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1AbstratThis paper presents an analysis with the aim of haraterizing an arbitrarylinear, bianisotropi material inside a metalli waveguide. The result is that ifthe number of propagating modes are the same inside and outside the materialunder test, it is possible to determine the propagation onstants of the modesinside the material by using sattering data from two samples with di�erentlengths. Some information an also be obtained on the ross-setional shapeof the modes, but it remains an open question if this information an be usedto haraterize the material. The method is illustrated by numerial exam-ples, determining the omplex permittivity for lossy isotropi and anisotropimaterials.1 IntrodutionIn order to obtain a well ontrolled environment for making material measurements,it is ommon to do the measurements in a metalli avity or waveguide. The geo-metrial onstraints of the waveguide walls impose dispersive harateristis on thepropagation, i.e., the wavelength of the propagating wave depends on frequeny ina nonlinear manner. In order to orretly interpret the measurements, it is ne-essary to provide a suitable haraterization of the waves inside the waveguide.This is well known for isotropi materials [2, 3, 7, 16℄, bi-isotropi (hiral) materi-als [5, 13℄, and even anisotropi materials where an optial axis is along the wave-guide axis [1, 6, 11, 12℄, but for general bianisotropi media with arbitrary axes thereare so far very few results available. In priniple, an optimization approah asin [7, 12℄ an be designed, where the material parameters are found by minimizingthe distane between measured and simulated S-parameters. However, this methodis typially plagued by non-uniqueness and similar numerial issues, and we seek amore diret method, providing physial insight to the problem.We present in this paper a partial solution to an inverse sattering problemin a waveguide geometry. First, the diret problem is solved by de�ning modesin an arbitrary linear material. This solution helps us de�ne an N -port model ofthe sattering problem, whih is then utilized in the inverse problem. Most of thereferenes mentioned so far only treats the single-mode ase, but the formalismin this paper is ready for an arbitrary number of modes. However, in pratialappliations the single-mode ase is usually preferable sine it is di�ult to measurehigher order modes.General results orresponding to the analysis presented in Setion 4 of this pa-per an be found in [4, 17℄. In these papers, the fundamental eigenvalue problemde�ning the modes in a bianisotropi material is de�ned and explored for generalorthogonality properties, but it is not applied to a sattering problem. There is asattering formalism for disontinuities in [17℄, but it is rather vague and there isalso some onfusion about propagating and evanesent modes in this paper. This isbetter aounted for in [4℄, but the formalism is only used to study the exitationof modes, not in a sattering problem. In [18, 19℄, a oupled-mode analysis is per-formed for bianisotropi waveguides, i.e., the �elds inside the material are expanded



2in terms of modes orresponding to an isotropi material. The sattering problemis not treated here either, but there are some graphs of dispersion relations in [18℄.In this paper, we use an eigenvalue problem of the form used in [4, 17℄ to de-�ne modes propagating in a metalli waveguide �lled with a bianisotropi material.The approah is related to similar spetral deompositions used in homogenizationtheory [14, 15℄, where the boundary onditions of the waveguide are replaed byperiodi boundary onditions. Using these modes, we de�ne an expansion of theeletromagneti �eld, whih is then used in a mode-mathing analysis of the sat-tering problem. In order to dedue the general properties of this formulation, thequasi-orthogonality results from [4, 17℄ are used heavily, and they are repeated inSetion 4.When dealing with bianisotropi materials, notation is often an issue. In thispaper, we use a six-vetor notation whih substantially redues the length of thepaper [10℄. This is introdued in Setion 2. In Setion 3 we illustrate what makesthe isotropi ase so simple, namely that it is possible to de�ne an eigenvalue problemindependent of both frequeny and propagation onstant. As is seen in Appendix A,where we derive the orresponding seond order equations, this seems impossible fora general bianisotropi material. In Setion 4 we de�ne the general eigenproblemin terms of a �rst order di�erential equation. A partiularly important result is thequasi-orthogonality (4.6), whih is also derived in [4℄, and in a di�erent formulationin [17℄. The forward sattering problem is treated in Setion 5, and the inversesattering problem in Setion 6. The resulting algorithm is tested in a numerialexample for a non-magneti, isotropi lossy dieletri medium in Setion 7, and someonlusions are given in Setion 8.2 NotationWe onsider time-harmoni waves in a waveguide of in�nite extent in the z-diretion,as in Figure 1. The eletromagneti �elds then satisfy (time onvention e−iωt)
∇× H = −iωD = −iω(ǫE + ξH) (2.1)
∇× E = iωB = iω(µH + ζE) (2.2)for (x, y) ∈ Ω and z arbitrary, with the boundary onditions n̂ × E = 0 and

n̂ × H = JS, where JS is the surfae urrent. The surfae urrent is usuallyunknown, and the boundary ondition n̂ × H = JS should be onsidered as ameans of determining JS, not as a restritive ondition on H . The PEC ondition
n̂×E = 0 is su�ient to alulate the �elds. To shorten the notation, we introduethe �elds

e =

(
E

H

)
, d =

(
D

B

)
=

(
ǫ ξ

ζ µ

)(
E

H

)
= Me (2.3)and the operator

∇× Je =

(
0 −∇× I

∇× I 0

)(
E

H

) (2.4)
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Figure 1: Geometry of the waveguide. The �omplex� material may be anisotropi,bianisotropi, lossy, et, but has to be linear.Maxwell's equations with boundary onditions an then be written
∇× Je = iωMe, (x, y) ∈ Ω; n̂ × Je =

(
−JS

0

)
, (x, y) ∈ ∂Ω (2.5)In the typial ase when the material parameters do not depend on z, it is naturalto introdue the Fourier transform pair

