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Abstract

In this paper a systematic analysis that solves the wave propagation problem
in a general bianisotropic, stratified media is presented. The method utilizes
the concept of propagators, and the representation of these operators is simpli-
fied by introducing the Cayley-Hamilton theorem. The propagators propagate
the total tangential electric and magnetic fields in the slab and only outside
the slab the up/down-going parts of the fields need to be identified. This
procedure makes the physical interpretation of the theory intuitive. The re-
flection and the transmission dyadics for a general bianisotropic medium with
an isotropic (vacuum) half space on both sides of the slab are presented in a
coordinate-independent dyadic notation, as well as the reflection dyadic for
a bianisotropic slab with perfectly electric backing (PEC). In the latter case
the current on the metal backing is also given. Some numerical computations
that illustrate the algorithm are presented.

1 Introduction

The reflection and the transmission properties of a stratified slab, whose layers
are bianisotropic, have been a subject of continued scientific interest over the last
decades. The literature on this subject is large, see, e.g., textbooks [4, 12, 14, 21],
and recent journal articles [2, 16, 22] and references given therein. The reason for a
new investigation on this subject must be that a more systematic approach to solve
the problem is available or that new insight is obtained in the numerical treatment
or implementation of the problem. The latter reason is the motivation of the recent
paper by Yang [22] in which the problem is treated with a spectral recursive trans-
formation method. The motivation behind the present paper is mainly due to the
first reason and to the fact that the analysis is presented in coordinate-independent
dyadic notation and that it is physically intuitive.

The area of applications that apply to reflection and transmission of plane waves
in stratified slabs is vast. We do not intend to give a complete exposition of this
field here in this introduction, but refer to the excellent textbooks cited above that
contain long lists of applications. Of particular interest and motivation behind the
present analysis are the propagation of radar waves through radome walls. For a
comprehensive treatment of radome-enclosed antennas, we refer to Ref. 13.

In this paper, the main tool to solve the scattering properties of a stratified slab
is the notion of propagators. These operators propagate the total field from one
position in the slab to another. This is in contrast to the more common approach of
propagating the eigenmodes (up- and down-going fields), respectively, of the slab.
Moreover, the reflection and transmission problems are treated in a concise way
using a coordinate-free dyadic notation. The Cayley-Hamilton theorem simplifies
the evaluation of the propagators. The results are then very easy to implement in
e.g., MATLAB or any other language that supports matrix manipulations.

The outline of this paper is as follows: In Section 2 the time-harmonic consti-
tutive relations of a general linear, plane-stratified, and bianisotropic medium are
presented. In Section 3 the fundamental equation for time-harmonic, plane-wave
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propagation in layered bianisotropic structures is given. This equation forms the
basis for the present discussion. The wave propagator for a piecewise homogeneous,
complex structure is derived in Section 4, and a wave splitting is presented in Sec-
tion 5. Reflection and transmission are discussed in Section 6. In Section 7, we
develop the theory for some particularly common and important classes of materi-
als, e.g., isotropic and magnetic dielectrics, biisotropic or isotropic chiral media, and
nonmagnetic uniaxial materials. Finally, in Section 8 some numerical computations
are presented. A series of appendices contains the technical details of the analysis.

The results presented in this paper are given in a dyadic notion [15]. Scalars
are typed in italic letters, vectors in italic boldface, and dyadics in roman boldface.
The radius vector is denoted by r = x̂x + ŷy + ẑz, where x̂, ŷ, and ẑ are the
Cartesian basis vectors. Similarly, we denote the radius vector in the x-y-plane as
ρ = x̂x + ŷy.

2 Basic equations

2.1 The Maxwell equations

The Maxwell equations model the dynamics of the fields in macroscopic media. The
time-dependence of the electric and magnetic fields, E(r, ω) and H(r, ω), and the
flux densities, D(r, ω) and B(r, ω), is assumed to be e−iωt. In source-free regions,
the time-harmonic Maxwell field equations are{

∇× E = ik0 (c0B)

∇× (η0H) = −ik0 (c0η0D)
(2.1)

where η0 =
√

µ0/ε0 is the intrinsic impedance of vacuum, c0 = 1/
√

ε0µ0 the speed
of light in vacuum, and k0 = ω/c0 is the wave number in vacuum.

2.2 The constitutive relations—bianisotropic case

The bianisotropic medium is the most general linear complex medium comprising
at most 36 different scalar constitutive parameters (functions). The time-harmonic
constitutive relations of a general bianisotropic medium are [14]


D = ε0 {ε · E + η0ξ · H}

B =
1

c0

{ζ · E + η0µ · H}
(2.2)

The dyadics ε and µ in (2.2) are the permittivity and the permeability dyadics,
respectively, which for anisotropic materials are general, that is, comprising nine
parameters each. For an isotropic medium, ε and µ are proportional to the identity
dyadic1 I3. In a biisotropic medium, which is the simplest complex material involving

1The identity dyadic in three dimensions is denoted I3 and in two dimensions (the x-y-plane)
it is denoted I2.
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the cross-coupling terms ξ and ζ, all the constitutive dyadics are proportional to
the identity dyadic I3.

The four dyadics ε, ξ, ζ, and µ depend in general of the spatial variables (x, y, z).
For the case the material dyadics depend on the spatial variable z only, the medium is
said to be plane-stratified (or simply stratified) in the z direction. For a homogeneous
material, the constitutive dyadics are independent of (x, y, z). Notice that ε, ξ,
ζ, and µ generally are functions of the angular frequency ω owing to (material)
temporal dispersion. Although dispersion is assumed to be anomalous in certain
frequency intervals (absorption bands), the angular frequency ω is a fixed parameter
in this paper. However, when the absorption bands and the frequency range of
interest intersect, these effects must be taken into consideration. In these highly
dispersive cases, time domain techniques are usually more effective [7, 8, 19].

2.3 Decomposition of dyadics

For the purpose of studying wave propagation in layered bianisotropic structures,
it is appropriate to decompose each constitutive dyadic, i.e., a three dimensional
dyadic A is decomposed as

A = A⊥⊥ + ẑAz + A⊥ẑ + ẑAzzẑ

where {
A⊥⊥ = I2 · A · I2

Azz = ẑ · A · ẑ

{
Az = ẑ · A · I2

A⊥ = I2 · A · ẑ
The dyadic A⊥⊥ is a two-dimensional dyadic in the x-y plane, and the vectors Az

and A⊥ are two two-dimensional vectors in this plane. Azz is a scalar.

3 The fundamental equation

In this section, the scattering problem for a bianisotropic structure that is plane-
stratified in the z direction is formulated. Stated differently, the medium in which
the waves propagate has no variation in the coordinates x and y, i.e., the medium is
laterally homogeneous. Furthermore, it is assumed that the electromagnetic sources
are located to the vacuum region z < z0, see Figure 1.

In a geometry where the medium is laterally homogeneous in the variables x
and y, it is natural to decompose the electromagnetic field in a spectrum of plane
waves [5]. The plane wave decomposition amounts to a Fourier transformation of the
electric and magnetic fields and flux densities with respect to the lateral variables x
and y. The Fourier transform of a time-harmonic field E(r, ω) is denoted by

E(z, kt, ω) =

∞∫∫
−∞

E(r, ω)e−ikt·ρ dxdy z > z0

where
kt = x̂kx + ŷky = ktê‖
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z

Sources

z = z0

Figure 1: The source region and the plane, z = z0, that limits its extent. Fourier
transformation of the fields on any plane to the right of the source region, z > z0,
is well defined.

is the tangential wave vector and

kt =
√

k2
x + k2

y

the tangential wave number. The inverse Fourier transform is defined by

E(r, ω) =
1

4π2

∞∫∫
−∞

E(z, kt, ω)eikt·ρ dkxdky z > z0 (3.1)

Notice that the same letter is used to denote the Fourier transform of the field and
the field itself. The argument of the field shows what field is intended.

