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1Abstra
tThis paper presents an analysis with the aim of 
hara
terizing an arbitrarylinear, bianisotropi
 material inside a metalli
 waveguide. The result is that ifthe number of propagating modes are the same inside and outside the materialunder test, it is possible to determine the propagation 
onstants of the modesinside the material by using s
attering data from two samples with di�erentlengths. Some information 
an also be obtained on the 
ross-se
tional shapeof the modes, but it remains an open question if this information 
an be usedto 
hara
terize the material. The method is illustrated by numeri
al exam-ples, determining the 
omplex permittivity for lossy isotropi
 and anisotropi
materials.1 Introdu
tionIn order to obtain a well 
ontrolled environment for making material measurements,it is 
ommon to do the measurements in a metalli
 
avity or waveguide. The geo-metri
al 
onstraints of the waveguide walls impose dispersive 
hara
teristi
s on thepropagation, i.e., the wavelength of the propagating wave depends on frequen
y ina nonlinear manner. In order to 
orre
tly interpret the measurements, it is ne
-essary to provide a suitable 
hara
terization of the waves inside the waveguide.This is well known for isotropi
 materials [2, 3, 7, 16℄, bi-isotropi
 (
hiral) materi-als [5, 13℄, and even anisotropi
 materials where an opti
al axis is along the wave-guide axis [1, 6, 11, 12℄, but for general bianisotropi
 media with arbitrary axes thereare so far very few results available. In prin
iple, an optimization approa
h asin [7, 12℄ 
an be designed, where the material parameters are found by minimizingthe distan
e between measured and simulated S-parameters. However, this methodis typi
ally plagued by non-uniqueness and similar numeri
al issues, and we seek amore dire
t method, providing physi
al insight to the problem.We present in this paper a partial solution to an inverse s
attering problemin a waveguide geometry. First, the dire
t problem is solved by de�ning modesin an arbitrary linear material. This solution helps us de�ne an N -port model ofthe s
attering problem, whi
h is then utilized in the inverse problem. Most of thereferen
es mentioned so far only treats the single-mode 
ase, but the formalismin this paper is ready for an arbitrary number of modes. However, in pra
ti
alappli
ations the single-mode 
ase is usually preferable sin
e it is di�
ult to measurehigher order modes.General results 
orresponding to the analysis presented in Se
tion 4 of this pa-per 
an be found in [4, 17℄. In these papers, the fundamental eigenvalue problemde�ning the modes in a bianisotropi
 material is de�ned and explored for generalorthogonality properties, but it is not applied to a s
attering problem. There is as
attering formalism for dis
ontinuities in [17℄, but it is rather vague and there isalso some 
onfusion about propagating and evanes
ent modes in this paper. This isbetter a

ounted for in [4℄, but the formalism is only used to study the ex
itationof modes, not in a s
attering problem. In [18, 19℄, a 
oupled-mode analysis is per-formed for bianisotropi
 waveguides, i.e., the �elds inside the material are expanded



2in terms of modes 
orresponding to an isotropi
 material. The s
attering problemis not treated here either, but there are some graphs of dispersion relations in [18℄.In this paper, we use an eigenvalue problem of the form used in [4, 17℄ to de-�ne modes propagating in a metalli
 waveguide �lled with a bianisotropi
 material.The approa
h is related to similar spe
tral de
ompositions used in homogenizationtheory [14, 15℄, where the boundary 
onditions of the waveguide are repla
ed byperiodi
 boundary 
onditions. Using these modes, we de�ne an expansion of theele
tromagneti
 �eld, whi
h is then used in a mode-mat
hing analysis of the s
at-tering problem. In order to dedu
e the general properties of this formulation, thequasi-orthogonality results from [4, 17℄ are used heavily, and they are repeated inSe
tion 4.When dealing with bianisotropi
 materials, notation is often an issue. In thispaper, we use a six-ve
tor notation whi
h substantially redu
es the length of thepaper [10℄. This is introdu
ed in Se
tion 2. In Se
tion 3 we illustrate what makesthe isotropi
 
ase so simple, namely that it is possible to de�ne an eigenvalue problemindependent of both frequen
y and propagation 
onstant. As is seen in Appendix A,where we derive the 
orresponding se
ond order equations, this seems impossible fora general bianisotropi
 material. In Se
tion 4 we de�ne the general eigenproblemin terms of a �rst order di�erential equation. A parti
ularly important result is thequasi-orthogonality (4.6), whi
h is also derived in [4℄, and in a di�erent formulationin [17℄. The forward s
attering problem is treated in Se
tion 5, and the inverses
attering problem in Se
tion 6. The resulting algorithm is tested in a numeri
alexample for a non-magneti
, isotropi
 lossy diele
tri
 medium in Se
tion 7, and some
on
lusions are given in Se
tion 8.2 NotationWe 
onsider time-harmoni
 waves in a waveguide of in�nite extent in the z-dire
tion,as in Figure 1. The ele
tromagneti
 �elds then satisfy (time 
onvention e−iωt)
∇× H = −iωD = −iω(ǫE + ξH) (2.1)
∇× E = iωB = iω(µH + ζE) (2.2)for (x, y) ∈ Ω and z arbitrary, with the boundary 
onditions n̂ × E = 0 and

n̂ × H = JS, where JS is the surfa
e 
urrent. The surfa
e 
urrent is usuallyunknown, and the boundary 
ondition n̂ × H = JS should be 
onsidered as ameans of determining JS, not as a restri
tive 
ondition on H . The PEC 
ondition
n̂×E = 0 is su�
ient to 
al
ulate the �elds. To shorten the notation, we introdu
ethe �elds

e =

(
E

H

)
, d =

(
D

B

)
=

(
ǫ ξ

ζ µ

)(
E

H

)
= Me (2.3)and the operator

∇× Je =

(
0 −∇× I

∇× I 0

)(
E

H

) (2.4)
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Figure 1: Geometry of the waveguide. The �
omplex� material may be anisotropi
,bianisotropi
, lossy, et
, but has to be linear.Maxwell's equations with boundary 
onditions 
an then be written
∇× Je = iωMe, (x, y) ∈ Ω; n̂ × Je =