ê(x, y, β) =

∫ ∞

−∞

e−iβz
e(x, y, z) dz (2.6)

e(x, y, z) =
1

2π

∫ ∞

−∞

eiβz
ê(x, y, β) dβ (2.7)Maxwell's equations are then (where ∇⊥ = x̂∂x + ŷ∂y)

(∇⊥ + iβẑ) × Jê = iωMê, (x, y) ∈ Ω; n̂ × Jê =

(
−ĴS

0

)
, (x, y) ∈ ∂Ω (2.8)If M is a hermitian symmetri positive de�nite matrix, i.e., M
H = M and e

H
0 Me0 ≥

θ|e0|
2 for some positive onstant θ and all six-vetors e0, this is a well posed eigen-value problem for a self-adjoint operator for eah �xed β, ω being the eigenvalue. Adetailed aount in the homogenization setting, where the PEC boundary onditionis replaed by periodi boundary onditions, an be found in [15℄.Should M not be hermitian symmetri, a similar analysis of the well-posednessan be made using a singular value deomposition. Though, we shall assume that



4(2.8) de�nes suitable modes even in the nonhermitian ase, where the typial e�etis that properties suh as orthogonality disappear [4℄.3 Isotropi materialsThe equation (2.8) de�nes the eigenvalue ω as a funtion of the parameter β. Toillustrate how this problem orresponds to the lassial approah to isotropi wave-guides, we now digress a bit to treat this speial ase.The �rst order system (2.8) an be written as a seond order system,
(∇⊥ + iβẑ) × JM

−1(∇⊥ + iβẑ) × Jê = −ω2
Mê (3.1)We now assume the material matrix models a �lassial� material, i.e., only usingpermittivity and permeability,

M =

(
ǫ 0

0 µ

) (3.2)The seond order equations then deouple into
(∇⊥ + iβẑ) × [µ−1(∇⊥ + iβẑ) × Ê] = ω2ǫÊ (3.3)
(∇⊥ + iβẑ) × [ǫ−1(∇⊥ + iβẑ) × Ĥ ] = ω2µĤ (3.4)Further assuming the material is isotropi, i.e., ǫ = ǫI and µ = µI, the left handside of the �rst equation beomes proportional to

(∇⊥ + iβẑ) × [(∇⊥ + iβẑ) × Ê]

= (∇⊥ + iβẑ)[(∇⊥ + iβẑ) · Ê] − (∇2
⊥ − β2)Ê = −∇2

⊥Ê + β2Ê (3.5)where the last equality follows sine the divergene of Ê is zero from the originalequation. By ∇2
⊥ we denote the Laplae operator in the xy variables, ∇2

⊥ = ∂2
x +∂2

y .A similar expression holds for the magneti �eld, and we obtain
−∇2

⊥Ê = (ω2ǫµ − β2)Ê (3.6)
−∇2

⊥Ĥ = (ω2ǫµ − β2)Ĥ (3.7)We see that by treating ω2ǫµ − β2 as a new eigenvalue λ, an eigenvalue problemindependent of both ω and β an be formulated and preomputed, whih providesus with dispersion relations as ω = Wn(β) =
√

(λn + β2)/(ǫµ), where λn dependsonly on the shape of the boundary. Usually two di�erent eigenvalue problems areformulated: one for the z omponent of the eletri �eld with Dirihlet onditions
Êz = 0 on the boundary (TM modes), and one for the z omponent of the magneti�eld with Neumann onditions n̂ · ∇⊥Ĥz = 0 on the boundary (TE modes).The dispersion relation ω =

√
(λn + β2)/(ǫµ) immediately demonstrates theimportant phenomenon of a uto� frequeny. For a hollow waveguide (onsisting ofa simply onneted region Ω enlosed by PEC walls), the smallest eigenvalue λ0 isalways positive. This means that there exists a uto� frequeny ωc =

√
λ0/(ǫµ),below whih there an be no �xed frequeny propagating waves (orresponding toreal wave numbers β).



54 Bianisotropi materialsIt is very di�ult, maybe impossible, to derive an eigenvalue problem independentof both ω and β for a general bianisotropi material. In Appendix A we derivea seond order di�erential equation whih may be suitable for speial ases, forinstane when the material has an optial axis along the waveguide axis. However,in the general ase, when nothing is a priori known about the struture of thematerial, this formulation o�ers little simpli�ation.Equation (2.8) an be used as an eigenvalue problem determining ω for a �xed
β, but in most pratial appliations it is more relevant to study a �xed frequeny
ω. In this ase, we assume a z dependene on the form eγz, where γ = α + iβ isa omplex number. Sine ∇(f(x, y)eγz) = eγz(∇⊥ + γẑ)f(x, y), we postulate aneigenvalue problem for the propagation onstant γ as

γmẑ × Jêm = (−∇⊥ × J + iωM) êm (4.1)This almost looks like an eigenvalue problem on generalized standard form, i.e.,
Au = λBu, exept that the mass matrix B = ẑ × J is not positive de�nite, whih isusually required. The eigenvalues of the matrix ẑ × J are −1, 0, 1, all with doublemultipliity. The mathematial problem of showing that this problem is well posedseems to be an open issue, but we assume this does not ause any problems.The idea with this eigenvalue problem is to expand the eletromagneti �eld inthe eigenmodes, and insert them into the z-dependent Maxwell's equations whihthen produes ordinary di�erential equations for the expansion oe�ients. It thenturns out that the solution is simply an expansion in these modes multiplied byexponential funtions eγnz, and the expansion oe�ients an be determined fromthe boundary ondition that the total transverse eletromagneti �eld is ontinuous.We now demonstrate some general properties for the solutions of the eigenprob-lem (4.1). We use the following short hand notation for the integral over the rosssetion:

(e, d) =

∫

Ω

e · d∗ dS =

∫

Ω

(E · D∗ + H · B∗) dS (4.2)whih satis�es (e, d) = (d, e)∗, i.e., it is a salar produt for the �elds. A losslessmaterial is haraterized by a hermitian symmetri material matrix, M = M
H. Aswe shall see, it is onvenient to have a means of haraterizing the losses in a generalmaterial matrix M. This is related to the anti-hermitian part, and we use thenotation

σM = −iω
M − M

H

2
(4.3)The matrix σM is postulated to be non-negative hermitian symmetri. The notationis motivated by the following example. Consider an isotropi medium with eletriondutivity:

M =

(
(ǫ + σ

−iω
)I 0

0 µI

)
=⇒ σM =

(
σI 0

0 0

) (4.4)We now derive the important quasi-orthogonality relation for the modes. Multiply-ing the equation (4.1) with the solution orresponding to another eigenvalue γn and



6integrating over the ross setion, we obtain
γm(ẑ × Jêm, ên) = ((−∇⊥ × J + iωM)êm, ên)

= ((−∇⊥ × J + iωM
H)êm, ên) + (iω(M − M

H)êm, ên)

= (ê,−(−∇⊥ × J + iωM)ê) +

∮

∂Ω

(−n̂ × Jê) · ê∗ dl

︸ ︷︷ ︸
=0

−2(σMêm, ên)

= −(êm, γnẑ × Jên) − 2(σMêm, ên) = −γ∗
n(ẑ × Jêm, ên) − 2(σMêm, ên) (4.5)This implies the quasi-orthogonality relation (see also [4℄)

(γm + γ∗
n)(ẑ × Jêm, ên) = −2(σMêm, ên) (4.6)The number (ẑ × Jêm, ên) represents the time average of the mutual power �ow inthe z diretion, sine

(ẑ × Jêm, ên) =

∫

Ω

ẑ · (Êm × Ĥ
∗

n + Ê
∗

n × Ĥm) dS (4.7)Setting m = n in (4.6), we have γn + γ∗
n = 2 Re(γn) and �nd

Re(γn)(ẑ × Jên, ên) = −(σMên, ên) (4.8)A lossless waveguide is haraterized by σM = 0. In this ase, either Re(γn) = αn isequal to zero, i.e., the mode propagates undamped with γn = iβn, or the time averageof the power �ow in the z diretion, (ẑ × Jên, ên), is zero. In a lossy waveguide, thesign of Re(γn) is the opposite of the sign of the power �ow (ẑ × Jên, ên), sine σM isnon-negative. This last property implies that we an split the modes aording tothe signs of Re(γn) and (ẑ × Jen, en),
en = e

+
n if Re(γn) ≤ 0 and (ẑ × Jen, en) ≥ 0 (4.9)

en = e
−
n if Re(γn) ≥ 0 and (ẑ × Jen, en) ≤ 0 (4.10)This splitting is unique in lossy waveguides, and an be introdued in lossless wave-guides by onsidering the modes as limits of modes in lossy waveguides when theloss σM → 0. We use this splitting when analyzing the sattering problems.In lossless waveguides, the quasi-orthogonality relation (4.6) demonstrates thatthe mutual power �ow (ẑ × Jêm, ên) an be non-zero only if γm + γ∗

n = 0. This isahieved when m = n for propagating modes, γn = iβn, but also for pairs of evanes-ent modes where γm = α and γn = −α. This ondition demonstrates how evanes-ent modes deaying in opposite diretions an ouple and arry power through astruture, whih is known as the tunnelling e�et in quantum mehanis. Thesemodes are alled twin-onjugate modes in [4℄.
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M 0M 0

z= dz=0

M

Figure 2: The sattering geometry in the waveguide. The material under test(MUT) is on�ned to the region 0 < z < d with material parameters M, and thesurrounding parts of the waveguide are �lled with material M0, usually air.5 The forward sattering problemThe purpose of this setion is to provide a formulation for the forward satteringproblem that an be used to solve the inverse sattering problem. We assume asattering geometry as in Figure 2. The time harmoni �eld amplitudes in thedi�erent regions an then be expanded as
N∑

n=1

(
A+

n ê
+
n0e

iβn0z + A−
n ê

−
n0e

−iβn0z
)

+
∞∑

n=N+1

A−
n ê

−
n0e

αn0z z < 0 (5.1)
∞∑

n=1

(
f+

n ê
+
n eγ+

n z + f−
n ê

−
n eγ−

n z
)

0 < z < d (5.2)
N∑

n=1

(
B+

n ê
+
n0e

iβn0(z−d) + B−
n ê

−
n0e

−iβn0(z−d)
)

+
∞∑

n=N+1

B+
n ê

+
n0e

−αn0(z−d) d < z (5.3)Here, we have expliitly splitted the modes in the surrounding lossless waveguidein propagating and evanesent waves. Note that the referene plane for the Boe�ients is hosen to be the right boundary through the shift z → z − d in theexponentials.The boundary onditions are that the tangential E and H �elds should beontinuous. This is ensured by requiring the following equations to hold, where wehave made extensive use of the quasi-orthogonality relations (4.6) in the surroundinglossless medium (remember that for evanesent waves (ẑ × Jê
±
m0, ê

±
m0) = 0, but the



8ombination (ẑ × Jê
±
m0, ê

∓
m0) may be nonzero)

