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Abstract

Transient wave propagation in a waveguide filled with an inhomogeneous dis-
persive medium is analyzed. The waveguide is inhomogeneous in the longitu-
dinal direction, but is homogeneously filled in the transverse directions. The
analysis is performed in the time domain and is based upon a wave splitting
technique and the method of propagators. The propagator maps the exciting
field from one position in the waveguide to the field at another position. This
mapping is represented as time convolution integrals. The theory is exem-
plified by numerical examples where it is shown how wave trains of different
shapes are propagating in a waveguide filled with a homogeneous dispersive
medium.

1 Introduction

Transient wave propagation in waveguides has been analyzed in a number of papers,
see, e.g. Refs 4–6,18,20–22. It is also described in the classic reference by Collin [2].
The similar transmission line problem solved in the time domain is analyzed by Lin-
dell et al. [16]. A recent analysis of this problem in a homogeneous waveguide using
the time domain technique is found in Ref. 13. In that paper the wave propagation
in an empty waveguide is treated by a wave splitting technique in combination with
a method referred to as the Green functions technique. The purpose with this paper
is to extend these results to inhomogeneous waveguides. These extended results
might have potential use in the solution of the inverse scattering problem.

The important results in Ref. 13 is the closed form expression for the wave
splitting operator and the closed form expressions for the Green operator which is
the operator that maps the field at one position to the field in a position further
down in the waveguide. When these tools are available, direct and inverse scattering
problems can be treated in a very systematic way. The approach has been used in
a number of papers on direct and inverse scattering problems in the time-domain,
see, e.g. Refs 3,7, 12,15,17.

In the present paper, the method of propagators is applied to the problem of
wave propagation in a waveguide filled with an inhomogeneous dispersive medium.
The waveguide is inhomogeneous in the longitudinal direction, but is homogeneously
filled in the transverse directions. The method of propagators is a generalization of
the Green functions approach and have been used in earlier papers, see Refs 10,11.
Both the direct and inverse scattering problem can be treated by the technique
presented, but in the current work only the direct problem is considered. The present
paper indicates that the one-dimensional direct and inverse problems that have
earlier been studied by the invariant imbedding method and the Green functions
approach can also be solved in the waveguide case. The major difference between
the purely one-dimensional case and the waveguide case is that the wave splitting
is more complicated in the latter case. Otherwise the structure of the analysis is
similar in the two cases.

The outline of the paper is as follows: In Section 2 the wave equation, the time-
domain constitutive relations, and the decomposition of the field in longitudinal and
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Figure 1: Geometry of the waveguide.

transverse components are presented. The problem is reduced to a one-dimensional
problem by separation of variables in Section 3. The wave splitting and the dynamic
equations for the split wave components are presented in Section 4. In Section 5
the propagators are defined, and the equations for the corresponding kernels are
presented. A special case of the propagators is the reflection operator. The corre-
sponding kernel, the reflection kernel, satisfies an imbedding equation, which is also
given in this section. In the case of a homogeneous dispersive medium the equa-
tions for the propagators, the propagator kernels, and the reflection kernel simplify.
These simplifications are derived in Section 6. This section also contains a note on
the precursor field in a waveguide filled with a dispersive material. A numerical
example is presented in Section 7 and some conclusions are given in Section 8.

2 Basic equations

The basic equations for the analysis of the propagation of transient waves is the
Maxwell equations. 


∇×E(r, t) = −∂B(r, t)

∂t

∇×H(r, t) = J(r, t) +
∂D(r, t)

∂t

(2.1)

All fields in this paper are assumed to be quiescent before a fixed time. This property
guarantees that all fields vanish at t→ −∞.

The waveguide is assumed to be filled with a dispersive medium that can be
stratified wrt z, which is the coordinate along the waveguide, see Figure 1. The
appropriate constitutive relations used in this paper are therefore

D(r, t) = ε0

{
ε(z)E(r, t) + (χ(z, ·) ∗E(r, ·)) (t)

}
B(r, t) = µ0H(r, t)

(2.2)
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where the convolution in the time variable is denoted by ∗, i.e.,

(χ(z, ·) ∗E(r, ·)) (t) =

∫ t

−∞
χ(z, t− t′)E(r, t′) dt′

The permittivity and the permeability of the medium are denoted ε0ε(z) and µ0,
respectively. For simplicity, ε(z) and χ(z, t) are assumed to be continuously differen-
tiable functions of z everywhere. Furthermore, χ(z, t) is assumed to be continuously
differentiable as a function of t ≥ 0. It is convenient to extend the domain of defi-
nition of χ(z, t) to the region t < 0 by letting χ(z, t) = 0, when t < 0. The phase
velocity c(z) and the wave impedance η(z) are

c(z) =
1√

ε0ε(z)µ0

, η(z) =

√
µ0

ε0ε(z)

respectively.
The curl of the Maxwell equations, (2.1), and the constitutive relations, (2.2),

imply in a source-free region


∇2E(r, t)−∇ (∇ ·E(r, t)) = −∇× (∇×E(r, t))

=
1

c20

∂2

∂t2

{
ε(z)E(r, t) + (χ(z, ·) ∗E(r, ·)) (t)

}
∇2H(r, t) = −∇× (∇×H(r, t)) = − ∂

∂t
∇×D(r, t)

(2.3)

