
LUND UNIVERSITY

PO Box 117
221 00 Lund
+46 46-222 00 00

Management of Requirements in ERP development: A Comparison between
Proprietary and Open Source ERP

Johansson, Björn; Carvalho, Rogerio Atem

Published in:
[Host publication title missing]

2009

Link to publication

Citation for published version (APA):
Johansson, B., & Carvalho, R. A. (2009). Management of Requirements in ERP development: A Comparison
between Proprietary and Open Source ERP. In [Host publication title missing] (pp. 1605-1609)

Total number of authors:
2

General rights
Unless other specific re-use rights are stated the following general rights apply:
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors
and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.
 • Users may download and print one copy of any publication from the public portal for the purpose of private study
or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove
access to the work immediately and investigate your claim.

https://portal.research.lu.se/en/publications/1198447f-95f3-477c-92e8-902dc9e958a3

Download date: 31. Jan. 2026

Management of Requirements in ERP development: A
Comparison between Proprietary and Open Source ERP

Björn Johansson
Center for Applied ICT

Copenhagen Business School
DK-2000 Frederiksberg

+45 3815 2421

bj.caict@cbs.dk

Rogério Atem de Carvalho
Federal Center for Technological

Education (CEFET Campos)
R. Dr. Siqueira, 273, Campos/RJ,

CEP 28030-130, Brazil
55-22-2726-2904

ratem@cefetcampos.br

ABSTRACT
Identification and specification of business requirements are
extremely important when development of Enterprise Resource
Planning systems (ERPs) take place. It can be stated that this is
still a problematic area not well researched and, as a result from
that, it does not exist much guidance on how to deal with
requirements. In this paper we discuss if existing problems of
requirements management are the same or if they differ according
to the type of development: closed source (proprietary) or open
source ERP. The reason is that it is possible that these two
approaches can promote each other in how to improve the first
phase in ERP development. From the discussion about similarities
and differences between the two approaches it is suggested further
research in this area that could end up in some more practical
guidelines on how to do the requirements definition so that the
finally developed ERPs better support adopters’ needs.

Categories and Subject Descriptors
D.2.1 [Software Engineering]: Requirements/Specifications –
elicitation methods.

General Terms

Enterprise Information Systems.

Keywords
Enterprise Resource Planning, Free/Open Source Software.

1. INTRODUCTION
Development of Enterprise Resource Planning (ERPs) systems is
an endeavor that has a high level of complexity, and a great deal
of this complexity is directly related to requirements management.
The complexity resulting in several problems related to
requirements management comes from the fact that developers
often not are experts of the domain the developed systems are
supposed to support. Shehab et al., [1], Esteves and Pastor [2] and
Botta-Genoulaz et al. [3] show that there exists a great extent of

ERP research. When reviewing these reports over ERP research
the impression that a major part of the research is on
implementation of ERP systems is gained. It also shows that the
main problem presented is the misfit between ERP functionality
and business requirements. Soh et al. [4] describe this as a
common problem when adopting software package. The problem
of “misfit” means that there is a gap between functionality offered
by the package and functionality required from the adopting
organization. Askenäs and Westelius [5] describe this in the
following way: “Many people feel that the current ERP system
has taken (or been given) a role that hinders or does not support
the business processes to the extent desire”. Another way of
describing this is as said by Bill Swanton, vice president at AMR
research, that only 35 per cent of the organizations are satisfied
with the ERP they use at the moment, and he says the reason for
the dissatisfaction is that the software does not map well with the
business goals [6].

Both practical experience and research described in the literature
emphasizes on the problem about misfits between business
requirements and ERP functionality. According to Soh et al. [4],
the misfits could be related to the following three areas:
architecture of the specific software, IT-architecture and business
architecture. However, it can be argued that this misfit is a result
over deficiency in the requirement management process, in which
business analysts and developers are supposed to agree on what
functionality that the ERP should support. From this the following
question, which we discuss in the paper, is formulated: What
similarities and differences are there between the two types of
ERP development – closed source (proprietary) or open source –
regarding the requirement management process? The reason for
why this is of interest is that it can be that it is possible that these
two approaches can promote each other in how to improve the
first phase in future ERP development. However, to be able to say
something about this there is a need to first discuss what the
potential similarities and differences between these two
approaches could be.

