

Ljuspuls från monokromatisk ljuskälla

Lundin, Richard

1987

Link to publication

Citation for published version (APA): Lundin, R. (1987). Ljuspuls från monokromatisk ljuskälla. (Technical Report LUTEDX/(TEAT-7002)/1-16/(1987); Vol. TEAT-7002). [Publisher information missing].

Total number of authors:

General rights

Unless other specific re-use rights are stated the following general rights apply:

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study

- You may not further distribute the material or use it for any profit-making activity or commercial gain
 You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/

Take down policy

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Ljuspuls fran monokromatisk ljuskalla

Richard Lundin

Department of Electroscience Electromagnetic Theory Lund Institute of Technology Sweden

Richard Lundin

Department of Electroscience Electromagnetic Theory Lund Institute of Technology P.O. Box 118 SE-221 00 Lund Sweden

Editor: Gerhard Kristensson © Richard Lundin, Lund, 1987

LJUSPULS FRÅN MONOKROMATISK LJUSKÄLLA

Fouriertransform

En tidsfunktion f(t) är definierad i $-\infty < t < +\infty$. Fouriertransformen $\hat{f}(f)$ till f(t) definieras

$$\hat{\mathbf{f}}(\mathbf{f}) = \int_{-\infty}^{+\infty} \mathbf{f}(\mathbf{t}) \, e^{-\mathbf{j}2\pi \mathbf{f}\mathbf{t}} \, d\mathbf{t} \tag{1}$$

och inversionsformeln lyder

$$f(t) = \int_{-\infty}^{+\infty} \hat{f}(f) e^{+j2\pi ft} df . \qquad (2)$$

Om funktionen $f_1(x)$ faltas med funktionen $f_2(x)$ så erhålles funktionen $f_3(x)$ enligt

$$f_3(x) = \int_{-\infty}^{+\infty} f_1(s) f_2(x-s) ds$$
 (3)

vilket kan skrivas som

$$f_3(x) = f_1(x) * f_2(x)$$
 (4)

Några räkneregler och några tidsfunktioner med tillhörande fouriertransformer är givna i tabell 1.

<u>Tidsfunktion</u> <u>Fouriertransform</u>

$$f_1(t) \cdot f_2(t)$$
 $\hat{f}_1(f) * \hat{f}_2(f)$ (R1)

$$\mathbf{f}_1(\mathbf{t}) * \mathbf{f}_2(\mathbf{t}) \qquad \qquad \mathbf{\hat{f}}_1(\mathbf{f}) \cdot \mathbf{\hat{f}}_2(\mathbf{f}) \qquad \qquad (\text{R2})$$

$$\cos(2\pi f_0 t) \qquad \frac{1}{2} \{ \delta(f + f_0) + \delta(f - f_0) \}$$
 (T1)

$$\frac{1}{\sqrt{2\pi\sigma^2}} e^{-t^2/(2\sigma^2)}$$
 $e^{-(2\pi f\sigma)^2/2}$ (T2)

$$\delta(t)$$
 1 (T3)

$$\hat{\mathbf{f}}(\mathbf{t}-\mathbf{t}_0)$$
 $\hat{\mathbf{f}}(\mathbf{f}) e^{-\mathbf{j}2\pi\mathbf{f}\mathbf{t}_0}$ (T4)

Tabell 1 Räkneregler och transformpar

<u>Liuspuls</u>

En ljuspuls p(z,t) fortplantar sig längs en singelmodfiber. Antag att fibern börjar vid z=0 och att fältkomponenterna där varierar i tiden enligt

$$p(0,t) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-t^2/(2\sigma^2)} \cos(2\pi f_0 t)$$
 (5)

där σ är ett mått på pulsbredden.