Furthermore, the divergence of the first equation in (2.3) implies

ε(z)∇ ·E(r, t)+ (χ(z, ·) ∗ ∇ ·E(r, ·)) (t)

= −ε′(z)Ez(r, t)− (∂zχ(z, ·) ∗ Ez(r, ·)) (t)

This is a Volterra equation of the second kind in ∇ ·E, with solution

∇ ·E(r, t) = −ε
′(z)

ε(z)
Ez(r, t)−

1

ε(z)
(∂zχ(z, ·) ∗ Ez(r, ·)) (t)

− ε′(z)

ε(z)
(Ψ(z, ·) ∗ Ez(r, ·)) (t)− 1

ε(z)
[Ψ(z, ·) ∗ (∂zχ(z, ·) ∗ Ez(r, ·)) (·)] (t)

where Ψ(z, t) is the resolvent kernel of the kernel χ(z, t) defined by the resolvent
equation.

ε(z)Ψ(z, t) + χ(z, t) +

∫ t

0

χ(z, t− t′)Ψ(z, t′) dt′ = 0 (2.4)

The divergence of the electric field can therefore be expressed in terms of the z-
component of the electric field Ez.
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2.1 The z-component

The z-component of the first equation in (2.3) can now readily be expressed as an
equation in just the z-component of the electric field Ez. A similar treatment can
be performed on the z-component of the magnetic field Hz. The results are



∇2Ez(r, t)−
1

c2(z)

∂2

∂t2
Ez(r, t) + A(z)

∂

∂z
Ez(r, t) +B(z)

∂

∂t
Ez(r, t)

+ C(z)Ez(r, t) + (D(z, ·) ∗ Ez(r, ·)) (t) + (F (z, ·) ∗ ∂zEz(r, ·)) (t) = 0

∇2Hz(r, t)−
1

c2(z)

∂2

∂t2
Hz(r, t) +B(z)

∂

∂t
Hz(r, t)

+M(z)Hz(r, t) + (N(z, ·) ∗Hz(r, ·)) (t) = 0

(2.5)
where the coefficients in these PDE’s are



A(z) =
ε′(z)

ε(z)

B(z) = − 1

c20
χ(z, 0+)

C(z) =
d

dz
A(z)− 1

c20

∂

∂t
χ(z, 0+)

D(z, t) = − 1

c20

∂2

∂t2
χ(z, t) +

∂

∂z
F (z, t)

F (z, t) = A(z)Ψ(z, t) +
∂zχ(z, t)

ε(z)
+

1

ε(z)
(Ψ(z, ·) ∗ ∂zχ(z, ·)) (t)

and 

M(z) = − 1

c20

∂

∂t
χ(z, 0+)

N(z, t) = − 1

c20

∂2

∂t2
χ(z, t)

2.2 The transverse components

Decompose the vector fields into their longitudinal and transverse components, see,
e.g. Ref. 13, and apply to the source-free Maxwell equations (2.1). The result for
the z-component is


ẑ · (∇T ×ET (r, t)) = −µ0

∂

∂t
Hz(r, t)

ẑ · (∇T ×HT (r, t)) = ε0
∂

∂t
{ε(z)Ez(r, t) + (χ(z, ·) ∗ Ez(r, ·)) (t)}

(2.6)
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and for the transverse components the result is


µ0
∂

∂t
HT (r, t) + ẑ × ∂

∂z
ET (r, t) = ẑ ×∇TEz(r, t)

ε0
∂

∂t

{
ε(z)ET (r, t)

+ (χ(z, ·) ∗ET (r, ·)) (t)
}
− ẑ × ∂

∂z
HT (r, t) = −ẑ ×∇THz(r, t)

(2.7)

This is a general decomposition of the Maxwell equations in terms of the transverse
components of the electric and the magnetic fields. From these equations it is seen
that the z-components of the electric and the magnetic fields act as sources for the
transverse parts of the fields.

Elimination of the transverse magnetic field HT and the transverse electric field
ET , respectively, gives the following second order PDE:s:



∂2ET (r, t)

∂z2
− 1

c20

∂2

∂t2
[ε(z)ET (r, t) + (χ(z, ·) ∗ET (r, ·)) (t)]

=
∂

∂t
(ẑ ×∇Tµ0Hz(r, t)) +

∂

∂z
∇TEz(r, t)

∂2HT (r, t)

∂z2
− ε(z)

c20

∂2HT (r, t)

∂t2
− A(z)

∂HT (r, t)

∂z

+ ε(z)
∂

∂z

(
(Ψ(z, ·)
ε(z)

∗ ∂zHT (r, ·)
)

(t)

= −ε(z) ∂
∂t

(ẑ ×∇T ε0Ez(r, t)) + ε(z)
∂

∂z

(
1

ε(z)
∇THz(r, t)

)

+ ε(z)
∂

∂z

(
(Ψ(z, ·)
ε(z)

∗ ∇THz(r, ·)
)

(t)

3 Separation of variables

The boundary conditions on the perfectly conducting wall of the waveguide are{
n̂×E = 0,

n̂ ·H = 0,
r ∈ S

Since n̂ is independent of z, these boundary conditions are equivalent to

Ez = 0,

∂Hz

∂n
= 0,

r ∈ S

For a waveguide with perfectly conducting walls, the wave propagation phe-
nomena in the waveguide separate into the well-known two different classes—the
TE- and the TM-modes. This is completely analogous to the fixed frequency case.
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The TEM-modes are excluded in this presentation due to the absence of an inner
conductor in the waveguide.