A+
m(ẑ × Jê

+
m0, ê

+
m0) =

∞∑

n=1

(
f+

n (ẑ × Jê
+
n , ê+

m0) + f−
n (ẑ × Jê

−
n , ê+

m0)
) (5.4)

A−
m(ẑ × Jê

−
m0, ê

−
m0) =

∞∑

n=1

(
f+

n (ẑ × Jê
+
n , ê−m0) + f−

n (ẑ × Jê
−
n , ê−m0)

) (5.5)
A−

m(ẑ × Jê
−
m0, ê

+
m0) =

∞∑

n=1

(
f+

n (ẑ × Jê
+
n , ê+

m0) + f−
n (ẑ × Jê

−
n , ê+

m0)
) (5.6)

0 =
∞∑

n=1

(
f+

n (ẑ × Jê
+
n , ê−m0) + f−

n (ẑ × Jê
−
n , ê−m0)

) (5.7)
B+

m(ẑ × Jê
+
m0, ê

+
m0) =

∞∑

n=1

(
f+

n eγ+
n d(ẑ × Jê

+
n , ê+

m0) + f−
n eγ−

n d(ẑ × Jê
−
n , ê+

m0)
) (5.8)

B−
m(ẑ × Jê

−
m0, ê

−
m0) =

∞∑

n=1

(
f+

n eγ+
n d(ẑ × Jê

+
n , ê−m0) + f−

n eγ−
n d(ẑ × Jê

−
n , ê−m0)

) (5.9)
B+

m(ẑ × Jê
+
m0, ê

−
m0) =

∞∑

n=1

(
f+

n eγ+
n d(ẑ × Jê

+
n , ê−m0) + f−

n eγ−
n d(ẑ × Jê

−
n , ê−m0)

) (5.10)
0 =

∞∑

n=1

(
f+

n eγ+
n d(ẑ × Jê

+
n , ê+

m0) + f−
n eγ−

n d(ẑ × Jê
−
n , ê+

m0)
) (5.11)The equations for {A±

m, B±
m} (propagating modes, i.e., (5.4), (5.5), (5.8), and (5.9))are valid for 1 ≤ m ≤ N , and the others (evanesent modes, i.e., (5.7), (5.6), (5.10),and (5.11)) are valid for m > N .In the forward sattering problem, the oe�ients {A+

n }
N
n=1 and {B−

n }
N
n=1 areknown, and the remaining oe�ients are to be determined assuming full knowledgeof the modes inside and outside the MUT. Based on the reasoning that equations(5.7) and (5.11) span all degrees of freedom exept the 2N propagating modes inthe surrounding medium, we assume that they an be used to eliminate all of themodes in the material exept 2N ones (the �rst N plus modes and the �rst N minusmodes inside the MUT), i.e.,

f+
p =

N∑

n=1

(
QA

pnf
+
n + RA

pnf
−
n

)
, p > N (5.12)

f−
p eγ−

p d =
N∑

n=1

(
RB

pnf
+
n eγ+

n d + QB
pnf

−
n eγ−

n d
)

, p > N (5.13)



9Inserting the relations (5.12) and (5.13) into (5.4), we �nd
A+

m(ẑ × Jê
+
m0, ê

+
m0) =

∞∑

n=1

(
f+

n (ẑ × Jê
+
n , ê+

m0) + f−
n (ẑ × Jê

−
n , ê+

m0)
)

=
N∑

n=1

{
f+

n

[
(ẑ × Jê

+
n , ê+

m0) +
∞∑

p=N+1

QA
pn(ẑ × Jê

+
p , ê+

m0)

]

+ f−
n

[
(ẑ × Jê

−
n , ê+

m0) +
∞∑

p=N+1

RA
pn(ẑ × Jê

−
p , ê+

m0)

]} (5.14)and a orresponding expression for (5.9), both valid for 1 ≤ m ≤ N . This orre-sponds to two N × N systems of linear equations, from whih {f+
n , f−

n }N
n=1 an bedetermined from {A+

m, B−
m}

N
n=1.When all the modes in the MUT ontribute to the oupling between the inter-faes, the oe�ients QA,B

pn and RA,B
pn depend on all the propagation onstants γ±

nand the length d of the slab, but not on the exitation. However, if the number ofpropagating modes inside the MUT is equal to the number of propagating modesoutside, N , and the length is large enough so that only the propagating modes on-tribute to the oupling (the evanesent modes are su�iently damped when reahingthe opposite interfae), the equations (5.7) and (5.11) take the following form:
∞∑

n=N+1

f+
n (ẑ × Jê

+
n , ê−m0) = −

N∑

n=1

(
f+

n (ẑ × Jê
+
n , ê−m0) + f−

n (ẑ × Jê
−
n , ê−m0)

) (5.15)
∞∑

n=N+1

f−
n eγ−

n d(ẑ × Jê
−
n , ê+

m0) = −

N∑

n=1

(
f+

n eγ+
n d(ẑ × Jê

+
n , ê+

m0) + f−
n eγ−

n d(ẑ × Jê
−
n , ê+

m0)
)(5.16)From this it is dedued that the matries QA,B

pn and RA,B
pn are independent of thepropagation onstants and the slab length in this approximation, sine eah equationan be solved independently.6 The inverse sattering problemIn the inverse sattering problem the aim is to infer information on the satteringsystem from sattering data. In our ase, the ultimate goal is to determine thematerial matrix M from re�etion and transmission oe�ients, or S-parameters,whih an be measured using a network analyzer. This is very di�ult, but we anat least obtain partial information on the wave propagation harateristis.Assume that in the full problem, the interfaes are so widely separated thatonly propagating modes ontribute to the oupling between the interfaes. Furtherassume the number of propagating modes in the MUT is the same as in the sur-