(
−JS

0

)
, (x, y) ∈ ∂Ω (2.5)In the typi
al 
ase when the material parameters do not depend on z, it is naturalto introdu
e the Fourier transform pair

ê(x, y, β) =

∫ ∞

−∞

e−iβz
e(x, y, z) dz (2.6)

e(x, y, z) =
1

2π

∫ ∞

−∞

eiβz
ê(x, y, β) dβ (2.7)Maxwell's equations are then (where ∇⊥ = x̂∂x + ŷ∂y)

(∇⊥ + iβẑ) × Jê = iωMê, (x, y) ∈ Ω; n̂ × Jê =

(
−ĴS

0

)
, (x, y) ∈ ∂Ω (2.8)If M is a hermitian symmetri
 positive de�nite matrix, i.e., M
H = M and e

H
0 Me0 ≥

θ|e0|
2 for some positive 
onstant θ and all six-ve
tors e0, this is a well posed eigen-value problem for a self-adjoint operator for ea
h �xed β, ω being the eigenvalue. Adetailed a

ount in the homogenization setting, where the PEC boundary 
onditionis repla
ed by periodi
 boundary 
onditions, 
an be found in [15℄.Should M not be hermitian symmetri
, a similar analysis of the well-posedness
an be made using a singular value de
omposition. Though, we shall assume that



4(2.8) de�nes suitable modes even in the nonhermitian 
ase, where the typi
al e�e
tis that properties su
h as orthogonality disappear [4℄.3 Isotropi
 materialsThe equation (2.8) de�nes the eigenvalue ω as a fun
tion of the parameter β. Toillustrate how this problem 
orresponds to the 
lassi
al approa
h to isotropi
 wave-guides, we now digress a bit to treat this spe
ial 
ase.The �rst order system (2.8) 
an be written as a se
ond order system,
(∇⊥ + iβẑ) × JM

−1(∇⊥ + iβẑ) × Jê = −ω2
Mê (3.1)We now assume the material matrix models a �
lassi
al� material, i.e., only usingpermittivity and permeability,

M =

(
ǫ 0

0 µ

) (3.2)The se
ond order equations then de
ouple into
(∇⊥ + iβẑ) × [µ−1(∇⊥ + iβẑ) × Ê] = ω2ǫÊ (3.3)
(∇⊥ + iβẑ) × [ǫ−1(∇⊥ + iβẑ) × Ĥ ] = ω2µĤ (3.4)Further assuming the material is isotropi
, i.e., ǫ = ǫI and µ = µI, the left handside of the �rst equation be
omes proportional to

(∇⊥ + iβẑ) × [(∇⊥ + iβẑ) × Ê]

= (∇⊥ + iβẑ)[(∇⊥ + iβẑ) · Ê] − (∇2
⊥ − β2)Ê = −∇2

⊥Ê + β2Ê (3.5)where the last equality follows sin
e the divergen
e of Ê is zero from the originalequation. By ∇2
⊥ we denote the Lapla
e operator in the xy variables, ∇2

⊥ = ∂2
x +∂2

y .A similar expression holds for the magneti
 �eld, and we obtain
−∇2

⊥Ê = (ω2ǫµ − β2)Ê (3.6)
−∇2

⊥Ĥ = (ω2ǫµ − β2)Ĥ (3.7)We see that by treating ω2ǫµ − β2 as a new eigenvalue λ, an eigenvalue problemindependent of both ω and β 
an be formulated and pre
omputed, whi
h providesus with dispersion relations as ω = Wn(β) =
√

(λn + β2)/(ǫµ), where λn dependsonly on the shape of the boundary. Usually two di�erent eigenvalue problems areformulated: one for the z 
omponent of the ele
tri
 �eld with Diri
hlet 
onditions
Êz = 0 on the boundary (TM modes), and one for the z 
omponent of the magneti
�eld with Neumann 
onditions n̂ · ∇⊥Ĥz = 0 on the boundary (TE modes).The dispersion relation ω =

√
(λn + β2)/(ǫµ) immediately demonstrates theimportant phenomenon of a 
uto� frequen
y. For a hollow waveguide (
onsisting ofa simply 
onne
ted region Ω en
losed by PEC walls), the smallest eigenvalue λ0 isalways positive. This means that there exists a 
uto� frequen
y ωc =

√
λ0/(ǫµ),below whi
h there 
an be no �xed frequen
y propagating waves (
orresponding toreal wave numbers β).



54 Bianisotropi
 materialsIt is very di�
ult, maybe impossible, to derive an eigenvalue problem independentof both ω and β for a general bianisotropi
 material. In Appendix A we derivea se
ond order di�erential equation whi
h may be suitable for spe
ial 
ases, forinstan
e when the material has an opti
al axis along the waveguide axis. However,in the general 
ase, when nothing is a priori known about the stru
ture of thematerial, this formulation o�ers little simpli�
ation.Equation (2.8) 
an be used as an eigenvalue problem determining ω for a �xed
β, but in most pra
ti
al appli
ations it is more relevant to study a �xed frequen
y
ω. In this 
ase, we assume a z dependen
e on the form eγz, where γ = α + iβ isa 
omplex number. Sin
e ∇(f(x, y)eγz) = eγz(∇⊥ + γẑ)f(x, y), we postulate aneigenvalue problem for the propagation 
onstant γ as

γmẑ × Jêm = (−∇⊥ × J + iωM) êm (4.1)This almost looks like an eigenvalue problem on generalized standard form, i.e.,
Au = λBu, ex
ept that the mass matrix B = ẑ × J is not positive de�nite, whi
h isusually required. The eigenvalues of the matrix ẑ × J are −1, 0, 1, all with doublemultipli
ity. The mathemati
al problem of showing that this problem is well posedseems to be an open issue, but we assume this does not 
ause any problems.The idea with this eigenvalue problem is to expand the ele
tromagneti
 �eld inthe eigenmodes, and insert them into the z-dependent Maxwell's equations whi
hthen produ
es ordinary di�erential equations for the expansion 
oe�
ients. It thenturns out that the solution is simply an expansion in these modes multiplied byexponential fun
tions eγnz, and the expansion 
oe�
ients 
an be determined fromthe boundary 
ondition that the total transverse ele
tromagneti
 �eld is 
ontinuous.We now demonstrate some general properties for the solutions of the eigenprob-lem (4.1). We use the following short hand notation for the integral over the 
rossse
tion:

(e, d) =

∫

Ω

e · d∗ dS =

∫

Ω

(E · D∗ + H · B∗) dS (4.2)whi
h satis�es (e, d) = (d, e)∗, i.e., it is a s
alar produ
t for the �elds. A losslessmaterial is 
hara
terized by a hermitian symmetri
 material matrix, M = M
H. Aswe shall see, it is 
onvenient to have a means of 
hara
terizing the losses in a generalmaterial matrix M. This is related to the anti-hermitian part, and we use thenotation

σM = −iω
M − M

H

2
(4.3)The matrix σM is postulated to be non-negative hermitian symmetri
. The notationis motivated by the following example. Consider an isotropi
 medium with ele
tri

ondu
tivity:

M =

(
(ǫ + σ

−iω
)I 0

0 µI

)
=⇒ σM =

(
σI 0

0 0

) (4.4)We now derive the important quasi-orthogonality relation for the modes. Multiply-ing the equation (4.1) with the solution 
orresponding to another eigenvalue γn and



6integrating over the 
ross se
tion, we obtain
γm(ẑ × Jêm, ên) = ((−∇⊥ × J + iωM)êm, ên)

= ((−∇⊥ × J + iωM
H)êm, ên) + (iω(M − M

H)êm, ên)

= (ê,−(−∇⊥ × J + iωM)ê) +

∮

∂Ω

(−n̂ × Jê) · ê∗ dl

︸ ︷︷ ︸
=0

−2(σMêm, ên)

= −(êm, γnẑ × Jên) − 2(σMêm, ên) = −γ∗
n(ẑ × Jêm, ên) − 2(σMêm, ên) (4.5)This implies the quasi-orthogonality relation (see also [4℄)

(γm + γ∗
n)(ẑ × Jêm, ên) = −2(σMêm, ên) (4.6)The number (ẑ × Jêm, ên) represents the time average of the mutual power �ow inthe z dire
tion, sin
e

(ẑ × Jêm, ên) =

∫

Ω

ẑ · (Êm × Ĥ
∗

n + Ê
∗

n × Ĥm) dS (4.7)Setting m = n in (4.6), we have γn + γ∗
n = 2 Re(γn) and �nd

Re(γn)(ẑ × Jên, ên) = −(σMên, ên) (4.8)A lossless waveguide is 
hara
terized by σM = 0. In this 
ase, either Re(γn) = αn isequal to zero, i.e., the mode propagates undamped with γn = iβn, or the time averageof the power �ow in the z dire
tion, (ẑ × Jên, ên), is zero. In a lossy waveguide, thesign of Re(γn) is the opposite of the sign of the power �ow (ẑ × Jên, ên), sin
e σM isnon-negative. This last property implies that we 
an split the modes a

ording tothe signs of Re(γn) and (ẑ × Jen, en),
en = e

+
n if Re(γn) ≤ 0 and (ẑ × Jen, en) ≥ 0 (4.9)

en = e
−
n if Re(γn) ≥ 0 and (ẑ × Jen, en) ≤ 0 (4.10)This splitting is unique in lossy waveguides, and 
an be introdu
ed in lossless wave-guides by 
onsidering the modes as limits of modes in lossy waveguides when theloss σM → 0. We use this splitting when analyzing the s
attering problems.In lossless waveguides, the quasi-orthogonality relation (4.6) demonstrates thatthe mutual power �ow (ẑ × Jêm, ên) 
an be non-zero only if γm + γ∗

n = 0. This isa
hieved when m = n for propagating modes, γn = iβn, but also for pairs of evanes-
ent modes where γm = α and γn = −α. This 
ondition demonstrates how evanes-
ent modes de
aying in opposite dire
tions 
an 
ouple and 
arry power through astru
ture, whi
h is known as the tunnelling e�e
t in quantum me
hani
s. Thesemodes are 
alled twin-
onjugate modes in [4℄.
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M 0M 0

z= dz=0

M

Figure 2: The s
attering geometry in the waveguide. The material under test(MUT) is 
on�ned to the region 0 < z < d with material parameters M, and thesurrounding parts of the waveguide are �lled with material M0, usually air.5 The forward s
attering problemThe purpose of this se
tion is to provide a formulation for the forward s
atteringproblem that 
an be used to solve the inverse s
attering problem. We assume as
attering geometry as in Figure 2. The time harmoni
 �eld amplitudes in thedi�erent regions 
an then be expanded as
N∑

n=1

(
A+

n ê
+
n0e

iβn0z + A−
n ê

−
n0e

−iβn0z
)

+
∞∑

n=N+1

A−
n ê

−
n0e

αn0z z < 0 (5.1)
∞∑

n=1

(
f+

n ê
+
n eγ+

n z + f−
n ê

−
n eγ−

n z
)

0 < z < d (5.2)
N∑

n=1

(
B+

n ê
+
n0e

iβn0(z−d) + B−
n ê

−
n0e

−iβn0(z−d)
)

+
∞∑

n=N+1

B+
n ê

+
n0e

−αn0(z−d) d < z (5.3)Here, we have expli
itly splitted the modes in the surrounding lossless waveguidein propagating and evanes
ent waves. Note that the referen
e plane for the B
oe�
ients is 
hosen to be the right boundary through the shift z → z − d in theexponentials.The boundary 
onditions are that the tangential E and H �elds should be
ontinuous. This is ensured by requiring the following equations to hold, where wehave made extensive use of the quasi-orthogonality relations (4.6) in the surroundinglossless medium (remember that for evanes
ent waves (ẑ × Jê
±
m0, ê

±
m0) = 0, but the



8
ombination (ẑ × Jê
±
m0, ê

∓
m0) may be nonzero)

A+
m(ẑ × Jê

+
m0, ê

+
m0) =

∞∑

n=1

(
f+

n (ẑ × Jê
+
n , ê+

m0) + f−
n (ẑ × Jê

−
n , ê+

m0)
) (5.4)