The following sections will briefly describe ERP business
requirements, how management of requirements are made in
Free/Open Source ERP (FOS-ERP) and proprietary ERP (P-ERP)
respectively, what problems there are within these two
development approaches, and finally a comparative discussion
between these approaches, followed by some conclusions and
suggestions for future research directions.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
SAC’09, March 8-12, 2009, Honolulu, Hawaii, U.S.A.
Copyright 2009 ACM 978-1-60558-166-8/09/03…$5.00.
 1605

2. ERP BUSINESS REQUIREMENTS
The above describes that a major problem in ERP development is
the misfit between required functionality and functionality
offered, which also could be described as the distance between
what the end-users want to have support for in the business
processes they works within and what the ERP de facto gives
support for. There are definitely a lot of different reasons for why
this is the case and this paper will not deal with all of them due to
space constraints. But, it can be stated that one important factor
are difficulties of transferring business requirements from
identification to specification and further on into implementation.
To have some input on this it is first important to stipulate what
requirements and especially ERP business requirements are.
Jackson [7] describes requirements as descriptions of the
application domain and the problems to be solved. He makes a
distinction between requirements and specifications and states
that specifications are descriptions of the interface between the
developed system and the application domain. This is in line with
the statement that a requirement specification should form a
bridge between requirements engineering and software
engineering [8]. From this it could be said that it is clear what
requirements are, but, that is definitely not the case, and there are
several reasons for that. Earlier research and practice have tried to
classify and categorize requirements. Many of these classification
schemes distinguish between functional and non-functional
requirements [9]. For example, the IEEE standard for the software
requirements specification [10] distinguishes fourteen types of
requirements, divided into functional requirements and thirteen
types of non-functional requirements. A similar distinction is
made by Robertsons [11], who identifies seventeen different types
of requirements divided into product constraints, functional
requirements and non-functional requirements. From this it can be
suggested that requirements could be seen as either: a function,
capability, or property of a proposed system; and/or, the statement
of such a function, capability, or property [9] and/or as described
by Jackson [7] as descriptions of the application domain and the
problems to be solved there. This last description emphasize on
what and not how. This is to some extent in conflict with the
description from Zave and Jackson [12] that state: there was a
time when the epigram “requirements say what the system will do
and not how it will do it” summarized all of requirements
engineering. That time is long past. What Zave and Jackson state
could be interpreted as that a change in what requirements should
describe has occurred and that requirement specification now also
to some extent focus on how the developed system will execute
the wanted requirement. By stating this it can be suggested that
the scope of what requirements are have broaden a lot, however, it
also shows the importance of having requirements described in a
way so that they can be implemented in the way they need to be
implemented.

Another angle of why there are some basic problems when
defining, what requirements are, comes from the fact that many
stakeholders are involved [9] and that these stakeholders have
different perspectives on what requirements are [13]. For instance,
if a CIO says that the basic requirement on a new ERP is the need
to support the organizations business processes, the developers
then probably have a hard time to understand exactly how to do
that. It is also so that the requirement specification as such is seen
as an end product and not the evolutionary documentation of a
process that it should be. This then results in the fact that,

especially for ERPs, that the specification does not reflect the
implemented solution. The reason for this is that since the
environment changes all the time and the ERP has to be adjusted
to the environment it works in, the adopted ERP solution drifts
away and relatively soon after its adoption it have changed.

It is shown from experience that the analysis and documentation
of business and software requirements by means of models are
essential for ERP development, which thereby makes it necessary
to use proper techniques and tools [14]. Odeh and Kamm [14]
state that for instance the Unified Modeling Language (UML)
software specification techniques are not suitable for translation
of business models into software models. One reason for this is
that the modeling tools does not take organizational background
characterized by shifting interests, interpretations, and power
relations into account to the extent that is necessary. It can be
stated that this is especially important when developing ERPs
since these are systems that are supposed to support the entire
organization and also support organizations interaction with
stakeholders outside the organization.