The ansatz for z-components in the TM- and the TE-cases follows the standard
separation of variable procedure.{

Ez(r, t) = v(ρ)a(z, t)

Hz(r, t) = 0
(TM-case)

and {
Ez(r, t) = 0

Hz(r, t) = w(ρ)b(z, t)
(TE-case)

where the components Ez(r, t) and Hz(r, t) satisfy (2.5). The functions v and w
determine the transverse behavior of the fields and satisfy an eigenvalue problem.
Separation of variables determines these eigenvalue problems, which are{

∇2
Tv(ρ) + λ2v(ρ) = 0, ρ ∈ Ω

v(ρ) = 0, ρ ∈ ∂Ω
(3.1)

and {
∇2
Tw(ρ) + λ2w(ρ) = 0, ρ ∈ Ω

n̂ · ∇Tw(ρ) = 0, ρ ∈ ∂Ω
(3.2)

The positive real constant λ is here the eigenvalue for the waveguide listed with due
regard to multiplicity.

λ = λn, n = 1, 2, 3, . . .

The eigenfunctions are orthonormal when integrated over the cross section. All fields
depend on the index n, but to avoid complicated notation this index is often omitted
in this paper. Furthermore, the same notation for the eigenvalue of the Dirichlet
(TM) and the Neumann problem (TE) is used. From the context it is always obvious
what problem λ refers to. The TEM-case corresponds to the eigenvalue λ = 0. In
this paper it is assumed that no such mode exists and thus the eigenfunctions form
a complete orthogonal set in Ω [19, p. 138].

The functions a(z, t) and b(z, t) determine the wave propagation along the wave-
guide and satisfy a generalized one-dimensional Klein-Gordon equation.



∂2a(z, t)

∂z2
− 1

c2(z)

∂2a(z, t)

∂t2
+ A(z)

∂a(z, t)

∂z
+B(z)

∂a(z, t)

∂t

+
(
C(z)− λ2

)
a(z, t) + (D(z, ·) ∗ a(z, ·)) (t) + (F (z, ·) ∗ ∂za(z, ·)) (t) = 0

∂2b(z, t)

∂z2
− 1

c2(z)

∂2b(z, t)

∂t2
+B(z)

∂b(z, t)

∂t

+
(
M(z)− λ2

)
b(z, t) + (N(z, ·) ∗ b(z, ·)) (t) = 0

(3.3)
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The transverse components have the form, see (2.6) and (2.7){
ET (r, t) = ∇Tv(ρ)ψ1(z, t)

η0HT (r, t) = [ẑ ×∇Tv(ρ)]φ1(z, t)
(TM-case){

ET (r, t) = − [ẑ ×∇Tw(ρ)]φ2(z, t)

η0HT (r, t) = ∇Tw(ρ)ψ2(z, t)
(TE-case)

(3.4)

where η0 is the wave impedance of vacuum. The functions φi(z, t) and ψi(z, t), i =
1, 2 are related to the functions a(z, t) and b(z, t), which determine the propagation
properties of the z-components of the fields. Insert the expressions of the transverse
fields into the equations (2.6) and (2.7). The results after some algebra and the use
of (3.1) and (3.2) are

λ2φ1(z, t) = − 1

c0

{
ε(z)

∂a(z, t)

∂t
+ χ(z, 0+)a(z, t) +

(
∂χ(z, ·)
∂t

∗ a(z, ·)
)

(t)

}

λ2 {ε(z)ψ1(z, t) + (χ(z, ·) ∗ ψ1(z, ·)) (t)} =
∂

∂z
{ε(z)a(z, t) + (χ(z, ·) ∗ a(z, ·)) (t)}

and 

λ2φ2(z, t) = − 1

c0

∂b(z, t)

∂t

λ2ψ2(z, t) =
∂

∂z
b(z, t)

The propagation properties of the transverse components, φi(z, t) and ψi(z, t), i =
1, 2, are therefore determined by the corresponding properties of the longitudinal
components, a(z, t) and b(z, t). Note that the function ψ1(z, t) can be explicitly
written down in terms of the resolvent Ψ(z, t) of the susceptibility kernel χ(z, t), see
(2.4).

The power flux can now easily be expressed in the functions φi(z, t) and ψi(z, t),
i = 1, 2. Straightforward calculations give

S · ẑ = (E ×H) · ẑ = (ET ×HT ) · ẑ =

{
1
η0
|∇Tv|2ψ1φ1 (TM-case)

1
η0
|∇Tw|2ψ2φ2 (TE-case)

Integration over the cross section and use of the boundary conditions of v or w give

P (z, t) =

∫∫
Ω

S · ẑ dxdy =

{
λ2

η0
ψ1(z, t)φ1(z, t) (TM-case)

λ2

η0
ψ2(z, t)φ2(z, t) (TE-case)

The sign power is therefore determined by the sign of the product ψi(z, t)φi(z, t),
i = 1, 2.
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4 Wave splitting

The starting point in this method is the generalized one-dimensional Klein-Gordon
equation (3.3).