A−
m(ẑ × Jê

−
m0, ê

−
m0) =

∞∑

n=1

(
f+

n (ẑ × Jê
+
n , ê−m0) + f−

n (ẑ × Jê
−
n , ê−m0)

) (5.5)
A−

m(ẑ × Jê
−
m0, ê

+
m0) =

∞∑

n=1

(
f+

n (ẑ × Jê
+
n , ê+

m0) + f−
n (ẑ × Jê

−
n , ê+

m0)
) (5.6)

0 =
∞∑

n=1

(
f+

n (ẑ × Jê
+
n , ê−m0) + f−

n (ẑ × Jê
−
n , ê−m0)

) (5.7)
B+

m(ẑ × Jê
+
m0, ê

+
m0) =

∞∑

n=1

(
f+

n eγ+
n d(ẑ × Jê

+
n , ê+

m0) + f−
n eγ−

n d(ẑ × Jê
−
n , ê+

m0)
) (5.8)

B−
m(ẑ × Jê

−
m0, ê

−
m0) =

∞∑

n=1

(
f+

n eγ+
n d(ẑ × Jê

+
n , ê−m0) + f−

n eγ−
n d(ẑ × Jê

−
n , ê−m0)

) (5.9)
B+

m(ẑ × Jê
+
m0, ê

−
m0) =

∞∑

n=1

(
f+

n eγ+
n d(ẑ × Jê

+
n , ê−m0) + f−

n eγ−
n d(ẑ × Jê

−
n , ê−m0)

) (5.10)
0 =

∞∑

n=1

(
f+

n eγ+
n d(ẑ × Jê

+
n , ê+

m0) + f−
n eγ−

n d(ẑ × Jê
−
n , ê+

m0)
) (5.11)The equations for {A±

m, B±
m} (propagating modes, i.e., (5.4), (5.5), (5.8), and (5.9))are valid for 1 ≤ m ≤ N , and the others (evanes
ent modes, i.e., (5.7), (5.6), (5.10),and (5.11)) are valid for m > N .In the forward s
attering problem, the 
oe�
ients {A+

n }
N
n=1 and {B−

n }
N
n=1 areknown, and the remaining 
oe�
ients are to be determined assuming full knowledgeof the modes inside and outside the MUT. Based on the reasoning that equations(5.7) and (5.11) span all degrees of freedom ex
ept the 2N propagating modes inthe surrounding medium, we assume that they 
an be used to eliminate all of themodes in the material ex
ept 2N ones (the �rst N plus modes and the �rst N minusmodes inside the MUT), i.e.,

f+
p =

N∑

n=1

(
QA

pnf
+
n + RA

pnf
−
n

)
, p > N (5.12)

f−
p eγ−

p d =
N∑

n=1

(
RB

pnf
+
n eγ+

n d + QB
pnf

−
n eγ−

n d
)

, p > N (5.13)



9Inserting the relations (5.12) and (5.13) into (5.4), we �nd
A+

m(ẑ × Jê
+
m0, ê

+
m0) =

∞∑

n=1

(
f+

n (ẑ × Jê
+
n , ê+

m0) + f−
n (ẑ × Jê

−
n , ê+

m0)
)

=
N∑

n=1

{
f+

n

[
(ẑ × Jê

+
n , ê+

m0) +
∞∑

p=N+1

QA
pn(ẑ × Jê

+
p , ê+

m0)

]

+ f−
n

[
(ẑ × Jê

−
n , ê+

m0) +
∞∑

p=N+1

RA
pn(ẑ × Jê

−
p , ê+

m0)

]} (5.14)and a 
orresponding expression for (5.9), both valid for 1 ≤ m ≤ N . This 
orre-sponds to two N × N systems of linear equations, from whi
h {f+
n , f−

n }N
n=1 
an bedetermined from {A+

m, B−
m}

N
n=1.When all the modes in the MUT 
ontribute to the 
oupling between the inter-fa
es, the 
oe�
ients QA,B

pn and RA,B
pn depend on all the propagation 
onstants γ±

nand the length d of the slab, but not on the ex
itation. However, if the number ofpropagating modes inside the MUT is equal to the number of propagating modesoutside, N , and the length is large enough so that only the propagating modes 
on-tribute to the 
oupling (the evanes
ent modes are su�
iently damped when rea
hingthe opposite interfa
e), the equations (5.7) and (5.11) take the following form:
∞∑

n=N+1

f+
n (ẑ × Jê

+
n , ê−m0) = −

N∑

n=1

(
f+

n (ẑ × Jê
+
n , ê−m0) + f−

n (ẑ × Jê
−
n , ê−m0)

) (5.15)
∞∑

n=N+1

f−
n eγ−

n d(ẑ × Jê
−
n , ê+

m0) = −

N∑

n=1

(
f+

n eγ+
n d(ẑ × Jê

+
n , ê+

m0) + f−
n eγ−

n d(ẑ × Jê
−
n , ê+

m0)
)(5.16)From this it is dedu
ed that the matri
es QA,B

pn and RA,B
pn are independent of thepropagation 
onstants and the slab length in this approximation, sin
e ea
h equation
an be solved independently.6 The inverse s
attering problemIn the inverse s
attering problem the aim is to infer information on the s
atteringsystem from s
attering data. In our 
ase, the ultimate goal is to determine thematerial matrix M from re�e
tion and transmission 
oe�
ients, or S-parameters,whi
h 
an be measured using a network analyzer. This is very di�
ult, but we 
anat least obtain partial information on the wave propagation 
hara
teristi
s.Assume that in the full problem, the interfa
es are so widely separated thatonly propagating modes 
ontribute to the 
oupling between the interfa
es. Furtherassume the number of propagating modes in the MUT is the same as in the sur-



10rounding medium, that is, N . From Se
tion 5 we then have the following equations
A±

m(ẑ × Jê
±
m0, ê

±
m0) =

N∑

n=1

f+
n

[
(ẑ × Jê

+
n , ê±m0) +

∞∑

p=N+1

QA
pn(ẑ × Jê

+
p , ê±m0)

]