Fouriertransformen $\hat{p}(f)$ till p(0,t) kan enligt (R1), (T1) och (T2) i tabell 1 skrivas

$$\hat{p}(f) = e^{-(2\pi f\sigma)^2/2} * \frac{1}{2} \{ \delta(f+f_0) + \delta(f-f_0) \}.$$
 (6)

Faltningen (6) ger

$$\hat{p}(f) = \frac{1}{2} \left[e^{-\left(2\pi(f + f_0)\sigma\right)^2/2} + e^{-\left(2\pi(f - f_0)\sigma\right)^2/2} \right].$$
 (7)

Inversionsformeln (2) ger att

$$p(0,t) = \int_{-\infty}^{+\infty} \hat{p}(f) e^{j2\pi ft} df.$$
 (8)

Om den betraktade fibern antages vara förlustfri så erhålles

$$p(z,t) = \int_{-\infty}^{+\infty} \hat{p}(f) e^{j\{2\pi f t - \beta(f)z\}} df.$$
 (9)

Denna puls kan ses som en superposition av sinusvågor som alla, var och en för sig, utbreder sig i positiv z-led. Detta innebär att fashastigheten $\mathbf{v}_{\mathbf{f}}$ ska vara positiv för alla frekvenser \mathbf{f} :

$$\frac{\omega}{\beta} = \frac{2\pi f}{\beta(f)} > 0 \qquad -\infty < f < +\infty. \tag{10}$$

Ett teckenbyte på f medför enligt (10) ett teckenbyte på β . Funktionen $\beta(f)$ är alltså en udda funktion:

$$\beta(-f) = -\beta(f). \tag{11}$$

Funktionen p(f) är känd enligt (7). Därmed erhålles enligt (9)

$$p(z,t) = \int_{-\infty}^{+\infty} \frac{1}{2} \left[e^{-\left\{2\pi(f+f_0)\sigma\right\}^2/2} + e^{-\left\{2\pi(f-f_0)\sigma\right\}^2/2} \right] e^{j\left\{2\pi f t - \beta(f)z\right\}} df.$$
 (12)

Vi kan skriva (12) som

$$p(z,t) = I_1 + I_2$$
 (13)

 $med I_1 och I_2 enligt:$

$$I_{1} = \int_{-\infty}^{+\infty} \frac{1}{2} e^{-\{2\pi(f+f_{0})\sigma\}^{2}/2} e^{j\{2\pi ft-\beta(f)z\}} df, \qquad (14)$$

$$I_{2} = \int_{-\infty}^{+\infty} \frac{1}{2} e^{-\{2\pi(f-f_{0})\sigma\}^{2}/2} e^{j\{2\pi ft-\beta(f)z\}} df.$$
 (15)

Integralen I₁ kan omformas enligt

$$I_{1} = \int_{-\infty}^{+\infty} \frac{1}{2} e^{-\{2\pi(f+f_{0})\sigma\}^{2}/2} e^{j\{2\pi ft-\beta(f)z\}} df = [x = -f] =$$

$$= \int_{-\infty}^{+\infty} \frac{1}{2} e^{-\{2\pi(-x+f_0)\sigma\}^2/2} e^{j\{-2\pi xt-\beta(-x)z\}} dx =$$

= [byt x mot f och utnyttja att β (···) är en udda funktion] =

$$= \int_{-\infty}^{+\infty} \frac{1}{2} e^{-\{2\pi(f-f_0)\sigma\}^2/2} e^{-j\{2\pi ft-\beta(f)z\}} df.$$
 (16)

En jämförelse av (15) och (16) ger

$$I_1 = \overline{I}_2 \tag{17}$$

där strecket betyder komplexkonjugering.

Därmed kan ljuspulsen enligt (13) och (17) skrivas

$$p(z,t) = I_1 + I_2 = \overline{I}_2 + I_2 = 2 \operatorname{Re}(I_2).$$
 (18)

Enligt (18) och (15) erhålles

$$p(z,t) = \text{Re} \left[\int_{-\infty}^{+\infty} e^{-\{2\pi(f-f_0)\sigma\}^2/2} e^{j\{2\pi ft-\beta(f)z\}} df \right].$$
 (19)

För att beräkna integralen i (19) krävs kännedom om hur det bundna ljusets utbredningskonstant β varierar med ljusfrekvensen f.

