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Abstract

In this paper a time domain formulation of the first and second precursor in
a dispersive materials is reviewed. These precursors are determined by the
susceptibility kernel of the medium, which characterizes the medium in a time
domain formulation. The propagator operators of the fields are corner stones
in the formulation. These operators are then approximated by a pertinent
factorization procedure that defines to the first and second precursors of the
medium. Wave propagation in a biisotropic medium is also treated and the
early time behavior of a transient signal is addressed. A series of numerical
examples illustrates the theory.

1 Introduction

All materials exhibit dispersion to some extent. The effects of dispersion in a given
material depends on the temporal behavior of the propagating wave and the distance
the wave travels. There are applications where dispersion can be neglected, but in
most cases it is not appropriate to neglect it. In linear classical electrodynamics most
materials can be characterized as Debye type materials or Lorentz type materials,
see [11]. The Debye type is appropriate for polar liquids in the microwave regime and
is due to the rotational motion of the molecules. This is for instance the explanation
why water gets hot in microwave ovens. Most other materials are of the Lorentz
type. Lorentz’ model is based on the motion of bounded charges and leads to a
system with one or several resonant frequencies.

The basic results for wave propagation in dispersive materials were obtained by
frequency domain methods and were presented by Sommerfeld [29] and Brillouin [3]
in two consecutive articles under the same title in Annalen der Physik in 1914.
They used saddle-point methods to obtain the asymptotic behavior of a wave that
has traveled a (comparatively) large distance in a single resonance Lorentz material.
They showed that the asymptotic behavior is determined by two wave phenomena
which they referred to as forerunners or precursors. The first precursor (Sommer-
feld’s precursor) determines the early time behavior of the wave and is due to a
saddle point for high frequencies. The second precursor is due to a saddle point
close to the origin in the frequency plane and it propagates with the group velocity
at zero frequency. The results of Brillouin and Sommerfeld have been much refined
and generalized by Oughstun and Sherman. Their results are summarized in [23].

In this chapter a time-domain technique for wave propagation in dispersive ma-
terials is discussed. The method is based upon a wave splitting technique and the
concept of propagators. The wave splitting is a method for decoupling hyperbolic
equations into one-way wave equations. This is always possible in a homogeneous
medium. The propagation of the solutions to the one-way equations in this chapter
is described by operators referred to as propagators. The propagators map a split
field from one position in the material to another position. In homogeneous mate-
rials the propagators are obtained very efficiently by numerically solving Volterra
integral equations. With the fast computers of today it is possible to solve the pre-
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cursors from the Volterra equation to such depths where the asymptotic results are
valid even for complicated materials.

The wave splitting is used extensively in wave propagation methods. The sim-
plest form of it is the well-known d’Alembert solution to the wave equation for
linear, homogeneous, isotropic, non-dispersive materials. The wave splitting can be
performed for other types of materials and we show how it is obtained in isotropic
and bi-isotropic dispersive media. The propagator method is closely related to the
imbedding method and the Green function method that have been applied to large
classes of direct and inverse scattering problems. A review of these methods is given
in a recent publication [10].

2 Modeling of linear materials

The Maxwell equations are the basic equations for modeling the dynamics of the
fields in macroscopic electromagnetic applications.


∇× E(r, t) = − ∂

∂t
B(r, t)

∇× H(r, t) = J(r, t) +
∂

∂t
D(r, t)

(2.1)

Here, the electric and the magnetic fields are denoted by E and H , respectively, and
the electric and the magnetic flux densities are denoted by D and B, respectively.
The current density is denoted J .

The constitutive relations model the dynamics of the charged constituents of the
materials. Under the assumption of linear response to the applied fields, causality,
invariance under time translations, and continuity, these constitutive relations have
the following general form [12]:


c0η0D(r, t) = ε · E(r, t) + (χee ∗ E)(r, t)

+ η0ξ · H(r, t) + η0(χem ∗ H)(r, t)

c0B(r, t) = ζ · E(r, t) + (χme ∗ E)(r, t)

+ η0µ · H(r, t) + η0(χmm ∗ H)(r, t)

where c0 = 1/
√
ε0µ0 is the speed of light in vacuum, η0 =

√
µ0/ε0 is the wave

impedance in vacuum, and ε0 and µ0 are the permittivity and permeability of vac-
uum, respectively. We refer to these expressions as constitutive relations for a bi-
anisotropic medium. Here, the star symbol ∗ denotes temporal convolution with a
scalar (dot) product included, i.e.,

(α ∗ B)(r, t) =

∫ t

−∞
α(t− t′) · B(r, t′) dt′

Dispersion is modeled by four time-dependent, dyadic-valued susceptibility ker-
nels χee, χem, χme and χmm, which vanish for t < 0 due to causality and, further-
more, are assumed to be bounded, smooth (infinitely differentiable), and absolutely
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Type ε,χee,µ,χmm ξ,χem, ζ,χme

Isotropic All ∼ I Both 0
An-isotropic Some not ∼ I Both 0
Bi-isotropic All ∼ I Both ∼ I and 	= 0
Bi-an-isotropic All other cases

Table 1: Classification of material w.r.t. the symmetry properties of the constitu-
tive relations.

integrable for t > 0. These kernels have the dimension of frequency. Observe that
an absolutely integrable susceptibility kernel vanishes in the high-frequency limit
(the Riemann-Lebesgue lemma), i.e.,

lim
ω→∞

∫ ∞

0

eiωtχkk′(t) dt = 0 k, k′ = e,m

The instantaneous response (optical response) of the material is modeled by the
dimensionless dyadics ε, ξ, ζ and µ. The concept of optical response is analyzed
in more detail in a separate subsection below. For simplicity we assume all dyadics
ε, ξ, ζ and µ to be constant and χkk’, k,k’ = e,m to be independent of the spatial
coordinates r, i.e., the materials are homogeneous.

Linear materials are classified according to the symmetry properties of the dyad-
ics χkk’, k,k’ = e,m and ε, ξ, ζ and µ. The definitions of isotropic, anisotropic,
bi-isotropic, and bi-anisotropic materials, which are exclusive, are given in Table 1.

For the special case of a linear, homogeneous, isotropic material, we get{
D(r, t) = ε0 (εE(r, t) + (χe ∗ E) (t))

B(r, t) = µ0 (µH(r, t) + (χm ∗ H) (r, t))
(2.2)

This is the simplest constitutive relation of a medium with dispersion effects, and we
adopt a special case of this model in the analysis of Section 3. Two explicit models
for isotropic materials are important. These are the relaxation (Debye’s) and the
resonance (Lorentz’) models, see the subsections below.

2.1 Optical response

The optical response, ε, present in (2.2), is a time domain model to accommodate
all fast processes in the material that cannot be resolved with the variation of the
applied field. To more clearly see the origin of the optical response, let the optical
response be absent (ε = 1), but assume that the susceptibility kernel χe is a sum of
two terms, a rapidly varying term, χf, and a slowly varying term χs. The variations
of the applied field determine what is fast and what is slow in this context. For
microwave applications the fast processes are infra-red and optical polarization ef-
fects in the material, while for optical applications the fast processes are ultra-violet
phenomena. We thus have, suppressing spatial dependence, which is of no interest
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here

1

ε0
D(t) = E(t) + (χf ∗ E)(t) + (χs ∗ E)(t)

≈E(t) + E(t)

t∫
−∞

χf(t− t′) dt′ + (χs ∗ E)(t)

=εE(t) + (χs ∗ E)(t)

where the field E(t) has been taken outside the integration of the first integral due
to the rapid variations of the kernel χf, and where ε = 1 +

∫ ∞
0
χf(t) dt.

The optical response, which is a time-domain concept is related to the com-
plex permittivity function ε̂(ω), which is defined by the Fourier transform of the
susceptibility kernel, i.e.,

ε̂(ω) = 1 +

∞∫
0

χe(t) exp(iωt) dt

Specifically, the optical response corresponds to the low-frequency behavior of the
permittivity function ε̂(ω), since, at ω = 0 we have

ε̂(0) = 1 +

∞∫
0

χe(t) dt = ε+

∞∫
0

χs(t) dt

and we see that the low-frequency behavior of the permittivity function is related
to the optical response and the (average) properties of the susceptibility kernel. We
also see that the kernel χe in (2.2) is in fact χs. If the applied field has infinite
bandwidth, no optical response can be identified and ε = 1, i.e., as in vacuum. A
similar discussion applies to the general, linear medium.