From now on, the tangential wave vector, kt, is fixed but arbitrary. Substituting
the operator identity ∇ = ikt + ẑ∂z into the Maxwell field equations (2.1) gives a
system of linear, coupled ordinary differential equations (ODEs). This is possible
due to the fact that the medium is laterally homogeneous, and the reduction to a set
of ODEs is, of course, not possible for a medium with variations in x or y. In vacuum
regions, the solutions are either homogeneous, obliquely propagating plane waves or
inhomogeneous (evanescent) plane waves depending on whether the tangential wave
number, kt, is less or greater than the wave number in vacuum, k0 = ω/c0. It is
appropriate to introduce an angle of incidence, θi, which is real for homogeneous
plane waves, and a normal wave number, kz, defined by

kz = k0 cos θi =
(
k2

0 − k2
t

)1/2
=




√
k2

0 − k2
t for kt < k0

i
√

k2
t − k2

0 for kt > k0

(3.2)
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x

y

kt kt

ê⊥
ê‖

φi

Figure 2: The Fourier variable kt and the unit vectors ê‖ and ê⊥.

By this definition, kz applies to up-going waves and −kz to down-going waves, see
also wave splitting in Section 5. Furthermore, it is convenient to introduce a set of
coordinate independent orthonormal basis vectors in the x-y plane by{

ê‖ = kt/kt = x̂ cos φi + ŷ sin φi

ê⊥ = ẑ × ê‖ = −x̂ sin φi + ŷ cos φi

where the azimuth angle of incidence, φi, is defined in Figure 2. The basis vectors{
ê‖, ê⊥, ẑ

}
form a positively oriented ON-system. At normal incidence, this does

not apply, and we define, e.g., ê‖ = x̂ and ê⊥ = ŷ.
The Fourier components of the electric and magnetic fields can be decomposed

in their tangential and normal components as{
E(z, kt, ω) = Exy(z) + ẑEz(z)

H(z, kt, ω) = Hxy(z) + ẑHz(z)

Substituting the constitutive relations into the Maxwell field equations gives a sys-
tem of ODEs in the tangential components of the electric and magnetic fields only.
The fundamental equation for one-dimensional wave propagation becomes

d

dz

(
Exy(z)

η0J · Hxy(z)

)
= ik0M(z) ·

(
Exy(z)

η0J · Hxy(z)

)
(3.3)

where J = ẑ × I3 = ẑ × I2 is a two-dimensional rotation dyadic (rotation of π/2 in
the x-y-plane) and

M =

(
M11 M12

M21 M22

)
is the fundamental dyadic of the bianisotropic medium. Equation (3.3) is the gen-
eral equation for wave propagation in general linear, laterally homogeneous, media.
From the solution of this equation, all pertinent electromagnetic properties can be
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computed. The fundamental dyadic depends on the tangential wave vector, kt, and
the constitutive dyadics, which may or may not depend on the depth z. The explicit
expression for the fundamental dyadic is given in Appendix C. For homogeneous
materials, M is independent of z. The fundamental dyadic in vacuum is

M0 =

(
0 −I2 + 1

k2
0
ktkt

−I2 − 1
k2
0
J · ktkt · J 0

)
(3.4)

The fundamental equation is derived in detail in Appendix C.

4 Propagation of fields

In this section, the wave propagator for a layered bianisotropic structure is intro-
duced. The propagator maps the tangential electric and magnetic fields at the front
surface of the structure to the tangential electric and magnetic fields at the rear sur-
face of the structure. We first investigate the form of propagator in a single layer,
then we apply this result to several layers.

4.1 Single layer

The propagator of a single layer, (z1, z), is investigated first. This amounts to solving
the fundamental equation (3.3) in the interval (z1, z). The formal solution can be
written in the form(

Exy(z)
η0J · Hxy(z)

)
= S exp

{
ik0

∫ z

z1

M(z′) dz′
}
·
(

Exy(z1)
η0J · Hxy(z1)

)

where S is the spatial ordering operator [8, 9]. This operator corresponds to the
time ordering operator which appears in quantum mechanics [3]. Naturally, the
propagator

P(z, z1) = S exp

{
ik0

∫ z

z1

M(z′) dz′
}

, P(z1, z1) = I4

can be calculated numerically using standard ODE solvers. For a homogeneous
material, an explicit solution can be obtained:(

Exy(z)
η0J · Hxy(z)

)
= P(z, z1) ·

(
Exy(z1)

η0J · Hxy(z1)

)
(4.1)

where the propagator is
P(z, z1) = eik0(z−z1)M

The exponential of a square dyadic is defined in term of the Taylor series of the
exponential, i.e.,

expA =
∞∑

n=0

1

n!
An
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This series converges for all matrices since the exponential is an entire function.
Notice the very simple structure of the propagator in (4.1). The fundamental

dyadic M contains all the wave propagation properties of the slab and then the
exponential function propagates the field in the correct way from one position z1 to
another position z.

There are several ways to compute the propagator in the homogeneous case
and one such method is accounted for below in Section 4.2. Notice also that the
exponential of a square dyadic is a standard routine in e.g., MATLAB. However, as
pointed out by Yang, caution should always be exercised when strongly evanescent
waves occur [22].

4.2 Homogeneous layer—distinct eigenvalues

A general result for the propagator of a single homogeneous layer can be obtained
using the Cayley-Hamilton theorem, see Appendix A, provided the eigenvalues of
the fundamental dyadic, M, are distinct. Since the exponential is an entire analytic
function, the Cayley-Hamilton theorem gives, see Appendix A (d = z − z1)

eik0dM = q0(k0d)I4 + q2(k0d)M · M + (q1(k0d)I4 + q3(k0d)M · M) · M

The coefficients, ql(k0d), l = 1, 2, 3, 4, are given by the system of linear equations

eik0dλl = q0(k0d) + q2(k0d)λ2
l +

(
q1(k0d) + q3(k0d)λ2

l

)
λl, l = 1, 2, 3, 4 (4.2)

provided the eigenvalues, λl, l = 1, 2, 3, 4, of the fundamental dyadic, M, are distinct.
This can generally be assumed unless the medium is isotropic or Tellegen. In the
isotropic case, the propagator can be obtained as a limit of the results obtained
below, see Section 7.

Typically, for non-pathological materials, two eigenvalues, say λ1 and λ2, have
positive real parts and two eigenvalues, λ3 and λ4, have negative real parts. These
eigenvalues correspond to up-going and down-going waves, respectively, see also the
wave splitting in Section 5.