10rounding medium, that is, N . From Setion 5 we then have the following equations
A±

m(ẑ × Jê
±
m0, ê

±
m0) =

N∑

n=1

f+
n

[
(ẑ × Jê

+
n , ê±m0) +

∞∑

p=N+1

QA
pn(ẑ × Jê

+
p , ê±m0)

]

+
N∑

n=1

f−
n

[
(ẑ × Jê

−
n , ê±m0) +

∞∑

p=N+1

RA
pn(ẑ × Jê

−
p , ê±m0)

] (6.1)
B±

m(ẑ × Jê
±
m0, ê

±
m0) =

N∑

n=1

f+
n eγ+

n d

[
(ẑ × Jê

+
n , ê±m0) +

∞∑

p=N+1

RB
pn(ẑ × Jê

+
p , ê±m0)

]

+
N∑

n=1

f−
n eγ−

n d

[
(ẑ × Jê

−
n , ê±m0) +

∞∑

p=N+1

QB
pn(ẑ × Jê

−
p , ê±m0)

] (6.2)As explained in the disussion of the forward problem, the matries QA
pn and QB

pn arestrongly related to eah other, as are RA
pn and RB

pn. The oe�ients {A±
m, B±

m}
N
m=1 anbe determined from measurements, and the expressions inside the square braketsand the propagation onstants {γ±

n }
N
n=1 are independent of the exitations. Thismeans the equations an be written

A±
m(ẑ × Jê

±
m0, ê

±
m0) =

N∑

n=1

(
f+

n a±
mn + f−

n b±mn

) (6.3)
B±

m(ẑ × Jê
±
m0, ê

±
m0) =

N∑

n=1

(
f+

n eγ+
n dc±mn + f−

n eγ−
n dd±

mn

) (6.4)If QA
pn = QB

pn = RA
pn = RB

pn = 0, it is seen that a±
mn = c±mn and b±mn = d±

mn. For a �xed
n, assume the A-oe�ients are hosen so that only the oe�ient f+

n is nonzero.The B-oe�ients are then equal to the A-oe�ients multiplied by eγ+
n d. Thismeans the exponential fators eγ±

n d are the eigenvalues of the operator mapping
A-oe�ients to B-oe�ients, and the vetors a±

mn = (ẑ × Jê
+
n , ê±m0) et are theeigenvetors. This is the ase for isotropi media, and possibly some more speialases. Thus, for these ases, it is su�ient to determine the operator between A-and B-oe�ients to determine the propagations onstants. With no assumptionson the material, we need to generalize this idea.6.1 Determining the dispersion relations and modesIn what remains of this setion, we use an index q to denote summation over the ±index. Thus, instead of writing a±

mn, we write aq
mn, where the only possibilities for qare q ='+' or q ='−'.With n �xed, and m and q free indies, we identify aq

mn as a vetor in C
2N .We then assume that the 2N vetors {aq

mn, b
q
mn}

N
n=1 are linearly independent. Anadjoint basis {aq†

mn, b
q†
mn}

N
n=1 an then be de�ned, suh that [9, p. 12℄

∑

m,q

aq†
mna

q
mn′ = δnn′ ,

∑

m,q

bq†
mnb

q
mn′ = δnn′ ,

∑

m,q

aq†
mnbq

mn′ =
∑

m,q

bq†
mnaq

mn′ = 0, (6.5)



11where δnn′ is the Kroneker delta, i.e., δnn′ = 0 if n 6= n′ and δnn = 1. Multiplying(6.4) by vetors from this adjoint basis, this means the mode oe�ients in thematerial an be expressed as
f+

n eγ+
n d =

∑

m,q

cq†
mnB

q
m(ẑ × Jê

q
m0, ê

q
m0) (6.6)

f−
n eγ−

n d =
∑

m,q

dq†
mnB

q
m(ẑ × Jê

q
m0, ê

q
m0) (6.7)and we have the following relation between the A- and B-oe�ients from (6.3)

Aq
m(ẑ × Jê

q
m0, ê

q
m0) =

∑

m′,q′

[
N∑

n=1

e−γ+
n daq

mncq′†
m′n + e−γ−

n dbq
mndq′†

m′n

]
Bq′

m′(ẑ × Jê
q′

m′0, ê
q′

m′0)

=
∑

m′,q′

T qq′

mm′B
q′

m′(ẑ × Jê
q′

m′0, ê
q′

m′0) (6.8)The matrix T qq′

mm′ is independent of the exitation. By varying the input oe�-ients {A+
m, B−

m}
N
m=1 and measuring the response oe�ients {A−

m, B+
m}

N
m=1, the S-parameters desribing the mapping {A+

m, B−
m}

N
m=1 → {A−

m, B+
m}

N
m=1 an be deter-mined. This is what a network analyzer typially measures. The T -parameters arethen found by rearranging the S-parameters to obtain the mapping {B+

m, B−
m}

N
m=1 →

{A+
m, A−

m}
N
m=1. An example of this proedure for the single-mode ase is given inSetion 7.Performing this proedure for two di�erent sample lengths d1 and d2, we andetermine two matries T (d1) and T (d2). Now onsider the linear ombination