The critique Odeh and Kamm stipulate can be compared to the
three levels of software requirements that Wiegers suggests.
Wiegers [13] states that software requirements include three
distinct levels – business, user, and functional requirements. The
interesting level, in this context, is the business requirements.
According to Wiegers [13] business requirements are
representations of high-level objectives that the organization or
the customer requests from the system. In order to fully
understand what these requirements are about it is needed to
clarify what ERPs are. The definition we adopt of ERPs is the one
given by Daneva and Wieringa [15]. They state that ERPs are
packaged software solutions with the key function of coordinating
the work conducted in an organization. The coordination means
that ERPs should be seen as the vehicles that modern
organizations use to achieve business connectivity in which
everyone knows what everyone is doing in the organization. This
definition of ERPs gives a relatively clear view over what ERP
business requirements are, but, it also shows that identifying and
clearly specifying these are a difficult task. Monnerat et al., [16]
label the task of describing requirement at this level as systems
requirements definition. How this is done in the two different
approaches, P-ERP and FOS-ERP, is the focus of the next section.

3. REQUIREMENT MANAGEMENT IN
THE REQUIREMENT DEFINITION PHASE
3.1 Free and Open Source ERP
The obvious difference between P-ERP and FOS-ERP is that the
second type exposes its source code. At first glance the access to
source code would be a direct influence to the requirements
elicitation process. However, ERP requirements are elicited as the
candidate system were a “black box”, meaning that there is no
need to inspect source code, to answer if the system is capable of
comprising to the adopter’s business requirements.

Nevertheless, source code openness brings the possibility of the
adopter in taking a more active position in relation to the system
customization tasks. Carvalho [17] proposes a FOS-ERP
evaluation method named PIRCS (Prepare the evaluation, Identify
alternatives, Rate alternative’ attributes, Compare alternatives,
and Select the best alternative), which, among many other things,

1606

takes into account the adopter’s strategic positioning, as
summarized below:

-Consumer: a passive role where the adopter will simply buy the
customization service from a FOS-ERP vendor, without any
direct collaboration into the development process.

-Prosumer: an active role where the adopter will assume entirely
or partially the customization process, by reporting bugs,
submitting feature requests, and posting messages to development
lists. Depending on the inclination to share information, a more
capable prosumer can also provide bug fixes, patches, and new
features or (even) entire new modules.

Going further, Carvalho affirms that “clearly, the adopter strategic
positioning has a great impact on the way it sees the FOS-ERP.
Different kinds of adopters may assess an identical project feature
quite differently. Insightfully, some weaknesses (such as lack of
documentation) revealed in the evaluation may encourage the
adopter to become a prosumer and contribute to the project,
impelling it, and consequently turning into a positive return in the
form of new features created by other prosumers or partners of the
project.”

Therefore, it is important to know if the organization wants to
shift from a user point of view to a developer role – with all the
consequences of this shift, such as checking the technological
knowledge necessary for the customization, allocating personnel
for system development and maintenance, and coordinating with
the project community.
Following the PIRCS method, in parallel with the requirements
elicitation tasks, there should be a strategic positioning phase that
will define if the adopter is firmly decided to be only a consumer
or if the adopting organization is willing to become a prosumer -
in the cases where development costs and lead-times are
acceptable and FOS-ERP technology is known enough by the
adopting organization so that it could contribute in the
development task. Dual positioning is also possible, by
customizing by itself some features and contracting for others.
Additionally, the survivability level of the FOS-ERP project must
be addressed, to avoid projects with high risk of not
accompanying the necessary evolution pace expected for an
enterprise system, as detailed in the paper by Carvalho, Costa and
Xu [18].

3.2 Proprietary ERP
Johansson [19] describes from an investigation about challenges
in ERP development, done at a major P-ERP vendor , that a major
challenge is related to the requirements gathering process. What
executives at the vendor state is that the time from feature
identification to its implementation is too long. The reason
suggested for this is that they see that there is a lack of or a need
for an improved process for requirements management. Another
problematic area suggested is the risk of implementing non-
relevant requirements, which is also related to a deficiency in the
requirement management process.