In terms of the Vandermonde matrix [10]

V =




1 λ1 λ2
1 λ3

1

1 λ2 λ2
2 λ3

2

1 λ3 λ2
3 λ3

3

1 λ4 λ2
4 λ3

4


 =




v11 v12 v13 v14

v21 v22 v23 v24

v31 v32 v33 v34

v41 v42 v43 v44




the system of equations (4.2) can be written as

e = V · q, q = V −1 · e

where

e =




eik0dλ1

eik0dλ2

eik0dλ3

eik0dλ4


 , q =




q0(k0d)
q1(k0d)
q2(k0d)
q3(k0d)



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The inverse of the matrix V is given by

V −1 =
1

∆




V11 V21 V31 V41

V12 V22 V32 V42

V13 V23 V33 V43

V14 V24 V34 V44




where
∆ = (λ4 − λ3) (λ4 − λ2) (λ4 − λ1) (λ3 − λ2) (λ3 − λ1) (λ2 − λ1)

is Vandermonde’s determinant and Vij = (−1)i+jDij is the algebraic complement of
the matrix element vij. Here the determinants Dij are

D11 = det


λ2 λ2

2 λ3
2

λ3 λ2
3 λ3

3

λ4 λ2
4 λ3

4




D12 = det


1 λ2

2 λ3
2

1 λ2
3 λ3

3

1 λ2
4 λ3

4




D13 = det


1 λ2 λ3

2

1 λ3 λ3
3

1 λ4 λ3
4




D14 = det


1 λ2 λ2

2

1 λ3 λ2
3

1 λ4 λ2
4




D21 = det


λ1 λ2

1 λ3
1

λ3 λ2
3 λ3

3

λ4 λ2
4 λ3

4




D22 = det


1 λ2

1 λ3
1

1 λ2
3 λ3

3

1 λ2
4 λ3

4




D23 = det


1 λ1 λ3

1

1 λ3 λ3
3

1 λ4 λ3
4




D24 = det


1 λ1 λ2

1

1 λ3 λ2
3

1 λ4 λ2
4




D31 = det


λ1 λ2

1 λ3
1

λ2 λ2
2 λ3

2

λ4 λ2
4 λ3

4




D32 = det


1 λ2

1 λ3
1

1 λ2
2 λ3

2

1 λ2
4 λ3

4




D33 = det


1 λ1 λ3

1

1 λ2 λ3
2

1 λ4 λ3
4




D34 = det


1 λ1 λ2

1

1 λ2 λ2
2

1 λ4 λ2
4




D41 = det


λ1 λ2

1 λ3
1

λ2 λ2
2 λ3

2

λ3 λ2
3 λ3

3




D42 = det


1 λ2

1 λ3
1

1 λ2
2 λ3

2

1 λ2
3 λ3

3




D43 = det


1 λ1 λ3

1

1 λ2 λ3
2

1 λ3 λ3
3




D44 = det


1 λ1 λ2

1

1 λ2 λ2
2

1 λ3 λ2
3




For the important special case when (λ2
+ �= λ2

−)

λ1 = −λ4 = λ+, λ2 = −λ3 = λ− (4.3)

one gets

eik0dM =
1

λ2
− − λ2

+

(
I4λ

2
− − M · M

)
·
(
I4 cos (k0dλ+) +

i

λ+

M sin (k0dλ+)

)

− 1

λ2
− − λ2

+

(
I4λ

2
+ − M · M

)
·
(
I4 cos (k0dλ−) +

i

λ−
M sin (k0dλ−)

) (4.4)
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z

z = z1

z = z2

z = zN−2

z = zN−1

1

2

3

N − 1
N

Figure 3: The geometry of a stratified structure of N bianisotropic layers. Regions
1 and N are immaterial (vacuous).

For the case equation (4.3) applies, λ2
+ and λ2

− are eigenvalues of M · M.

4.3 Several layers

Let zj, j = 1, . . . , N − 1, be the location of N − 1 parallel interfaces, see Figure 3,
and let Mj, j = 1, . . . , N , be the fundamental dyadics of the corresponding regions,
respectively. It is assumed that all slabs are homogeneous and that regions j = 1
and j = N are immaterial, M1 = MN = M0, see (3.4), i.e., ε = µ = I3 and
ξ = ζ = 0 in these half spaces.

Since the tangential electric and magnetic fields are continuous at the boundaries,
a cascade coupling technique can be applied. Using (4.1) repeatedly gives(

Exy(zN−1)
η0J · Hxy(zN−1)

)
= P(zN−1, z1) ·

(
Exy(z1)

η0J · Hxy(z1)

)
(4.5)

where the propagator for the layered bianisotropic structure is

P(zN−1, z1) = eik0(zN−1−zN−2)MN−1 · . . . · eik0(z3−z2)M3 · eik0(z2−z1)M2

Provided all fundamental dyadics Mj, j = 2, . . . , N−1, commute, the total propaga-
tor of the slab can be written as one single exponential of the sum of the fundamental
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z = z1 z = z2 z = zN−2

z

z = zN−1

1 2 N − 1 N

F +(z1)

F−(z1)

F +(zN−1)

F−(zN−1)

Figure 4: A symbolic representation of the wave splitting. The arrows represent
the sign of the z-component of the power flow of the electromagnetic field.

dyadics of each subslab:

P(zN−1, z1) = eik0
∑N−1

j=2 (zj−zj−1)Mj (4.6)

This is a very rare case. However, by referring to the Campbell-Hausdorff series, it
can be argued that equation (4.6) holds as an approximation when all the layers are
thin, see Appendix B.

5 Wave splitting

One way to organize efficiently the input to and the output from the bianisotropic
scatterer is to introduce a wave splitting. A wave splitting is a one-to-one corre-
spondence between the dependent vector field variables, i.e., the tangential electric
field and the tangential magnetic field, and two new so called split vector field vari-
ables, commonly denoted by F + and F−, that represent the up-going waves and the
down-going waves, respectively. Usually, F + and F− are taken to be the up-going
and down-going tangential electric fields. Although the wave splitting applies to all
layers, it is adopted in the vacuum regions only [17]. A symbolic representation of
the wave splitting is given in Figure 4.

The simplest way to find the wave splitting is, perhaps, to consider the funda-
mental equation in vacua. Combining equations (3.3) and (3.4) implies than the up-
going and down-going tangential electromagnetic fields (eigen-modes), (E+

xy, H
+
xy)
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and (E−
xy, H

−
xy), respectively, satisfy

η0J · H±
xy(z) = ∓k0

kz

(
I2 +

1

k2
0

J · ktkt · J
)
· E±

xy(z)

where the normal wave number for up-going waves, kz, is defined by equation (3.2).
In view of this, the split field vectors, F±, are defined by{

Exy(z) = F +(z) + F−(z)

η0J · Hxy(z) = −W−1 · F +(z) + W−1 · F−(z)

where the operator W−1 is defined by2

W−1 =
k0

kz

(
I2 +

1

k2
0

kt × (kt × I2)

)
= ê‖ê‖

1

cos θi

+ ê⊥ê⊥ cos θi

and kt × (kt × I2) = J · ktkt · J = −k2
t ê⊥ê⊥. Equivalently,

F±(z) =
1

2
(Exy(z) ∓ W · η0J · Hxy(z))

where

W =
kz

k0

(
I2 −

1

k2
z

kt × (kt × I2)

)
= ê‖ê‖ cos θi + ê⊥ê⊥

1

cos θi

In matrix notation the wave splitting becomes(
F +(z)
F−(z)

)
=

1

2

(
I2 −W
I2 W

)
·
(

Exy(z)
η0J · Hxy(z)

)
(5.1)

with inverse (
Exy(z)

η0J · Hxy(z)

)
=

(
I2 I2

−W−1 W−1

)
·
(

F +(z)
F−(z)

)
(5.2)

At normal incidence, W = W−1 = I2.
Since the normal parts of the electric and magnetic fields can be expressed in

terms of the tangential parts as, see (C.2)(
Ez(z)

η0Hz(z)

)
=

1

k0

(
0 kt

J · kt 0

)
·
(

Exy(z)
η0J · Hxy(z)

)

the total electric and magnetic fields are


E =

(
I2 −

1

kz

ẑkt

)
· F + +

(
I2 +

1

kz

ẑkt

)
· F−

η0H =
1

k0

k+ ×
(
I2 −

1

kz

ẑkt

)
· F + +

1

k0

k− ×
(
I2 +

1

kz

ẑkt

)
· F−

(5.3)

2This dyadic is related to the admittance dyadic Y(kt).