T (d1) − λT (d2), where λ is a omplex salar. From the de�nition of the adjointbasis vetors {cq†
mn, dq†

mn}
N
n=1, we see that

∑

m′,q′

[T qq′

mm′(d1) − λT qq′

mm′(d2)]c
q′

m′n = (e−γ+
n d1 − λe−γ+

n d2)aq
mn (6.9)This means that the matrix T (d1)−λT (d2) has a null spae for λ = eγ+

n (d2−d1). Thismeans we an determine the propagation onstant γ+
n by searhing for λ suh thatthis matrix has a null spae, whih is equivalent to solving the eigenvalue problem

T (d2)
−1T (d1)un = λnun (6.10)whih is a well-de�ned numerial proedure one the matries T (d1) and T (d2) aregiven. Following the previous reasoning, the eigenvalues and eigenvetors are

λn = {eγ+
n (d2−d1), eγ−

n (d2−d1)}, un = {c±mn, d±
mn} (6.11)Another eigenvalue problem an be de�ned by

T (d1)T (d2)
−1vn = κnvn (6.12)



12where the eigenvalues and eigenvetors are
κn = {eγ+

n (d2−d1), eγ−
n (d2−d1)}, vn = {a±

mn, b±mn} (6.13)The eigenvetors are determined only up to a multipliative onstant. This orre-sponds to the normalization of the modes ê
±
n , whih we have left unde�ned sinewe do not need it. The idea for employing this data in determining the material,as disussed at the end of Setion 6.2, does not seem to need suh a normalizationeither.We �nally note that if we are only interested in obtaining the propagation on-stants, i.e., the eigenvalues of T (d2)

−1T (d1), the referene plane for the measurementdoes not need to be at the material boundary. This is due to the fat that a shift ofreferene plane in a lossless waveguide simply orresponds to T → UTV H, where Uand V are unitary matries. This means
T (d2)

−1T (d1) → V T (d2)
−1UHUT (d1)V

H = V T (d2)
−1T (d1)V

H (6.14)whih does not hange the eigenvalues, only the eigenvetors. Thus, if we are onlyinterested in the propagation onstants, the referene plane on eah side of thesample is arbitrary as long as it is the same for both samples. But if we wantinformation related to the eigenvetors, it is neessary to alibrate the refereneplane to be at the material boundary.The same reasoning also applies to the irumstane that we do not really mea-sure the mode oe�ient, but rather how this mode ouples to a probe and is fedbak in a able; suh transformations are modeled by transformations of the kind
T → FTG−1, where F and G are matries (or error boxes) modeling the probes ateah end. Obviously, this does not hange the situation ompared to the previousparagraph.6.2 Determining the materialFrom the previous subsetion, we onlude that under the assumptions

• There are preisely N propagating modes inside and outside the MUT.
• Measurements are performed for two sample lengths d1 and d2 where eahsample is su�iently long so that only the �rst N modes inside the MUTontribute to the oupling between the interfaes.
• The measurements are versatile enough to explore all available degrees of free-dom, i.e., determine the matries T (d1) and T (d2).



13the propagation onstants {γ±
n }

N
n=1 and numerial vetors proportional to the fol-lowing quantities an be determined (with m and q as free indies):

aq
mn = (ẑ × Jê

+
n , êq

m0) +
∞∑

p=N+1

QA
pn(ẑ × Jê

+
p , êq

m0) (6.15)
bq
mn = (ẑ × Jê

−
n , êq

m0) +
∞∑

p=N+1

RA
pn(ẑ × Jê

−
p , êq

m0) (6.16)
cq
mn = (ẑ × Jê

+
n , êq

m0) +
∞∑

p=N+1

RB
pn(ẑ × Jê

+
p , êq

m0) (6.17)
dq

mn = (ẑ × Jê
−
n , êq

m0) +
∞∑

p=N+1

QB
pn(ẑ × Jê

−
p , êq

m0) (6.18)This is all information that an be determined from this kind of measurements,sine this represents a omplete desription of the N -port sattering matrix. Thesequantities an be used as follows to determine an interesting quantity, ontaininginformation on M. The modes inside and outside the MUT are de�ned by theequations
γq

nẑ × Jê
q
n = (−∇⊥ × J + iωM)êq

n (6.19)
γq′

m0ẑ × Jê
q′

m0 = (−∇⊥ × J + iωM0)ê
q′

m0 (6.20)This implies
γq

n(ẑ × Jê
q
n, ê

q′

m0) = ((−∇⊥ × J + iωM)êq
n, êq′

m0)

= (iω(M − M0)ê
q
n, êq′

m0) + ((−∇⊥ × J + iωM0)ê
q
n, ê

q′

m0)

= (iω(M − M0)ê
q
n, ê

q′

m0) − (êq
n, (−∇⊥ × J + iωM0)ê

q′

m0)

= (iω(M − M0)ê
q
n, ê

q′

m0) − (êq
n, γ

q′

m0ẑ × Jê
q′

m0) (6.21)or
(γq

n + (γq′

m0)
∗)(ẑ × Jê

q
n, ê

q′

m0) = (iω(M − M0)ê
q
n, ê

q′

m0) (6.22)Sine the propagation onstants are known, we see that information on the salarprodut (ẑ×Jê
q
n, êq′

m0) implies information on the salar produt (iω(M−M0)ê
q
n, ê

q′

m0),whih is diretly linked to the material matrix M. Using this relation in (6.15)produes
(γ+

n + (γq
m0)

∗)aq
mn =

(
iω(M − M0)

