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On the cavity problem
for the general linear medium
in Electromagnetic Theory

A. D. Ioannidis

Abstract
In this paper we study the propagation problem of a time harmonic electro-

magnetic field inside a cavity filled with a generic bianisotropic medium. We
define the concepts of eigenfrequencies and modes of the cavity and we prove
their existence and countability. We extend, in this respect, the theory for the
isotropic, homogeneous, lossless cavity.

Keywords: Time-harmonic Maxwell system, Cavity propagation problem, Bianistropic
media.

1. Introduction

Every electromagnetic phenomenon is described by four time dependent vector fields
E, H, D, B, applied in a set Ω ⊂ IR3. For our purposes, Ω represents a cavity
i.e., it is a bounded open set having, in addition, a Lipschitz (at least) boundary
Γ := ∂Ω. This assumption has as a consequence that the exterior normal n̂ is defined
almost everywhere (with respect to the Hausdorff measure) on Γ. We assume that Γ
is metallic; this leads to the perfect electric conductor boundary condition

n̂×E = 0 , in Ω (1)

We use a compact notation to represent the fields, the six–vector notation [11]

e :=

(
E

H

)
, d :=

(
D

B

)

Namely, each of e, d is an IR6-vector dependent on t ∈ IR (time) and r ∈ Ω (position).
The dynamics inside Ω are described by the Maxwell system

∂d

∂t
= ∇× Je (2)

We have assumed the absence of charges and currents and we denote

J :=

[
0 I3

−I3 0

]
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In being the n × n identity matrix. The field d is incompressible; this is the Gauss
law

∇ · d = 0 (3)

Observe that here the divergence operator acts as a scalar in each component D, B.
We need also the constitutive relation

d = F e (4)

The operator F is, roughly speaking, the mathematical description of the medium
that occupies Ω. As it is proposed in [10], a physical sound set of properties of F is
the following:

— F is linear.

— F is causal: if e(t) = 0 for t ! τ , then (F e)(t) = 0 for t ! τ .
— F is time invariant: for all τ " 0, [F (e(·− τ))](t) = (F e)(t− τ).

— F is local: [F (e(·))](r) = f(r).

Note that causality and time invariance refer to time variable t, whereas locality refers
to spatial variable r. It is quite well known and is proven in detail in [9], see also [7],
that such a constitutive law is given in a convolution form

d(r, t) = A(r)e(r, t) +

∫ t

0
K(r, t− s)e(r, s) ds , t " 0 , r ∈ Ω (5)

The 6 × 6 matrix A(r) is called the optical response of the medium and models the
instantaneous effects, whereas K(t, r) is called the susceptibility kernel and models
the memory effects. Substituting (5) to (2) and posing initial conditions, we obtain an
evolution problem for an integro–differential equation of neutral type. This problem is
studied in detail in [8]. It is also possible to build a theory without assuming causality
even if this axiom is the most physically indicated. E.g. this is the case when the
phenomenon is periodic with period T. Then we have to consider the constitutive
relation as follows

d(r, t) = A(r)e(r, t) +

∫ T

0
K(r, t− s)e(r, s) ds , 0 ! t ! T , r ∈ Ω (6)

Note that (6) uses the whole history and this is the significant difference with (5).
The purpose of this paper is to look at special solutions of (2) supplemented with

(6). More precisely, we search for time–harmonic solutions, a well known concept
which is further discussed in Section 2. The idea is to transform the evolution problem
into a spectral one, where the angular frequency will serve as the eigenvalue.

2. Time harmonic fields

For a thorough discussion of time harmonic fields in the E/M Theory we refer to [4,
Ch.1 ]. Here we collect a variety of facts that are needed in the development of our
theory. We start with an arbitrary α ∈ IR and a ϕ ∈ [0, 2π). The question is whether
there exists a z ∈ C such that

α = Re (ze−iϕ) (7)
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It immediately follows that, if z = z1 + iz2,

α = z1 cosϕ+ z2 sinϕ = | z | cos (ϕ− arg z) (8)

The above equation (8) shows that, given & " |α |, there always exists z, with | z | = &,
that satisfy (7).

On the other direction, there is a result of uniqueness.

Lemma 2.1 Let z1, z2 ∈ C be such that

Re z1e
−iϕ = Re z2e

−iϕ

for every ϕ ∈ [0, 2π). Then z1 = z2.

Proof. For ϕ = 0, we find Re z1 = Re z2, whereas for ϕ = π/2, Re (−iz1) = Re (−iz2),
that is Im z1 = Im z2.

