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To appear at the 17th IFAC World Congress, Korea, July 2008.

Sporadic Control of Scalar Systems with

Delay, Jitter and Measurement Noise

Anton Cervin and Erik Johannesson

Automatic Control LTH, Lund University, Sweden
(email: anton@control.lth.se, erik@control.lth.se)

Abstract: Event-triggered control is a promising alternative to time-triggered control, espe-
cially for severely resource-constrained networked embedded systems. Previous work has shown
that event-triggered control can reduce both the output variance and the average control rate in
scalar linear stochastic systems compared to time-triggered control. It has also been shown how
a minimum inter-control interval can be imposed, hence the term “sporadic control”. In this
work we extend the analysis of event-triggered impulse control of first-order linear stochastic
systems to handle general sampling intervals and minimum inter-control intervals, control delay
and control jitter, and measurement noise. The results show that the advantage of sporadic
control remains also in these cases.

1. INTRODUCTION

Most digital feedback controllers operate in a time-
triggered fashion, where the sampling, control computa-
tion, and actuation are performed periodically. An al-
ternative approach is to sample and control only when
certain events occur. Such schemes may be more natural
in systems that include event-based sensors (e.g. encoder
wheels) or event-based dynamics (e.g. queueing systems).
Event-based control could also be useful for saving CPU
and network bandwidth in networked embedded control
systems, computing and communicating only when some-
thing significant has occurred in the system.

This paper considers event-triggered impulse control of a
scalar linear system driven by white noise. Control actions
are issued only if the magnitude of the output exceeds a
certain threshold. Being very simple, the system readily
allows optimal controllers to be computed and compared
for a range of different parameters. Higher-order systems
introduce a wide range of interesting problems, which will
be tackled in future papers.

1.1 Previous Work

The idea of event-based control is not new (for a survey
of previous applications, see Åström [2007]), but only in
the last few years have some theoretical results started to
appear.

Event-based control of first-order stochastic systems was
first studied by Åström and Bernhardsson [1999]. It was
shown that event-based impulse control of a Wiener pro-
cess requires, on average, only one third of the sampling
rate of a time-triggered controller to achieve the same out-
put variance. The work of Åström and Bernhardsson has
recently been extended and elaborated upon in the PhD
thesis Rabi [2006], which explores, among other things,
event-based control with piecewise constant control signals
and level-triggered sampling.

Event-based control of higher-order systems over networks
was considered in Hristu-Varsakelis and Kumar [2002],

which explored policies for deciding what control loop
should be closed at any given time. They also derived
a sufficient condition for stability of multiple networked
control loops.

Optimal state estimation and optimal control for first-
order systems with a limited, pre-specified number of mea-
surements or controls have been studied in Imer and Basar
[2005] and Imer and Basar [2006]. Assuming a discrete-
time process, optimal time-varying threshold policies were
derived using dynamic programming.

The problem of optimal threshold-triggered sampling of
higher-order discrete-time systems was studied in Cogill
et al. [2006]. They provided an algorithm for computing a
threshold guaranteed to incur a cost within a factor of six
of the optimal achievable cost.

In a recent paper, Johannesson et al. [2007], we introduced
the notion of sporadic event-based control. A sporadic
controller may not issue control actions more often than
every Tc seconds. Thus, such a controller is implementable
and can be predictably scheduled in a real-time system.
This is in contrast to Åström and Bernhardsson’s aperiodic
controller, which might generate events infinitely often.

1.2 Outline and Contributions

In the present paper, we make several extensions to the
analysis of event-based control of first-order stochastic
systems. First (Section 2), we generalize the notion of
sporadic control to allow for different intervals for sam-
pling and control. This is relevant for networked embedded
systems, where it may be cheap to sample but expensive to
communicate. Then (Section 3), we explore how network-
induced delay and jitter affect the performance of sporadic
control systems. Finally (Section 4) we extend the system
model with measurement noise and study optimal filter-
ing and sporadic control. Throughout, numerical results
are reported for stable, marginally stable, and unstable
systems.



2. SPORADIC CONTROL WITH ARBITRARY
SAMPLING INTERVAL

The process to be controlled is given by the stochastic
differential equation

dx = ax dt + u dt + dw, x(0) = 0, (1)

where x is the scalar state, a is the process pole, u is
the control signal, and w is a Wiener process with unit
incremental variance. The control signal is zero except at
discrete sampling instants tk, when it is allowed to be a
Dirac pulse of magnitude uk:

u(t) =

∞
∑

k=0

δ(t − tk)uk. (2)

If uk = 0, we say that no control action is issued.

The performance of the system is measured by the station-
ary state cost,

Jx = lim sup
t→∞

1

t
E

{
∫ t

0

x2(s)ds

}

, (3)

and by the average control rate (or control cost),

Ju = lim sup
t→∞

1

t
E {Nu(0, t)} , (4)

where Nu(0, t) is the number of (non-zero) control actions
in the interval (0, t). The total cost to be minimized is
given by

J = Jx + ρJu, (5)

where ρ ≥ 0 is a weight. The cost function (5) reflects
a trade-off between the regulation performance and the
average resource (e.g. CPU or network) consumption.