[
ê
+
n +

∞∑

p=N+1

QA
pn

γ+
n + (γq

m0)
∗

γ+
p + (γq

m0)
∗
ê
+
p

]
, êq

m0

) (6.23)with similar equations for the b, c, and d vetors. The left hand side is known fromthe eigenvalue problems formulated from measurement data, whih means we havean indiret way of alulating the right hand side. With more information on themodes ên, this an be used to determine at least parts of the material matrix M.However, this problem is left for subsequent papers.
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Figure 3: The geometry and mesh of the numerial examples. The two surround-ing waveguides are designed for X-band operation (8.2�12.4GHz, uto� frequeny
6.55 GHz), with ross setion 2.29 × 1.02 cm and length 5.00 cm. Eah open end isused as a port for the TE10 mode. A waveguide setion of ross setion 1.25×1.02 cmand length 4.00 cm or 5.00 cm is �lled with the material under test. The mesh uses3514 tetrahedral elements.7 Numerial examplesTo illustrate the algorithm for the inverse sattering problem, we apply it to nu-merially simulated data. The results in this setion an be transformed to otherfrequeny regions by simultaneously saling the dimensions of the waveguide andthe frequeny.The waveguide setup is shown in Figure 3. The enter part of the waveguide,ontaining the MUT, has di�erent physial dimensions from the surrounding wave-guides. This is in order to limit the number of propagating modes in the MUT.The simulations were made with the program Comsol Multiphysis version 3.3,whih is based on the Finite Element Method. The uto� frequeny for the TE10mode of the air-�lled waveguides is 6.55 GHz, and the frequeny interval for sim-ulation was hosen as 7�15GHz. The entral waveguide part was �lled with anon-magneti isotropi material with relative permittivity ǫr = 4 and ondutivity
σ = 0.1 S/m, implying a dispersive omplex relative permittivity ǫ(ω) = ǫr + σ

iωǫ0
,where ǫ0 is the permittivity of vauum. The alulations were made for the twolengths d1 = 4.00 cm and d2 = 5.00 cm. The program generates S-parameters forthe struture with referene planes at the ports, and they are shown in Figure 4.The S-parameters are de�ned from

(
A−

B+

)
=

(
S11 S12

S21 S22

)(
A+

B−

) (7.1)whereas we want to use the relation
(

A+

A−

)
=

(
T11 T12

T21 T22

)(
B+

B−

) (7.2)



15in the algorithm determining the propagation onstants. These are the T -para-meters, whih are losely related to the ABCD-parameters; the T -parameters mapthe in- and outgoing waves on eah side to eah other, whereas the ABCD-para-meters map the total voltages and urrents on eah side of a two-port network toeah other. The T -parameters are easily expressed in terms of the S-parametersas [8℄
T11 = 1/S21 (7.3)
T12 = −S22/S21 (7.4)
T21 = S11/S21 (7.5)
T22 = (S12S21 − S11S22)/S21 (7.6)After using this transformation, we an �nd the propagation onstants from theeigenvalues of the matrix T (d2)

−1T (d1). In this proedure, it is neessary to un-wrap the phase (remove disontinuities ≥ π in the imaginary part) in order to avoiddisontinuities in the propagation onstants as funtions of ω. The omplex per-mittivity is then determined by inverting the relation β2 = ǫ(ω)ω2/c2
0 − λ, where

λ = (π/a)2, with a being the width of the enter waveguide. The resulting quantityis plotted in Figure 5. The ode doing this proedure on given S-parameter data isonly a few lines in Matlab.It is seen that the method an determine the omplex permittivity rather au-rately. The errors an be attributed to the numerial auray of the FEM programgenerating the data. A full-blown stability analysis of the algorithm is beyond thesope of this paper, but we an at least do some numerial experiments. We per-turbed the S-parameters in the simulations by adding noise generated by the Matlabommand randn multiplied by three di�erent fators 0.1, 0.01, and 0.001, represent-ing di�erent noise levels. The results are depited in Figure 6, and it is seen thatthe algorithm is reasonably stable for this test.To onlude this setion, in Figure 7 we also give the results for an extension tothe anisotropi ase presented in [6℄. There, it is shown that for a non-magneti,anisotropi dieletri with its prinipal axis aligned with the walls of a retangularwaveguide, the same dispersion relations apply for the fundamental TE mode asfor an isotropi material, i.e., β2 = ǫx,y,z(ω)ω2/c2
0 − λ. In order to dedue all threeprinipal values, the material sample is rotated so that eah prinipal diretion isaligned with the fundamental TE mode in the waveguide.8 ConlusionsIn this paper, we have analyzed the forward and inverse sattering problems of abianisotropi material sample in a metalli waveguide. Under the assumption thatthere are as many modes inside the MUT as outside, measurements on two sampleswith di�erent lengths are enough to determine the propagation onstants inside theMUT. Additional information on the modes is available, but the utilization of thisinformation remains a problem for further researh.
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Figure 7: Results for an anisotropi material. In this ase, the narrow setionof the waveguide has prinipal values ǫx = 2 + iσ/(ωǫ0), ǫy = 3 + iσ/(ωǫ0), and
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20The analysis is very general, and only assumes the material is linear. For in-stane, nothing in the analysis hanges if the material is heterogeneous in the (x, y)-plane, but does not depend on the z variable. Indeed, this has been utilized in thenumerial example in Setion 7, where we used a di�erent ross setion of the wave-guide ontaining the sample. Atually, the analysis is appliable to any struturein whih the eletromagneti �eld an be desribed by an expansion in propagatingand evanesent modes.There is probably a large range of speial ases where the proposed formalismredues signi�antly in omplexity. Most prominently, in waveguides �lled withisotropi materials, there is almost no oupling between di�erent modes. Also, asseen from the eigenproblems (A.9) and (A.10) for a general bianisotropi material,there are signi�ant simpli�ations for materials where an optial axis is along thewaveguide axis.The major assumption in this paper is that the number of propagating modes isthe same inside and outside the MUT, or possibly a smaller number inside the MUT.The main reason for this assumption is that it is neessary to be able to explore thedegrees of freedom available inside the material by varying the degrees of freedomoutside the material. This is not always easy to ahieve: if the surrounding mediumis air, the uto� frequenies inside the MUT are usually lower, implying that theremay be more propagating modes inside the material. In order to ahieve the samenumber of propagating modes, we may hoose the surrounding materialM0 to obtaina small ontrast to the MUT M, or plae the MUT in a somewhat narrower waveguidethan its surrounding material. The latter strategy was employed in Setion 7 of thispaper.9 AknowledgementsThe work reported in this paper was supported by the Swedish Researh Counil.The author aknowledges many fruitful disussions regarding this paper with Profes-sor Gerhard Kristensson, Professor Anders Karlsson, Doent Mats Gustafsson, andProfessor Anders Melin, all at the Department of Eletrosiene at Lund University,Sweden.Appendix A A seond order eigenproblemOne of the major problems with the well-posedness of the eigenproblem
γẑ × Jê = (−∇⊥ × J + iωM)ê (A.1)is that the weight matrix ẑ×J is not positive de�nite. Indeed, it has the eigenvalues