Y(kt) =
1

k0kz

{
k2
0ê⊥ê‖ − k2

z ê‖ê⊥
}

= J · W−1(kt)
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where
k± = kt ± ẑkz

The relations

k± ·
(
I2 ∓

1

kz

ẑkt

)
· F± = 0

hold also.
Straightforward calculations show that the split fields satisfy the ODEs

d

dz
F±(z) = ±ikzF

±(z)

which give {
F±(z) = F±(z1)e

±ikz(z−z1), z < z1

F±(z) = F±(zN−1)e
±ikz(z−zN−1), z > zN−1

(5.4)

Notice that F±(z) are damped in the ±z directions, respectively, for the case the
plane waves are inhomogeneous (evanescent).

5.1 Power flow

For the case of homogeneous plane waves, the Poynting vector

S =
1

4
(E × H∗ + E∗ × H)

becomes

S =
1

4η0k0

(
k± +

(
k±)∗) ∣∣∣∣

(
I2 ∓

1

kz

ẑkt

)
· F±

∣∣∣∣
2

=

=
1

2η0k0

k±
∣∣∣∣ê‖F

±
‖ + ê⊥F±

⊥ ∓ ẑF±
‖

kt

kz

∣∣∣∣
2

=
1

2η0k0

k±
(
|F±

‖ |2k2
0

k2
z

+ |F±
⊥ |2

) (5.5)

for up-going and down-going waves, respectively, where the projections F±
⊥ and F±

‖
are defined by F±

⊥ = ê⊥ · F± and F±
‖ = ê‖ · F±.

6 Reflection and transmission

In this section, the reflection and transmission dyadics for the plane-stratified bian-
isotropic structure are computed. These dyadics are easy to obtain using the wave
splitting, (5.1)–(5.2), on the solution of the propagator problem, see (4.5). Recall
that all the generating sources are located in the vacuous half-space, z < z0 < z1,
and that the half-space, z > zN−1, is either vacuous or perfectly conducting. In the
latter case, transmission is, of course, zero. Recall also that F +(z1) and F−(z1) are
the incident and reflected tangential electric fields at z = z1, respectively, and that
F +(zN−1) is the transmitted tangential electric field at z = zN−1. All these fields
are associated with the transverse wave vector kt. Specifically, the total incident
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field Ei(r, ω) at z ≤ z1 (but to the right of the sources, i.e., z0 ≤ z ≤ z1) in terms
of F +(z1) is

Ei(r, ω) =
1

4π2

∞∫∫
−∞

(
I2 −

1

kz

ẑkt

)
· F +(z1, kt, ω)eikt·ρ+ikz(z−z1) dkxdky z0 ≤ z ≤ z1

by the use of (3.1), (5.3), and (5.4). Notice that all components of the field, not just
the tangential ones, are given.

In a direct scattering problem, the incident fields are given. In our case, we have
specified sources to the left and none to the right of the slab, i.e., the given fields
are {

F +(z1) = given = −ẑ ×
(
ẑ × Ei(z1)

)
F−(zN−1) = 0

where Ei(z1) is the incident electric field (Fourier transformed field) at z = z1

associated with the transverse wave vector kt. The double cross product projects
the field to the x-y-plane, since only that part is relevant in the propagation problem
as seen from the previous analysis.

Writing the solution to the propagation problem, (4.5), in block-matrix form as(
Exy(zN−1)

η0J · Hxy(zN−1)

)
=

(
P11 P12

P21 P22

)
·
(

Exy(z1)
η0J · Hxy(z1)

)
(6.1)

and combining it with the wave splitting, (5.1)–(5.2), gives the scattering relation(
F +(zN−1)
F−(zN−1)

)
=

1

2

(
I2 −W
I2 W

)
·
(
P11 P12

P21 P22

)
·
(

I2 I2

−W−1 W−1

)
·
(

F +(z1)
F−(z1)

)

=

(
T11 T12

T21 T22

)
·
(

F +(z1)
F−(z1)

)
= T ·

(
F +(z1)
F−(z1)

)

where 


2T11 = P11 − P12 · W−1 − W · P21 + W · P22 · W−1

2T12 = P11 + P12 · W−1 − W · P21 − W · P22 · W−1

2T21 = P11 − P12 · W−1 + W · P21 − W · P22 · W−1

2T22 = P11 + P12 · W−1 + W · P21 + W · P22 · W−1

We manipulate this set of equations to{
F−(z1) = r · F +(z1)

F +(zN−1) = t · F +(z1)
(6.2)

where the reflection and transmission dyadics for the tangential electric field, r and
t, respectively, are defined by {

r = −T−1
22 · T21

t = T11 + T12 · r
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The reflected and transmitted fields Er(r, ω) and Et(r, ω) for z ≤ z1 and z ≥ zN ,
respectively, are then given by


Er(r, ω) =
1

4π2

∞∫∫
−∞

(
I2 +

ẑkt

kz

)
· r · F +(z1, kt, ω)eikt·ρ+ikz(z1−z) dkxdky z ≤ z1

Et(r, ω) =
1

4π2

∞∫∫
−∞

(
I2 −

ẑkt

kz

)
· t · F +(z1, kt, ω)eikt·ρ+ikz(z−zN ) dkxdky z ≥ zN

An alternative way of computing the reflection and transmission properties of
a slab is to apply the Redheffer ∗-product [18] to a composition of the slab into
discrete subslabs. This procedure is outlined in Appendix D.

6.1 PEC-backing

Finally, we consider the case when medium N is a perfect electric conductor (PEC),
which is of great technical interest. For this case, the boundary conditions at z = zN

give the appropriate constraints(
0

−η0JS

)
=

(
Exy(zN−1)

η0J · Hxy(zN−1)

)
=

(
P11 P12

P21 P22

)
·
(

I2 I2

−W−1 W−1

)
·
(

F +(z1)
r · F +(z1)

)

where JS is the surface current density at z = zN−1, and where we have used (6.1),
(5.2), and (6.2). The upper equation gives the reflection dyadic in this case. The
result is

r = −
(
P11 + P12 · W−1

)−1 ·
(
P11 − P12 · W−1

)
(6.3)

and the lower the current density

JS =
1

η0

(
P22 · W−1 · (I2 − r) − P21 · (I2 + r)

)
· F +(z1)

This latter equation can be formulated as a dyadic relation, JS = C ·F +(z1), where
the surface current dyadic C is

C =
1

η0

(
P22 · W−1 · (I2 − r) − P21 · (I2 + r)

)

7 Examples

The fundamental dyadic for a general, stratified, bianisotropic material is given in
Appendix C. In this section, explicit expressions for the single-slab propagator are
given for some important classes of linear and homogeneous materials. These results,
which are of independent interest, can be used to check numerical codes.
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7.1 Isotropic media

The results for simple media are well known. For a homogeneous isotropic slab
(ξ = ζ = 0, ε = εI3, µ = µI3), the fundamental dyadic is

M =

(
0 −µI2 + 1

εk2
0
ktkt

−εI2 − 1
µk2

0
J · ktkt · J 0

)

For this case, the eigenvalues are given by equation (4.3) with

λ2
+ = λ2

− = λ2 = εµ − k2
t /k

2
0

Equation (4.4) for the single-slab propagator reduces to (d = z − z1)

P = eik0dM = I4 cos (k0dλ) +
i

λ
M sin (k0dλ) (7.1)

This result can either be obtained directly from the Cayley-Hamilton theorem or by
a limit process of the results in Section 4.2.