2.2 Relaxation model

Debye’s model or the relaxation model is a useful model for polar liquids. The rate
of alignment of the molecules is modeled by the frequency α and the process that
tries to randomly orient the molecular polarization is modeled by the relaxation
time τ ≥ 0. The explicit form of the electric susceptibility kernel is [16]

χe(t) = αe−t/τ

and the optical response is ε = 1. An equivalent expression for the magnetic sus-
ceptibility kernel can also be obtained, but this model is less often used in the
literature.
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2.3 Resonance model

Lorentz’ model or the resonance model is often used as a model for the electromag-
netic response in solids. Assume ω0 ≥ 0 is the harmonic frequency of the restoring
force, ν ≥ 0 is the collision frequency, and ωp =

√
Nq2/ε0m > 0 is the plasma

frequency of the medium. The explicit form of the electric susceptibility kernel
is [16]

χe(t) =
ω2

p

ν0
e−νt/2 sin ν0t (2.3)

where ν2
0 = ω2

0 − ν2/4 and the optical response is ε = 1. Just as in the Debye’s
model there is a magnetic susceptibility kernel in analogy to the electric one.

The relaxation and the resonance models are examples of useful models. They
correspond to first and second order ODEs with constant coefficients, respectively.
Generalization to higher order equations can be found in Refs. 9 and 27.

2.4 Restrictions on the constitutive relations

Since all realistic materials have losses, it is important to exploit the concept of
dissipation in the material. Dissipation constrains the form of the dyadic-valued
(susceptibility) functions χkk’, k,k’ = e,m, and the dyadics ε, ξ, ζ and µ. In Refs. 7
and 12 it is shown that in a passive medium the following constraints must hold:

ε = εt ξ = ζt µ = µt

Here t denotes the transpose of the dyadic. Moreover, the following 6-dimensional
dyadics (

ε ξ
ζ µ

) (
χee(0

+) χem(0+)
χme(0

+) χmm(0+)

)

are positive semi-definite dyadics. Additional constraints can be found in Refs. 7,12
and 17.

The medium is reciprocal if and only if the constitutive relations satisfy [12, 17]


ε = εt

ξ = −ζt

µ = µt




χee(t) = χt
ee(t)

χem(t) = −χt
me(t)

χmm(t) = χt
mm(t)

We immediately conclude that all isotropic materials are reciprocal. Even though
most materials are reciprocal there are important exceptions, e.g., ionized materials
in an external magnetic field and ferrites in an external magnetic field.
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3 Isotropic, homogeneous media

For pedagogical reasons we restrict the detailed analysis to homogeneous, isotropic
materials without magnetic dispersion, i.e., the constitutive relations are, see (2.2){

D(r, t) = ε0 (εE(r, t) + (χe ∗ E) (r, t))

B(r, t) = µ0µH(r, t)

Some extensions of the analysis presented in this section are outlined in Section 8.
We proceed the analysis in two steps. First, in this section we investigate the

solutions in an homogeneous material. Specifically, we introduce the concepts of
wave splitting and of propagators. The reflection problem by a slab is then addressed
in Section 7.

3.1 Dynamics

We seek one-dimensional transverse electric and magnetic (TEM) solutions of the
source-free Maxwell field equations in the isotropic material. We denote the direction
of propagation with z and assume the linearly polarized fields{

E(r, t) = exE(z, t)

H(r, t) = eyH(z, t)

where ex and ey are the unit vectors in the x and y directions, respectively. The
other generic polarization with the electric field along the y-axis gives results that
are completely analogous due to the isotropy of the material. Any other polarization
is then obtained by superposition.

Elimination of the flux densities in the Maxwell equations, (2.1), yields a first-
order system of hyperbolic integro-differential equations in the non-vanishing electric
and magnetic field components.

c0
∂

∂z

(
E

−η0H

)
=
∂

∂t

{(
0 µ

ε+ χe∗ 0

) (
E

−η0H

)}
(3.1)

3.2 Wave splitting

One way to deal with propagation problems in temporally dispersive media is to
adopt a dispersive wave splitting [26]. We introduce new dependent variables (split
fields) by 


E+(z, t) =

1

2
(E(z, t) + η(1 + Z∗)η0H(z, t))

E−(z, t) =
1

2
(E(z, t) − η(1 + Z∗)η0H(z, t))

(3.2)

where the relative high-frequency wave impedance is denoted by η =
√
µ/ε. The

basic idea behind this change of dependent variables is to use a specific choice of
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the kernel Z(t) such that there is no interaction between the new split fields E±.
The new split fields satisfy one-way wave equations, and, therefore, represent the
correct kinematic parts of the wave propagation problem. This is a wave splitting
with respect to the dispersive background characterized by the (real-valued) optical
responses ε, µ and the susceptibility kernel χe(t).

In terms of the split fields, E±(z, t), the electric and magnetic fields are given by{
E(z, t) = E+(z, t) + E−(z, t)

ηη0H(z, t) = (1 +N∗)(E+(z, t) − E−(z, t))
(3.3)

where the kernel N(t) is uniquely determined by Z(t), see below. The dispersive
wave splitting (3.2)–(3.3) should be interpreted locally throughout space. In the
absence of dispersion (χe = 0), we have{

E(z, t) = E+(z, t) + E−(z, t)

ηη0H(z, t) = E+(z, t) − E−(z, t)

In the expressions (3.2)–(3.3) above, the intrinsic impedance kernel Z(t) and the
refractive kernel N(t) vanish for t < 0 and are well-behaved for t > 0. Furthermore,
N(t) is the resolvent of Z(t), i.e.,

N(t) + Z(t) + (N ∗ Z)(t) = 0 (3.4)

The aim of the dispersive wave splitting is to decouple the Maxwell equations.
By differentiating (3.2) with respect to z, using (3.1) and (3.3), the coupling terms
between the split fields E± both are proportional

ε
∂

∂t
N ∗ E± − ∂

∂t
χe ∗ E± − Z ∗ ∂

∂t

(
εE± + χe ∗ E±)

We require this expression to vanish for arbitrary fields E+ and E−. This leads to
the following equation for the kernel N(t):

2N(t) + (N ∗N)(t) = χe(t)/ε (3.5)

This is a nonlinear Volterra integral equation of the second kind which is known to
be uniquely solvable in the space of bounded and smooth functions in each bounded
time interval, 0 < t < T . Furthermore, they are numerically stable [21]. Thus, the
construction of Z(t) and N(t) from χe(t) is a well posed problem.

The one-way equations for the split fields read

(c∂z ± ∂t)E
± = ∓∂t

(
N ∗ E±)

(3.6)

where the wave front speed in the non-dispersive background is c = c0/
√
εµ. We see

that the split fields E+ and E− represent up- and down-going fields, respectively.
In summary, the unique solution N(t) of the non-linear Volterra equation of the

second kind (3.5) and its resolvent Z(t), see equation (3.4), lead to a set of two
one-way wave equations in the split fields E±. We then obtain the electric and the
magnetic fields by equation (3.3).
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3.3 Expansion of the kernels

Using the method of successive approximation in (3.5) we can expanded the refrac-
tive kernel, N(t), in a power series of temporal convolutions. This series converges
in each bounded time interval, 0 < t < T [21].

N(t) =
∞∑

k=1

(
1
2

k

)
ε−k

(
(χe∗)k−1χe

)
(t)

Similarly, we can expand the impedance kernel in a power series of temporal convo-
lutions, see (3.4). The result is

Z(t) =
∞∑

k=1

(−1)k
(
(N∗)k−1N

)
(t)

3.4 Propagators

We seek solutions to the fields E± in (3.6). These solutions can formally be written
as

E±(z2, t± (z2 − z1)/c)
=

[
P (± (z2 − z1))E±(z1, ·)

]
(t)

(3.7)

(−∞ < z1, z2 < ∞), where the temporal integral operator P(z2 − z1) is referred
to as the wave propagator of the temporally dispersive medium and t denotes wave
front time, i.e., the time measured from the arrival of the wave front.1 Due to the
homogeneity of the material the propagator is invariant under spatial translations,
and, therefore, the propagator P is a function of z2 − z1, i.e., P (± (z2 − z1)). The
interpretation of the spatial argument is that z1 ≤ z2 corresponds to propagation
of up-going or down-going fields upwards. The other case, z2 ≤ z1 corresponds to
propagation of up-going or down-going fields downwards.