−1, 0, and 1, all with double multipliity. To eliminate at least the eigenvalue 0, weobserve that this is related to the z omponent of the �eld (sine ẑ × ẑ = 0), whihleads us to the idea to eliminate the z omponent of the �eld. The transverse urloperator an be written in terms of its transverse and z parts as
∇⊥ × J = −ẑ × J · ∇⊥ẑ − ẑ∇⊥ · ẑ × J (A.2)



21We separate the transverse and z omponent of the eletromagneti �eld as
ê = ê⊥ + êz (A.3)whih splits the eigenvalue problem above in one transverse part and one z part,

γẑ × Jê⊥ = ẑ × J · ∇⊥êz + iω(M⊥⊥ê⊥ + M⊥z êz) (A.4)
0 = ∇⊥ · ẑ × Jê⊥ + iω(Mz⊥ê⊥ + Mzz êz) (A.5)From the last equation we eliminate êz as

êz = M
−1
zz (−

1

iω
∇⊥ · ẑ × Jê⊥ − Mz⊥ê⊥) (A.6)By eliminating the z omponent of the �eld, we raise the order of the di�erentialoperator and must make sure that all boundary onditions from the original formu-lation are preserved. Thus, we expliitly require the boundary ondition

êz =

(
Êz

Ĥz

)
=

(
0

Ĥz

)
= M

−1
zz (−

1

iω
∇⊥ · ẑ × Jê⊥ − Mz⊥ê⊥), (x, y) ∈ ∂Ω (A.7)For isotropi materials, this orresponds to a Neumann boundary ondition for themagneti �eld. Had we not required this, we would only have a Dirihlet boundaryondition for the eletri �eld, i.e., not enough to speify a unique solution in botheletri and magneti �eld.Inserting the expression for êz in (A.4), we obtain

γẑ × Jê⊥ = ẑ × J · ∇⊥êz + iω(M⊥⊥ê⊥ + M⊥z êz)

= ẑ × J · ∇⊥M
−1
zz (−

1

iω
∇⊥ · ẑ × Jê⊥ − Mz⊥ê⊥)

+ iω

[
M⊥⊥ê⊥ + M⊥zM

−1
zz (−

1

iω
∇⊥ · ẑ × Jê⊥ − Mz⊥ê⊥)

]

= −
1

iω
ẑ × J · ∇⊥M

−1
zz ∇⊥ · ẑ × Jê⊥

− ẑ × J · ∇⊥M
−1
zz Mz⊥ê⊥ − M⊥zM

−1
zz ∇⊥ · ẑ × Jê⊥

+ iω
[
M⊥⊥ − M⊥zM

−1
zz Mz⊥

]
ê⊥ (A.8)and after multiplying by −iω this is

− iωγẑ × Jê⊥ = ẑ × J · ∇⊥M
−1
zz ∇⊥ · ẑ × Jê⊥ + ω2

[
M⊥⊥ − M⊥zM

−1
zz Mz⊥

]
ê⊥

+ iω
[
ẑ × J · ∇⊥M

−1
zz Mz⊥ + M⊥zM

−1
zz ∇⊥ · ẑ × J

]
ê⊥ (A.9)For propagating modes in lossless waveguides the eigenvalue is real, −iωγ = −iωiβ =

ωβ. Observe that signi�ant simpli�ations our when the material is symmetriaround the z axis, i.e., Mz⊥ = M⊥z = 0.This problem is still not quite on standard form, sine the eigenvalues for ẑ × Jare ±1 (with double multipliity) when onsidering only the transverse omponents



22of the �eld. Though, note that for hermitian symmetri materials (M = M
H) theoperator in the right hand side is self-adjoint due to the extra boundary onditionindued by the elimination of the z omponent.The same proedure an be applied to formulate a problem in the z-omponentsof the �elds instead of the transverse omponents. The result is

−∇xy·ẑ×J(M⊥⊥−
γ

iω
ẑ×J)−1ẑ×J·∇xy êz = ω2

[
Mzz − Mz⊥(M⊥⊥ −

γ

iω
ẑ × J)−1

M⊥z

]
êz

+
[
∇xy · ẑ × J(M⊥⊥ −

γ

iω
ẑ × J)−1

M⊥z + Mz⊥(M⊥⊥ −
γ

iω
ẑ × J)−1ẑ × J · ∇xy

]
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