It is easy to see that two different fundamental dyadics of do not commute unless
the materials are impedance matched. In fact,

Mn · Mm =

(
εmµn

(
I2 − τmê⊥ê⊥ − τnê‖ê‖

)
0

0 εnµm

(
I2 − τmê⊥ê⊥ − τnê‖ê‖

))

where ê‖ = kt/kt, ê⊥ = J · ê‖, and τm = k2
t /(εmµmk2

0).

7.1.1 Single isotropic layer embedded in vacuum

The propagator for a single layer is given by (7.1). Explicitly, in the
{
ê‖, ê⊥

}
-system,

it is

P = eik0dM

=




(
ê‖ê‖ + ê⊥ê⊥

)
cos(k0dλ) −i

(
ê‖ê‖

λ
ε2

+ ê⊥ê⊥
µ2

λ

)
sin(k0dλ)

−i
(
ê‖ê‖

ε2
λ

+ ê⊥ê⊥
λ
µ2

)
sin(k0dλ)

(
ê‖ê‖ + ê⊥ê⊥

)
cos(k0dλ)




where λ2 = ε2µ2 − k2
t /k

2
0. Straightforward calculations show that principal blocks of

the scattering dyadic are


2T11 =ê‖ê‖

(
2 cos(k0dλ) + i

(
λ

ε2 cos θi

+
ε2 cos θi

λ

)
sin(k0dλ)

)
+

+ê⊥ê⊥

(
2 cos(k0dλ) + i

(
λ

µ2 cos θi

+
µ2 cos θi

λ

)
sin(k0dλ)

)

2T22 =ê‖ê‖

(
2 cos(k0dλ) − i

(
λ

ε2 cos θi

+
ε2 cos θi

λ

)
sin(k0dλ)

)
+

+ê⊥ê⊥

(
2 cos(k0dλ) − i

(
λ

µ2 cos θi

+
µ2 cos θi

λ

)
sin(k0dλ)

)
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and 


2T12 =i

(
ê‖ê‖

(
− λ

ε2 cos θi

+
ε2 cos θi

λ

)

+ ê⊥ê⊥

(
λ

µ2 cos θi

− µ2 cos θi

λ

))
sin(k0dλ)

T21 = − T12

where θi is the angle of incidence. Consequently, the reflection and transmission
dyadics are {

r = ê‖ê‖r‖‖ + ê⊥ê⊥r⊥⊥

t = ê‖ê‖t‖‖ + ê⊥ê⊥t⊥⊥
(7.2)

where


r‖‖ =
i
(
− λ

ε2 cos θi
+ ε2 cos θi

λ

)
sin(k0dλ)

2 cos(k0dλ) − i
(

λ
ε2 cos θi

+ ε2 cos θi

λ

)
sin(k0dλ)

= r1‖‖
1 − e2ik0λd

1 − r1
2
‖‖e

2ik0λd

r⊥⊥ =
i
(

λ
µ2 cos θi

− µ2 cos θi

λ

)
sin(k0dλ)

2 cos(k0dλ) − i
(

λ
µ2 cos θi

+ µ2 cos θi

λ

)
sin(k0dλ)

= r1⊥⊥
1 − e2ik0λd

1 − r1
2
⊥⊥e2ik0λd




t‖‖ =
2

2 cos(k0dλ) − i
(

λ
ε2 cos θi

+ ε2 cos θi

λ

)
sin(k0dλ)

=
(1 − r1

2
‖‖)e

ik0λd

1 − r1
2
‖‖e

2ik0λd

t⊥⊥ =
2

2 cos(k0dλ) − i
(

λ
µ2 cos θi

+ µ2 cos θi

λ

)
sin(k0dλ)

=
(1 − r1

2
⊥⊥)eik0λd

1 − r1
2
⊥⊥e2ik0λd

and 


r1‖‖ =

1
2

(
λ

ε2 cos θi
− ε2 cos θi

λ

)
1 + 1

2

(
λ

ε2 cos θi
+ ε2 cos θi

λ

) =
λ − ε2 cos θi

λ + ε2 cos θi

r1⊥⊥ =

1
2

(
µ2 cos θi

λ
− λ

µ2 cos θi

)
1 + 1

2

(
µ2 cos θi

λ
+ λ

µ2 cos θi

) =
µ2 cos θi − λ

µ2 cos θi + λ

are recognized as Fresnel’s equations [11].
For a PEC-backed isotropic slab, equation (6.3) yields


r‖‖ = −

cos(k0dλ) + i λ
ε2 cos θi

sin(k0dλ)

cos(k0dλ) − i λ
ε2 cos θi

sin(k0dλ)
=

r1‖‖ − e2ik0λd

1 − r1‖‖e2ik0λd

r⊥⊥ = −cos(k0dλ) + iµ2 cos θi

λ
sin(k0dλ)

cos(k0dλ) − iµ2 cos θi

λ
sin(k0dλ)

=
r1⊥⊥ − e2ik0λd

1 − r1⊥⊥e2ik0λd

where r1‖‖ and r1⊥⊥ are given by Fresnel’s equations.
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7.2 Biisotropic media

Electromagnetic wave propagation in biisotropic media has received extensive atten-
tion during recent years. An excellent review of the area is given in Ref. 14. For a
homogeneous biisotropic slab (ε = εI3, µ = µI3, ξ = ξI3, ζ = ζI3), the fundamental
dyadic is

M =

(
−Jζ + aξ

k2
0
ktkt · J −µI2 + aµ

k2
0
ktkt

−εI2 − aε
k2
0
J · ktkt · J Jξ − aζ

k2
0
J · ktkt

)

where a−1 = εµ − ξζ. Two special cases are of interest, viz., reciprocal, biisotropic
medium (isotropic chiral medium or Pasteur medium), which is characterized by
ζ = −ξ, and non-reciprocal, achiral, biisotropic medium (Tellegen medium), which
is characterized by ζ = ξ.

Straightforward calculations show that the eigenvalues of M are all distinct unless
the medium is Tellegen; specifically, equation (4.3) holds, where the eigenvalues

λ2
± = n2

± − k2
t

k2
0

, n± =

√
µε −

(
ξ + ζ

2

)2

± i
ξ − ζ

2

correspond to up-going (down-going waves correspond to the similar negative values)
right and left-hand circularly polarized plane waves in the medium, respectively.
Unless the medium is Tellegen, the single-slab propagator is given by equation (4.4),
where

M · M =

(
I2 (µε − ζ2 − k2

t /k
2
0) Jµ (ζ − ξ)

Jε (ζ − ξ) I2 (µε − ξ2 − k2
t /k

2
0)

)
In particular, for Pasteur media (ζ = −ξ), the propagator is

P =
1

2

(
P+ i

√
µ
ε
P+ · J

i
√

ε
µ
J · P+ −J · P+ · J

)
+

1

2

(
P− −i

√
µ
ε
P− · J

−i
√

ε
µ
J · P− −J · P− · J

)

where the dyadics

P± = I2 cos(k0dλ±) ± 1

λ±

(
I2n± − 1

n±k2
0

ktkt

)
· J sin(k0dλ±), n± =

√
µε ± i ξ

are the propagators of the tangential components of particular linear combinations
of the electric and magnetic fields known as wave fields, namely,

(
E ∓ i

√
µ
ε
η0H

)
/2,

respectively [14]. For a Tellegen material (ζ = ξ), equation (7.1) applies with λ2 =
µε − ξ2 − k2

t /k
2
0.