Grupphastighet

Eftersom funktionen $e^{-\{2\pi(f-f_0)\sigma\}^2/2}$ är starkast kring $f=f_0$ så approximerar vi enligt

$$\beta(f) \approx \beta(f_0) + \beta'(f_0) (f - f_0)$$
 (20)

Inför beteckningen

$$\beta_0 = \beta(f_0) \tag{21}$$

och definiera grupplöptiden per längdenhet τ_{g} enligt

$$\tau_{g} = \frac{\mathrm{d}\beta}{\mathrm{d}\omega} = \frac{\mathrm{d}\beta}{\mathrm{d}f} \frac{\mathrm{d}f}{\mathrm{d}\omega} = \frac{\mathrm{d}\beta}{\mathrm{d}f} \frac{1}{2\pi} = \frac{1}{2\pi} \beta'(f_{0}). \tag{22}$$

Definiera grupphastigheten v_g enligt

$$v_g = \frac{1}{\tau_g} = \frac{d\omega}{d\beta} \ . \tag{23}$$

Det approximativa sambandet (20) kan nu enligt (21), (22) och (23) skrivas som

$$\beta(f) = \beta_0 + \frac{2\pi}{v_g} (f - f_0)$$
 (24)

Substitution av (24) i (19) ger

$$p(z,t) = \text{Re} \left[e^{j(2\pi f_0 t - \beta_0 z)} \int_{-\infty}^{+\infty} e^{-\{2\pi (f - f_0)\sigma\}^2/2} e^{j2\pi (f - f_0)(t - z/v_g)} df \right].$$
 (25)

Variabelsubstitutionen $x = (f-f_0)$ ger

$$p(z,t) = \text{Re} \left[e^{j(2\pi f_0 t - \beta_0 z)} \int_{-\infty}^{+\infty} e^{-(2\pi x \sigma)^2/2} e^{j2\pi x (t - z/v_g)} dx \right].$$
 (26)

Byt x mot f och skriv om enligt

$$p(z,t) = \text{Re} \left[e^{j(2\pi f_0 t - \beta_0 z)} \int_{-\infty}^{+\infty} e^{-(2\pi f \sigma)^2/2} e^{-j2\pi f z/v_g} e^{j2\pi f t} df \right].$$
 (27)

Inverstransformering enligt (R2), (T2), (T3) och (T4) ger

$$p(z,t) = \text{Re} \left[e^{j(2\pi f_0 t - \beta_0 z)} \left\{ \frac{1}{\sqrt{2\pi\sigma^2}} e^{-t^2/(2\sigma^2)} * \delta(t - \frac{z}{v_g}) \right\} \right].$$
 (28)

Om faltningen utföres och realdelen tages så erhålles slutligen

$$p(z,t) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-(t-z/v_g)^2/(2\sigma^2)} \cos(2\pi f_0 t - \beta_0 z).$$
 (29)

Vi ser att ljuspulsens envelopp enligt (29) utbreder sig, utan formförändring, med grupphastigheten $\mathbf{v_g}$. Man kan tydligen, i en approximativ mening, hävda att ljuspulsen utbreder sig med grupphastigheten $\mathbf{v_g}$.

Kromatisk dispersion

Vi tillfogar ytterligare en term i taylorutvecklingen (20) och approximerar därmed enligt

$$\beta(\mathbf{f}) = \beta(\mathbf{f}_0) + \beta'(\mathbf{f}_0) (\mathbf{f} - \mathbf{f}_0) + \frac{1}{2} \beta''(\mathbf{f}_0) (\mathbf{f} - \mathbf{f}_0)^2.$$
 (30)

Kromatiska dispersionen C definieras enligt

$$C = \frac{d\tau_g}{d\lambda_0} . (31)$$

Sambandet mellan $\beta''(f)$ och C(f) erhålles enligt

$$\beta^{\prime\prime}(f) = \frac{\mathrm{d}}{\mathrm{d}f} \, \frac{\mathrm{d}\beta}{\mathrm{d}f} = \frac{\mathrm{d}}{\mathrm{d}f} \, 2\pi \frac{\mathrm{d}\beta}{\mathrm{d}\omega} = \frac{\mathrm{d}}{\mathrm{d}f} \, 2\pi \, \tau_\mathrm{g} = \, 2\pi \, \frac{\mathrm{d}\tau_\mathrm{g}}{\mathrm{d}f} =$$

$$=2\pi \frac{d\tau_g}{d\lambda_0} \frac{d\lambda_0}{df} = \left[\lambda_0 = \frac{c}{f} \Rightarrow \frac{d\lambda_0}{df} = -\frac{c}{f^2}\right] = \frac{-2\pi c}{f^2} C(f). \quad (32)$$