Therefore, it can be said that the requirements elicitation process
in P-ERP is problematic, and the problems come from what could
be described as the ERP development paradox. The paradox
means that ERPs aims at being a standard software package at the
same time as it aims at being a unique resource in its usage in

different organizations. The problem also comes from the fact that
ERPs, and especially P-ERPs, in most cases have a development
chain that consists of at least three parties – the developer, the
distributing partners, and the user organization – and it can be
stated that all three of these contribute to the further development
on the adopted ERP. However, it can also be said that the
development chain restricts the feedback loop related to further
development. One reason for this restriction is to keep the
competitive advantage brought by the ERP usage in secret [20].
This restriction means that adopters believe that they gain
competitive advantage by having a unique ERP implemented and
therefore they do not want to give the developer the possibility of
implementing the unique feature in the standard package. This
also means that developers of P-ERP needs to develop a system
that can be made unique by the individual using organizations at
the same time as they make sure that the system is possible to
upgrade without overwriting the unique features implemented.
However, it is not only the requirements that are unique for
individual adopters that are problematic when it comes to
requirement elicitation, but practically all requirements, since
many stakeholders has to agree on what the ERP should support.
The P-ERP development chain as such creates definitely some
problems when it comes to communication and how to describe
requirements so that these are understandable by the stakeholders
in the development chain. The question is then if the FOS-ERP
and the P-ERP development models could promote each other and
thereby improve the first phase in ERP development in general.

4. COMPARISON BETWEEN P-ERP AND
FOS-ERP
The next step in the paper is to take a more in-depth look into
similarities and differences between the two options related to the
requirement definition point of view. So far it can be said that the
two options are very similar and does not show any huge
difference in how the development is done and what problems are
faced. It seems that P-ERP and FOS-ERP developers experience
the same problems when it comes to requirements elicitation. To
further discuss that we therefore suggest an additional
categorization of P-ERP development namely: Internally
developed P-ERPs and commercial prepackage ERPs. The FOS-
ERPs were already categorized into consumer open source or
prosumer open source ERP development. The question is then if
these four ERP development situations differ in, for instance,
closeness to the end-users.
In Table 1 we suggest an initial categorization of the four options
related to contribution or involvement by the end-user
organization in the specific ERP development. The X in the table
should be understood as an indication of to what extent the end-
user organization is involved in the actual development of the
ERP system adopted. Since it is not possible to do a clear cut
between contributions in different options we also use (X) in the
table, which means that, for instance, internally developed P-
ERPs has a higher grade of end-user organizations involvement
than FOS-ERPs developed by prosumers. In fact, it is important to
state that prosumers in the FOS-ERP case can only develop parts
of the system, while using others “as-is”.
When it comes to the case of P-ERP commercial prepackage ERP
case we suggest that the major development is made without
involvement of the end-user organization, but that some
development also takes part with partial involvement from the

1607

end-user organization, such as add-ons developed by partners for
specific adopters that later on are implemented in the core product
by the vendor. From this it can be argued that categorization of
involvement in the table describes end-users organizations level
of control over the development. This means that it can be
suggested that end-user organizations level of control over
development is highest in internally developed ERPs and then
decreases to some extent with FOS-ERP prosumer development
and further on with FOS-ERP consumer development and then
finally the commercial prepackage ERPs shows the lowest level
of end-user control over development.

Table 1. Contribution (involvement) by the end-user
organization in the ERP development

 Totally Partly Not at all

P-ERP
Internally
developed

X

P-ERP
Commercial
Prepackage

ERPs

 (X) X

FOS-ERP
consumer X (X)

FOS-ERP
prosumer (X) X

As described already a major challenge identified in ERP
development is how to find the “correct” requirement as well as
the time from identification to implementation. From the table it
can be suggested that if including also internally developed ERPs
in the discussion these are comparable with the FOS-ERP
prosumer case development situation. These two situations then
suggest that closeness to the end-user is of importance at least if
one also state that these systems show better alignment between
wanted functionality and delivered functionality. However,
experience shows that even systems developed internally in an
organization have problems related to the misfit description
described by Soh et al., [4]. One reason for this is that also in this
case the problem of being an expert in both the business processes
and information systems development is something that are
related to different stakeholders, which means that internally
development also includes considerable amount of
communication between different stakeholders. However, when
excluding the situation of internally developed ERP - in most
cases this is not seen as ERP – it can be argued that FOS-ERP
development are made closer to the end-user, but the closeness as
such does not solve the misfit problem.
To some extent it could be suggested that open source ERPs
experience smaller discrepancies than proprietary ERPs do. One
reason for this is that open source development takes place closer
to the using organization. However, it can also be suggested that
FOS-ERP development have a risk of becoming a one
organization task, creating a development vacuum. If that happens
it could be asked if the open source developer have enough
knowledge about what happens in the environment that influences
or should influence development of the specific ERP.
Boulanger [21] asks how a disparate loose-knit group of
developers can produce software that has comparable quality with
proprietary software for free. He describes the feedback loop as