Using the technique in presented in Section 6, it is a straightforward matter
to obtain the reflection and transmission dyadics for a single biisotropic slab. For
results, the reader is referred to Ref. 14 and references given therein.
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7.3 Anisotropic media

For anisotropic materials (ξ = ζ = 0), the blocks of the fundamental dyadic are


M11 = − 1

εzzk0

ktεz +
1

µzzk0

J · µ⊥kt · J

M12 = J · µ⊥⊥ · J +
1

εzzk2
0

ktkt −
1

µzz

J · µ⊥µz · J

M21 = −ε⊥⊥ +
1

εzz

ε⊥εz −
1

µzzk2
0

J · ktkt · J

M22 = − 1

εzzk0

ε⊥kt +
1

µzzk0

J · ktµz · J

For nonmagnetic anisotropic materials (ξ = ζ = 0, µ = I3)


M11 = − 1

εzzk0

ktεz

M12 = −I2 +
1

εzzk2
0

ktkt

M21 = −ε⊥⊥ +
1

εzz

ε⊥εz −
1

k2
0

J · ktkt · J

M22 = − 1

εzzk0

ε⊥kt

It seems hard to obtain explicit expressions for the single-slab propagator in the
general anisotropic case. However, closed-form solutions can be obtained in some
special cases which are of interest.

7.3.1 Nonmagnetic uniaxial media

The permittivity dyadic of the uniaxial medium can be written as

ε = ε1 (I3 − ûû) + ε2ûû

where the unit vector û defines an optical axis in the material. This unit vector has
a general orientation in space. Consequently, the decomposition of the permittivity
dyadic is, see Section 2.3


ε⊥⊥ = I2 · ε · I2 = ε1I2 + (ε2 − ε1)uxyuxy

εz = ẑ · ε · I2 = (ε2 − ε1)uzuxy

ε⊥ = I2 · ε · ẑ = (ε2 − ε1)uzuxy = εz

εzz = ẑ · ε · ẑ = ε1 + (ε2 − ε1)u
2
z

where the projection of the unit vector û on the x-y plane is uxy = I2 · û and the
projection along the z-axis is uz = û · ẑ. The blocks of the fundamental dyadic
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become 


M11 = −(ε2 − ε1)uz

εzzk0

ktuxy

M12 = −I2 +
1

εzzk2
0

ktkt

M21 = −ε1I2 −
ε1(ε2 − ε1)

εzz

uxyuxy −
1

k2
0

J · ktkt · J

M22 = −(ε2 − ε1)uz

εzzk0

uxykt = Mt
11

An appropriate matrix representation of the fundamental dyadic M in the
{
ê‖, ê⊥

}
-

system is


− (ε2−ε1)
εzz

kt

k0
uzu‖ − (ε2−ε1)

εzz

kt

k0
uzu⊥

1
εzz

k2
t

k2
0
− 1 0

0 0 0 −1

−ε1 − ε1(ε2−ε1)
εzz

u2
‖ − ε1(ε2−ε1)

εzz
u‖u⊥ − (ε2−ε1)

εzz

kt

k0
uzu‖ 0

− ε1(ε2−ε1)
εzz

u‖u⊥ −ε1 − ε1(ε2−ε1)
εzz

u2
⊥ +

k2
t

k2
0

− (ε2−ε1)
εzz

kt

k0
uzu⊥ 0




where u‖ = ê‖ · uxy and u⊥ = ê⊥ · uxy.

Normal incidence: At normal incidence, kt = 0; hence

M =

(
0 −I2

−ε1I2 − ε1(ε2−ε1)
εzz

uxyuxy 0

)

and

M · M =

(
ε1I2 + ε1(ε2−ε1)

εzz
uxyuxy 0

0 ε1I2 + ε1(ε2−ε1)
εzz

uxyuxy

)

The eigenvalues of M are all distinct; specifically, equation (4.3) holds, where

λ2
+ = ε1, λ2

− =
ε1ε2

εzz

=
ε1ε2

ε1 + (ε2 − ε1)u2
z

These eigenvalues correspond to up-going (down-going waves correspond to the sim-
ilar negative values) ordinary and extra-ordinary waves in the medium, respectively.
The single-slab propagator is given by equation (4.4).

Optical axis in the normal direction: In this case, uxy = 0 (uz = ±1); conse-
quently,

M =

(
0 −I2 + 1

ε2k2
0
ktkt

−ε1I2 − 1
k2
0
J · ktkt · J 0

)

and

M · M =


ε1

(
I2 − 1

ε2k2
0
ktkt

)
+ 1

k2
0
J · ktkt · J 0

0 ε1

(
I2 − 1

ε2k2
0
ktkt

)
+ 1

k2
0
J · ktkt · J



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The eigenvalues of M are all distinct; specifically, equation (4.3) holds, where

λ2
+ = ε1 −

k2
t

k2
0

, λ2
− = ε1 −

k2
t

k2
0

ε1

ε2

The single-slab propagator is given by equation (4.4):

P = eik0dM =

(
ê‖ê‖ cos(k0dλ−) −iê‖ê‖

λ−
ε1

sin(k0dλ−)

−iê‖ê‖
ε1
λ−

sin(k0dλ−) ê‖ê‖ cos(k0dλ−)

)

+

(
ê⊥ê⊥ cos(k0dλ+) −iê⊥ê⊥

1
λ+

sin(k0dλ+)

−iê⊥ê⊥λ+ sin(k0dλ+) ê⊥ê⊥ cos(k0dλ+)

)

Similar to the isotropic case, one can show that the reflection and transmission
dyadics for the uniaxial slab can be written in the form (7.2), where



r‖‖ = r1‖‖
1 − e2ik0λ−d

1 − r1
2
‖‖e

2ik0λ−d

r⊥⊥ = r1⊥⊥
1 − e2ik0λ+d

1 − r1
2
⊥⊥e2ik0λ+d

t‖‖ =
(1 − r1

2
‖‖)e

ik0λ−d

1 − r1
2
‖‖e

2ik0λ−d

t⊥⊥ =
(1 − r1

2
⊥⊥)eik0λ+d

1 − r1
2
⊥⊥e2ik0λ+d

and 


r1‖‖ =
λ− − ε1 cos θi

λ− + ε1 cos θi

r1⊥⊥ =
cos θi − λ+

cos θi + λ+

For a PEC-backed uniaxial slab similar results holds. Explicitly, the result is


r⊥⊥ =
r1‖‖ − e2ik0λ−d

1 − r1‖‖e2ik0λ−d

r⊥⊥ =
r1⊥⊥ − e2ik0λ+d

1 − r1⊥⊥e2ik0λ+d

8 Numerical computations

In this section, we illustrate the analysis presented in the previous sections in a series
of numerical computations. The programming task is most easily done in a language
that supports matrix manipulations, e.g., MATLAB. The numerical implementation
is straightforward and causes no problem except for cases where strongly dissipative
layers and evanescent waves are present. In these cases special considerations have
to made [22].
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8.1 Reflectance and transmittance

In view of equation (5.5) for the Poynting vectors associated with the up-going and
the down-going fields, the reflectance and the transmittance of the planar bian-
isotropic slab are defined by