+
N∑

n=1

f−
n

[
(ẑ × Jê

−
n , ê±m0) +

∞∑

p=N+1

RA
pn(ẑ × Jê

−
p , ê±m0)

] (6.1)
B±

m(ẑ × Jê
±
m0, ê

±
m0) =

N∑

n=1

f+
n eγ+

n d

[
(ẑ × Jê

+
n , ê±m0) +

∞∑

p=N+1

RB
pn(ẑ × Jê

+
p , ê±m0)

]

+
N∑

n=1

f−
n eγ−

n d

[
(ẑ × Jê

−
n , ê±m0) +

∞∑

p=N+1

QB
pn(ẑ × Jê

−
p , ê±m0)

] (6.2)As explained in the dis
ussion of the forward problem, the matri
es QA
pn and QB

pn arestrongly related to ea
h other, as are RA
pn and RB

pn. The 
oe�
ients {A±
m, B±

m}
N
m=1 
anbe determined from measurements, and the expressions inside the square bra
ketsand the propagation 
onstants {γ±

n }
N
n=1 are independent of the ex
itations. Thismeans the equations 
an be written

A±
m(ẑ × Jê

±
m0, ê

±
m0) =

N∑

n=1

(
f+

n a±
mn + f−

n b±mn

) (6.3)
B±

m(ẑ × Jê
±
m0, ê

±
m0) =

N∑

n=1

(
f+

n eγ+
n dc±mn + f−

n eγ−
n dd±

mn

) (6.4)If QA
pn = QB

pn = RA
pn = RB

pn = 0, it is seen that a±
mn = c±mn and b±mn = d±

mn. For a �xed
n, assume the A-
oe�
ients are 
hosen so that only the 
oe�
ient f+

n is nonzero.The B-
oe�
ients are then equal to the A-
oe�
ients multiplied by eγ+
n d. Thismeans the exponential fa
tors eγ±

n d are the eigenvalues of the operator mapping
A-
oe�
ients to B-
oe�
ients, and the ve
tors a±

mn = (ẑ × Jê
+
n , ê±m0) et
 are theeigenve
tors. This is the 
ase for isotropi
 media, and possibly some more spe
ial
ases. Thus, for these 
ases, it is su�
ient to determine the operator between A-and B-
oe�
ients to determine the propagations 
onstants. With no assumptionson the material, we need to generalize this idea.6.1 Determining the dispersion relations and modesIn what remains of this se
tion, we use an index q to denote summation over the ±index. Thus, instead of writing a±

mn, we write aq
mn, where the only possibilities for qare q ='+' or q ='−'.With n �xed, and m and q free indi
es, we identify aq

mn as a ve
tor in C
2N .We then assume that the 2N ve
tors {aq

mn, b
q
mn}

N
n=1 are linearly independent. Anadjoint basis {aq†

mn, b
q†
mn}

N
n=1 
an then be de�ned, su
h that [9, p. 12℄

∑

m,q

aq†
mna

q
mn′ = δnn′ ,

∑

m,q

bq†
mnb

q
mn′ = δnn′ ,

∑

m,q

aq†
mnbq

mn′ =
∑

m,q

bq†
mnaq

mn′ = 0, (6.5)



11where δnn′ is the Krone
ker delta, i.e., δnn′ = 0 if n 6= n′ and δnn = 1. Multiplying(6.4) by ve
tors from this adjoint basis, this means the mode 
oe�
ients in thematerial 
an be expressed as
f+

n eγ+
n d =

∑

m,q

cq†
mnB

q
m(ẑ × Jê

q
m0, ê

q
m0) (6.6)

f−
n eγ−

n d =
∑

m,q

dq†
mnB

q
m(ẑ × Jê

q
m0, ê

q
m0) (6.7)and we have the following relation between the A- and B-
oe�
ients from (6.3)

Aq
m(ẑ × Jê

q
m0, ê

q
m0) =

∑

m′,q′

[
N∑

n=1

e−γ+
n daq

mncq′†
m′n + e−γ−

n dbq
mndq′†

m′n

]
Bq′

m′(ẑ × Jê
q′

m′0, ê
q′

m′0)

=
∑

m′,q′

T qq′

mm′B
q′

m′(ẑ × Jê
q′

m′0, ê
q′

m′0) (6.8)The matrix T qq′

mm′ is independent of the ex
itation. By varying the input 
oe�-
ients {A+
m, B−

m}
N
m=1 and measuring the response 
oe�
ients {A−

m, B+
m}

N
m=1, the S-parameters des
ribing the mapping {A+

m, B−
m}

N
m=1 → {A−

m, B+
m}

N
m=1 
an be deter-mined. This is what a network analyzer typi
ally measures. The T -parameters arethen found by rearranging the S-parameters to obtain the mapping {B+

m, B−
m}

N
m=1 →

{A+
m, A−

m}
N
m=1. An example of this pro
edure for the single-mode 
ase is given inSe
tion 7.Performing this pro
edure for two di�erent sample lengths d1 and d2, we 
andetermine two matri
es T (d1) and T (d2). Now 
onsider the linear 
ombination

T (d1) − λT (d2), where λ is a 
omplex s
alar. From the de�nition of the adjointbasis ve
tors {cq†
mn, dq†

mn}
N
n=1, we see that

∑

m′,q′

[T qq′

mm′(d1) − λT qq′

mm′(d2)]c
q′

m′n = (e−γ+
n d1 − λe−γ+

n d2)aq
mn (6.9)This means that the matrix T (d1)−λT (d2) has a null spa
e for λ = eγ+

n (d2−d1). Thismeans we 
an determine the propagation 
onstant γ+
n by sear
hing for λ su
h thatthis matrix has a null spa
e, whi
h is equivalent to solving the eigenvalue problem

T (d2)
−1T (d1)un = λnun (6.10)whi
h is a well-de�ned numeri
al pro
edure on
e the matri
es T (d1) and T (d2) aregiven. Following the previous reasoning, the eigenvalues and eigenve
tors are

λn = {eγ+
n (d2−d1), eγ−

n (d2−d1)}, un = {c±mn, d±
mn} (6.11)Another eigenvalue problem 
an be de�ned by

T (d1)T (d2)
−1vn = κnvn (6.12)