Fix now a number ω ∈ IR (frequency). Define a real function of the argument t ∈ IR
(time) by the formula

f(t) := Re [f(ω)e−iωt] (9)

Observe that for different choices of ω (9) defines different functions; all of them are
periodic with period 2π/ |ω |. This is the reason why we allow the “phasor” f(ω) to
depend on ω.

Lemma 2.2 Let f(t) := Re [f(ω)e−iωt] be a time harmonic field. Then its derivative
is also a time harmonic field. Actually

f ′(t) = Re [−iωf(ω)e−iωt]

Lemma 2.3 Let f(t) := Re [f(ω)e−iωt], g(t) := Re [g(ω)e−iωt] be two time harmonic
fields of frequency ω. Then the convolution

h(t) :=

∫ 2π/ω

0
f(t− s)g(s) ds

is also a time harmonic field of frequency ω. Actually

h(t) = Re

[
πf(ω)g(ω)

ω
e−iωt

]

Proof. Write

f(t) = | f(ω) | cos[ωt− arg f(ω)] , g(t) = | g(ω) | cos[ωt− arg g(ω)]

By using the trigonometric identity

cos a cosβ =
1

2
[cos (a+ β) + cos (a− β)]
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we find that

h(t) :=
| f(ω)g(ω) |

2

[∫ 2π/ω

0
cos[ωt− arg f(ω)− arg g(ω)] ds +

+

∫ 2π/ω

0
cos[ωt− arg f(ω) + arg g(ω)− 2ωs] ds

]

Due to the fact that arg(wz) = argw + arg z, the upper integral is equal to

2π

ω
cos [ωt− arg[f(ω)g(ω)]]

whereas the lower integral vanishes.

An obvious remark is that a time harmonic–field cannot be used for a causal model
since it does not vanish before any time instant τ . That is, if we consider time
harmonic E/M fields

e(r, t) := Re [e(r,ω)e−iωt] , d(r, t) := Re [d(r,ω)e−iωt] (10)

then we take (6) as the constitutive relation with T := 2π/ |ω |. We assume the same
type of harmonicity for the susceptibility kernel as well

K(r, t) := Re [K(r,ω)e−iωt]

Then lemma 3.3 shows that (6) is written

d(r,ω) = M(r,ω)e(r,ω) (11)

where
M(r,ω) := A(r) +

π

ω
K(r,ω) (12)

and the Maxwell system (2) becomes

Qe = ωM(ω)e (13)

with
Q := i∇× J

to denote the Maxwell operator. The idea is to look at (13) as an eigenvalue problem;
ω would serve as the eigenvalue and e as the eigenvector. This is not a standard
eigenvalue problem but rather one for an operator pencil. The Gauss law (3) now
becomes

∇ ·M(ω)e = 0 (14)

Remark 2.1 Equation (12) says that if K(r,ω) = o(ω) when ω → ∞, then the op-
tical response represents the medium for very high frequencies. This is in accordance
with the model given in [3, Section 2.2].

Remark 2.2 In order for our model to support static electromagnetism (ω = 0), we
have to assume that the limit

lim
ω→0

K(r,ω)

ω
(15)

exists. Then we can define M(r, 0) as the limit value.
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3. Auxiliary results

In this section we collect various results from Functional Analysis which form the
mathematical background and are used freely in the sequel. Our main references are
[1] and [5]. Let X be a normed linear space and A a linear operator in X having
D(A) as its domain of definition and R(A) as its range. The kernel (null space) of A
is written as kerA. When A is densely defined, we can define the adjoint operator A∗

.The spectrum and the resolvent set of A are denoted by σ(A) and ρ(A) respectively.
For λ ∈ ρ(A), we define the resolvent operator R(λ;A) := (λI − A)−1 ∈ B(X). I is
of course the identity operator and B(X) the algebra of bounded operators in X.

A is called bounded below if there is a positive constant c such that

‖Ax‖ " c ‖x‖ , x ∈ D(A) (16)

for a positive constant c. We tacitly denote a positive constant by c.

Lemma 3.1 Let X be a Banach space and A be closed and bounded below. Then
R(A) is closed.

Lemma 3.2 Let X be a Banach space and A be closed. The following are equivalent:
a) A is bounded below.
b) The inverse operator A−1 : R(A) → D(A) is bounded.

Let now X be a complex Hilbert space, 〈 ·, · 〉 stands for its inner product. It is well
known that A is called symmetric if, for every x, y ∈ D(A),

〈Ax, y 〉 = 〈x,Ay 〉

If A is densely defined, A is called self-adjoint when A = A∗, that is D(A∗) = D(A)
and Ax = A∗x. A self-adjoint operator is always symmetric; the converse is generally
not true (unlike the bounded case).