∂2a(z, t)

∂z2
− 1

c2(z)

∂2a(z, t)

∂t2
+ A(z)

∂a(z, t)

∂z
+B(z)

∂a(z, t)

∂t

+
(
C(z)− λ2

)
a(z, t) + (D(z, ·) ∗ a(z, ·)) (t) + (F (z, ·) ∗ ∂za(z, ·)) (t) = 0

It suffices to analyze the TM-case, since the TE-case satisfies a simpler equation and
formally the analysis follows the same arguments. The wave equation is conveniently
rewritten as a system of first order equations

∂

∂z

(
a
∂za

)
=

(
0 1

1
c2(z)

∂2
t −B(z)∂t − C(z) + λ2 −D(z, ·)∗ −A(z)− F (z, ·)∗

) (
a
∂za

)

= T
(
a
∂za

)
(4.1)

The matrix-valued operator T is equivalent to the generalized one-dimensional
Klein-Gordon equation (3.3).

The wave splitting transformation used in this paper is defined by [8]

a±(z, t) =
1

2
[a(z, t)∓ c(z)(K∂za(z, ·))(t)]

where the operator K, which in general depends on z, has the integral representation

(Kf)(t) =

∫ t

−∞
K(z, t− t′)f(t′) dt′

where the kernel K(z, t) is

K(z, t) = H(t)J0(c(z)λt)

and H(t) is Heaviside’s step function. Formally, the splitting can be written in
matrix notation as (

a+

a−

)
=

1

2

(
1 −c(z)K
1 c(z)K

) (
a
∂za

)
= S

(
a
∂za

)
(4.2)

where the matrix-valued operator S denotes the wave splitting.
The operator K has an inverse K−1, with

KK−1f = f, K−1Kf = f

The fields a and ∂za are therefore expressed in a± as(
a
∂za

)
=

(
1 1

− 1
c(z)
K−1 1

c(z)
K−1

) (
a+

a−

)
= S−1

(
a+

a−

)
(4.3)
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The inverse operator K−1 has an explicit integral representation, see Ref. 13.

(K−1f)(t) =
∂f

∂t
+ (L(·) ∗ f(·)) (t) (4.4)

where the kernel L(z, t) is

L(z, t) = H(t)
c(z)λJ1(c(z)λt)

t
(4.5)

Another useful identity is [13]

K∂f
2

∂t2
= K−1f − c2(z)λ2Kf (4.6)

The new fields a±(z, t) satisfy a system of first order equations, which is obtained
from (4.2), (4.3) and (4.1).

∂

∂z

(
a+

a−

)
=

{
ST S−1 +

dS
dz
S−1

} (
a+

a−

)
=

(
A B
C D

) (
a+

a−

)
(4.7)

The operators A, B, C and D are


A = − 1

c(z)

∂

∂t
− 3

4
A(z) +

c(z)

2
B(z) + α(z, ·)∗

B =
3

4
A(z) +

c(z)

2
B(z) + β(z, ·)∗

C =
3

4
A(z)− c(z)

2
B(z) + γ(z, ·)∗

D =
1

c(z)

∂

∂t
− 3

4
A(z)− c(z)

2
B(z) + δ(z, ·)∗

where the explicit form of the kernels α(z, t), β(z, t), γ(z, t), and δ(z, t) are (t > 0)

α(z, t) =− 1

c(z)
L(z, t) +

c(z)B(z)

2

∂

∂t
K(z, t) +

c(z)C(z)

2
K(z, t)

+
c(z)

2
(K(z, ·) ∗D(z, ·)) (t)− 1

2
F (z, t)

+
c2(z)λ2A(z)

4
(K(z, ·) ∗K(z, ·)) (t)

β(z, t) =
c(z)B(z)

2

∂

∂t
K(z, t) +

c(z)C(z)

2
K(z, t)

+
c(z)

2
(K(z, ·) ∗D(z, ·)) (t) +

1

2
F (z, t)

− c2(z)λ2A(z)

4
(K(z, ·) ∗K(z, ·)) (t)
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γ(z, t) =− c(z)B(z)

2

∂

∂t
K(z, t)− c(z)C(z)

2
K(z, t)

− c(z)

2
(K(z, ·) ∗D(z, ·)) (t) +

1

2
F (z, t)

− c2(z)λ2A(z)

4
(K(z, ·) ∗K(z, ·)) (t)

δ(z, t) =
1

c(z)
L(z, t)− c(z)B(z)

2

∂

∂t
K(z, t)− c(z)C(z)

2
K(z, t)

− c(z)

2
(K(z, ·) ∗D(z, ·)) (t)− 1

2
F (z, t)

+
c2(z)λ2A(z)

4
(K(z, ·) ∗K(z, ·)) (t)

5 The propagators

The propagators map the field a+(z, t) from a point z0 to a point z. When all sources
are located to the left of a point zp < min(z0, z) the propagators are defined by{

a+(z, t+ τ(z, z0)) = P+(z, z0)a
+(z0, t)

a−(z, t+ τ(z, z0)) = P−(z, z0)a
+(z0, t)

(5.1)

where the time delay factor is

τ(z, z0) =

z∫
z0

dz′

c(z′)

The propagators used in this paper are a generalization of the Green operators, G±(z)
used in Ref. 13. The connection between the Green operators and the propagators
is G±(z) = P±(z, 0). Normally, it is assumed that z0 < z, so that the field is
propagated forward in both space and time, but the definition of the propagators
and the equations that follow are valid also for the case z < z0. In the definition of
P± wave front time is used. In wave front time at a point z, the time is zero, t = 0,
when the wavefront passes that point.