one difference between development of proprietary software and
open source software making it possible. The most common
approach in a proprietary software development process is what
could be described as a waterfall model. This means that the
development more or less follow a clear structure and uses a set of
five well-defined phases. Boulanger [21] presents the following
five phases as a generic structure for proprietary software
projects: The requirements phase, the system and software design
phase, the implementation and unit-testing phase, the integration
and system-testing phase, and the support and maintenance phase.
He says that this structure of course is an iterative process, but
that open source development phases are more intertwined in each
other. Suggesting that open source development are more
intertwined stipulates that the more intertwined development
process makes it possible to decrease the time from identifying a
specific requirement to when it is implemented, since the
feedback is more direct. However, it must be remembered that
ERP are different, since a given needed modification on the
system can be related to a single adopter, so that the community
may not get so interested on contributing to it. It seems that
generic features, those related to well known business practices,
are highly to be supported by the community, while other,
directly related to the business culture of a single adopter,
probably will be supported only by this adopter and/or its
consultants. This assumption is reinforced by the fact that most of
times internally developed competencies that can drive
competitive differential are not revealed, at least immediately to
the community.

5. CONCLUSIONS AND FURTHER
RESEARCH
It can be concluded that in the FOS-ERP development case the
distance between the user and the developer is smaller than it is in
the P-ERP case. But, important to state is that this is only the case
when the user is a prosumer. In the consumer case the distance
between developer and user are probably the same and the same
problem with misfit between needed functionality and delivered
functionality probably shows up.
A major problem identified in the ERP requirements elicitation
phase is the problem of describing requirements so that the
developer understands the actual needs from the users; and at the
same time as the users can evaluate and make clear that the
developer develops what is wanted. It can be stated that this,
which could be described as a communication problem – the
developer and the user do not speak the same language - is a
problem in both P-ERP as well as FOS-ERP development.
The main conclusion is that there are no big differences between
the two types – closed source or open source - of ERP
development related to requirements management in the
requirement definition phase. The case is instead that the two
types show the same problem during requirements elicitation
when developing the basic product. Instead the difference could
maybe be found if categorizing the development situation into the
four cases: open source consumer, prosumer open source, closed
source prepackage ERP, and closed source internally developed
ERP. One interesting research question is then to compare open
source consumer and closed source prepackage ERP with open
source prosumer and closed source internally developed ERP. By
selecting these four types of development situations it would

1608

probably be possible to gain some interesting knowledge about
ERP development related to requirements management that later
on could act as guidelines in how to improve the requirement
management process.
Another question is to evaluate how the development process
influences on the misfit problem. It seems that this problem can
be minimized by customization processes based on Agile
Methods assumptions, such as shorter iterations (instead of long
waterfall phases) and making the user part of the development
team. The communication problem, related to the difference
between the languages used by users and developers, can be
minimized by the use of a Ubiquitous Language [22], a language
structured around the domain model and used by all development
team members to connect all the activities of the team with the
software. In that way, using the same language to communicate to
a closer user can reduce misfit.

6. REFERENCES
[1] Shehab, E.M., Sharp, M.W., Supramaniam, L., and Spedding,

T.A., Enterprise resource planning: An integrative
review. Business Process Management Journal, 10,4
(2004), 359-386.

[2] Esteves, J. and Pastor, J., Enterprise Resource Planning
Systems Research: An Annotated Bibliography.
Communications of AIS, 7,8 (2001), 1-51.

[3] Botta-Genoulaz, V., Millet, P.A., and Grabot, B., A survey on
the recent research literature on ERP systems.
Computers in Industry, 56,6 (2005), 510-522.

[4] Soh, C., Kien, S.S., and Tay-Yap, J., Cultural fits and misfits:
Is ERP a universal solution? Communications of the
ACM, 43,4 (2000), 47-51.

