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Abstract
In this paper, we approach a multi-objective Hp prob-
lem with several Hp constraints from the Banach
duality point of view. The problem is reduced to an
abstract norm minimization problem, and the dual
problem is derived using the classical Banach re-
sult. It completes the primal-dual pair which can
be used to solve the problem numerically by finite-
dimensional approximations. While the approxima-
tion of the primal problem gives an upper bound
of the optimal value, the approximation of the dual
problem provides a lower bound, and the gap be-
tween them can be done arbitrary small. In view of
growing computational power of modern computers,
it gives a good alternative to the standard mixed-
objective approach.

Keywords: linear system, multiple objectives, con-
vex duality.

1. Introduction
Many control problems are multi-objective by nature.
For example, a good performance (such as tracking
of low-frequency signals) can be achieved by impos-
ing specifications on the sensitivity function S at low
frequencies whereas a suitable robustness property
can be described by specifications on the complimen-
tary sensitivity T at high frequencies (uncertainty
increases with increasing frequencies). In the inter-
mediate frequency region peaking of both S and T
should be minimized to prevent overly large sensi-
tivity to disturbances and the measurement noise.

In this paper, we consider the following control
problem that involves multiple Hp objectives

inf{iTz0w0ip0

∣∣ iTz jw j ip j ≤ γ j , 1 ≤ j ≤ J}, (1)

where Tz jw j is the closed-loop transfer function from
the input w j to the output z j and i ⋅ ip j is the Lp j

norm.

The standard way to solve the multi-objective prob-
lem is to reduce it to a mixed one-objective problem

with auxiliary weights

inf

∥∥∥∥∥∥∥




W0Tz0w0

...
WJ TzJwJ




∥∥∥∥∥∥∥
p

and then to apply one of the standard design proce-
dures like LQG or H∞ optimization. This approach
usually suffers from the following drawbacks

• The reduction often introduces conservatism to
the initial problem in view of certain algebraic
constraints, for instance, S + T = 1.

• As a matter of fact, we replace our problem
with another one which we know how to solve.
We hope to obtain a solution to the former
via that to the latter with some appropriate
choice of weights. There is always a problem
how to choose the weights properly to capture
most desirable initial objectives. This makes
very often the design procedure iterative, when
after getting a solution we check the initial
requirements, adjust the weights manually and
redesign.

• A controller given by an optimization procedure
has usually the same dimension as the aug-
mented plant (the plant + the weights) which
might be too high, and there is no easy way to
include constraints on the controller dimension
to the optimization problem.

• The standard optimization procedures deal
with real-rational finite-dimensional plants
only, and it is impossible to use them di-
rectly for even simple (like time-delay) infinite-
dimensional plants.

Such kind of drawbacks forces to look for a solu-
tion to the multi-objective problem other than the
mixed optimization. In view of growing computa-
tional power of modern computers, a straightforward
solution via finite-dimensional approximations of the
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problem (1) appears to be a good alternative. The
problem (1) becomes convex in terms of Youla pa-
rameter Q

inf{iT10 − T20QT30ip0

∣∣ iT1 j − T2 j QT3 jip j ≤ γ j , ∀ j}

but infinite dimensional. Then by restricting Q to lie,
for example, in the space of n-dimensional trigono-
metric polynomials and discretizing the unit circle
sufficiently fine with respect to n, we come up with a
finite-dimensional convex approximation of the ini-
tial problem. This idea is not new [1, 4, 6, 7] but not
immediately amenable because for any n, we can get
only an upper bound on the optimum value in (1). A
good numerical algorithm must have a stopping cri-
teria which says, for example, how far we are from
the real optimum.

An efficient way to get this information is to look
at a dual problem. The duality relation plays a role
analogous to the inner product in Hilbert space. By
suitable interpretation, the dual space provides the
setting for Lagrange multipliers, fundamental for a
study of constraint optimization problems.