The dynamic equations (3.6) show that the wave propagator satisfies the operator
identity {

∂zP(z) = −KP(z)

P(0) = 1
(3.8)

where the temporal integral operator K is related to the wave number of the disper-
sive medium as 


K =

1

c
∂tN∗ =

1

c
N(0) +K ∗

K(t) =
1

c
N ′(t)

(3.9)

1Notice the difference between the real physical time t and wave front time τ related by τ =
t − z/c. We use the same letter t for both real time and wave front time in the text. From the
context it is obvious which time we refer to.
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The wave propagator is closely related to the causal fundamental solution of the
dispersive wave operator, see [13].

The formal solution to (3.8) is

P(z) = exp (−zK) (3.10)

where the exponential of an operator is defined by its Taylor series expansion. Mul-
tiplication by the time-shift operator2

P0(z) = exp
(
−zc−1∂t

)
= δ(· − z/c) ∗

gives a wave propagator, P0(z)P(z), defined in terms of real physical time.3

Two-fold application of (3.7) (or use (3.10)) shows that the wave propagator,
P(z), satisfies the relations 


P(z1 + z2) = P(z1)P(z2)

P(0) = 1

P−1(z) = P(−z)
(3.11)

where the arguments can be both positive and negative. A positive argument, z > 0,
corresponds to propagation of up-going waves or down-going waves in the dispersive
medium, i.e., away from their sources. A negative argument, −z < 0, refers to the
inverse (resolvent operator) of the operator P(z), i.e., towards their sources. This
operator is of importance in signal restoration since the propagator P(−z) restores
an incident signal E+(0, t) from a received signal E+(z, t) by E+(0, t − z/c) =
[P(−z)E+(z, ·)](t). The rules (3.11) are the requirements for a group; thus, the
propagators, P(z), −∞ < z <∞, form a group.

3.5 Factorization

We now proceed by introducing an appropriate factorization of the wave propagator
P(z). The motivation behind this factorization is to extract the attenuation of the
wave front as a separate factor. It is pertinent to factorize the wave propagator as

P(z) = Q(z)
(
1 + P (z; ·) ∗

)
(3.12)

2We formally see this by the action of a test function φ ∈ C∞
0 . Provided a power series expansion

exists for φ at t we have

exp
(
−zc−1∂t

)
φ(t) =

∞∑
n=0

(
−zc−1

)n

n!
φ(n)(t) = φ(t − z/c)

= (δ(· − z/c) ∗ φ(·)) (t)

3In the frequency plane, this wave propagator corresponds to the propagation factor

p(z) = exp (−ik(ω)z)

where k(ω) is the complex wave number as a function of angular frequency ω.
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where the wave front propagator, Q(z), is the solution of the ordinary differential
equation {

∂zQ(z) = −N(0)Q(z)/c

Q(0) = 1

and the solution determines the attenuation of the wave front, viz.

Q(z) = exp
(
−z
c
N(0)

)
The propagator kernel, P (z; t), satisfies the integro-differential equation{

∂zP (z; t) = −K(t) −
(
P (z; ·) ∗K(·)

)
(t)

P (0; t) = 0
(3.13)

which has a unique solution in the space of bounded and smooth functions in each
bounded interval, 0 < t < T , 0 < z < Z, cf. Refs. 25 and 28. P (z; t) vanishes for
t < 0 since K(t) vanishes for t < 0. By definition, the propagator kernels P (z; t)
and P (−z; t) are related to one another by the linear Volterra integral equation of
the second kind,

P (z; t) + P (−z; t) + (P (z; ·) ∗ P (−z; ·)) (t) = 0

for which a unique solution exists.
The propagator kernel can be expanded in a power series of temporal convo-

lutions that converges in each bounded time interval, 0 < t < T . We have from
equation (3.13)

P (z; t) =
∞∑

k=1

(−z)k

k!

(
(K∗)k−1K

)
(t) (3.14)

We use an operator notation which is

1 + P (z; ·)∗ = exp (−zK∗) (3.15)

4 The first precursor

The first precursor is defined as the short-time, or wave front, behavior of the impulse
response

[P(z)δ] (t) = Q(z) {δ(t) + P (z; t)} (4.1)

where δ(t) is the Dirac delta pulse. The first precursor has strong connections to
the Green’s function or dyadic. We refer to Refs. 5 and 13 for more details on these
interrelations.
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In the light of (3.13)–(3.14), it makes sense to expand the wave number kernel,
K(t), t > 0 about t = 0. The Maclaurin series of the smooth wave number kernel is

K(t) =H(t)
k−1∑
j=0

tj

j!

djK

dtj
(+0)

+H(t)

∫ t

0

(t− t′)k−1

(k − 1)!

dkK

dtk
(t′) dt′

k = 1, 2, 3, . . .

where H(t) denotes the Heaviside step function. The time derivatives of the wave
number kernel at the origin, K(k)(+0) = N (k+1)(+0)/c, k = 0, 1, 2, 3, . . . , are ob-
tained from the recurrence relation

2N (k)(+0) =
χ

(k)
e (+0)

ε
−

k−1∑
j=0

N (j)(+0)N (k−1−j)(+0)

k = 1, 2, 3, . . .

which, in turn, is obtained by differentiating (3.5) with respect to time. For the first
coefficients the result is 


N(+0) =

χe(+0)

2ε

K(+0) =
χ′

e(+0)

2cε
− χ

2
e(+0)

8cε2

For a simple Debye or Lorentz model, see Section 2, we have

N(+0) =

α

2
> 0

K(+0) = − α

2c0τ
− α2

8c0
< 0

Debye

and 

N(+0) = 0

K(+0) =
ω2

p

2c0
> 0

Lorentz

Substituting the above expression for K(t) into (3.15) and using (3.12) and the
fundamental property of the exponential give

P(z) =Q(z) exp (−zK∗)

=Q(z)

(
k−1∏
j=0

Qj(z)

)
Q̃k(z)

(4.2)
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where the wave front operators are

Qj(z) = exp
{
−zK(j)(+0)

(
tjH(t)

j!

)
∗
}
,

j = 0, 1, 2, . . . , k − 1

and the remainder is

Q̃k(z) = exp
{
− z

(k − 1)!

×
(
H(t)

∫ t

0

(t− t′)k−1K(k)(t′) dt′
)
∗
} (4.3)

Using the identity ((H∗)nH)(t) = tn/(n!)H(t), the wave front operators can be
written in the form

Qj(z) = 1 +Qj(z; ·)∗, j = 0, 1, 2, . . . , k − 1

where the power series of the wave front operators are

Qj(z; t) = H(t)
∞∑
i=1

(
−zK(j)(+0)

)i ti(1+j)−1

(i(1 + j) − 1)!i!

The product (4.2) is an exact expansion of the wave propagator. Approximations
to the first precursor are obtained by neglecting the remainder (4.3).

4.1 Sommerfeld’s forerunner

We are now ready to define the Sommerfeld’s forerunner, which is an approximation
of the first precursor. Sommerfeld’s forerunner at the propagation depth z is

[PS(z)δ] (t) = Q(z) {δ(t) + PS(z, t)}

where the temporal integral operator is defined by taking the first factors in expan-
sion (4.2):

PS(z) = Q(z)Q0(z) = Q(z)
(
1 + PS(z; ·) ∗

)
Since Q0(z; t) is a Bessel-function expansion, Sommerfeld’s forerunner kernel be-
comes

PS(z; t) = − zK(+0)
[
I0

(
2
√
−zK(+0)t

)
− I2

(
2
√
−zK(+0)t

)]
H(t)

= − zK(+0)
[
J0

(
2
√
zK(+0)t

)
+ J2

(
2
√
zK(+0)t

)]
H(t)
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where In and Jn are the modified Bessel function and the Bessel function of order
n, respectively. The first formula is appropriate for Debye media (K(+0) < 0) and
the second for Lorentz media (K(+0) > 0). This result, which is a generalization of
Sommerfeld’s result [29] for the single-resonance Lorentz medium, has been obtained
before using various methods [14, 24]. Notice that the forerunner in the Lorentz
medium is highly oscillating.