Proposition 3.1 If A is symmetric then 〈Ax, x 〉 ∈ IR, x ∈ D(A). Conversely, if
〈Ax, x 〉 ∈ IR for every x ∈ D(A) and A is densely defined, then A is symmetric.

Proposition 3.2 Let A be densely defined and symmetric. If ρ(A) += ∅ then A
is self-adjoint. Conversely, if A is self-adjoint, then σ(A) ⊂ IR and consequently
{λ ∈ C : Imλ += 0} ⊂ ρ(A).

We now consider a subspace H. We say that H is A-invariant if Ax ∈ H whenever
x ∈ D(A) ∩ H. If H is A-invariant, we can define the part AH of A in H with
domain of definition D(AH) := D(A)∩H and formula AHx = Ax. Actually it is the
restriction of A in H.

Proposition 3.3 Let A be self-adjoint and H a closed subspace such that H⊥ ⊂
kerA. Then R(A) ⊂ H, H is A-invariant and the part AH is again self-adjoint.

Let ρ(A) += ∅ and R(λ;A) be compact for some λ ∈ ρ(A). The resolvent identity
shows then that every resolvent of A is compact. In this case we say that A has
compact resolvent. The following is a useful (and easy to prove) characterization.



204 A. D. Ioannidis

Proposition 3.4 The following are equivalent:
a) A has compact resolvent.
b) ρ(A) += ∅ and D(A), equipped with the graph norm

‖x‖D(A) :=
√
‖x‖2 + ‖Ax‖2

is compactly injected in X.

The following is a well known result.

Proposition 3.5 Let A be unbounded, self-adjoint with compact resolvent. Then
σ(A) consists of eigenvalues which form an unbounded real sequence with no accumu-
lation point. Each corresponding eigenspace is of finite dimension.

Let now B ∈ B(X). Define the sesquilinear form in X,

〈x, y 〉B := 〈Bx, y 〉

It is direct that 〈 ·, · 〉B is symmetric if and only if B is self-adjoint. Furthermore,
〈 ·, · 〉B is positive definite, and in turn an inner product, if and only if B is strictly
positive i.e.,

〈Bx, x 〉 > 0 , for every x += 0.

For the corresponding norm ‖·‖B the following inequality holds

‖x‖B !
√

‖B‖ ‖x‖ (17)

Equipped with 〈 ·, · 〉B , X is not necessarily a Hilbert space.

Lemma 3.3 The following are equivalent.
a) The inner product 〈 ·, · 〉B turns X into a Hilbert space.
b) B is coercive i.e., there exists a > 0 such that

〈Bx, x 〉 " a ‖x‖2 (18)

c) B is positive and bounded below.
In this case, the norms ‖·‖, ‖·‖B are equivalent.

Detailed proofs of Proposition 3.3 and Lemma 3.3 can be found in [7].

4. Multiplication operators

Another important notion is the matrix multiplication operator in L2(Ω;CN ). A
detailed account for abstract matrix multiplication operators is given in [6]. Here
we deal mainly with the invertibility of such operators. We denote by MN (C) the
vector space of complex N ×N matrices. The vectors of CN are written as x, y,...,
the (complex) inner product as x · y and we use the symbol of the absolute value | · |
for the vector and the corresponding matrix norm. The functions of L2(Ω;CN ) are
denoted by U , V ,... and the inner product is

〈U ,V 〉0 :=

∫

Ω
U(r) · V (r) dr
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Consider a measurable function

m : Ω→ MN (C)

Note that, since MN (C) coincides with CN2

, measurabilty of m coincides with mea-
surability of each entry of m. This function gives rise to an operator Tm in L2(Ω;CN )
with domain of definition

D(Tm) :=
{
U ∈ L2(Ω;CN ) : m(·)U(·) ∈ L2(Ω;CN )

}

and formula
(TmU)(r) := m(r)U(r)

Definition 4.1 Tm is called a matrix multiplication operator corresponding to m.

Note that m characterizes Tm, in the sense that Tm1 = Tm2 implies that m1 = m2
a.e., and is often customary to identify the matrix multiplication operator with the
corresponding function. Define now the space

L∞(Ω;MN (C)) :=
{
m ∈ L0(Ω;MN (C)) : |m(·) | ∈ L∞(Ω)

}

(L0 stands for classes of equivalence of measurable functions). The above space be-
comes a Banach space with the natural norm

‖m‖∞ := ‖|m(·) |‖L∞(Ω)

The following is proved just as the well known case N = 1 by substituting the absolute
value by the norm.