Det approximativa sambandet (30) kan nu enligt (21), (22), (23) och (32) skrivas som

$$\beta(f) = \beta_0 + \frac{2\pi}{v_g} (f - f_0) - \frac{\pi c}{f_0^2} C(f_0) (f - f_0)^2.$$
 (33)

Substitution av (33) i (19) ger en ekvation som skiljer sig från ekvation (25) endast genom att en faktor har tillkommit under integraltecknet:

$$p(z,t) = \text{Re} \left[\dots \int_{-\infty}^{+\infty} \dots e^{j(\pi cz C/f_0^2)(f-f_0)^2} \dots \right].$$
 (34)

Variabelsubstitutionen $x = (f-f_0)$ ger

$$p(z,t) = \text{Re} \left[\dots \int_{-\infty}^{+\infty} \dots e^{j(\pi czC/f_0^2)x^2} \dots \right].$$
 (35)

Byte x mot f och omskrivning ger

$$p(z,t) = \text{Re} [e^{j(2\pi f_0 t - \beta_0 z)}.$$

$$\cdot \int_{-\infty}^{+\infty} e^{-(2\pi f \sigma)^2/2} e^{-j2\pi f z/v_g} e^{j(\pi c z C/f_0^2) f^2} e^{j2\pi f t} df].$$
 (36)

Vi kan skriva (36) enligt

$$p(z,t) = \operatorname{Re} \left[e^{j(2\pi f_0 t - \beta_0 z)} \int_{-\infty}^{+\infty} \hat{f}_1(f) \cdot \hat{f}_2(f) e^{j2\pi f t} df \right]$$
(37)

med

$$\hat{\mathbf{f}}_{1}(\mathbf{f}) = e^{-(2\pi \mathbf{f}\sigma)^{2}/2} e^{-j2\pi \mathbf{f}z/v_{g}}$$
 (38)

och

$$\hat{\mathbf{f}}_{2}(\mathbf{f}) = e^{\mathbf{j}(\pi cz C/f_{0}^{2})\mathbf{f}^{2}}$$
 (39)

Enligt räkneregel (R2) i tabell 1 kan (37) skrivas om enligt

$$p(z,t) = \text{Re} \left[e^{j(2\pi f_0 t - \beta_0 z)} \left\{ f_1(t) * f_2(t) \right\} \right]. \tag{40}$$

Jämförelse med (27) till (29) ger

$$f_1(t) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-(t-z/v_g)^2/(2\sigma^2)}$$
 (41)

och enligt inversionsformeln (2) gäller

$$f_2(t) = \int_{-\infty}^{+\infty} \hat{f}_2(f) e^{j2\pi ft} df = \int_{-\infty}^{+\infty} e^{j(\pi czC/f_0^2)f^2} e^{j2\pi ft} df =$$

$$= [\alpha = \pi czC/f_0^2] = \int_{-\infty}^{+\infty} e^{j\alpha f^2} e^{j2\pi ft} df = \int_{-\infty}^{+\infty} e^{j\alpha \{f^2 + (2\pi t/\alpha)f\}} df =$$

$$=\int\limits_{-\infty}^{+\infty} e^{j\alpha\{(f+\pi t/\alpha)^2-(\pi t/\alpha)^2\}} = e^{-j\pi^2 t^2/\alpha} \int\limits_{-\infty}^{+\infty} e^{j\alpha(f+\pi t/\alpha)^2} df =$$

=
$$[\pi t/\alpha \text{ är en reell kvantitet}] = e^{-j\pi^2 t^2/\alpha} \int_{-\infty}^{+\infty} e^{j\alpha f^2} df =$$

= [se appendix 1] =
$$e^{-j\pi^2 t^2/\alpha} \sqrt{\frac{\pi}{|\alpha|}} e^{j(\pi/4)(\alpha/|\alpha|)}$$
 =

$$= [\alpha = \pi czC/f_0^2] = f_0 \sqrt{\frac{1}{cz|C|}} e^{j(\pi/4)(C/|C|)} e^{-j\pi f_0^2 t^2/(czC)}.$$
(42)

