the propagation constants are known, we see that information on the scalar
product (% x J&?, &7 ) implies information on the scalar product (iw(M—Mg)e?, &7 ),

which is directly linked to the material matrix M. Using this relation in (6.15)
produces

(Y + (o)), = <iw(M — M)

%
eh + Z an%i e ;;] ,églo) (6.23)
p=N+1 0

with similar equations for the b, ¢, and d vectors. The left hand side is known from
the eigenvalue problems formulated from measurement data, which means we have
an indirect way of calculating the right hand side. With more information on the
modes ¢,, this can be used to determine at least parts of the material matrix M.
However, this problem is left for subsequent papers.
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Figure 3: The geometry and mesh of the numerical examples. The two surround-
ing waveguides are designed for X-band operation (8.2-12.4 GHz, cutoff frequency
6.55 GHz), with cross section 2.29 x 1.02 cm and length 5.00 cm. Each open end is
used as a port for the TE;; mode. A waveguide section of cross section 1.25x 1.02 cm
and length 4.00 cm or 5.00 cm is filled with the material under test. The mesh uses
3514 tetrahedral elements.

7 Numerical examples

To illustrate the algorithm for the inverse scattering problem, we apply it to nu-
merically simulated data. The results in this section can be transformed to other
frequency regions by simultaneously scaling the dimensions of the waveguide and
the frequency.

The waveguide setup is shown in Figure 3. The center part of the waveguide,
containing the MUT, has different physical dimensions from the surrounding wave-
guides. This is in order to limit the number of propagating modes in the MUT.

The simulations were made with the program Comsol Multiphysics version 3.3,
which is based on the Finite Element Method. The cutoff frequency for the TE;q
mode of the air-filled waveguides is 6.55 GHz, and the frequency interval for sim-
ulation was chosen as 7-15GHz. The central waveguide part was filled with a
non-magnetic isotropic material with relative permittivity ¢, = 4 and conductivity
o = 0.1S/m, implying a dispersive complex relative permittivity e(w) = € + ey
where €y is the permittivity of vacuum. The calculations were made for the two
lengths d; = 4.00cm and dy = 5.00cm. The program generates S-parameters for
the structure with reference planes at the ports, and they are shown in Figure 4.
The S-parameters are defined from

() - () -

whereas we want to use the relation

(D)=Gr ) () o
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in the algorithm determining the propagation constants. These are the T-para-
meters, which are closely related to the ABC' D-parameters; the T-parameters map
the in- and outgoing waves on each side to each other, whereas the ABC D-para-
meters map the total voltages and currents on each side of a two-port network to
each other. The T-parameters are easily expressed in terms of the S-parameters
as 8]

T =1/Sx (7.3)
Ty = —S92/ S (7.4)
Ty = S11/Sn (7.5)
Thy = (5125921 — S11522) /521 (7.6)

After using this transformation, we can find the propagation constants from the
eigenvalues of the matrix T'(dy)™'T'(d;). In this procedure, it is necessary to un-
wrap the phase (remove discontinuities > 7 in the imaginary part) in order to avoid
discontinuities in the propagation constants as functions of w. The complex per-
mittivity is then determined by inverting the relation 5% = e(w)w?/c2 — A, where
A = (m/a)?, with a being the width of the center waveguide. The resulting quantity
is plotted in Figure 5. The code doing this procedure on given S-parameter data is
only a few lines in Matlab.

It is seen that the method can determine the complex permittivity rather accu-
rately. The errors can be attributed to the numerical accuracy of the FEM program
generating the data. A full-blown stability analysis of the algorithm is beyond the
scope of this paper, but we can at least do some numerical experiments. We per-
turbed the S-parameters in the simulations by adding noise generated by the Matlab
command randn multiplied by three different factors 0.1, 0.01, and 0.001, represent-
ing different noise levels. The results are depicted in Figure 6, and it is seen that
the algorithm is reasonably stable for this test.

To conclude this section, in Figure 7 we also give the results for an extension to
the anisotropic case presented in [6]. There, it is shown that for a non-magnetic,
anisotropic dielectric with its principal axis aligned with the walls of a rectangular
waveguide, the same dispersion relations apply for the fundamental TE mode as
for an isotropic material, i.e., 3* = €, .(w)w?/c; — . In order to deduce all three
principal values, the material sample is rotated so that each principal direction is
aligned with the fundamental TE mode in the waveguide.

8 Conclusions

In this paper, we have analyzed the forward and inverse scattering problems of a
bianisotropic material sample in a metallic waveguide. Under the assumption that
there are as many modes inside the MUT as outside, measurements on two samples
with different lengths are enough to determine the propagation constants inside the
MUT. Additional information on the modes is available, but the utilization of this
information remains a problem for further research.
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Figure 4: The S-parameters for the two experiments. Figures a and b refer to
sample length d; = 5.00 cm, and figures ¢ and d are for dy = 4.00 cm. For reciprocal

media we have as usual S;; = S99 and Ss; = Sis.
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Figure 5: The complex permittivity computed from the S-parameters by the al-
gorithm in this paper. The circles indicate 10 linearly distributed frequencies in
the interval 7-15GHz, smallest frequencies farthest to the left. Notice that the
imaginary part (the y-axis) is scaled by the factor weq, making it correspond to the
conductivity o. Also observe the tight scales. The relatively large deviation for high
frequencies is probably due to multimode propagation.
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Figure 7: Results for an anisotropic material. In this case, the narrow section
of the waveguide has principal values €, = 2 + io/(wep), €, = 3 + io/(wep), and
€, = 4+ i0/(wep), where 0 = 0.15/m. The mesh and the frequency range, 7-
15 GHz, are the same as in the other examples, and the errors are largest for higher