If the initial problem is a minimization, the dual
one is a maximization. If both problems have the
same optimal value, i.e. sup = inf, we say that
there is no duality gap. This means that any finite-
dimensional approximation of the dual problem will
give a lower bound on the optimum, and solving
both primal and dual approximations in parallel
yields a nonincreasing sequence of upper bounds
and a nondecreasing sequence of lower bounds that
converge to the optimal value.

In this paper we derive a (convex infinite-dimension-
al) dual problem to the multi-objective one (1) in
one particular case where all exogenous signals w j
are the same scalar input w. The dual problem com-
pletes the primal-dual pair and can be used to solve
the problem (1) via successive finite-dimensional ap-
proximations. The method developed here is similar
to that presented in [7] where the authors use the
Banach duality to solve the following nonstandard
H∞ problem

inf
Q∈H∞

ihT1 − T2Qh + hT3Qhi∞

which appears in the robust performance problem.
We will show that the multi-objective problem (1)
can be considered as an abstract minimum norm
optimization and hence has a dual problem with no
duality gap. In case of the single scalar input w, we
obtain the dual problem explicitly.

A different approach to find a sequence of lower
bounds for the multi-objective H2/H∞ problem was
proposed in [8]. The author uses the standard H∞

algebra representation by the linear operator space

on H2 along with a projection technique and LMI.
The algorithm suggested in [8] uses the Fourier co-
efficients of the functions Ti j , so they are assumed to
be easy to calculate. However, it may be a nontriv-
ial problem for nonrational functions. Our method
uses only the values of Ti j on the unit circle (or the
imaginary axis).
Another method to find an approximate solution to
the multi-objective H2/H∞ problem is presented in
[2]. The idea is to replace all H∞ constraints with H2

ones and to exploit the relation

ihi∞ = sup{ihwi2 h iwi2 ≤ 1} (2)

to construct a sequence {w j} that approximates this
supremum. The algorithm gives an optimal solution
provided that the approximate solutions converge in
H∞ sense. These solutions are, in general, of a high
order since high order weights w j are needed for a
good approximation of (2).
The paper is organized as follows. In Section 2 we
give a necessary mathematical background about
the Banach duality and collect notations used. The
primal multi-objective problem is stated in Section 3
and converted to an abstract norm minimization
problem in a Banach space. In Section 4 we derive
the dual problem and present the main result. All
proofs are moved to the Appendix.

2. Preliminaries and notations
All below in this section is mainly extracted from [5].
Let us consider a normed linear space X . A dual
space to X , denoted by X ∗, is the space of all
linear bounded functionals on X equipped with the
standard norm: if x∗ ∈ X ∗ then

ix∗i = sup
ixi≤1

hx∗(x)h.

The space X ∗ with this definition of norm becomes
a Banach space.

Below we shall use more symmetric notation for the
value of the linear functional x∗ at the point x

x∗(x) = 〈x, x∗〉.

Definition: A vector x∗ ∈ X ∗ is said to be aligned
with a vector x ∈ X if 〈x, x∗〉 = ix∗iixi.
Definition: The vectors x ∈ X and x∗ ∈ X ∗ are said
to be orthogonal if 〈x, x∗〉 = 0.

Definition: Let S be a subset of a normed linear
space X . The annihilator of S, denoted S⊥, consists
of all elements x∗ ∈ X ∗ orthogonal to every vector in
S

S⊥ = {x∗ ∈ X ∗ h 〈x, x∗〉 = 0, ∀x ∈ S}.
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THEOREM 1
Let x be an element in a normed linear space X and
let M be a subspace in X . Then

inf
m∈M

ix −mi = max
ix∗ i≤1
x∗∈M⊥

Re 〈x, x∗〉

where the maximum on the right is achieved for
some x∗

0 ∈ M⊥. If the infimum on the left is achieved
for some m0 ∈ M then x∗

0 is aligned with x−m0.

If the space X is not reflexive, i.e. X �= X ∗∗, we can
relax the notion of annihilator in the dual space X ∗

as follows.