Enligt (40), (41) och (42) gäller

$$p(z,t) = \text{Re} \left[e^{j(2\pi f_0 t - \beta_0 z)} \frac{1}{\sqrt{2\pi\sigma^2}} f_0 \sqrt{\frac{1}{cz \mid C \mid}} e^{j(\pi/4)(C/\mid C \mid)} F \right]$$
 (43)

där integralen F beräknas enligt

$$F = \int_{-\infty}^{+\infty} e^{-(t-x-z/v_g)^2/(2\sigma^2)} e^{-j\pi f_0^2 x^2/(czC)} dx =$$

$$= \int_{-\infty}^{+\infty} e^{-\{x^2 - 2(t - z/v_g)x + (t - z/v_g)^2\}/(2\sigma^2)} e^{-j\pi f_0^2 x^2/(czC)} dx =$$

$$= \int_{-\infty}^{+\infty} e^{\{-1/(2\sigma^2) - j\pi f_0^2/(czC)\}} x^2 + \{(t-z/v_g)/\sigma^2\} x + \{-(t-z/v_g)^2/(2\sigma^2)\} dx =$$

= [A = {-1/(2
$$\sigma^2$$
)-j\pi f_0^2/(czC)} , B = {(t-z/v_g)/\sigma^2} , D = {-(t-z/v_g)^2/(2\sigma^2)}] =

$$= \int_{-\infty}^{+\infty} e^{Ax^2 + Bx + D} dx = \int_{-\infty}^{+\infty} e^{A\{x^2 + (B/A)x + D/A\}} dx =$$

$$= \int_{-\infty}^{+\infty} e^{A \left[(x+B/(2A))^2 - B^2/(4A^2) + D/A \right]} dx =$$

$$= e^{-B^2/(4A)+D} \int_{-\infty}^{+\infty} e^{A\{x+B/(2A)\}^2} dx = [Cauchys integralsats] =$$

$$= e^{-B^2/(4A) + D} \int_{-\infty}^{+\infty} e^{Ax^2} dx = [-B^2/(4A) + D = \frac{-[2\sigma^2 + jczC/(\pi f_0^2)][t-z/v_g]^2}{4\sigma^4 + [czC/(\pi f_0^2)]^2}] = \frac{-[2\sigma^2 + jczC/(\pi f_0^2)][t-z/v_g]^2}{4\sigma^4 + [czC/(\pi f_0^2)]^2}$$

$$= \exp \left(\frac{-\left[2\sigma^2 + jczC/\{\pi f_0^2\}\right] \left[t - z/v_g\right]^2}{4\sigma^4 + \left[czC/\{\pi f_0^2\}\right]^2} \right) \int_{-\infty}^{+\infty} \exp(Ax^2) \, dx = \left[\text{ se appendix 1 } \right] =$$

$$= \exp\!\!\left(\frac{-\left[2\sigma^2\!+\!jczC/\!\{\pi f_0^2\}\right]\left[t\!-\!z/v_g\right]^2}{4\sigma^4\!+\!\left[czC/\!\{\pi f_0^2\}\right]^2}\right) \frac{\sqrt{\pi} \ \exp\!\left(\!-\!j\{1/2\}\arctan[2\sigma^2\!\pi f_0^2/\!\{czC\}]\right)}{\left(\frac{1}{4\sigma^4}\!+\!\left(\!\frac{\pi f_0^2}{czC}\right)^2\right)^{1/4}} =$$

$$= \exp\!\!\left(\frac{-\left[2\sigma^2\!+\!jczC/\!\{\pi f_0^2\}\right]\left[t\!-\!z/v_g\right]^2}{4\sigma^4\!+\!\left[czC/\!\{\pi f_0^2\}\right]^2}\right) \ .$$

$$\frac{\sigma \sqrt{2cz} \Gamma C \Gamma \exp(-j\{1/2\} \arctan[2\sigma^2 \pi f_0^2/\{czC\}])}{f_0 \left(4\sigma^4 + [czC/\{\pi f_0^2\}]^2\right)^{1/4}}.$$
 (44)

Av skrivtekniska skäl användes här två olika beteckningar på exponentialfunktionen: e $^{\cdots}$ och $\exp(\cdots)$.