frequencies. The curve for €, — 2 starts off with a relatively large error at around
(0.0024,0.0928) for f = 7GHz in the figure. This is due to that for this principal

value the midsection waveguide is then operating below its cutoff frequency, which
is 8.5 GHz.
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The analysis is very general, and only assumes the material is linear. For in-
stance, nothing in the analysis changes if the material is heterogeneous in the (z,y)-
plane, but does not depend on the z variable. Indeed, this has been utilized in the
numerical example in Section 7, where we used a different cross section of the wave-
guide containing the sample. Actually, the analysis is applicable to any structure
in which the electromagnetic field can be described by an expansion in propagating
and evanescent modes.

There is probably a large range of special cases where the proposed formalism
reduces significantly in complexity. Most prominently, in waveguides filled with
isotropic materials, there is almost no coupling between different modes. Also, as
seen from the eigenproblems (A.9) and (A.10) for a general bianisotropic material,
there are significant simplifications for materials where an optical axis is along the
waveguide axis.

The major assumption in this paper is that the number of propagating modes is
the same inside and outside the MU'T, or possibly a smaller number inside the MU'T.
The main reason for this assumption is that it is necessary to be able to explore the
degrees of freedom available inside the material by varying the degrees of freedom
outside the material. This is not always easy to achieve: if the surrounding medium
is air, the cutoff frequencies inside the MUT are usually lower, implying that there
may be more propagating modes inside the material. In order to achieve the same
number of propagating modes, we may choose the surrounding material My to obtain
a small contrast to the MUT M, or place the MUT in a somewhat narrower waveguide
than its surrounding material. The latter strategy was employed in Section 7 of this

paper.
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Appendix A A second order eigenproblem

One of the major problems with the well-posedness of the eigenproblem
vz x Jée=(=V . xJ+iwM)e (A.1)

is that the weight matrix z x J is not positive definite. Indeed, it has the eigenvalues
—1, 0, and 1, all with double multiplicity. To eliminate at least the eigenvalue 0, we
observe that this is related to the z component of the field (since z x Zz = 0), which
leads us to the idea to eliminate the z component of the field. The transverse curl
operator can be written in terms of its transverse and z parts as

VixJ=-2xJ-V 2—-2V, 2x] (A.2)
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We separate the transverse and z component of the electromagnetic field as
e==¢€, +é6, (A.3)
which splits the eigenvalue problem above in one transverse part and one z part,

’y%XJéL:,%XJ'VLéZ—Fiw(MLléL—FMLZéz) (A4)
O:VJ_ -z X JéJ_+iUJ(MZJ_éJ_+MZZéz) (A5)

From the last equation we eliminate e, as

. o, 1 L .

e, = Mzzl(—EVanxJel—MzLeL) (AG)
By eliminating the z component of the field, we raise the order of the differential
operator and must make sure that all boundary conditions from the original formu-

lation are preserved. Thus, we explicitly require the boundary condition

e, = (IEA{Z) = <]£I)Z> = MZZI(—%VJ_‘,%XJéJ_—MZJ_éL), (J?,y) € 0f) (A?)
For isotropic materials, this corresponds to a Neumann boundary condition for the
magnetic field. Had we not required this, we would only have a Dirichlet boundary
condition for the electric field, i.e., not enough to specify a unique solution in both
electric and magnetic field.

Inserting the expression for é, in (A.4), we obtain

7,%xJéLzﬁxJ-VLéz—Fiw(MLLéL—kMLZéz)
1
:2XJ'VJ_Mz_Zl(—,—VJ_'%XJéJ_—MZJ_éJ_)
1w

1

. 1 A .
+ iw MJ_J_eJ_—i_MJ_ZMz_Z(_EVL'Z xJeL—leeL)

1
=——2zxJ- V.MV, -2 xJe,
1w

—2xJ-V MM, &, —M .MV, -2 xJe,

+ iw [MLL - MLzMZ_ZIMzL} éL (AS)

and after multiplying by —iw this is

—iW’}/,% X JéL =zxJ 'VLMZ_ZIVL',AZ X JéL—I—uﬂ [MLL_ MLzMz_ZleL} éL
w2 x I VIMIM., + MMV, -2 x J]e, (A9)

For propagating modes in lossless waveguides the eigenvalue is real, —iwy = —iwiff =
wf. Observe that significant simplifications occur when the material is symmetric
around the z axis, i.e., M,;, =M, =0.

This problem is still not quite on standard form, since the eigenvalues for z x J
are +1 (with double multiplicity) when considering only the transverse components
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of the field. Though, note that for hermitian symmetric materials (M = M) the
operator in the right hand side is self-adjoint due to the extra boundary condition
induced by the elimination of the z component.

The same procedure can be applied to formulate a problem in the z-components
of the fields instead of the transverse components. The result is

V. ExIMy L ax ) Ex IV, e = w? (M — ML (M — L2 x J)‘lMLZ} e
1w 1w
+ [nyi X J(MJ_J_ — l% X J)ilMJ_Z—i_MZJ_(MJ_J_— l% X J)ilé X vay:| éz

w iw
(A.10)

which does not offer any clear advantage over the previous formulation. Note again
the significant simplification which occurs if M,;, =M, = 0.
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