12where the eigenvalues and eigenve
tors are
κn = {eγ+

n (d2−d1), eγ−
n (d2−d1)}, vn = {a±

mn, b±mn} (6.13)The eigenve
tors are determined only up to a multipli
ative 
onstant. This 
orre-sponds to the normalization of the modes ê
±
n , whi
h we have left unde�ned sin
ewe do not need it. The idea for employing this data in determining the material,as dis
ussed at the end of Se
tion 6.2, does not seem to need su
h a normalizationeither.We �nally note that if we are only interested in obtaining the propagation 
on-stants, i.e., the eigenvalues of T (d2)

−1T (d1), the referen
e plane for the measurementdoes not need to be at the material boundary. This is due to the fa
t that a shift ofreferen
e plane in a lossless waveguide simply 
orresponds to T → UTV H, where Uand V are unitary matri
es. This means
T (d2)

−1T (d1) → V T (d2)
−1UHUT (d1)V

H = V T (d2)
−1T (d1)V

H (6.14)whi
h does not 
hange the eigenvalues, only the eigenve
tors. Thus, if we are onlyinterested in the propagation 
onstants, the referen
e plane on ea
h side of thesample is arbitrary as long as it is the same for both samples. But if we wantinformation related to the eigenve
tors, it is ne
essary to 
alibrate the referen
eplane to be at the material boundary.The same reasoning also applies to the 
ir
umstan
e that we do not really mea-sure the mode 
oe�
ient, but rather how this mode 
ouples to a probe and is fedba
k in a 
able; su
h transformations are modeled by transformations of the kind
T → FTG−1, where F and G are matri
es (or error boxes) modeling the probes atea
h end. Obviously, this does not 
hange the situation 
ompared to the previousparagraph.6.2 Determining the materialFrom the previous subse
tion, we 
on
lude that under the assumptions

• There are pre
isely N propagating modes inside and outside the MUT.
• Measurements are performed for two sample lengths d1 and d2 where ea
hsample is su�
iently long so that only the �rst N modes inside the MUT
ontribute to the 
oupling between the interfa
es.
• The measurements are versatile enough to explore all available degrees of free-dom, i.e., determine the matri
es T (d1) and T (d2).



13the propagation 
onstants {γ±
n }

N
n=1 and numeri
al ve
tors proportional to the fol-lowing quantities 
an be determined (with m and q as free indi
es):

aq
mn = (ẑ × Jê

+
n , êq

m0) +
∞∑

p=N+1

QA
pn(ẑ × Jê

+
p , êq

m0) (6.15)
bq
mn = (ẑ × Jê

−
n , êq

m0) +
∞∑

p=N+1

RA
pn(ẑ × Jê

−
p , êq

m0) (6.16)
cq
mn = (ẑ × Jê

+
n , êq

m0) +
∞∑

p=N+1

RB
pn(ẑ × Jê

+
p , êq

m0) (6.17)
dq

mn = (ẑ × Jê
−
n , êq

m0) +
∞∑

p=N+1

QB
pn(ẑ × Jê

−
p , êq

m0) (6.18)This is all information that 
an be determined from this kind of measurements,sin
e this represents a 
omplete des
ription of the N -port s
attering matrix. Thesequantities 
an be used as follows to determine an interesting quantity, 
ontaininginformation on M. The modes inside and outside the MUT are de�ned by theequations
γq

nẑ × Jê
q
n = (−∇⊥ × J + iωM)êq

n (6.19)
γq′

m0ẑ × Jê
q′

m0 = (−∇⊥ × J + iωM0)ê
q′

m0 (6.20)This implies
γq

n(ẑ × Jê
q
n, ê

q′

m0) = ((−∇⊥ × J + iωM)êq
n, êq′

m0)

= (iω(M − M0)ê
q
n, êq′

m0) + ((−∇⊥ × J + iωM0)ê
q
n, ê

q′

m0)

= (iω(M − M0)ê
q
n, ê

q′

m0) − (êq
n, (−∇⊥ × J + iωM0)ê

q′

m0)

= (iω(M − M0)ê
q
n, ê

q′

m0) − (êq
n, γ

q′

m0ẑ × Jê
q′

m0) (6.21)or
(γq

n + (γq′

m0)
∗)(ẑ × Jê

q
n, ê

q′

m0) = (iω(M − M0)ê
q
n, ê

q′

m0) (6.22)Sin
e the propagation 
onstants are known, we see that information on the s
alarprodu
t (ẑ×Jê
q
n, êq′

m0) implies information on the s
alar produ
t (iω(M−M0)ê
q
n, ê

q′

m0),whi
h is dire
tly linked to the material matrix M. Using this relation in (6.15)produ
es
(γ+

n + (γq
m0)

∗)aq
mn =

(
iω(M − M0)

[
ê
+
n +

∞∑

p=N+1

QA
pn

γ+
n + (γq

m0)
∗

γ+
p + (γq

m0)
∗
ê
+
p

]
, êq

m0

) (6.23)with similar equations for the b, c, and d ve
tors. The left hand side is known fromthe eigenvalue problems formulated from measurement data, whi
h means we havean indire
t way of 
al
ulating the right hand side. With more information on themodes ên, this 
an be used to determine at least parts of the material matrix M.However, this problem is left for subsequent papers.
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Figure 3: The geometry and mesh of the numeri
al examples. The two surround-ing waveguides are designed for X-band operation (8.2�12.4GHz, 
uto� frequen
y
6.55 GHz), with 
ross se
tion 2.29 × 1.02 cm and length 5.00 cm. Ea
h open end isused as a port for the TE10 mode. A waveguide se
tion of 
ross se
tion 1.25×1.02 cmand length 4.00 cm or 5.00 cm is �lled with the material under test. The mesh uses3514 tetrahedral elements.7 Numeri
al examplesTo illustrate the algorithm for the inverse s
attering problem, we apply it to nu-meri
ally simulated data. The results in this se
tion 
an be transformed to otherfrequen
y regions by simultaneously s
aling the dimensions of the waveguide andthe frequen
y.The waveguide setup is shown in Figure 3. The 
enter part of the waveguide,
ontaining the MUT, has di�erent physi
al dimensions from the surrounding wave-guides. This is in order to limit the number of propagating modes in the MUT.The simulations were made with the program Comsol Multiphysi
s version 3.3,whi
h is based on the Finite Element Method. The 
uto� frequen
y for the TE10mode of the air-�lled waveguides is 6.55 GHz, and the frequen
y interval for sim-ulation was 
hosen as 7�15GHz. The 
entral waveguide part was �lled with anon-magneti
 isotropi
 material with relative permittivity ǫr = 4 and 
ondu
tivity
σ = 0.1 S/m, implying a dispersive 
omplex relative permittivity ǫ(ω) = ǫr + σ

iωǫ0
,where ǫ0 is the permittivity of va
uum. The 
al
ulations were made for the twolengths d1 = 4.00 cm and d2 = 5.00 cm. The program generates S-parameters forthe stru
ture with referen
e planes at the ports, and they are shown in Figure 4.The S-parameters are de�ned from