5 The second precursor

The second precursor represents the slowly varying component of the impulse re-
sponse (4.1). The dominant contribution to this transient is referred to as Brillouin’s
forerunner. This forerunner is given a precise meaning below.

Here, we seek an expansion of the wave propagator with respect to slowly varying
fields. The general idea is to expand the field in terms of its derivatives and neglect
the higher-order terms.

Specifically, each smooth field, Ei(t′), is expanded in Taylor’s formula around
the observation time, t:

Ei(t′) =
k−1∑
j=0

(t′ − t)j

j!

dj

dtj
Ei(t)

+

∫ t′

t

(t′ − t′′)k−1

(k − 1)!

dk

dtk
Ei(t′′) dt′′

k = 1, 2, 3, . . .

Applying this expansion to the convolution integral (χe ∗ Ei)(t) gives

(
χe ∗ Ei

)
(t) =

k∑
j=1

χj
d(j−1)

dt(j−1)
Ei(t)

+

(
Xk ∗

dk

dtk
Ei

)
(t)

(5.1)

where the coefficients

χj =
(−1)j−1

(j − 1)!

∫ ∞

0

tj−1χe(t) dt (5.2)

are proportional to the moments of χe(t) and the remainder is

Xk(t) =
(−1)k

(k − 1)!
H(t)

∫ ∞

t

(τ − t)k−1χe(τ) dτ

The convolution in equation (5.1) can be viewed as an expansion of the convolution
operator χe∗. Analogously, the operator N∗ can be expanded as

N∗ =
k∑

j=1

nj
d(j−1)

dt(j−1)
+Nk ∗

dk

dtk
(5.3)
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Nk(t) =
(−1)k

(k − 1)!
H(t)

∫ ∞

t

(τ − t)k−1N(τ) dτ

For media such that Xk and Nk tend to zero as k tends to infinity, one can write

χe∗ =
∞∑

k=0

χk+1
dk

dtk
δ∗, N∗ =

∞∑
k=0

nk+1
dk

dtk
δ ∗ (5.4)

This is the case for, e.g., Lorentz’ model.
The coefficients χk and nk are related to each other. A relation between these

coefficients is obtained by inserting the expansions (5.4) in the definition (3.5). The
result is

χk+1

ε
= 2nk+1 +

k∑
i=0

nk−i+1ni+1, k = 0, 1, 2, . . .

From this recursion formula, we see that it is sufficient to compute the moments (5.2)
of the susceptibility kernel. This approach is particularly advantageous for multiple-
resonance media. The coefficients nk are determined in consecutive order starting
with k = 1. Explicitly, the first terms are

n1 =

√
1 +

χ1

ε
− 1,

n2 =
χ2/ε

2
√

1 + χ1/ε
,

nk+1 =
χk+1/ε−

∑k−1
i=1 nk−i+1ni+1

2(1 + n1)
, k > 1

Using (3.9)–(3.10) and expansion (5.3), the wave propagator, P(z), z > 0, can
be written as

P(z) = exp

{
−z
c

d

dt

k∑
j=1

nj
d(j−1)

dt(j−1)

}
Pr

k(z)

=

(
k∏

j=1

Pj(z)

)
Pr

k(z)

(5.5)

where

Pj(z) = exp

{
−z
c
nj
dj

dtj

}
, j = 1, 2, 3, . . . , k

and

Pr
k(z) = exp

{
−z
c

d

dt
Nk ∗

dk

dtk

}
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The propagator Pj(z) are temporal convolution operators:

Pj(z) = Pj(z; ·)∗, j = 1, 2, 3, . . . , k

By definition,

P1(z; t) = δ (t− t1) , t1 = n1z/c

where the time-delay t1 is proportional to the propagation distance z.
An expansion of the wave propagator with respect to slowly varying fields can

now be obtained. Let kB = kB(χe) be less than or equal to the largest integer such
that the moment nkB

satisfies the signature

n4k+1 ≥ 0, n4k+2 ≤ 0

n4k+3 ≤ 0, n4k+4 ≥ 0

or symbolically

{n4k+1, n4k+2, n4k+3, n4k+4} = {+,−,−,+} (5.6)

Provided this numerical signature holds, the kernels Pj(z; t), j = 2, 3, 4, . . . , kB

can be identified as hyper-Airy functions. Fourier transformation reveals that

Pj(z; t) =
1

tj
Bj

(
t

tj

)
, j = 2, 3, 4, . . . , kB

where the scaling times, tj, are proportional to the jth root of the propagation
depth:

tj =

(
j|nj|z
c

) 1
j

, j = 1, 2, 3, . . . , kB

Notice that the kernels Pj(z; t), j = 2, 3, 4, . . . , kB are non-causal. The properties of
the infinitely differentiable, bounded, and integrable hyper-Airy functions Bj(x) :=
Aj(−x) are discussed in Section 9. In particular, A2(x) is a Gaussian function and
A3(x) is the Airy function Ai(x). Observe that for the Lorentz medium, the Airy
function has a negative argument in accordance with known results.

As a consequence of (5.5), the wave propagator, P(z), can formally be written
as

P = P1 ∗ P2 ∗ P3 ∗ P4 ∗ ....PkB
∗ Pr

kB
(5.7)

for some finite integer kB. Subject to the above restrictions, for fixed z, the functions
Pj = Pj(z; t), j = 2, 3, 4, . . . , kB, are smooth, and since the wave propagator can be
written in the form (3.12) where the kernel P (z; t) vanishes for t < 0 and is bounded
and smooth for t > 0, the operator Pr

kB
(z) must produce the highly oscillating field

components. In particular, it generates a delta function and Sommerfeld’s forerunner
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Figure 1: The electric susceptibility kernel, χe(t)/ε, relevant for the excitation of
the ordinary wave, as a function of time, t. Time is measured in units of d/c and
the susceptibility kernel is given in units of c/d.

kernel. When we neglect the operator Pr
kB

(z) in the product (5.7) we obtain a more
or less accurate approximation to the slowly varying field components.

It is possible to prove that the functions Pj(z; t) satisfy∫ ∞

−∞
Pj(z; t) dt = 1

lim
z→0

Pj(z; t) = δ(t)

Pj(z1; t) ∗ Pj(z2; t) = Pj(z1 + z2; t)

It is not possible to have arguments z < 0 in Pj(z; t) when j > 1 since Pj(−|z|, t)
is not a classical function or even a distribution; hence, the inverse to the function
Pj(z; t) when j > 1 does not exist in normal function spaces or in the space of
distributions. Thus, for each j, the functions Pj(z; t), z > 0 form a semi-group in
contrast to the entire propagator, P(z), −∞ < z <∞, that forms a group. Also if
we truncate the product in (5.7) at some finite j > 1 the corresponding propagator
does not have an inverse and thus only forms a semi-group.

The theory presented so far holds for the dispersive signature (5.6) only. The
numerical example given below indicates that the above method is well suited for
normally absorbing resonance (Lorentz) media for which at least n1 > 0, n2 < 0,
n3 < 0, but, perhaps, too restricted to be applied to relaxation (Debye) materials for
which n1 > 0, n2 < 0, but n3 > 0. In the following, Brillouin’s forerunner is defined
for materials for which the refractive coefficients n1, n2 < 0, and n3 are finite. The
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Debye model indicates that the restriction on the numerical signature (5.6) can be
relaxed [13].

5.1 Brillouin’s forerunner

Brillouin’s forerunner (kernel), PB(z; t), is defined by

PB = P1 ∗ P2 ∗ P3

where Pj = Pj(z; t), and satisfies the parabolic differential equation, see (5.5)


− c∂zPB(z; t) = n1∂tPB(z; t)

+ n2∂
2
t PB(z; t) + n3∂

3
t PB(z; t)

PB(0 + 0; t) = δ(t)

This definition is essentially the classical, crude approximation to the second pre-
cursor in a single-resonance Lorentz material obtained by Brillouin [4]. We get a
closed-form expression for Brillouin’s forerunner kernel in terms of the Airy function
by temporal Fourier transformation technique Ai(x):

PB(z; t) = exp

(
n3

2

27n2
3

z

c
− n2

3n3

(t− tB(z))

)

×
Ai

(
sign(n3)

(t−tB(z))
t3(z)

)
t3(z)

(5.8)

where the scaling times are

tB(z) =

(
n1 −

n2
2

3n3

)
z

c
, t3(z) =

(
3|n3|z
c

) 1
3

and the sign function is sign(n3) = 1 for n3 > 0 and sign(n3) = −1 for n3 < 0. The
result (5.8) can also be verified by straightforward differentiation.