Definition: Given a subspace U of the dual space
X ∗, we define the pre-annihilator of U ⊂ X as a
subspace ⊥U such that

(⊥U)⊥ = U .

Then we have the following stronger result on dual-
ity in space X ∗.

THEOREM 2
Let X be a normed linear space. Let M ∗ be a
subspace in X ∗ and x∗ be an element of X ∗. If there
exists a pre-annihilator of M ∗ then

min
m∗∈M∗

ix∗ − m∗i = sup
ixi≤1

x∈⊥M ∗

Re 〈x, x∗〉

where the minimum on the left is achieved for some
m∗

0 ∈ M ∗. If the supremum on the right is achieved
for some x0 ∈ ⊥M ∗ then x∗ − m∗

0 is aligned with x0.

We shall use the following notations throughout the
paper. The unit circle in the complex plane

�
will be

denoted as �
= {z ∈ � h hzh = 1}.

By � n�m we denote the class of all n�m holomorphic
functions in the unit disc. The notation Lp

n�m stands
for the standard Lebesgue space Lp of n�m matrix
functions on

�
with Lebesgue measure dm. Denote

the standard norm in Lp
n�m by i ⋅ ip. The subspace

Lp
n�m ∩ � n�m is the Hardy space Hp

n�m. An analyt-
ical continuation of the transposition with complex
conjugation is denoted by ∗

f (z)∗ = f (z̄−1) T .

3. Problem setup. Primal problem.
To be specific we deal with Lp and Hp spaces on the
unit circle

�
which corresponds to linear discrete-

time systems. All results remain true for continuous-
time systems also by modulo of the standard bilinear
transformation.

Let J be a natural number. Consider a linear time-
invariant plant

z =




z0

...
zJ


 = P

(
w
u

)

where u is the control and w is the exogenous signal.
We shall assume that w is a scalar. The multi-
objective problem can be formulated as:

Given integer numbers 0 ≤ j ≤ J and real numbers
1 < p j ≤ +∞, γ j > 0, find a stabilizing controller
K that minimizes the Lp0 norm of the closed loop
transfer function Tz0w subject to Lp j norm constraints
on the other transfer functions Tz jw, i.e.

inf
K
{iTz0wip0

∣∣ iTz jwip j ≤ γ j , 1 ≤ j ≤ J}.

With the standard Youla parameterization of all sta-
bilizing controllers K = K (Q), the problem becomes
convex since the closed-loop transfer functions de-
pend affinely on the parameter Q ∈ � m�m

Tzw = T1 − T2QT3.

A simple trick allows us to get rid of T3 when w is a
scalar.

LEMMA 1
If w is a scalar then the Youla parameterization of
the closed-loop transfer function takes the form

Tzw = T1 − T2Q, Q ∈ � m�1 .

Thus we consider the following multi-objective opti-
mization problem.

Given T1 j ∈ H∞
n j�1, T2 j ∈ H∞

n j�m the multi-objective
problem is to find

µ0 = inf
Q∈ � m�1

iT10 − T20Qip0

subject to

iT1 j − T2 j Qip j ≤ γ j , j = 1, . . . , J .

Since the cost function and all specifications are
convex we can use Lagrange multiplier technique to
find an equivalent problem

µ0 = max
τ j≥0

(
inf

Q∈ � m�1

[
iT10 − T20Qip0 +

+
J∑

j=1

τ jiT1 j − T2 j Qip j

]
−

J∑

j=1

τ jγ j

)
.
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Assuming that all τ j are absorbed by corresponding
Ti j we state the primal problem as follows:

Given T1 j ∈ H∞
n j�1 and T2 j ∈ H∞

n j�m the problem is to
find

inf
Q∈ � m�1

J∑

j=0

iT1 j − T2 j Qip j .

Introduce a notation for the Banach space

F = Lp0
n0�1 � Lp1

n1�1 � . . . � LpJ
nJ�1

equipped with the norm

i f iF =
J∑

j=0

i f jip j

and denote N =
∑J

j=0 n j and

T1 =




T10

...
T1J


 ∈ H∞

N�1 , T2 =




T20

...
T2J


 ∈ H∞

N�m .