Enligt (43) och (44) erhålles

$$p(z,t) \,=\, \mathrm{Re} \, \Big[- \exp \Big(j (2\pi f_0 t - \beta_0 z) \Big) \, \frac{1}{\sqrt{\pi}} \, \, \exp \Big(j (\pi/4) (C/\lceil C \rceil) \Big) \ . \label{eq:poisson}$$

Uttrycket (45) kan förenklas något eftersom

$$\exp\left(-j\{1/2\}\arctan\left[2\sigma^2\pi f_0^2/\{czC\}\right]\right) = [\arctan(x) + \arctan(1/x) = \frac{1}{2}\arctan(x) + \arctan(x) + \arctan(x$$

=
$$(\pi/2) (x/|x|)$$
] = $\exp(-j\{1/2\}[\pi/2\}\{C/|C|\}-\arctan[czC/\{2\sigma^2\pi f_0^2\}]])$ =

$$= \exp(-j(\pi/4)(C/|C|)) \exp(j\{1/2\}\arctan[czC/\{2\sigma^2\pi f_0^2\}]). \tag{46}$$

Enligt (45) och (46) erhålles slutligen

$$p(z,t) \, = \, \text{Re} \left[- \exp \! \left(j (2\pi f_0 t \text{-} \beta_0 z) \right) \, \frac{1}{\sqrt{\pi}} \right. \, . \label{eq:pzt}$$

Enligt (47) kan amplitudenveloppen tecknas

$$A_{\text{envelopp}} = \frac{1}{\sqrt{\pi}} \frac{1}{\left(4\sigma^4 + \left[\frac{1}{\cos(\pi f_0^2)}\right]^2\right)^{1/4}} \exp\left(\frac{-2\sigma^2\left[\frac{1}{\cos(\pi f_0^2)}\right]^2}{4\sigma^4 + \left[\frac{1}{\cos(\pi f_0^2)}\right]^2}\right). \quad (48)$$

Amplituden på fältkomponenterna är i varje ögonblick proportionell mot (48). Effektamplituden är i varje ögonblick proportionell mot kvadraten på (48). Effektenveloppen kan alltså tecknas

$$P_{\text{envelopp}} = \frac{1}{\pi} \frac{1}{\left(4\sigma^4 + \left[\frac{1}{\cos(\pi f_0^2)}\right]^2\right)^{1/2}} \exp\left(\frac{-4\sigma^2\left[\frac{1}{\cos(\pi f_0^2)}\right]^2}{4\sigma^4 + \left[\frac{1}{\cos(\pi f_0^2)}\right]^2}\right). \tag{49}$$

Pulsbreddning

Vi definierar ljuspulsens pulsbredd Σ som den tid som förflyter från det ögonblick som effektamplituden är maximal till det ögonblick som effektamplituden har sjunkit en faktor 1/e. Effektenveloppen kan enligt (49) skrivas

$$P_{\text{envelopp}} = \frac{1}{2\pi\sigma\Sigma} \exp\left(\frac{-\left[t-z/v_g\right]^2}{\Sigma^2}\right)$$
 (50)

med pulsbredden Σ enligt

$$\Sigma = \frac{\left(4\sigma^4 + \left[\frac{czC}{\pi f_0^2}\right]^2\right)^{1/2}}{2\sigma}$$
 (51)

vilket även kan skrivas som

$$\Sigma^2 = \sigma^2 + \left(\frac{\text{czC}}{\pi f_0^2 2\sigma}\right)^2. \tag{52}$$

För z=0 erhålles $\Sigma=\sigma$. Inpulsens pulsbredd är tydligen lika med σ . Pulsbreddningens storlek beror enligt (52) av inpulsens bredd σ .

Låt oss bilda kvoten mellan ut- och inpulsens respektive pulsbredder:

$$\frac{\Sigma}{\sigma} = \sqrt{1 + \left(\frac{\text{czC}}{\pi f_0^2 2\sigma^2}\right)^2} . \tag{53}$$

Det framgår med all önskvärd tydlighet av (53) att pulsbredden ökar monotont allteftersom ljuspulsen utbreder sig längs fibern.