From the definition it follows that the propagators are independent of the prop-
erties in the region (−∞,min(z0, z)). It is also seen that they satisfy the following
properties {

P+(z, z0) = P+(z, z1)P+(z1, z0)

P−(z, z0) = P−(z, z1)P+(z1, z0)

for all z1. Since P+(z, z) is the identity operator, it follows that the operator
P+(z0, z) is the inverse of the propagator P+(z, z0).

It is convenient to introduce the reflection operator as R(z) = P−(z, z), i.e.,

a−(z, t) = R(z)a+(z, t)
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The explicit integral representations for the propagators read

a+(z, t+ τ(z, z0)) = Γ(z, z0)a
+(z0, t) +

(
P+(z, z0, ·) ∗ a+(z0, ·)

)
(t) (5.2)

a−(z, t+ τ(z, z0)) =
(
P−(z, z0, ·) ∗ a+(z0, ·)

)
(t)

a−(z, t) =
(
R(z, ·) ∗ a+(z, ·)

)
(t) (5.3)

where the wave front factor Γ(z, z0) is defined as

Γ(z, z0) = exp




z∫
z0

(
−3

4
A(z′) +

c(z′)

2
B(z′)

)
dz′




The boundary condition for the kernel P+(z, z0, t) is

P+(z0, z0, t) = 0

and the equations for the propagator kernels P+(z, z0, t) are


∂P+(z, z0, t)

∂z
= Γ(z, z0)α(z, t)

+
(
α(z, ·) ∗ P+(z, z0, ·)

)
(t) +

(
β(z, ·) ∗ P−(z, z0, ·)

)
(t)

−
(

3A(z)

4
− c(z)B(z)

2

)
P+(z, z0, t) +

(
3A(z)

4
+
c(z)B(z)

2

)
P−(z, z0, t)

∂P−(z, z0, t)

∂z
− 2

c(z)

∂P−(z, z0, t)

∂t
= Γ(z, z0)γ(z, t)

+
(
γ(z, ·) ∗ P+(z, z0, ·)

)
(t) +

(
δ(z, ·) ∗ P−(z, z0, ·)

)
(t)

+

(
3A(z)

4
− c(z)B(z)

2

)
P+(z, z0, t)−

(
3A(z)

4
+
c(z)B(z)

2

)
P−(z, z0, t)

(5.4)
The initial condition for P−(z, z0, t) is

P−(z, z0, 0) = −Γ(z, z0)

(
3c(z)A(z)

8
− c2(z)B(z)

4

)

By differentiation wrt z0 another complete set of equations for the kernels are
obtained. These equations are related to the imbedding equations for the reflection
and transmission kernels in the imbedding theory, see Ref. 14.

Formal equations for the propagators P± are obtained from the dynamic equa-
tion, (4.7), and the definition of the propagators, (5.1)

∂

∂z1

(
P+

P−
)

(z1, z0) =

(
A B
C D

)
(z1)

(
P+

P−
)

(z1, z0) +
1

c(z1)

(
∂
∂t

0
0 ∂

∂t

) (
P+

P−
)

(z1, z0)

Since P−(z1, z0) = R(z1)P+(z1, z0) the equation for P+ read

∂P+(z1, z0)

∂z1

=

(
A(z1) +

1

c(z1)

∂

∂t
+ B(z1)R(z1)

)
P+(z1, z0)
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The formal solution to this operator equation is

P+(z1, z0) = exp


 z1∫
z0

A(z) +
1

c(z1)

∂

∂t
+ B(z)R(z) dz


 (5.5)

where the exponential of the operators is defined by its power series expansion.
Numerically it is more efficient to solve Eqs. (5.4) than to use the power series
expansion of the formal solution. The reason for this is that the equation for the
reflection kernel (5.6) is more time consuming to solve than the equations for the
propagator kernels (5.4).

5.1 Imbedding equation

For completeness, in this subsection the imbedding equation of the reflection kernel
R(z, t) = P−(z, z, t) is given. The derivation of this equation follows from a similar
analysis as the one presented in Ref. 13. The result in this case is

∂R(z, t)

∂z
− 2

c(z)

∂R(z, t)

∂t
= γ(z, t) + ((δ(z, ·)− α(z, ·)) ∗R(z, ·)) (t)

− c(z)B(z)R(z, t)− (β(z, ·) ∗R(z, ·) ∗R(z, ·)) (t)

−
(

3

4
A(z) +

c(z)

2
B(z)

)
(R(z, ·) ∗R(z, ·)) (t)

(5.6)

The augmented initial condition for R(z, t) is

R(z, 0+) = −3c(z)

8
A(z) +

c2(z)

4
B(z)

6 Waveguide with homogeneous medium

The special case of a waveguide filled with a homogeneous medium is treated in this
section. For a homogeneous medium χ(z, t) = χ(t) and c(z) = c and the coefficients
in the PDE, (2.5), simplify to



A(z) = F (z, t) = 0

B(z) = B = − 1

c20
χ(0+)

C(z) = M(z) = − 1

c20

∂

∂t
χ(0+)

D(z, t) = N(z, t) = − 1

c20

∂2

∂t2
χ(t)
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In Ref. 13, B = C = D = M = N = 0. Similarly, the explicit form of the kernels
α(z, t), β(z, t), γ(z, t), and δ(z, t) simplify to


α(t) =− δ(t) = −1

c
L(t)− c

2c20

∂2

∂t2
(K ∗ χ) (t)

β(t) =− γ(t) = − c

2c20

∂2

∂t2
(K ∗ χ) (t)

Note that the functions α, β, γ, K, L and χ now are only functions of time t.