To simplifiy the exposition we make the following
assumption.

Assumption 1: There exists ε > 0 such that

T2(z)∗T2(z) > ε I , ∀z ∈
�

.

Remark: Assumption 1 can be extended to allow a
finite number of zeros on the unit circle. However
we consider the simplest case here for clarity.

Denote
p = min

0≤ j≤J
p j .

LEMMA 2
Let Assumption 1 holds. If iT1−T2QiF is finite then
Q ∈ Hp

m�1.

Now we can formulate a final version of the primal
problem.

Primal problem: Given T1 ∈ H∞
N�1, T2 ∈ H∞

N�m the
problem is to find

inf
Q∈Hp

m�1

iT1 − T2QiF . (3)

This is the standard minimum norm problem: to find
a distance in the space F from the given element T1
to the subspace X = T2Hp

m�1 ∩ F and Theorem 2
immediately implies that if there exist a pre-dual
normed space G for F (i.e. G∗ = F) and a pre-
annihilator ⊥X then

1. there exists at least one Qopt ∈ Hp
m�1 such that

inf
Q∈Hp

m�1

iT1 − T2QiF = iT1 − T2QoptiF.

2.
min

Q∈Hp
m�1

iT1 − T2QiF = sup
x∈⊥X
ixiG≤1

Re 〈x, T1〉.

In the next section we show that the pre-dual does
exist and give an explicit description to it as well as
to the set ⊥X.

4. The main result. Dual problem.
It is relatively easy to obtain a pre-dual to F. Denote
by p′ the adjoint index to p, i.e. 1/p+ 1/p′ = 1.

LEMMA 3
A pre-dual space to F is a linear space

G = Lp′0
n0�1 � Lp′1

n1�1 � . . . � Lp′J
nJ�1

equipped with the norm

iniG = max
0≤ j≤J

in jip′j .

To obtain a pre-annihilator, we first derive an equiv-
alent description of the subspace X.

LEMMA 4
Let Assumption 1 holds. Then there exists an inner
function Θ ∈ H∞

N�m such that T2Hp
m�1 = ΘHp

m�1.

LEMMA 5
Under Assumption 1 the pre-annihilator of X is

⊥X = (I − ΘΘ∗)Lp′
N�1 ⊕ Θ zHp′

m�1.

Corollary: The pre-annihilator can be represented in
terms of T2 as follows

⊥X = (I−T2(T∗
2 T2)−1T∗

2 )Lp′
N�1 ⊕ T2(T∗

2 T2)−1 zHp′
m�1.

Now we are in a position to present the dual problem
to (3).
Dual problem: Given T1 ∈ H∞

N�1, T2 ∈ H∞
N�m the

problem is to find

sup Re
∫

�
x(z)∗T1(z) dm(z)

subject to

x = (I − T2(T∗
2 T2)−1T∗

2 )n + T2(T∗
2 T2)−1h,

ixiG ≤ 1, n ∈ Lp′
N�1, h ∈ zHp′

m�1.
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Using the definition of norm in G we can rewrite the
dual problem in more explicit form: given T1 ∈ H∞

N�1,
T2 ∈ H∞

N�m the problem is to find

sup Re
∫

�

(
n∗T1 + (h∗ − n∗T2)(T∗

2 T2)−1T∗
2 T1

)
dm

subject to

∥∥n j − T2 j(T∗
2 T2)−1(T∗

2n + h)
∥∥

p′j
≤ 1, 0 ≤ j ≤ J ,

n ∈ Lp′
N�1, h ∈ zHp′

m�1.

This is also a convex optimization problem and,
therefore, any finite-dimensional approximation of
it will provide a lower bound on the optimal value.
Running both approximations in parallel will give a
sequence of upper and lower bounds and a distance
between them can serve as a decision for a stopping
criteria.