R =

|F−
‖ (z1)|2/ cos2 θi + |F−

⊥ (z1)|2

|F+
‖ (z1)|2/ cos2 θi + |F+

⊥ (z1)|2

T =
|F+

‖ (zN−1)|2/ cos2 θi + |F+
⊥ (zN−1)|2

|F+
‖ (z1)|2/ cos2 θi + |F+

⊥ (z1)|2

respectively. Notice that the reflectance and the transmittance depend on the angles
θi and φi (or equivalently on the tangential wave vector kt). These quantities can
be expressed in terms of the components of the reflection and transmission dyadics
for the electric field{

r = ê‖ê‖r‖‖ + ê‖ê⊥r‖⊥ + ê⊥ê‖r⊥‖ + ê⊥ê⊥r⊥⊥

t = ê‖ê‖t‖‖ + ê‖ê⊥t‖⊥ + ê⊥ê‖t⊥‖ + ê⊥ê⊥t⊥⊥

the angles θi and φi, and the polarization angle, χ, of the incident electric field at
z = z1 defined by

Ei(z1) = E0(z1)
(
ê⊥ cos χ + ê⊥ × k̂

+
sin χ

)
where E0(z1) is a complex number that gives the amplitude and phase of the incident
plane polarized wave at the front end of the slab. For a plane polarized incident
field the result is{

R = |r‖‖ sin χ + r‖⊥ cos χ/ cos θi|2 + |r⊥‖ cos θi sin χ + r⊥⊥ cos χ|2
T = |t‖‖ sin χ + t‖⊥ cos χ/ cos θi|2 + |t⊥‖ cos θi sin χ + t⊥⊥ cos χ|2 (8.1)

which in the absence of any cross-polarized terms, e.g., for isotropic materials, reduce
to {

R = |r‖‖|2 sin2 χ + |r⊥⊥|2 cos2 χ

T = |t‖‖|2 sin2 χ + |t⊥⊥|2 cos2 χ

The perpendicular polarization (TE polarization) corresponds to χ = 0 and the
parallel polarization (TM polarization) to χ = π/2.

8.2 Example—radome

In this first example we illustrate how the transmitted power (transmittance T )
is affected by the introduction of one or several uniaxial layers in a radome. The
specific parameters of the radome with only isotropic layers and with a uniaxial
reinforcement are given in Table 2. The dielectric data of the materials are obtained
from Ref. 1, which also provides the pertinent mixing formulas for the glass fiber
reinforced Epoxy.
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Without reinforcing layer

ε d (mm)

Epoxy 3.65(1+i0.0320) 0.8

Rohacell 1.10(1+i0.0004) 6.4

Epoxy 3.65(1+i0.0320) 0.8

With reinforcing layer (E-glass, ε = 6.32(1 + i0.0037)) [1]

εxx = εyy εzz d (mm)

Epoxy + E-glass (30%) 4.44(1+i0.0218) 4.23(1+i0.0248) 0.8

Rohacell 1.10(1+i0.0004) 1.10(1+i0.0004) 6.4

Epoxy + E-glass (30%) 4.44(1+i0.0218) 4.23(1+i0.0248) 0.8

Table 2: Material parameters for the radome in Example 8.2 which are presented
in Figures 5–6.

The transmitted power for a series of incident angles for these materials are
presented in Figures 5–6. The perpendicular polarization (TE-case) is depicted in
Figure 5 and the parallel polarization (TM-case) is depicted in Figure 6. The per-
pendicular polarization (TE-case) is not affected by the anisotropy, but the change
of the permittivity in the lateral directions, i.e., εxx and εyy, alter the transmission
properties. This is due to the special orientation of the uniaxial layers (û = ẑ for
the optical axis of the layers) in this example.

The effect of the uniaxial layer (glass fiber reinforcement) is not negligible. This
is especially true at higher frequencies. At these higher frequencies an extra trans-
mission loss of several dB is observed due to the glass fiber reinforcement.

As a second example of the analysis presented in this paper we consider an-
other radome application. The radome is a 13-layer construction of E-glass/resin
and polyethen/resin. The 13 layers are periodically repeated as: E-glass/resin
0.20 mm, polyethen/resin 0.40 mm, E-glass/resin 0.40 mm, polyethen/resin 0.40
mm,. . . , polyethen/resin 0.40 mm, and E-glass/resin 0.20 mm, respectively. The
permittivity of the layers are E-glass/resin 4.40(1 + i0.0100), and polythene/resin
2.60(1 + i0.0060). The transmittance for an angle of incidence of 30◦ is shown in
Figure 7. The figure clearly shows that the radome acts as a homogeneous slab
at low frequencies (≤ 90 GHz), i.e., there is no resolution of the 13 layers. The
resonance phenomena at ≈ 110 GHz gives the desired transmission reduction due
to the layered structure.
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Figure 5: The transmitted power (transmittance) for an isotropic slab (upper) and
an uniaxially anisotropic slab (lower) with data given in Table 2 as a function of
frequency for different angles of incidence. The polarization of the incident electric
field is χ = 0 (TE polarization).
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Figure 6: The transmitted power (transmittance) for an isotropic slab (upper) and
an uniaxially anisotropic slab (lower) with data given in Table 2 as a function of
frequency for different angles of incidence. The polarization of the incident electric
field is χ = π/2 (TM polarization).
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Figure 7: The transmitted power (transmittance) for a 13-layer slab with data
given in the text as a function of frequency for an angle of incidence of 30◦. The
solid line shows TE polarization and the broken line the TM polarization.

ε µ ξ ζ k0d
3 0 0

0 5 0
0 0 3





1 0 0

0 1 0
0 0 1.1





0 0 0

0 0 i0.5
0 0 0





0 0 0

0 0 0
0 −i0.5 0


 2π

Table 4: Material parameters for the bianisotropic material in Example 8.3 which
is presented in Figure 8.

8.3 Example—bianisotropic media

As an illustration of the performance of the algorithm in the general bianisotropic
case, we choose to calculate the transmission properties of a complex material. An
example of such a material is the Ω-material, which has been investigated intensely
during recent years [17, 20].

In Figure 8 we illustrate the transmission properties of a Ω-material. Specifically,
we show the transmittance T , see (8.1), of the slab as a function of the two angles
θi and φi (or equivalently kt) for the two generic polarization of the incident wave
(TE- and TM-cases). The specific data for the material is given in Table 4. This
material can be manufactured by putting small Ω-shaped elements in the x-y-plane
in a host medium [17].

From these computations we clearly see that the transmittance vary as a function
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Figure 8: The transmittance for a bianisotropic slab given in Table 4. The two
generic polarizations, TE and TM, of the incident wave are depicted.

of the incident direction φi, which shows that the slab lacks symmetry in the x-y-
plane. The difference between the two different plane of polarization is not very
striking. Another choice of parameters shows larger differences [17].

9 Conclusions

In this paper we have shown how the wave propagation properties in plane-stratified
slab comprised of complex (bianisotropic) media can be analyzed by the notion of
propagators. The propagators map the total field at one position, e.g., the left
hand side boundary of the slab to another position, e.g., the right hand side of the
slab. The Cayley-Hamilton theorem simplifies the evaluation of the propagators.
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Wave splitting of the total field then easily gives the reflection and the transmission
dyadics of the slab. Several numerical computations show the performance of the
analysis.
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Appendix A Cayley-Hamilton theorem

The following theorems are of fundamental importance for computing the action of
an entire function of a square dyadic [6]

Theorem A.1 (Cayley-Hamilton). A quadratic dyadic A satisfies its own char-
acteristic equation:

If pA(λ) = det(λI − A), then pA(A) = 0

From this theorem, one can prove the following important theorem.