Ljuspulsens fouriertransform $\hat{p}(f)$ är känd enligt (7). Amplitudspektrum är $|\hat{p}(f)|$ och effektspektrum är $|\hat{p}(f)|^2$. En ren cosinussignal av frekvens f_0 "innehåller" enligt (T1) i tabell 1 endast frekvenserna f_0 och f_0 . Spridningen i frekvens i (7) bestäms tydligen av spridningen kring f_0 (eller alternativt och likvärdigt av spridningen kring f_0).

Eftersom ljusfrekvensen f_0 är hög antages ljuspulsen (5) innehålla ett stort antal ljusperioder. Följande olikhet antages gälla:

$$\frac{1}{\sigma} \ll f_0 . \tag{54}$$

Vi definierar ljuspulsens spektralbredd som avståndet mellan läget för maximalt värde på effektspektrum och det läge där effektspektrum har dämpats en faktor 1/e. Enligt (7) och (54) erhålles denna spektralbredd som

$$\Delta f = \frac{1}{2\pi\sigma} \ . \tag{55}$$

En viss bredd i frekvens svarar mot en viss bredd i vakuumvåglängd enligt

$$\Delta\lambda_0 = \frac{c}{f_0^2} \Delta f. \tag{56}$$

Ljuspulsens spektralbredd kan alltså, enligt (55) och (56), även skrivas

$$\Delta\lambda_0 = \frac{\mathbf{c}}{\mathbf{f}_0^2} \frac{1}{2\pi\sigma} \ . \tag{57}$$

Vi kan nu skriva (52) som

$$\Sigma^2 = \sigma^2 + \left(\Delta \lambda_0 z C\right)^2 \tag{58}$$

där σ är inpulsens tidsbredd och Σ är utpulsens tidsbredd. Enheten för kromatisk dispersion C är

$$\left[C\right] = \frac{s}{m^2} = 10^6 \frac{ps}{km \cdot nm} . \tag{59}$$

Vi ser av (58) att pulsbreddningen bestäms av produkten av fiberns kromatiska dispersion C, fiberns längd z och ljuspulsens spektralbredd $\Delta\lambda_0$. Sambandet (58) gäller även för en ljuspuls från en polykromatisk ljuskälla. Ljuspulsens spektralbredd $\Delta\lambda_0$ bestäms därvid av modulationen och av ljuskällans spektralbredd.

Optimal pulsbredd

En intressant iakttagelse är att en optimal bredd på inpulsen existerar. För en viss given ljusfrekvens f_0 , en viss given fiberlängd z och en viss given kromatisk dispersion C så är, som en konsekvens av (51), utpulsens pulsbredd Σ minimal när

$$\sigma = \sigma_{\text{optimal}} = \sqrt{\frac{\text{cz} \mid C \mid}{2\pi f_0^2}}.$$
 (60)

Den minimala utpulsbredden kan, enligt (51) och (60), beräknas till

$$\Sigma_{\text{minimal}} = \sqrt{2} \sigma_{\text{optimal}}$$
 (61)

Appendix 1

Betrakta integralen

$$\int_{-\infty}^{+\infty} e^{-zx^2} dx \qquad (A1.1)$$

där z är ett komplext tal. Integralen ovan konvergerar om

$$Re(z) \ge 0$$
 och $z \ne 0$. (A1.2)

Integralens värde är

$$\int_{-\infty}^{+\infty} e^{-zx^2} dx = \frac{\sqrt{\pi}}{\sqrt{z}} \quad \text{med} \quad \text{Re}(\sqrt{z}) > 0 . \quad (A1.3)$$

Skissartad härledning:

$$\int_{-\infty}^{+\infty} e^{-zx^2} dx = 2 \int_{0}^{+\infty} e^{-zx^2} dx = [w = \sqrt{z} x, Re(\sqrt{z}) > 0] =$$

=
$$\frac{2}{\sqrt{z}} \int_{\Gamma} e^{-w^2} dw = [Cauchys integralsats] =$$

$$= \frac{2}{\sqrt{z}} \int_{0}^{+\infty} e^{-x^2} dx = \frac{\sqrt{\pi}}{\sqrt{z}} . \tag{A1.4}$$