6.1 The reflection kernel

The reflection kernel in a homogeneous waveguide is independent of the imbedding
parameter z. Thus R(z, t) = R(t) and the imbedding equation, (5.6), simplifies to

−2

c

∂R(t)

∂t
= γ(t)− (2α ∗R) (t)− (β ∗R ∗R) (t)− c

2
B (R ∗R) (t)− cBR(t) (6.1)

and the initial condition for R(t) is

R(0+) = − c2

4c20
χ(0+) = − 1

4ε
χ(0+) (6.2)

Integration of equation (6.1) in t from 0 to t results in

4c20
c2
R(t) +

∂

∂t
(K ∗ χ) (t) +

4c20
c2

(P ∗R) (t)

+ 2χ ∗
[
∂

∂t
(K ∗R)

]
(t) + χ ∗

[
∂

∂t
(K ∗R ∗R)

]
(t) = 0

(6.3)

where

P (t) =

∫ t

0

L(t′) dt′

6.2 Propagator operators

Since the homogeneous medium is invariant under translation in z, the propagators
P±(z1, z0) are only dependent on the distance ζ = z1 − z0. The definition of the
propagators then simplifies to

a±(z + ζ, t+ τ(ζ)) =
(
P±(ζ)a+(z, ·)

)
(t)

where

τ(ζ) =
ζ

c

The representations for the propagators of a homogeneous waveguide, see (5.2),
are {

a+(z + ζ, t+ τ(ζ)) =Γ(ζ)a+(z, t) +
(
P+(ζ, ·) ∗ a+(z, ·)

)
(t)

a−(z + ζ, t+ τ(ζ)) =
(
P−(ζ, ·) ∗ a+(z, ·)

)
(t)

(6.4)
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with boundary value on P+(ζ, t).

P+(0, t) = 0

The following relation holds for the product of two propagators which commute:

P+(ζ1 + ζ2) = P+(ζ1)P+(ζ2) (6.5)

and
P−(ζ) = P−(0)P+(ζ) = RP+(ζ)

From these relations, it follows that the kernels satisfy

P+(ζ1 + ζ2, t) = Γ(ζ2)P
+(ζ1, t) + Γ(ζ1)P

+(ζ2, t) +
(
P+(ζ1, ·) ∗ P+(ζ2, ·)

)
(t)

and
P−(ζ, t) = Γ(ζ)R(t) +

(
R(·) ∗ P+(ζ, ·)

)
(t) (6.6)

The wave front factor satisfies

Γ(ζ1 + ζ2) = Γ(ζ1)Γ(ζ2)

and the explicit representation of this factor is

Γ(z) = e
cBz
2

In a homogeneous waveguide, the equations for the propagator kernels reduce
to, see (5.4)



∂P+(ζ, t)

∂ζ
= Γ(ζ)α(t) +

cB

2

(
P+(ζ, t) + P−(ζ, t)

)
+

(
α(·) ∗ P+(ζ, ·)

)
(t) +

(
β(·) ∗ P−(ζ, ·)

)
(t)

∂P−(ζ, t)

∂ζ
− 2

c

∂P−(ζ, t)

∂t
= Γ(ζ)γ(t)− cB

2

(
P+(ζ, t) + P−(ζ, t)

)
+

(
γ(·) ∗ P+(ζ, ·)

)
(t) +

(
δ(·) ∗ P−(ζ, ·)

)
(t)

(6.7)

It is here possible to eliminate the kernel P−(ζ, t) by using (6.6). The kernel P+(ζ, t)
then satisfies


∂P+(ζ, t)

∂ζ
= Γ(ζ)η(t) +

(
η(·) ∗ P+(ζ, ·)

)
(t) +

cB

2
P+(ζ, t)

P+(0, t) = 0

where

η(t) = α(t) +
cB

2
R(t) + (β(·) ∗R(·)) (t)

With Laplace transform techniques this equation can be transformed into an integral
equation.

P+(ζ, t) =
ζ

t

∫ t

0

(t− t′)η(t− t′)P+(ζ, t′) dt′ + Γ(ζ)ζη(t) (6.8)
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Thus, in order to obtain the propagator kernels P± for a homogeneous medium the
two integral equations (6.3) and (6.8) have to be solved. Both of these equations are
Volterra equations of the second kind and are straightforward to solve numerically.