5. An Example
Consider the following optimization problem

inf
q∈ � {iaq+ bi∞

∣∣ iqi∞ ≤ 1}

where a and b are given functions in H∞. In this
case, all p j and hence p are +∞. Suppose that the
norm in L∞ is defined as

i f i∞ = sup
z∈ �

h f (z)h∞ = sup
z∈ �

max{hRe f (z)h, hIm f (z)h}.

Then the problem becomes a linear optimization

µ0 = inf
{

µ
∣∣∣∣
±Re (aq+ b) ≤ µ , ±Re q≤ 1,
±Im (aq+ b) ≤ µ , ±Im q≤ 1

}
.

Using the Lagrange multiplier method this can be
written as

µ0 = sup
τ≥0

(
inf
q∈ � (iaq+ bi∞ + τ iqi∞) − τ

)
.

The functions T1 and T2 can be defined as

T1 =
(

b
0

)
, T2 = −

(
a
τ

)
.

Due to Lemma 3 a pre-dual space to the space
F = L∞ � L∞ is G = L1 � L1 where the norm in
L1 is defined as

ini1 =
∫

�
hnh1 dm =

∫
�
(hRenh + hImn)h) dm.

Let us obtain an explicite expression for the pre-
annihilator from Lemma 5. Here p′ = 1, so we have
(

I − T2T∗
2

hT2h2
)

Lp′
N�1 =

1
hah2 + τ 2

( τ 2 −τ a
−τ ā hah2

)
L1 � L1 =

=
( τ
−ā

)
(τ −a ) 1

hah2 + τ 2 L1 � L1 =
( τ
−ā

)
L1.

This gives the following form of the pre-annihilator

⊥X =
( τ
−ā

)
n + 1

hah2 + τ 2

(
a
τ

)
h

where n ∈ L1 and h ∈ zH1. After a complex
conjugation of all functions, the dual problem takes
the form

γ 0(τ ) = sup Re
∫

�
bx1 dm

subject to n ∈ L1, h ∈ zH1,

x1 = τn + ā
hah2 + τ 2 h, x2 = −an + τ

hah2 + τ 2 h,
∫

T
(hRe xih + hIm xih) dm ≤ 1, i = 1, 2.

It also has the linear optimization structure

γ 0(τ ) = sup Re
∫

�

(
τ bn + āb

hah2 + τ 2 h
)

dm

subject to n ∈ L1, h ∈ zH1,

±Re
(

τn+ āh
hah2+τ 2

)
≤ r1 , ±Im

(
τn+ āh

hah2+τ 2

)
≤ r2,

±Re
(

an− τ h
hah2+τ 2

)
≤ s1, ±Im

(
an− τ h

hah2+τ 2

)
≤ s2,

∫
�
(r1 + r2) dm ≤ 1,

∫
�
(s1 + s2) dm ≤ 1.

Finally the relation

µ0 = sup
τ≥0
(γ 0(τ ) − τ )

gives the possibility to obtain a lower bound on µ0
using the dual problem.

6. Conclusion
In this paper we have derived the dual convex
problem to the multi-objective Hp control problem in
case where all objectives are Hp norm bounds (with
possibly different p’s) on the closed-loop transfer
functions from the same scalar exogenous signal. It
completes the primal-dual pair and gives rise to a
number of finite-dimensional algorithms that find
the optimal value with a guaranteed accuracy. This
approach is straightforward compared to a mixed
one-objective problem which may suffer from several
attendant drawbacks such as conservatism, manual
weight tuning etc.
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Appendix
Proof of Lemma 1

To begin with, let us perform a factorization of the
function T3 ∈ H∞

m�1 as

T3 = T i
3T o

3

where the scalar T i
3 ∈ H∞ absorbs all common zeros

of the entries of T3 in the closed unit disc and
T o

3 ∈ H∞
m�1 satisfies the inequality

inf
hzh≤1

hT o
3 (z)h > 0.