Theorem A.2. Let λ1, . . . , λm be the different eigenvalues of the n-dimensional
dyadic A, and n1, . . . , nm their multiplicity. If f(z) is an entire function, then

f(A) = q(A)

where the uniquely defined polynomial q of degree ≤ n− 1 is defined by the following
conditions:

djq

dzj
(λk) =

djf

dzj
(λk), j = 0, . . . , nk − 1, k = 1, . . . , m

Appendix B Campbell-Hausdorff series

Let Ai, i = 1, 2 be two dyadics, and [A1,A2] = A1 ·A2−A2 ·A1 be the commutator
of the dyadics. Then we construct a dyadic A, such that

eA = eA1 · eA2

by

A = A1 + A2 +
1

2
[A1,A2] +

1

3!
{[[A1,A2] ,A2] + [[A2,A1] ,A1]} + . . .

In the long-wave limit, the approximation A = A1 + A2 can be used to homog-
enize a two-component structure of bianisotropic layers.
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Appendix C Derivation of fundamental equation

The Maxwell equations, (2.1), can be decomposed in tangential and normal parts
as

d

dz

(
Exy(z)

η0J · Hxy(z)

)
= i

(
kt 0
0 J · kt

) (
Ez(z)

η0Hz(z)

)
− ik0

(
c0J · Bxy(z)
c0η0Dxy(z)

)
(C.1)

and (
c0η0Dz(z)
c0Bz(z)

)
=

1

k0

(
0 kt

J · kt 0

)
·
(

Exy(z)
η0J · Hxy(z)

)
(C.2)

where an appropriate matrix notion has been introduced.
Similarly, the constitutive relations, (2.2), can be decomposed in tangential and

normal parts as(
c0J · Bxy(z)
c0η0Dxy(z)

)
=

(
J · ζ⊥⊥ −J · µ⊥⊥ · J

ε⊥⊥ −ξ⊥⊥ · J

)
·
(

Exy(z)
η0J · Hxy(z)

)

+

(
J · ζ⊥ J · µ⊥

ε⊥ ξ⊥

) (
Ez(z)

η0Hz(z)

) (C.3)

and(
εzz ξzz

ζzz µzz

) (
Ez(z)

η0Hz(z)

)
=

(
c0η0Dz(z)
c0Bz(z)

)
+

(
−εz ξz · J
−ζz µz · J

)
·
(

Exy(z)
η0J · Hxy(z)

)
(C.4)

where 


ε = ε⊥⊥ + ẑεz + ε⊥ẑ + ẑεzzẑ

ξ = ξ⊥⊥ + ẑξz + ξ⊥ẑ + ẑξzzẑ

ζ = ζ⊥⊥ + ẑζz + ζ⊥ẑ + ẑζzzẑ

µ = µ⊥⊥ + ẑµz + µ⊥ẑ + ẑµzzẑ

are defined in Section 2.3.
Combining equations (C.1) and (C.3) gives

d

dz

(
Exy(z)

η0J · Hxy(z)

)
= − ik0

(
J · ζ⊥⊥ −J · µ⊥⊥ · J

ε⊥⊥ −ξ⊥⊥ · J

)
·
(

Exy(z)
η0J · Hxy(z)

)

−ik0

(
−kt/k0 + J · ζ⊥ J · µ⊥

ε⊥ −J · kt/k0 + ξ⊥

) (
Ez(z)

η0Hz(z)

) (C.5)

Similarly, combining equations (C.2) and (C.4) yields(
εzz ξzz

ζzz µzz

) (
Ez(z)

η0Hz(z)

)
=

(
−εz kt/k0 + ξz · J

J · kt/k0 − ζz µz · J

)
·
(

Exy(z)
η0J · Hxy(z)

)
(C.6)

which is an expression for the normal components of the electric and magnetic fields
in terms of tangential components.
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Eliminating the normal field components gives the fundamental equation (3.3).
The fundamental dyadic is found to be

M =

(
−J · ζ⊥⊥ J · µ⊥⊥ · J
−ε⊥⊥ ξ⊥⊥ · J

)
+

(
kt/k0 − J · ζ⊥ −J · µ⊥

−ε⊥ J · kt/k0 − ξ⊥

)
1

εzzµzz − ξzzζzz

(
−µzzεz − ξzzJ · kt/k0 + ξzzζz µzzkt/k0 + µzzξz · J − ξzzµz · J
ζzzεz + εzzJ · kt/k0 − εzzζz −ζzzkt/k0 − ζzzξz · J + εzzµz · J

)

Specifically, the block dyadics, Mlm, l, m = 1, 2, are


M11 = −J · ζ⊥⊥ + a (kt/k0 − J · ζ⊥) (−µzzεz − ξzzJ · kt/k0 + ξzzζz)

− a (J · µ⊥) (ζzzεz + εzzJ · kt/k0 − εzzζz)

M12 = J · µ⊥⊥ · J + a (kt/k0 − J · ζ⊥) (µzzkt/k0 + µzzξz · J − ξzzµz · J)

− a (J · µ⊥) (−ζzzkt/k0 − ζzzξz · J + εzzµz · J)

M21 = −ε⊥⊥ − aε⊥ (−µzzεz − ξzzJ · kt/k0 + ξzzζz)

+ a (J · kt/k0 − ξ⊥) (ζzzεz + εzzJ · kt/k0 − εzzζz)

M22 = ξ⊥⊥ · J − aε⊥ (µzzkt/k0 + µzzξz · J − ξzzµz · J)

+ a (J · kt/k0 − ξ⊥) (−ζzzkt/k0 − ζzzξz · J + εzzµz · J)

where a−1 = εzzµzz − ξzzζzz. Notice that the result holds for materials that are
stratified in the z direction, not only the homogeneous case.

Appendix D Composition of two slabs

In this appendix we derive an algorithm of how the reflection and transmission
dyadics of a slab, that is composed of two different subslabs, are related to the
individual reflection and transmission dyadics of the subslabs. This problem is
closely related to the Redheffer ∗-product [18] or a composition of transmission
lines.

Let r±i and t±i , i = 1, 2, denote the reflection and the transmission dyadics for
two subslabs. Furthermore, let the split fields at the left boundary of the first slab
be F±

1 , on the intermediate boundary be F±, and on the right boundary be F±
2 ,

see Figure 9. The relation between the outputs and inputs on each boundary is{
F−

1 = r+
1 · F +

1 + t−1 · F−

F + = t+
1 · F +

1 + r−1 · F−

and {
F− = r+

2 · F + + t−2 · F−
2

F +
2 = t+

2 · F + + r−2 · F−
2

Solve for the intermediate fields F±, and we get{
F + =

(
I2 − r−1 · r+

2

)−1 ·
(
t+
1 · F +

1 + r−1 · t−2 · F−
2

)
F− = r+

2 ·
(
I2 − r−1 · r+

2

)−1 ·
(
t+
1 · F +

1 + r−1 · t−2 · F−
2

)
+ t−2 · F−

2
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Figure 9: The composite slab and its two subslabs.

The reflection and transmission dyadics of the composite slab r± and t± are{
F−

1 = r+ · F +
1 + t− · F−

2

F +
2 = t+ · F +

1 + r− · F−
2

where 


r+ = r+
1 + t−1 · r+

2 ·
(
I2 − r−1 · r+

2

)−1 · t+
1

t− = t−1 · r+
2 ·

(
I2 − r−1 · r+

2

)−1 · r−1 · t−2 + t−1 · t−2
r− = r−2 + t+

2 ·
(
I2 − r−1 · r+

2

)−1 · r−1 · t−2
t+ = t+

2 ·
(
I2 − r−1 · r+

2

)−1 · t+
1
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