Since the medium is invariant under a translation in z, it follows that the prop-
agator P+(ζ) not only is the propagator for the field a+(z, t) but also for the total
field a(z, t) = a+(z, t) + a−(z, t) as well as for the field a−(z, t). This is seen from


a+(z + ζ, t+ τ(ζ)) = P+(ζ)a+(z, t)

a−(z + ζ, t+ τ(ζ)) = P−(ζ)a+(z, t) = RP+(ζ)a+(z, t)

a−(z, t) = Ra+(z, t)

From the representations, (6.4), it is seen that the propagators R and P+(ζ) com-
mute. From the identity a(z, t) = a+(z, t) + a−(z, t) it then follows that{

a−(z + ζ, t+ τ(ζ)) = P+(ζ)Ra+(z, t) = P+(ζ)a−(z, t)

a(z + ζ, t+ τ(ζ)) = P+(ζ)a(z, t)

The total field a(z, t) is understood to be a field which is generated by an incident
wave from the left. Since the propagator P+(ζ) is a propagator for the entire field
it must be independent of the splitting.

6.3 The propagator P+ for a waveguide filled with a homo-
geneous, non-dispersive material

The wave propagation problem in a waveguide filled with a homogeneous, non-
dispersive medium was examined in Ref. 13. The result concerning the propagator
kernel P+ is reviewed in this subsection.

In the case of a waveguide filled with a homogeneous dielectric material, the
splitting, (4.2), diagonalizes the system of equations (4.1). This implies that if there
are only sources for z < zp, then there is no field a−(z, t) in the region z > zp, and
P−(ζ, t) ≡ 0 in this region. The kernel P+(ζ, t) satisfies the equation

∂P+(ζ, t)

∂ζ
= α(t) +

(
α(·) ∗ P+(ζ, ·)

)
(t)

where in this case

α(t) = −1

c
L(z, t) = −H(t)

λJ1(cλt)

t

In Ref. 13 it was found that the solution to this equation has the explicit expression

P+(ζ, t) = −cλζ
J1

(
λ
√
c2t2 + 2ζct

)
√
c2t2 + 2ζct

H(t)
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6.4 The precursor for a waveguide filled with a homoge-
neous, dispersive material

In the homogeneous case the formal solution, (5.5), simplifies to

P+(ζ) = exp

(
ζ(A+

1

c

∂

∂t
+ BR)

)
(6.9)

The power series expansion of this formal solution can be used to obtain the short
time behavior of the propagator. This behavior gives the first precursor of the
signal [1]. The exponent reads

ζ(A+ 1
c
∂
∂t

+ BR) = −ζ c

2c2o
χ(0+)− ζ

(
1

c
L(·) +

c

2c20

∂2

∂t2
(K ∗ χ)(·)

+
c

2c20

(
R ∗ ∂

2

∂t2
(K ∗ χ)

)
(·) +

c

2c20
χ(0+)R(·)

)
∗

If we consider times much shorter than the typical time scale of the susceptibility
kernel χ(t) and of the splitting kernel K(t) it is enough to keep the first term in a
power series expansion of the exponent and thus

ζ(A+ 1
c
∂
∂t

+ BR) ≈ −ζ c

2c2o
χ(0+) + ζ

(
c

8c20ε
χ(0+)2 − c

2
λ2 − c

2c20

∂

∂t
χ(0+)

)
∗

The short time behavior of the propagator is then given by

P+(ζ) ≈ Γ(ζ) exp

(
ζ

(
c

8c20ε
χ(0+)2 − c

2
λ2 − c

2c20

∂

∂t
χ(0+)

)
∗
)

From equation (6.7) it is seen that

∂

∂z
P+(0, 0) = P+

z (0, 0) =
c

8c20ε
χ(0+)2 − c

2
λ2 − c

2c20

∂

∂t
χ(0+)

By expanding the exponential in a power series and performing the convolutions the
early time behavior of the propagator follows. The result is

P+(ζ) = Γ(ζ)


δ(t) + ζP+

z (0, 0)
J1

(
2
√
−tζP+

z (0, 0)
)

√
−tζP+

z (0, 0)
H(t)


 (6.10)

where J1 denotes the Bessel function of order 1. If P+
z (0, 0) is positive, then the

argument of the Bessel function is imaginary and P+(ζ, t) has an exponentially
growing behavior for small t. If P+

z (0, 0) is negative then the argument of the Bessel
function is real and P+(ζ, t) has an oscillatory behavior for small times. When λ = 0
then (6.10) is identical with the expression for the precursor in a dispersive media
found by the stationary phase method, see Ref. 9.
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In the case of a dispersive medium with χ(0+) = 0, a more accurate expres-
sion can be obtained for the precursor. For small enough times, the power series
expansion

χ(t) = tχt(0
+) (6.11)

is a good approximation. Thus, for small times, and for a homogeneous dispersive
medium with χ(0+) = 0, both of the Klein-Gordon equations, (3.3), simplify to

∂2a(z, t)

∂z2
− 1

c2
∂2a(z, t)

∂t2
−

(
1

c20
χt(0

+) + λ2

)
a(z, t) = 0

This is the same equation as for the homogeneous dielectric waveguide except that
the value of λ is now exchanged by the expression

√
c−2
0 χt(0+) + λ2. An expression

for the propagator kernel P+, which is valid under the approximation (6.11), is given
by

P+(ζ, t) = −cζ
√
c−2
0 χt(0+) + λ2

J1

(√
(c−2

0 χt(0+) + λ2)c2t2 + 2ζct
)

√
c2t2 + 2ζct

(6.12)

For times t� ζ/c the two expressions (6.10) and (6.12) for the precursor are anal-
ogous. The condition χ(0+) = 0 is satisfied by, e.g. Lorentz media [9].