Proposition 4.1 A matrix multiplication operator is always closed and densely de-
fined. Especially, Tm is bounded if and only if m ∈ L∞(Ω;MN (C)) and in this case
‖Tm‖ = ‖m‖∞.

Incidentally, the correspondence

L∞(Ω;MN (C)) . m /→ Tm ∈ B(L2(Ω;CN ))

defines a C∗-algebra isometry. A direct consequence of this fact is the following.

Proposition 4.2 Tm is invertible if and only if m(r)−1 exists a.e. r ∈ Ω. In this
case T−1

m = Tm−1 . Here m−1(r) := m(r)−1.

A necessary and sufficient condition for the existence of function m−1 is

|m(r)x | " c(r) |x | a.e. r ∈ Ω (19)

We have then that T−1
m is bounded if and only if m−1 is essentially bounded. Since

we have

|m(r) | ! 1

c(r)

one sees that c(r) must be bounded away from zero. Equivalently,
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Proposition 4.3 T−1
m is bounded if and only if m is uniformly bounded below i.e.,

|m(r)x | " c |x | a.e. r ∈ Ω (20)

In the light of lemma 3.3, we have the following useful result.

Proposition 4.4 Let m(r) be positive i.e., m(r)x · x > 0 for x += 0 a.e. r ∈ Ω and
m be uniformly bounded below. Then m is uniformly coercive i.e., m(r)x ·x " a |x |2
a.e. r ∈ Ω and

〈U ,V 〉0m := 〈mU ,V 〉
defines an equivalent inner product in L2(Ω;CN ).

Remark 4.1 Note that if a matrix from MN (C) is positive then it is invertibe and
thus bounded below.

5. The solution method

We now return to our main problem (13). Our purpose is to establish a discrete
spectrum with no accumulation point; this makes the propagation problem well posed
from an “engineering” point of view. It also shows that the propagation is possible
only at certain isolated values of the frequency; they define the eigenfrequencies of
the cavity. The corresponding eigenvectors are the modes of the cavity.

Let us start with the state space of the problem. As it is usual for the time-
harmonic electromagnetics, we work in the complex product space

X := L2(Ω;C3)× L2(Ω;C3)

This choice has to do with energy considerations. The inner product in X is defined
naturally as

〈 e1, e2 〉 := 〈E1,E2 〉0 + 〈H1,H2 〉0
Note that the latter space is an ismorphic realization of L2(Ω;C6). At this point we
remind the definition of some Sobolev spaces, appropriate in electromagnetics

H(curl;Ω) :=
{
U ∈ L2(Ω;C3) : ∇×U ∈ L2(Ω;C3)

}

H0(curl;Ω) := {U ∈ H(curl;Ω) : n̂×U = 0 on Γ}
H(div;Ω) :=

{
U ∈ L2(Ω;C3) : ∇ ·U ∈ L2(Ω)

}

H0(div;Ω) := {U ∈ H(div;Ω) : n̂ ·U = 0 on Γ}
H(div 0;Ω) := {U ∈ H(div;Ω) : ∇ ·U = 0}
H0(div 0;Ω) := H0(div;Ω) ∩H(div 0;Ω)

The Maxwell operator Q is realized in its weak sense in X as the formal matrix

Q := i

[
0 curl

−curl 0

]

and with the maximal domain of definition

D(Q) := H0(curl;Ω)×H(curl;Ω)

The following theorem is from [2, Sec. IX.3].
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Proposition 5.1 Q is an unbounded self-adjoint operator. The orthogonal comple-
ment of the closed subspace

H := H(div 0;Ω)×H0(div 0;Ω)

is contained in kerQ. More precisely,

H = (kerQ)⊥ ⊕ (H2(Ω)×H1(Ω))

The cohomology space H1(Ω), resp. H2(Ω), is of finite dimension and characterizes
magnetostatics, resp. electrostatics, in Ω.

For the exact, and quite lengthy definition of the cohomology spaces, we refer again
to [2, Ch. IX, Part A]. The hypothesis we are going to pose now has to do again with
the E/M energy and express the fact that the medium is lossless.