As has been pointed out before [23], Brillouin’s forerunner (5.8) is valid as an
approximation to the slowly varying propagating field in a neighborhood of the
quasilatent time tB(z) only. To obtain better approximations to the “tail” of the
second precursor, higher-order approximations must be used. This can be done
either by advanced saddle-point analysis [23] or by using the above convolution
technique. In this chapter, we employ the latter method. In the numerical examples
in Section 6, we find the following expansion to be accurate enough: P1 ∗ P2 ∗ P3 ∗
P4 ∗ P5.

6 Numerical examples

There are a number of ways to calculate the propagator kernel, P (z; t), in (3.12)
numerically by time-domain techniques. One way is to solve the integro-differential
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Figure 2: The propagator kernel, P (d; t), relevant for the excitation of the ordinary
wave, as a function of time, t. Time is measured in units of d/c and the propagator
kernel is given in units of c/d.

equation (3.13) (by integration along the characteristics, z = constant). This is
quite time consuming, since a convolution has to be performed at every step in the
spatial variable z. For a fixed propagation depth, z, a more efficient way is to solve
the following Volterra integral equation of the second kind:

P (z; t) = −1

t
(F (z, ·) ∗ P (z; ·)) (t) − zK(t)

F (z, t) = ztK(t)
(6.1)

This equation can be obtained by Laplace transformation of (3.15) and differen-
tiation with respect to the Laplace transform variable. A straightforward way to
solve (6.1) is to discretize the integral by the trapezoidal rule, resulting in a numer-
ical scheme that is very easy to implement. It is also possible to use higher-order
integration routines, e.g., the Simpson rule, to get faster convergence. A third time-
domain method of calculating P (z; t) is to use the series expansion of the exponential
in (3.14). It should be pointed out that the relation

P (z1 + z2; t) =P (z1; t) + P (z2; t)

+ (P (z1; ·) ∗ P (z2; ·)) (t)
(6.2)

cf. (3.11), can be utilized in the calculation of P (z; t) in all three cases. In fact,
numerical tests indicate that it is necessary to use this rule in order to obtain correct
results for large propagation depths.
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Ordinary wave

i λ0
−1
i (cm−1) ωp

2
i /ω0

2
i νi/ω0i

1 1227 0.009 0.11
2 1163 0.010 0.006
3 1072 0.67 0.0071
4 797 0.11 0.009
5 697 0.018 0.012
6 450 0.82 0.0090
7 394 0.33 0.007

ε=2.356

Extraordinary wave

i λ0
−1
i (cm−1) ωp

2
i /ω0

2
i νi/ω0i

1 1220 0.011 0.15
2 1080 0.67 0.0069
3 778 0.10 0.010
4 539 0.006 0.04
5 509 0.05 0.014
6 495 0.66 0.0090
7 364 0.68 0.014

ε=2.383

Table 2: Dielectric data quartz in the infrared wavelength region. The notations
are: ω0i the resonance frequency (1/λ0i = ω0i/2πc0 is given), ωpi is plasma frequency
and νi is the collision frequency of the material. The optical response is given by
the constant ε. Data are from [30].

To illustrate the performance of the technique we apply it to a 7-frequency
Lorentz model, i.e., a sum of seven terms given by (2.3), with data given in Ta-
ble 6. These data has its origin in experimental data [30]. Quartz is not an example
of an isotropic material. The material is in fact anisotropic (uniaxial), but provided
the optical axis is perpendicular to the direction of propagation, then, for two spe-
cific polarizations of the incident field, the reaction is the same as for an isotropic
material. These polarizations, which can be excited independently of one another,
are known under the names of the ordinary wave and the extraordinary wave.

6.1 Ordinary wave

The ordinary wave is excited provided the magnetic field vector lies in the plane
spanned by the optical axis and the direction of propagation. The propagation
depth is z = d = 1 mm. The relevant electric susceptibility kernel, χe(t)/ε, where
ε = 2.356, as a function of time, t, is depicted in Figure 1. It is convenient to scale
time in units of d/c and the susceptibility kernel in units of c/d, where c = c0/

√
ε.

The propagator kernel, P (d; t), as a function of time, t, is depicted in Figure 2.



20

0.3 0.35 0.4 0.45 0.5 0.55
-30

-20

-10

0

10

20

30

40

Figure 3: The propagator kernel, P (d; t), and two approximations to the second
forerunner, relevant for the excitation of the ordinary wave, as functions of time, t.
The solid curve represents the propagator kernel, the dotted curve (·) is the Brillouin
approximation to the second forerunner, and the dash-dot curve (−·) represents the
improvement of the second forerunner obtained by repeated convolution. Time is
measured in units of d/c and the propagator kernel and the approximations are
given in units of c/d.

Observe that wave-front time based on the speed c = c0/
√

2.356 has been used.
The result was obtained by solving (6.1) using the trapezoidal rule with 217 and 218

data points followed by a Richardson extrapolation. Furthermore, the propagator
rule (6.2) was used three times in both cases. The first five susceptibility coefficients,
χk/ε, measured in (d/c)k−1, the refractive coefficients, nk, measured in (d/c)k−1, and
the scaling times, tk, measured in d/c, relevant for the ordinary wave, can be found
in Table 3. Observe that the signature holds for these refractive coefficients. The
propagator kernel, P (d; t), and two approximations to the second forerunner, as
functions of time, t, are depicted in Figure 3. In this time interval, the Brillouin’s
forerunner, given by the formula (5.8), constitutes a fairly good first approximation
to the forerunner kernel. However, it cannot predict the behavior of the “tail” of
the signal correctly, neither with respect to phase nor to amplitude. The second
approximation, which is the numerical result of the convolution of the functions
Pk(d; t), k = 1, 2, 3, 4, 5, clearly improves this “tail” significantly.

Responses to other excitations are obtained by convolution:

g(t) + (g(·) ∗ P (d; ·))(t)

where g(t) is the given excitation at z = 0 and the use of wave-front time is un-
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Ordinary wave
χk/ε nk tk

k = 1 8.3488964e-01 3.5458098e-01 3.5458098e-01
k = 2 -1.2811896e-05 -4.7290994e-06 3.0754185e-03
k = 3 -3.1858282e-06 -1.1759542e-06 1.5223128e-02
k = 4 1.1902902e-10 3.9830254e-11 3.5527796e-03
k = 5 1.6950985e-11 5.7466086e-12 7.7924913e-03

Extraordinary wave
χk/ε nk tk

k = 1 9.1355434e-01 3.8331281e-01 3.8331281e-01
k = 2 -2.0288013e-05 -7.3331255e-06 3.8296542e-03
k = 3 -3.9186225e-06 -1.4164100e-06 1.6197081e-02
k = 4 2.3902811e-10 7.8888404e-11 4.2147158e-03
k = 5 2.4317709e-11 8.0649325e-12 8.3390034e-03

Table 3: Dimensionless susceptibility coefficients, χk/ε, refractive coefficients, nk,
and scaling times, tk, relevant for the ordinary and the extraordinary waves. The
signature holds also for these excitations.

derstood. Excitations of particular interest are the Heaviside step function, H(t),
and a sinusoidal function terminated at one end, i.e., H(t) sin(2πft), where f is the
frequency. The responses to these signals are found in Figure 4 and Figure 5, respec-
tively. In the latter case, the frequency f = 1 THz has been chosen. The trapezoidal
rule has been employed in the numerical integrations. Richardson extrapolation has
been used in these two cases. Observe that the first precursor in Figure 4 is of much
lower amplitude than in Figure 2, due to cancellations at the integration, and that
it almost vanishes in Figure 5 (cancellation of the order of 107). Observe also that
the excitations are clearly distinguishable in the responses in both cases, although
time shifts have occurred, and that the signals are built up surprisingly quickly.