[5] Askenäs, L. and Westelius, A. Five roles of an information
system: a social constructionist approach to analyzing
the use of ERP systems. in twenty first international
conference on Information systems. 2000. Brisbane,
Queensland, Australia: Association for Information
Systems.

[6] Sleeper, S.Z. AMR analysts discuss role-based ERP interfaces
- the user-friendly enterprise. 2004 [cited 12-04-2007];
Available from:
http://www.sapdesignguild.org/editions/edition8/print_a
mr.asp.

[7] Jackson, M., Software requirements & Specifications: a
lexicon of practice, principles and prejudices. 1995,
London: ACM Press.

[8] Jackson, M., The meaning of requirements. Annals of
Software Engineering, 3,1 (1997), 5-21.

[9] Power, N.M., A grounded theory of requirements
documentation in the practice of software development,
in School 2002, Dublin City University: Dublin. 223.

[10] IEEE, IEEE STD 830-1998: IEEE recommended practice for
software requirements specifications. 1998, Los
Alamitos, CA: IEEE Computer Society Press

[11] Robertson, S. and Robertson, J., Mastering the requirements
process. 1999, Harlow, UK: Addison Wesley.

[12] Zave, P. and Jackson, M., Four dark corners of requirements
engineering. ACM Transactions on Software
Engineering and Methodology, 6,1 (1997), 1-30.

[13] Wiegers, K.E., Software Requirements. Vol. 2nd ed. 2003,
Redmond, Washington: Microsoft Press.

[14] Odeh, M. and Kamm, R., Bridging the gap between business
models and system models. Information and Software
Technology, 45,15 (2003), 1053-1060.

[15] Daneva, M. and Wieringa, R., Cost estimation for cross-
organizational ERP projects: research perspectives.
Software Quality Journal, (2008).

[16] Monnerat, R.M., de Carvalho, R.A., and de Campos, R.,
Enterprise systems modeling: the ERP5 development
process, in Proceedings of the 2008 ACM symposium on
Applied computing. 2008, ACM: Fortaleza, Ceara,
Brazil.

[17] Carvalho, R.A., Issues on evaluating Free/open source ERP
sysyems, in Research and Practical Issues of Enterprise
Informations Systems 2007, Springer Verlag New York
Inc: New York. 667-676.

[18] Carvalho, R.A., Costa, H.G., and Xu, N., A Risk Based
Method for Open Source Software Adoption Evaluation,
in XIII CLAIO - Congreso Latino-Iberoamericano de
Investigación Operativa. 2006: Montevideo, Uruguay.

[19] Johansson, B., Pain points challenges for future enterprise
resource planning (ERP) systems, in 3gERP workshop.
2007: Copenhagen.

[20] Johansson, B., Developing a "better" ERP system: The risk of
loosing competitive advantage, in Research and
practical issues of enterprise information systems II, L.
Xu, A.M. Tjoa, and S. Chaudbry, Editors. 2007, IFIP
Springer.

[21] Boulanger, A., Open-source versus proprietary software: Is
one more reliable and secure than the other? IBM
Systems Journal, 44,2 (2005), 239-248.

[22] Evans, E. Domain-Driven Design Tackling Complexity in
the Heart of Software. Addison-Wesley, 2003.

Björn Johansson holds a Doctoral and a Licentiate degree in
Information Systems Development and a Bachelor degree in
Business Informatics. Currently he works at the Center for
Applied ICT at Copenhagen Business School, within the 3gERP
project (http://www.3gERP.org). He is a member of the IFIP
Working Group on Diffusion, Adoption and Implementation of
Information and Communication Technologies and the research
networks: VITS and KiO
Rogerio Atem de Carvalho holds a Doctoral and a Master
degree in Production Engineering and a Bachelor degree in
Computer Science. He was awarded with the IFIP Distinguished
Academic Leadership Award, for his studies on the field of FOS-
ERP, in Vienna, Austria in 2006. He is a consultant for the ERP5
FOS-ERP (http://www.erp5.com), and project manager of
Enterprise Content Management solutions for governmental and
private sectors since 2000. He is Chair of the Brazilian Chapter of
the IFIP Working Group on Enterprise Information Systems and
Founder Member of the IEEE SMC Society Technical Committee
on Enterprise Information Systems. Also, he is an Associated
Editor for Enterprise Information Systems journal.

1609