6.5 Boundary conditions at an interface

The entire waveguide has so far been filled with a homogeneous medium, modeled by
χ(t) and ε. If different sections of the waveguide are filled with different homogeneous
materials, boundary conditions hold at the interfaces between the materials. In this
subsection, one interface is assumed at z = 0. The medium that occupies the region
z < 0 is modeled by χ1(t) and ε, and the region z > 0 is modeled by χ2(t) and ε. Note
that both media are assumed to have the same permittivity ε. Furthermore, both
media are assumed to be non-magnetic, and the interface has no surface charges.

The TM-case is analyzed first. In this case, the continuity of the normal com-
ponent of the displacement field implies

ε
(
a+(0−, t) + a−(0−, t)

)
+

(
χ1(·) ∗

(
a+(0−, ·) + a−(0−, ·)

))
(t)

= ε
(
a+(0+, t) + a−(0+, t)

)
+

(
χ2(·) ∗

(
a+(0+, ·) + a−(0+, ·)

))
(t)

(6.13)

In a homogeneous region ∇ · E = 0. Take the limiting values on both sides of
the interface and use the continuity of the tangential electric field. The result is

∂a(0−, t)

∂z
=
∂a(0+, t)

∂z

The splitting (4.3) implies that this equation can be written as

a−(0−, t)− a+(0−, t) = a−(0+, t)− a+(0+, t) (6.14)
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Define a reflection kernel r(t) for the interface by

a−(0−, t) =
(
r(·) ∗ a+(0−, ·)

)
(t)

On the other hand, from (5.3), in the medium z > 0 holds

a−(0+, t) =
(
R(·) ∗ a+(0+, ·)

)
(t)

These latter two equations are used to eliminate the fields a−(0−, t) and a−(0+, t)
in equations (6.13) and (6.14). The remaining fields in (6.13) and (6.14) after this
elimination are a+(0−, t) and a+(0+, t).

Proceed by eliminating the field a+(0+, t) from equation (6.14) by the use of the
resolvent F of the kernel −R, i.e.,

F −R−R ∗ F = 0

The result of this operation is

a+(0+, t) = a+(0−, t) +
{
[F (·)− r(·)− (F (·) ∗ r(·)) (·)] ∗ a+(0−, ·)

}
(t)

Finally, apply this expression to (6.13). The final result is

2εr + [χ1 + χ2 + 2εF + 2χ2 ∗ F ] ∗ r = 2εF − χ1 + χ2 + 2χ2 ∗ F

Thus, the kernel r satisfies a Volterra equation of the second kind.
The corresponding result for the TE-case is trivial.

r = R

7 Numerical examples

As a numerical example, propagation of a TM -mode in two different waveguides is
considered. The first waveguide is empty and the other is empty in the region z < 0
and filled with a homogeneous dispersive material in z > 0. In both waveguides the
value of λ is 48.1 m−1 which corresponds to the TM10 mode in a circular waveguide
of radius 5 cm. The cutoff frequency for this mode is fc = 2.3 GHz. The excitation
at z = 0 is

a+(z = 0−, t) = H(t)H(T − t) sinω0t (7.1)

where the duration of the excitation is T = 5 · 10−10 s. This choice of excitation
makes the incident field at z = 0 well-defined. The electric field is calculated at the
angular frequency ω0 = 4π · 1010 rad/s and the energy is calculated at five different
values of ω0.

The first two figures, see Figures 2 and 3, show the result in an empty waveguide.
The total field as a function of z is depicted in Figure 2, and the time trace of the
energy that has passed the point z = 25 cm is depicted in Figure 3. The energy
is normalized with the total incident energy. The “staircase” leading edge behavior
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Figure 2: The normalized z-component of the electric field at the two instances,
t = 0.25/c0 and t = 0.5/c0, for an empty waveguide. The excitation at z = 0 is
given in (7.1).

of the curves in Figure 3 is due to the specific excitation of the waveguide, i.e., a
sinusoidal excitation. Note that the lowest frequency f0 = 2 GHz is below the cutoff
frequency fc = 2.3 GHz.

The next two figures, see Figures 4 and 5, show the result for a waveguide filled
with a homogeneous Debye material in the region z > 0. The Debye medium is
characterized by the constitutive relations

χ(t) = αe−t/τ

where α = 1 · 109 Hz and τ = 1 · 10−9 s. When the incident wave impinges at the
boundary z = 0 a part of it will be reflected and the rest of the pulse propagates
in the positive z-direction. In Figure 4 the total field as a function of z is depicted,
and Figure 5 shows the time trace of the normalized energy as a function of time.

8 Conclusions

In this paper propagation of electromagnetic wave in waveguides of general cross sec-
tion are analyzed by the use of a time domain method. The waveguide is assumed
to be filled with an inhomogeneous (varying with depth), dispersive material. The
propagation problem is treated with a wave splitting technique and propagator oper-
ators. The propagator kernels satisfy a system of linear PDE’s, which together with
the appropriate initial and boundary conditions solves the general wave propaga-
tion problem. Special emphasize is paid to the homogeneous, dispersive waveguide,
where some explicit results are presented. The precursor problem is also addressed,
and some numerical computations illustrate the analysis.
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Figure 3: The normalized energy as a function of time at z = .25 m for an empty
waveguide. The excitation at z = 0 is given in (7.1).
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