(
A−

B+

)
=

(
S11 S12

S21 S22

)(
A+

B−

) (7.1)whereas we want to use the relation
(

A+

A−

)
=

(
T11 T12

T21 T22

)(
B+

B−

) (7.2)



15in the algorithm determining the propagation 
onstants. These are the T -para-meters, whi
h are 
losely related to the ABCD-parameters; the T -parameters mapthe in- and outgoing waves on ea
h side to ea
h other, whereas the ABCD-para-meters map the total voltages and 
urrents on ea
h side of a two-port network toea
h other. The T -parameters are easily expressed in terms of the S-parametersas [8℄
T11 = 1/S21 (7.3)
T12 = −S22/S21 (7.4)
T21 = S11/S21 (7.5)
T22 = (S12S21 − S11S22)/S21 (7.6)After using this transformation, we 
an �nd the propagation 
onstants from theeigenvalues of the matrix T (d2)

−1T (d1). In this pro
edure, it is ne
essary to un-wrap the phase (remove dis
ontinuities ≥ π in the imaginary part) in order to avoiddis
ontinuities in the propagation 
onstants as fun
tions of ω. The 
omplex per-mittivity is then determined by inverting the relation β2 = ǫ(ω)ω2/c2
0 − λ, where

λ = (π/a)2, with a being the width of the 
enter waveguide. The resulting quantityis plotted in Figure 5. The 
ode doing this pro
edure on given S-parameter data isonly a few lines in Matlab.It is seen that the method 
an determine the 
omplex permittivity rather a

u-rately. The errors 
an be attributed to the numeri
al a

ura
y of the FEM programgenerating the data. A full-blown stability analysis of the algorithm is beyond thes
ope of this paper, but we 
an at least do some numeri
al experiments. We per-turbed the S-parameters in the simulations by adding noise generated by the Matlab
ommand randn multiplied by three di�erent fa
tors 0.1, 0.01, and 0.001, represent-ing di�erent noise levels. The results are depi
ted in Figure 6, and it is seen thatthe algorithm is reasonably stable for this test.To 
on
lude this se
tion, in Figure 7 we also give the results for an extension tothe anisotropi
 
ase presented in [6℄. There, it is shown that for a non-magneti
,anisotropi
 diele
tri
 with its prin
ipal axis aligned with the walls of a re
tangularwaveguide, the same dispersion relations apply for the fundamental TE mode asfor an isotropi
 material, i.e., β2 = ǫx,y,z(ω)ω2/c2
0 − λ. In order to dedu
e all threeprin
ipal values, the material sample is rotated so that ea
h prin
ipal dire
tion isaligned with the fundamental TE mode in the waveguide.8 Con
lusionsIn this paper, we have analyzed the forward and inverse s
attering problems of abianisotropi
 material sample in a metalli
 waveguide. Under the assumption thatthere are as many modes inside the MUT as outside, measurements on two sampleswith di�erent lengths are enough to determine the propagation 
onstants inside theMUT. Additional information on the modes is available, but the utilization of thisinformation remains a problem for further resear
h.
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Figure 5: The 
omplex permittivity 
omputed from the S-parameters by the al-gorithm in this paper. The 
ir
les indi
ate 10 linearly distributed frequen
ies inthe interval 7�15GHz, smallest frequen
ies farthest to the left. Noti
e that theimaginary part (the y-axis) is s
aled by the fa
tor ωǫ0, making it 
orrespond to the
ondu
tivity σ. Also observe the tight s
ales. The relatively large deviation for highfrequen
ies is probably due to multimode propagation.
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Figure 6: The 
omplex permittivity 
omputed when perturbing the S-parametersby random numbers of typi
al size 0.1, 0.01, and 0.001, from top to bottom.
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Figure 7: Results for an anisotropi
 material. In this 
ase, the narrow se
tionof the waveguide has prin
ipal values ǫx = 2 + iσ/(ωǫ0), ǫy = 3 + iσ/(ωǫ0), and
ǫz = 4 + iσ/(ωǫ0), where σ = 0.1 S/m. The mesh and the frequen
y range, 7�15GHz, are the same as in the other examples, and the errors are largest for higherfrequen
ies. The 
urve for ǫx − 2 starts o� with a relatively large error at around
(0.0024, 0.0928) for f = 7 GHz in the �gure. This is due to that for this prin
ipalvalue the midse
tion waveguide is then operating below its 
uto� frequen
y, whi
his 8.5GHz.