Assumption [M]. For each ω ∈ IR the matrix M(ω) has entries L∞(Ω) functions.
In addition, M(r,ω) is positive a.e. r ∈ Ω and M(ω) is uniformly bounded below.
Equivalently, M(·,ω) is uniformly coercive:

M(r,ω)

(
x

y

)
·
(
x

y

)
" a(ω)

∣∣∣∣

(
x

y

) ∣∣∣∣
2

, a.e. r ∈ Ω, x, y ∈ IR3 (21)

We represent M by using the standard notation in E/M theory

M(r,ω) :=

[
ε(r,ω) ξ(r,ω)
ζ(r,ω) µ(r,ω)

]

by noting that, in general, ε, ξ, ζ, µ are 3× 3 matrices. The positivity of M already
implies that M is Hermitian (a.e. r ∈ Ω) i.e., ε = ε∗, µ = µ∗, ζ = ξ∗ and this fact
reduces the number of material parameters from 36 to 21 (one only needs to know
the upper triangular part of M). The superscript * here stands for the conjugate
transpose matrix. Equation (21) is written

εx · x+ 2Re ξ∗x · y + µy · y " a(ω)(|x |2 + |y |2) (22)

Proposition 5.2 ε(·,ω) and µ(·,ω) are uniformly coercive.

Proof. Put y = 0 and x = 0 respectively in (22).

Proposition 5.3 Both M(ω) and M(ω)−1 define bounded block multiplication opera-
tors in X .

After this, the spectral problem (13) can be written

Q(ω)e = ωe (23)

where we have put formally Q(ω) := M(ω)−1Q and we consider as its domain of
definition D(Q(ω)) = D(Q). The relation

〈 e1, e2 〉ω := 〈M(ω)e1, e2 〉 (24)

defines an equivalent inner product in X . Note that all the notions which involve the
inner product are, from now on, taken with respect to the inner product (24).
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Proposition 5.4 Q(ω) is an unbounded self-adjoint operator,

Proof. For e ∈ D(Q(ω)) = D(Q) we have

〈Q(ω)e, e 〉ω = 〈Qe, e 〉 ∈ IR

and, since Q(ω) is densely defined, it is symmetric. Let f∗ ∈ D(Q(ω)∗). Then the
functional

φ(e) = 〈Q(ω)e, f∗ 〉ω = 〈Qe, f∗ 〉 , x ∈ D(A)

is bounded. Thus f∗ ∈ D(Q∗) = D(Q) = D(Q(ω)).

Define now the space
H (ω) := M(ω)−1[H ]

This is a closed subspace in H . Note that a vector e ∈ H (ω) satisfies the Gauss law
(14) and this show that H (ω) is the “correct” space to pose the problem. From the
decompositions

X = R(Q(ω))⊕ kerQ(ω) = H (ω)⊕ H (ω)⊥

The obvious inclusion R(Q(ω)) ⊂ H (ω) gives R(Q(ω)) ⊂ H (ω) and thus H (ω)⊥ ⊂
kerQ(ω).

Proposition 5.5 The part T (ω) := Q(ω)H (ω) of Q(ω) in H (ω) is self-adjoint.

This way, the spectral problem (23) is restated in H (ω)

T (ω)e = ωe (25)

We now make two hypotheses which are of technical nature.
Assumption [T]. D(T (ω)) = D(Q) ∩ H (ω) with the graph norm is a closed

subspace of the Sobolev space H1(Ω;C3)×H1(Ω;C3).
Assumption [Om]. The injection H1(Ω) ↪→ L2(Ω) is compact.

These two assumptions imply in fact that the injection D(T (ω)) ↪→ H (ω) is compact
and we obtain our basic result.

Proposition 5.6 The operator T (ω) has compact resolvent and its spectrum consists
of an unbounded real sequence (λn(ω)) with no accumulation point. Each correspond-
ing eigenspace is of finite dimension.

That is, solving the spectral problem (25) means to solve the equation

λn(ω) = ω (26)

Equation (26) is referred as the dispersion relation and it connects the medium with
the eigenfrequencies. One expects (26) to have countably many solutions for every
n = 1, 2, ...; this is a way to order the modes of the cavity.

6. Conclusion

This paper studies the time harmonic electromagnetic propagation problem in a cavity
filled with a bianisotropic (general linear) medium. We formulate the problem as a
non-standard eigenvalue problem where the eigenvalue serves as the eigenfrequency
and the corresponding eigenvector as the mode of the cavity. By using techniques
of Hilbert space theory, we describe a method of solving the problem and prove the
desired discrete spectrum.



On the cavity problem for the general linear medium in Electromagnetic Theory 209

Acknowledgments

This research work contains parts from the author’s PhD thesis [7]. The author would
like to thank Professor Ioannis Stratis (University of Athens, Greece) and Professors
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