6.2 Extraordinary wave

The extraordinary wave is excited provided the electric field vector lies in the plane
spanned by the optical axis and the direction of propagation. The propagation depth
is d = 1 mm also in this example. The relevant electric susceptibility kernel, χe(t)/ε,
where ε = 2.383, as a function of time, t, is depicted in Figure 6. The susceptibility
kernel is presented in units of c/d, where c = c0/

√
ε and time is measured in units of

d/c and they consequently differ from the one used in case of the ordinary wave. The
propagator kernel, P (d; t), as a function of time, t, is depicted in Figure 7. Observe
that wave-front time based on the speed c = c0/

√
2.383 has been used. The result

has been obtained using Richardson extrapolation with the number of data points 218

and 217, and the propagator rule (6.2) was used three times in both cases. The first
five susceptibility coefficients, χk/ε, measured in (d/c)k−1, the refractive coefficients,
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Figure 4: The step response, H(t) + (H(·) ∗ P (d; ·))(t), when the ordinary wave
is excited. The propagator kernel, P (d; t), is depicted in Figure 2. Wave-front time
measured in units of d/c is used.

nk, measured in (d/c)k−1, and the scaling times, tk, measured in d/c, relevant for
the extraordinary wave, are shown in Table 3. The signature for these refractive
coefficients holds for this excitation also. The propagator kernel, P (d; t), and two
approximations to the second forerunner, as functions of time, t, are depicted in
Figure 8. Similar to the case of the ordinary wave, Brillouin’s forerunner, given by
the formula (5.8), constitutes a fairly good first approximation to the forerunner
kernel, but cannot predict the behavior of the “tail” of the signal correctly. The
second approximation is the numerical result of the convolution of the functions
Pk(d; t), k = 1, 2, 3, 4, 5, and improves the result significantly.

7 Scattering by a slab

The analysis in Section 3 which was used in the investigation of the first and the
second precursors in Sections 4 and 5, was made under the assumption that the
medium was homogeneous in the whole space. This situation is, of course, non-
physical since no measurements can be made inside the material. A physically more
realistic situation is to let the wave interact with the dispersive material in a finite
slab. The measurement and the effects of the first and the second precursors are
then observed in the transmitted or reflected field [5]. In this section, the alterations
in the analysis in this physically more realistic case are analyzed.

A general, linearly polarized plane wave impinges normally on a temporally
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Figure 5: A sinusoidal terminated at one end, H(t) sin(2πft), where f = 1 THz,
and the response of this signal, H(t) sin(2πft) + (H(·) sin(2πf ·) ∗ P (d; ·))(t), when
the ordinary wave is excited. The propagator kernel, P (d; t), is depicted in Figure 2.
Wave-front time measured in units of d/c is used.

dispersive slab, 0 < z < d, see Figure 9. For the sake of simplicity, the medium is
assumed to be located in vacuum and ε = µ = 1 in the medium, i.e., no optical
response. As seen from above, the optical response can always be introduced by a
suitable limit process. The incident plane wave at the front wall, z = 0, at time t is
given by {

Ei(t) = exE
i(t)

H i(t) = eyH
i(t)

where H i(t) = Ei(t)/η0. The incident electric field, Ei(t), is assumed to be bounded,
smooth, and initially quiescent, i.e., it vanishes for t < 0. All electromagnetic fields
in the slab are assumed to be initially quiescent.

The back edge z = d can either be finite for a slab of finite thickness, or it could
be infinite (large enough so there are no effects from reflections at the back edge) to
model a half space problem. Both these situations are analyzed in this chapter.

The reflected plane wave at the front wall, z = 0, at time t is given by{
Er(t) = exE

r(t)

Hr(t) = eyH
r(t)

where Hr(t) = −Er(t)/η0.
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Figure 6: The electric susceptibility kernel, χe(t)/ε, relevant for the excitation of
the extraordinary wave, as a function of time, t. Time is measured in units of d/c
and the susceptibility kernel is given in units of c/d.

Analogously, the transmitted plane wave at the rear wall, z = d, at time t is{
Et(t) = exE

t(t)

H t(t) = eyH
t(t)

where H t(t) = Et(t)/η0. In terms of these scattered waves, the boundary conditions
are {

Ei(t) + Er(t) = E(0 + 0, t)

H i(t) +Hr(t) = H(0 + 0, t){
Et(t) = E(d− 0, t)

H t(t) = H(d− 0, t)

(7.1)

where the argument 0 + 0 and d − 0 denote the limit values from above at z = 0
and from below at z = d, respectively.

An application of the Duhamel’s principle shows that there is a linear relation
between the reflected and the transmitted fields and the incident field, respectively,
[8]. We have 


Er(t) =

[
REi

]
(t) =

∫ t

−∞
R(t− t′)Ei(t′) dt′

Et(t+ d/c0) = Q(d)Ei(t) +

∫ t

−∞
T (t− t′)Ei(t′) dt′

(7.2)
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where R(t) and T (t) are the reflection and the transmission kernels of the slab,
respectively.

7.1 Half-space problem

The introduction of the relative intrinsic impedance of the temporally dispersive
medium promotes simple, natural definitions of reflection and transmission opera-
tors for the electric field at normal incidence at a (single) non-dispersive–dispersive
interface (d→ ∞). The reflection operator viewed from the non-dispersive medium
is defined by R = R∞ = (Z + 1)−1 (Z − 1) and relates the reflected field to the
incident one. This temporal integral operator can be written in the form

R∞ ≡ R∞ ∗
where the kernel R∞(t) depends on time only and vanishes for t < 0. The reflection
kernel R∞(t) satisfies the Volterra integral equations of the second kind [13]


2R∞(t) − Z(t) + (Z ∗R∞)(t) = 0

2R∞(t) +N(t) + (N ∗R∞)(t) = 0

4R∞(t) + 2(χe ∗R∞)(t) + χe(t)

+ (χe ∗ (R∞ ∗R∞))(t) = 0

These equations imply that R∞(t) is bounded, smooth, and continuously dependent
on data for t > 0. According to the first two equations, R∞(t) is the resolvent
kernel of N(t)/2 and −R∞(t) is the resolvent kernel of Z(t)/2. The third equation
is recognized as the imbedding equation for the semi-infinite dispersive medium [1].

Since the reflection operator for the up-going electric field is R∞, the reflection
operator for the down-going electric field is −R∞. The transmission operator for
the up-going electric field is then

T = 1 + R∞

and the transmission operator for the down-going electric field 1−R∞. The solution
of the propagation problem is then

E+(z) = (1 + R∞)P(z)(δz/c ∗ Ei)

and E−(z) = 0 for z > 0. The total electric and magnetic fields in the medium are{
E(z) = (1 + R∞)P(z)(δz/c ∗ Ei)

ηH(z) = (1 −R∞)P(z)(δz/c ∗ Ei)

7.2 Scattering problem

Recall that the split fields do not couple. Suppressing the general time-dependence,


E±(z) := E±(z, t)

Ei := Ei(t)

Er := Er(t)

Et := Et(t)

(7.3)



26

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-30

-20

-10

0

10

20

30

40

Figure 7: The propagator kernel, P (d; t), relevant for the excitation of the extra-
ordinary wave, as a function of time, t. Time is measured in units of d/c and the
propagator kernel is given in units of c/d.

the boundary conditions (7.1) at z = 0 and at z = d reduce to(
Ei

Er

)
=

(
S SR∞

SR∞ S

) (
E+(0)
E−(0)

)
(
Et

0

)
=

(
S SR∞

SR∞ S

) (
E+(d)
E−(d)

) (7.4)

respectively, where the temporal integral operator

S ≡ 1 + S∗, ST = 1 (S = T −1)

is the inverse (resolvent operator) of the transmission operator T ≡ 1 + R∞∗. The
kernel of S is S(t) = N(t)/2.