By the Carleson corona theorem [3] there exists a
function n ∈ H∞

1�m such that nT o
3 = 1, that is T o

3 is
left invertible and � m�m T o

3 = � m�1 . Then the Youla
parameterization becomes

T1 − T2 � m�m T3 = T1 − T2 � m�m T i
3T o

3 =
= T1 − T i

3T2 � m�1 ,

and we get the claim of the Lemma where T i
3T2 is

replaced by a new T2.
Proof of Lemma 2

The proof is given by simple bounds as

iQip = i(T∗
2 T2)−1T∗

2 T2Qip ≤ C iT2Qip ≤

≤ C
J∑

j=0

iT2 j Qip ≤ C
J∑

j=0

iT2 j Qip j =

= C iT2QiF ≤ C (iT1 − T2QiF + iT1iF).

Proof of Lemma 4
Denote the outer factor of T∗

2 T2 by W

T∗
2 T2 = W∗W , det W(z) �= 0, ∀hzh ≤ 1

and Θ = T2W−1. Then Θ∗Θ = I. Then we have
W−1 ∈ H∞

m�m and WHp
m�1 = Hp

m�1. Finally

T2Hp
m�1 = T2W−1WHp

m�1 = ΘHp
m�1.

Proof of Lemma 3
We show first that any linear bounded functional on
G takes the form

〈 f ,n〉 =
∫

T
f ∗n dm =

J∑

j=0

∫
�

f ∗
j n j dm. (4)

where f ∈ F. Note that the subspace of G, spanned
by only one component n j with all others being

zero, is isometrically isomorphic to Lp′j
n j�1. Then by

the relation
(
Lp′j

n j�1

)∗ = Lp j
n j�1 and linearity we

immediately get the representation (4) together with
uniqueness of the function f ∈ F. The inequality
∣∣∣∣
∫

�
f ∗n dm

∣∣∣∣ ≤
J∑

j=0

∫

T
h f ∗

j n j h dm ≤
J∑

j=0

i f jip jin jip′j ≤

≤
J∑

j=0

i f jip j max
0≤ j≤J

in jip′j = i f iFiniG

proves that with our choice of norms f gives, in fact,
a linear bounded functional. It gives also that

i f i ≤ i f iF. (5)

We now show that the identity i f i = i f iF takes
place. Note first that if i f iF = 0 then all is proven.
So we shall assume that

i f iF > 0. (6)
By the norm definition we have

∣∣∣∣
∫

T
f ∗n dm

∣∣∣∣ ≤ i f i iniG. (7)

In particular, this is true for n with j-th component
equal to

n j(z) =
{

c−1
j f j(z)h f j(z)hp j−2, if f j(z) �= 0,

0 if f j(z) = 0

where
c j = i f jip j−1

p j .
It belongs to G and iniG = 1. Indeed by the
assumption (6) we have at least one c j �= 0 and then
for all those j’s

in jip′j = 1
c j

(∫
�
h f j h(p j−1)p′j dm

) 1
p′j =

= 1
c j

(∫
�
h f j hp j dm

) 1
p′j = 1

c j
i f ji

pj
p′j
p j = 1.

For this n the inequality (7) becomes
∑

j : cj �=0

1
c j
i f jip j

p j ≤ i f i < i f iF ≤ i f i

which together with the opposite one (5) proves the
equality.

Proof of Lemma 5
Let f ∈ F. Then the following statements are
equivalent

f ∈ (⊥X )⊥ <
∫

�
f ∗((I − ΘΘ∗)n + Θh) dm = 0

∀n ∈ Lp′
N�1 ∀h ∈ zHp′

m�1, <

<
[ ∫

� f ∗(I − ΘΘ∗)n dm = 0 ∀n ∈ Lp′
N�1,

∫
� f ∗Θh dm = 0 ∀h ∈ zHp′

m�1

<

<
[

f ∗(I − ΘΘ∗) = 0 a.e. on
�

,
f ∗Θ ∈ Hp

1�m

< f ∈ ΘHp
m�1.
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