20The analysis is very general, and only assumes the material is linear. For in-stan
e, nothing in the analysis 
hanges if the material is heterogeneous in the (x, y)-plane, but does not depend on the z variable. Indeed, this has been utilized in thenumeri
al example in Se
tion 7, where we used a di�erent 
ross se
tion of the wave-guide 
ontaining the sample. A
tually, the analysis is appli
able to any stru
turein whi
h the ele
tromagneti
 �eld 
an be des
ribed by an expansion in propagatingand evanes
ent modes.There is probably a large range of spe
ial 
ases where the proposed formalismredu
es signi�
antly in 
omplexity. Most prominently, in waveguides �lled withisotropi
 materials, there is almost no 
oupling between di�erent modes. Also, asseen from the eigenproblems (A.9) and (A.10) for a general bianisotropi
 material,there are signi�
ant simpli�
ations for materials where an opti
al axis is along thewaveguide axis.The major assumption in this paper is that the number of propagating modes isthe same inside and outside the MUT, or possibly a smaller number inside the MUT.The main reason for this assumption is that it is ne
essary to be able to explore thedegrees of freedom available inside the material by varying the degrees of freedomoutside the material. This is not always easy to a
hieve: if the surrounding mediumis air, the 
uto� frequen
ies inside the MUT are usually lower, implying that theremay be more propagating modes inside the material. In order to a
hieve the samenumber of propagating modes, we may 
hoose the surrounding materialM0 to obtaina small 
ontrast to the MUT M, or pla
e the MUT in a somewhat narrower waveguidethan its surrounding material. The latter strategy was employed in Se
tion 7 of thispaper.9 A
knowledgementsThe work reported in this paper was supported by the Swedish Resear
h Coun
il.The author a
knowledges many fruitful dis
ussions regarding this paper with Profes-sor Gerhard Kristensson, Professor Anders Karlsson, Do
ent Mats Gustafsson, andProfessor Anders Melin, all at the Department of Ele
tros
ien
e at Lund University,Sweden.Appendix A A se
ond order eigenproblemOne of the major problems with the well-posedness of the eigenproblem
γẑ × Jê = (−∇⊥ × J + iωM)ê (A.1)is that the weight matrix ẑ×J is not positive de�nite. Indeed, it has the eigenvalues

−1, 0, and 1, all with double multipli
ity. To eliminate at least the eigenvalue 0, weobserve that this is related to the z 
omponent of the �eld (sin
e ẑ × ẑ = 0), whi
hleads us to the idea to eliminate the z 
omponent of the �eld. The transverse 
urloperator 
an be written in terms of its transverse and z parts as
∇⊥ × J = −ẑ × J · ∇⊥ẑ − ẑ∇⊥ · ẑ × J (A.2)



21We separate the transverse and z 
omponent of the ele
tromagneti
 �eld as
ê = ê⊥ + êz (A.3)whi
h splits the eigenvalue problem above in one transverse part and one z part,

γẑ × Jê⊥ = ẑ × J · ∇⊥êz + iω(M⊥⊥ê⊥ + M⊥z êz) (A.4)
0 = ∇⊥ · ẑ × Jê⊥ + iω(Mz⊥ê⊥ + Mzz êz) (A.5)From the last equation we eliminate êz as

êz = M
−1
zz (−

1

iω
∇⊥ · ẑ × Jê⊥ − Mz⊥ê⊥) (A.6)By eliminating the z 
omponent of the �eld, we raise the order of the di�erentialoperator and must make sure that all boundary 
onditions from the original formu-lation are preserved. Thus, we expli
itly require the boundary 
ondition

êz =

(
Êz

Ĥz

)
=

(
0

Ĥz

)
= M

−1
zz (−

1

iω
∇⊥ · ẑ × Jê⊥ − Mz⊥ê⊥), (x, y) ∈ ∂Ω (A.7)For isotropi
 materials, this 
orresponds to a Neumann boundary 
ondition for themagneti
 �eld. Had we not required this, we would only have a Diri
hlet boundary
ondition for the ele
tri
 �eld, i.e., not enough to spe
ify a unique solution in bothele
tri
 and magneti
 �eld.Inserting the expression for êz in (A.4), we obtain

γẑ × Jê⊥ = ẑ × J · ∇⊥êz + iω(M⊥⊥ê⊥ + M⊥z êz)

= ẑ × J · ∇⊥M
−1
zz (−

1

iω
∇⊥ · ẑ × Jê⊥ − Mz⊥ê⊥)

+ iω

[
M⊥⊥ê⊥ + M⊥zM

−1
zz (−

1

iω
∇⊥ · ẑ × Jê⊥ − Mz⊥ê⊥)

]

= −
1

iω
ẑ × J · ∇⊥M

−1
zz ∇⊥ · ẑ × Jê⊥

− ẑ × J · ∇⊥M
−1
zz Mz⊥ê⊥ − M⊥zM

−1
zz ∇⊥ · ẑ × Jê⊥

+ iω
[
M⊥⊥ − M⊥zM

−1
zz Mz⊥

]
ê⊥ (A.8)and after multiplying by −iω this is

− iωγẑ × Jê⊥ = ẑ × J · ∇⊥M
−1
zz ∇⊥ · ẑ × Jê⊥ + ω2

[
M⊥⊥ − M⊥zM

−1
zz Mz⊥

]
ê⊥

+ iω
[
ẑ × J · ∇⊥M

−1
zz Mz⊥ + M⊥zM

−1
zz ∇⊥ · ẑ × J

]
ê⊥ (A.9)For propagating modes in lossless waveguides the eigenvalue is real, −iωγ = −iωiβ =

ωβ. Observe that signi�
ant simpli�
ations o

ur when the material is symmetri
around the z axis, i.e., Mz⊥ = M⊥z = 0.This problem is still not quite on standard form, sin
e the eigenvalues for ẑ × Jare ±1 (with double multipli
ity) when 
onsidering only the transverse 
omponents



22of the �eld. Though, note that for hermitian symmetri
 materials (M = M
H) theoperator in the right hand side is self-adjoint due to the extra boundary 
onditionindu
ed by the elimination of the z 
omponent.The same pro
edure 
an be applied to formulate a problem in the z-
omponentsof the �elds instead of the transverse 
omponents. The result is

−∇xy·ẑ×J(M⊥⊥−
γ

iω
ẑ×J)−1ẑ×J·∇xy êz = ω2

[
Mzz − Mz⊥(M⊥⊥ −

γ

iω
ẑ × J)−1

M⊥z

]
êz

+
[
∇xy · ẑ × J(M⊥⊥ −

γ

iω
ẑ × J)−1

M⊥z + Mz⊥(M⊥⊥ −
γ

iω
ẑ × J)−1ẑ × J · ∇xy

]
êz(A.10)whi
h does not o�er any 
lear advantage over the previous formulation. Note againthe signi�
ant simpli�
ation whi
h o

urs if Mz⊥ = M⊥z = 0.Referen
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