Suppressing the general time-dependence as in (7.3), (3.7) gives{
E+(z) = P(z)E+(0)

E−(z) = P(d− z)E−(d)

Upon setting z = d in the first equation and z = 0 in the second equation, the
boundary conditions (7.4) can be exploited, and the four unknown functions E±(0),
E±(d) eliminated. Straightforward calculations show that the solution of the direct
scattering problem reads{

Et = M(1 −R2
∞)P(d)(δd/c ∗ Ei)

Er = R∞E
i −M(1 −R2

∞)R∞P(2d)(δ2d/c ∗ Ei)
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Figure 8: The propagator kernel, P (d; t), and two approximations to the second
forerunner, relevant for the excitation of the extraordinary wave, as functions of
time, t. Time is measured in units of d/c and the propagator kernel and the ap-
proximations are given in units of c/d. As in the previous example, the solid curve
represents the propagator kernel, the dotted curve (·) is the Brillouin approximation
to the second forerunner, and the dash-dot curve (−·) represents the improvement
of the second forerunner obtained by repeated convolution.

where the temporal integral operator

M =
(
1 −R2

∞P(2d)δ2d/c ∗
)−1

represents multiple propagation through the slab, and the notation (δa ∗ Ei)(t) :=
Ei(t − a) for time-shift has been employed. From these integral equations relating
R(t), R∞, T (t) and P (z; t) can be obtained. For the internal electric fields, the
result is {

E+(z) = MT P(z)(δz/c ∗ Ei)

E−(z) = −MT R∞P(2d− z)(δ(2d−z)/c ∗ Ei)

Observe that these relations easily can be affirmed heuristically.
A propagation problem closely related to the present one is the internal source

problem, where an initially quiescent, transverse current distribution, exJx(z, t),
excites the medium, 0 < z < d.
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Figure 9: The scattering geometry with the incident, scattered, and internal
electric fields indicated.

8 Biisotropic media

As an example illustrating the difficulties that appear when analyzing complex mate-
rials, we choose the homogeneous bi-isotropic material. The simplest way to analyze
wave propagation problems in such materials is to introduce the complex electro-
magnetic field.

The use of complex field vectors in order to write the free-space Maxwell equa-
tions in a more economical form has been proposed by several authors, see, e.g.,
Stratton [31]. The basic idea is to define a complex field vector such that the real
part represents the electric field and the imaginary part the magnetic field, or vice
versa, and such that the Maxwell equations decouple. The first ideas along these
lines seem to be due to Beltrami [2]. In time-harmonic analysis, these fields or gen-
eralizations of these fields are referred to as Beltrami fields [22], wave fields [20],
self-dual fields [20], or Bohren fields [18]. Wave fields have been used with success in
the analysis of monochromatic wave propagation phenomena in linear bi-isotropic
materials, see, e.g., Lindell et al. [20]. Related work, that can be applied to gen-
eral linear materials, can be found in [19], where not only Beltrami fields, but also
Beltrami induction fields, are introduced.

The constitutive relations of a linear, homogeneous, bi-isotropic material that is
invariant under time translations, can be written in the form

c0η0D = εE + ξη0H , c0B = ζE + µη0H (8.1)

where the relative permittivity and permeability operators of the medium are

ε = 1 + χee(t)∗, µ = 1 + χmm(t) ∗

the relative cross-coupling operators

ξ = χem(t)∗, ζ = χme(t) ∗

Observe that ε, µ, ξ, and ζ now denote operators, and they differ slightly from the
ones used in Section 2.
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These constitutive relations are general enough, since optical responses always
can be introduced afterwards, see above. Two special kinds of bi-isotropic materials
are widely discussed in the literature, namely, reciprocal, isotropic chiral (or Pasteur)
media, which satisfy the relation χme(t) = −χem(t), and isotropic, non-reciprocal,
achiral (or Tellegen) materials, for which the relation χme(t) = χem(t) holds [20]. It is
well known—although once doubted—that there are Pasteur materials, both natural
and man-made, whereas the existence of Tellegen materials, or, more generally, non-
reciprocal bi-isotropic materials has been doubted, although the evidence for this
has not been convincing.

Substituting the constitutive relations, (8.1), into the Maxwell equations, (2.1),
gives a linear system of first-order hyperbolic integro-differential equations in the
electric and magnetic field vectors only:{

∇× E = −c−1
0 ∂t (ζE + µη0H) ,

∇× η0H = η0J + c−1
0 ∂t (εE + ξη0H)

(8.2)

The aim is to decouple this system of equations by a linear change of variables.

8.1 Complex time-dependent electromagnetic fields

An arbitrary (real-valued) time-dependent electromagnetic field {E(r, t),H(r, t)}
in a linear, homogeneous, bi-isotropic medium can be represented uniquely by a
complex field vector, Q(r, t), (and its complex conjugate, Q∗(r, t),) as{

E = Q + Q∗,

η0H = iYQ − iY∗Q∗ (8.3)

where the complex-valued temporal integral operator

Y = 1 + Y (t) ∗

is the relative intrinsic admittance of the medium and Y∗ its complex conjugate.
The imaginary unit is denoted by i. The inverse of the transformation (8.3) is

Q =
1

2
Z (Y∗E − iη0H) (8.4)

where the real-valued temporal integral operator

Z = 1 + Z(t) ∗

is a relative intrinsic impedance defined by

(Y + Y∗)Z/2 = 1 (8.5)

Obviously, considering units the field vectors Q(r, t) and Q∗(r, t) can be interpreted
as complex electric fields.
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The introduction of the complex electromagnetic field vector reduces the system
of integro-differential equations (8.2) to the first-order, dispersive wave equation

∇× Q = −ic−1
0 ∂tN Q − iη0ZJ/2 (8.6)

where the complex-valued temporal integral operator

N = 1 +N(t) ∗

is referred to as the index of refraction. It is understood that Y , N , and Z are
intrinsic operators of the medium, that is, independent of the field vectors. Below,
equation (8.6) is referred to as the wave-field equation.

8.2 Intrinsic operators

The decoupling of the Maxwell equations leads to conditions on the relative intrinsic
admittance and the index of refraction in terms of the susceptibility operators of
the bi-isotropic medium:

N = µY∗ + iξ, NY∗ = ε− iζY∗

Combining these equations gives

(N − iξ)(N + iζ) = µε, µY = N ∗ + iξ (8.7)

with solutions 

N = i

ξ − ζ
2

+

√
µε− (ξ + ζ)2

4
,

µY = i
ξ + ζ

2
+

√
µε− (ξ + ζ)2

4

where the positive square-root operator has been chosen:√
µε− (ξ + ζ)2

4
= 1 +Nco(t) ∗

Here, the real-valued integral kernel Nco(t) satisfies the nonlinear Volterra integral
equation of the second kind

2Nco(t) + (Nco ∗Nco)(t)

= χee(t) + χmm(t) + (χee ∗ χmm)(t) − (χ ∗ χ)(t)

where χ(t) = (χem(t) + χme(t)) /2 is the non-reciprocity kernel. Volterra integral
equations of the second kind are uniquely solvable in the space of of continuous
functions in each compact time-interval and the solutions depend continuously on
data [15, 21]. Consequently, the kernel Nco(t) inherits causality and smoothness
properties from the susceptibility kernels. Straightforward analysis shows that a
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choice of the negative square-root operator does not add or alter anything of signif-
icance for the present discussion.

In terms of the kernel Nco(t) and the chirality kernel κ(t) = (χem(t) − χme(t)) /2,
the complex-valued refractive kernel becomes

N(t) = Nco(t) + iκ(t)

Clearly, the refractive kernel of the bi-isotropic medium is real if and only if the
medium is Tellegen, that is, κ(t) = 0. Similarly, the admittance kernel can be
written as

Y (t) = Yco(t) + iYcross(t)

where the components Yco(t) and Ycross(t) are real-valued functions. The second
identity (8.7) implies that the admittance kernel satisfies the linear Volterra integral
equation of the second kind

Y (t) + (Y ∗ χmm)(t) = Nco(t) − χmm(t) + iχ(t)

In particular, the admittance kernel inherits causality and smoothness properties
from the susceptibility kernels. Unique solubility gives that the admittance kernel
of the bi-isotropic medium is real if and only if the medium is Pasteur, that is,
χ(t) = 0. Finally, the impedance kernel Z(t) satisfies a linear Volterra integral
equation of the second kind:

Z(t) + (Z ∗Nco)(t) = χmm(t) −Nco(t)

This follows from equation (8.5). The impedance kernel inherits causality and
smoothness properties from the susceptibility kernels.

In summary, by introducing the complex field vector (8.4), the Maxwell equations
for the linear, homogeneous, bi-isotropic medium (8.2) reduce to the first-order
dispersive wave equation (8.6). The refractive, admittance, and impedance kernels
in equations (8.3) and (8.6) depend on the susceptibility kernels of the medium
only. Obtaining these intrinsic kernels of the medium, of which the first two are
complex and the third is real, is a well posed problem. Specifically, Volterra integral
equations of the second kind are solved. The final result, the wave equation (8.6),
is an appropriate starting point for discussing pulse propagation phenomena in bi-
isotropic materials and scattering from such materials.

8.3 Transverse electric and magnetic (TEM) pulses in an
unbounded bi-isotropic medium

A current distribution of the form

J(r, t) = JT (r, t) = exJx(z, t) + eyJy(z, t)

gives rise to TEM waves in the medium:

Q(r, t) = QT (r, t) = exQx(z, t) + eyQy(z, t)
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This Ansatz reduces the wave-field equation (8.6) to

∂zQ = ic−1
0 ∂tNez × Q + iη0Zez × J/2

We introduce the wave splitting

E±
+ =

1

2
(Q ∓ i ez × Q)

= (ex ∓ i ey) (Qx ± i Qy) /2 ≡ (ex ∓ i ey)E
±
+

which decomposes the total electric right-hand circularly polarized (RCP) field, Q,
into an up-going RCP field, E+

+, and a down-going RCP field, E−
+ such that Q =

E+
+ + E−

+. The wave equations for the amplitudes of these waves, E±
+ = (Qx ±

i Qy)/2, are

∂zE
±
+ = ∓c−1

0 ∂tNE±
+ ∓ η0ZJ±

+/2 (8.8)

where J±
+ = (Jx ± i Jy)/2.

Similarly, the total electric left-hand circularly polarized (LCP) field, Q∗, can be
split into an up-going LCP field, E+

−, and a down-going LCP field, E−
− such that

Q∗ = E+
− + E−

−. These fields are

E±
− =

(
E±

+

)∗
=

1

2
(Q∗ ± i ez × Q∗) ≡ (ex ± i ey)E

±
−

where the amplitudes of the LCP fields, E±
− = (E±

+)∗ =
(
Q∗

x ∓ i Q∗
y

)
/2, satisfy the

wave equations

∂zE
±
− = ∓c−1

0 ∂tN ∗E±
− ∓ η0ZJ±

−/2

where J±
− = (J±

+ )∗ = (Jx ∓ i Jy)/2. Consequently, the total electric field in the
bi-isotropic medium can be written as the sum of the up-going and the down-going
electric RCP and LCP fields:

E = (ex − i ey)E
+
+ + (ex + i ey)E

−
+

+ (ex + i ey)E
+
− + (ex − i ey)E

−
−

The total magnetic field is

η0H = iY (ex − i ey)E
+
+ + iY (ex + i ey)E

−
+

− iY∗ (ex + i ey)E
+
− − iY∗ (ex − i ey)E

−
−

8.4 Normal incidence on a slab

Combining the complex field vector concept with the wave splitting technique de-
composes the propagation problem into two subproblems: (i) solve the dispersive
wave equations (8.8) and (ii) obtain scattering relations at the plane interfaces us-
ing the boundary conditions. The techniques used for obtaining propagators and
forerunners for isotropic media presented above apply also to the bi-isotropic case in
this section. The only difference is that the refractive index now is complex resulting
in complex propagators and forerunners.
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Figure 10: The response of an isotropic, chiral medium, at z = d, to an elec-
tric delta pulse excitation, at z = 0, polarized in the x-direction. The curve
(ReQ(d)P (d; t), ImQ(d)P (d; t), t), where the direction of increasing time, t, is up-
wards, and Q(d)P (z; t) is the complex propagator kernel corresponding to the com-
plex propagator kernel, N(t), has been plotted. Time is measured from the arrival
of the wave front and in units of d/c0. The propagator kernel is given in units of
c0/d.

8.5 Numerical example

Figure 10 shows the response of a non-magnetic isotropic, chiral medium, at z = d,
to an electric delta pulse excitation, at z = 0, polarized in the x-direction. Specifi-
cally, the parameterized curve {ReQ(d)P (d; t), ImQ(d)P (d; t), t} is depicted, where
the direction of increasing time, t, is upwards, and Q(d)P (z; t) is the complex prop-
agator kernel corresponding to the complex refractive kernel, N(t). Results on wave
propagation in this particular medium have been presented in [6] in a different way.
Specifically, the medium is characterized by the single-resonance Condon-model pa-
rameters ωp = ω0 = 100× c0/d, ν = 20× c0/d, and α = −0.001× d/c0, see [6]. The
second forerunner is clearly distinguishable as an irregularity in the spiral curve,
starting approximately at t = 0.4d/c0, and ending approximately at t = 1.2d/c0.
For d = 10−6 m, the values of parameters ωp, ω0, and α coincide with the ones used
in [32].
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Figure 11: The Hyper-Airy functions B2k(x) for k = 1, 2, 3.

9 Hyper-Airy functions Ak and Bk

In this section, we examine the hyper-Airy functions A2k(x), −∞ < x < +∞ in
some detail. Let k be an arbitrary positive integer. The real function A2k(x) of real
argument x is the inverse Fourier transform of the function exp (−ξ2k/(2k)). The
real function A2k+1(x) of real argument x is the inverse Fourier transform of the
function exp (iξ2k+1/(2k + 1)).

The hyper-Airy functions A2k(x) of even indices belong to the Schwartz class of
rapidly decreasing functions S, that is, the set of all φ ∈ C∞ such that

sup
x∈R

|xβφ(α)(x)| <∞

for all non-negative integers α and β. Thus, in particular, the functions A2k(x)
are bounded, infinitely differentiable, and integrable. Moreover, these functions are
even functions of x. Explicitly,

A2k(x) =
1

2π

∫ ∞

−∞
e−ξ2k/(2k)+ixξ dξ, x ∈ R

The hyper-Airy functions A2k+1(x) of odd indices belong to the Schwartz class
of tempered distributions S ′, that is, the continuous linear forms on S. The gen-
eralized functions A2k+1(x) coincide with the bounded, infinitely differentiable, and
integrable functions

A2k+1(x) =
1

2π

∫ ∞+iη

−∞+iη

eiζ
2k+1/(2k+1)+ixζ dζ, x ∈ R (9.1)

where η is an arbitrary positive constant. Equation (9.1) provides integral represen-
tations for the hyper-Airy functions A2k+1(x) of odd indices. The leading behaviors
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Figure 12: The Hyper-Airy functions B2k+1(x) for k = 1, 2, 3.

of A2k+1(x) as x → −∞ show that these functions do not belong to the Schwartz
class S [13].

By the definition of Ak as an inverse Fourier transform we get∫ ∞

−∞
Ak(x) dx = 1.

Furthermore, A2(x) is a Gaussian function and A3(x) is the Airy function Ai(x).
We have 

A2(x) =
1√
2π
e−x2/2

A3(x) = Ai(x)

x ∈ R

Differentiating under the integral sign yields the ordinary differential equations{
A

(2k−1)
2k (x) = (−1)kxA2k(x)

A
(2k)
2k+1(x) = (−1)k+1xA2k+1(x)

x ∈ R

for the hyper-Airy functions. These equations, which are higher-order generaliza-
tions of the Airy equation,

Ai′′(x) = xAi(x), x ∈ R

are sometimes referred to as hyper-Airy equations.
In summary, the hyper-Airy functions of even indices are even, oscillating func-

tions, which are exponentially attenuated for large arguments. The leading behavior
of the hyper-Airy functions of odd indices are oscillating and exponentially attenu-
ated for large positive arguments. The leading behavior of the hyper-Airy functions
of odd indices are oscillating but only weakly attenuated for large negative argu-
ments. The frequencies, the phase angles, and attenuating functions can be obtained
explicitly in each separate case [13].
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9.1 The functions Bk(x)

When Brillouin’s forerunner is to be discussed, it is more appropriate to introduce
the functions Bk(x), defined as the hyper-Airy functions evaluated at a negative
argument, i.e., Bk(x) := Ak(−x). The functions Bk(x), k = 2, 3, 4, 5, 6, 7 are plotted
in Figure 11 and Figure 12.
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