A sporadic event-based controller is defined by three pa-
rameters: the event detection threshold r, the sampling in-
terval Ts, and the minimum inter-control interval Tc ≥ Ts.
We assume that Tc and Ts are chosen in accordance with
the available computing and communication resources,
while r should be chosen to optimize (5). (Previous work,
Rabi [2006], has shown that a simple threshold policy is
indeed optimal for event-based control.)

At time t0 = 0, the controller starts in the active state,
where it samples the process every Ts seconds, taking dis-
crete measurements xk = x(tk). If |xk| ≥ r, the controller
issues the control action uk = −xk, effectively resetting
the process state to zero. The controller then enters the
inactive state where it stays for Tc seconds. Immediately
after returning to the active state, the sampling starts
again. The sampling instants hence progress as

tk+1 =

{

tk + Ts, |xk| < r,

tk + Tc, |xk| ≥ r.
(6)

A typical realization of a sporadic control process with
a = 0 (an integrator), r = 1, Ts = 0.25 and Tc = 1 is
shown in Fig. 1. It is seen that the output is basically kept
within the limits. However, the process may drift outside
the detection band during the inactive intervals or between
two sampling instants.

2.1 Evaluation of Cost

To evaluate the cost functions (3) and (4) for a given value
of r, we compute the stationary distribution of the state in
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Fig. 1. Sporadic control of an integrator process with detection

threshold r = 1, sampling interval Ts = 0.25 and minimum

inter-control interval Tc = 1. The circles indicate samples, and

the shaded regions show the inactive intervals.

the sampling instants tk (before a possible control action
has been issued). Note that these instants are irregularly
spaced in time if Ts 6= Tc.

Between two sampling instants, the state evolves as

xk+1 =

{

eaTsxk + vk(Ts), |xk| < r,

vk(Tc), |xk| ≥ r,
(7)

where vk(t) is a Gaussian random variable with zero mean
and variance

P (t) =

∫ t

0

e2asds =

{

e2at−1
2a

, a 6= 0,

t, a = 0.
(8)

The accumulated state cost from time tk to time tk+1 is
given by

Jactive = Q(Ts) E
{

x2
k

∣

∣

∣
|xk| < r

}

+ Jw(Ts) (9)

if the controller stays in the active state and by

Jinactive = Jw(Tc) (10)

if the controller enters the inactive state. Here,

Q(t) =

∫ t

0

e2asds =

{

e2at−1
2a

, a 6= 0,

t, a = 0
(11)

is the state weight in the sampled cost function, while

Jw(t) =

∫ t

0

P (s)ds =

{

e2at−2at−1
4a2 , a 6= 0,

t2

2 , a = 0
(12)

accounts for the inter-sample noise, see e.g. Åström [1970].

Finally, assuming stationarity, the costs per time unit
become

Jx =
pactiveJactive + pinactiveJinactive

pactiveTs + pinactiveTc

,

Ju =
pinactive

pactiveTs + pinactiveTc

,
(13)

where

pactive = Prob {|xk| < r} = 1 − pinactive. (14)

The stationary distribution of xk can be found numerically
by discretizing the state space and then iterating the
distribution according to (7) until convergence.

2.2 Example

To investigate the impact of the sampling interval on per-
formance, we fix Tc = 1 and vary Ts. For each parameter
configuration, we compute the stationary distribution of
xk. In Figs. 2 and 3, we show the state cost Jx and the
control cost Ju as functions of the threshold r for three
different systems. It is seen that, when Ts < Tc, the state
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Fig. 2. State cost Jx for three systems with varying sampling interval

Ts. Note the different vertical scales.
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Fig. 3. Control cost Ju for three systems with varying sampling

interval Ts.

cost initially decreases when r is increased and achieves
a local minimum for some r > 0. At the same time,
the control cost decreases monotonically. This shows that
sporadic control can increase performance and decrease
resource consumption at the same time. Overall, a shorter
sampling interval means faster detection of deviations and
hence lower state cost but also higher control cost.

The optimal threshold r∗ as a function of the weight ρ
is shown in Fig. 4. Here it is again seen that the optimal
threshold is actually non-zero for ρ = 0 if Ts < Tc. Further,
a shorter sampling interval implies that the threshold
should be set higher.

Finally, we compute the optimal achievable cost J∗ for
the integrator for different weights ρ and compare sporadic
control to standard periodic control in Fig. 5. It is seen that
the sporadic controller outperforms the periodic one, and
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Fig. 4. Optimal threshold r∗ for three systems with varying sampling

interval Ts. Note the different vertical scales.
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Fig. 5. Minimum achievable cost J∗ as a function of relative cost of

control ρ, using sporadic and periodic controllers. The system

is an integrator with different sampling intervals.
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Fig. 6. Trade-off between state cost and control cost using sporadic

and periodic controllers for the integrator.

that a shorter sampling interval means lower total cost.
The plot also indicates that there is a smooth transition
from the case Ts = 0 (continuous sampling) to Ts = Tc.
The trade-off between state cost and control cost for the
integrator is made explicit in Fig. 6. It is seen that the
average control rate can be substantially decreased before
the state cost starts to increase if Ts < Tc.

3. DELAY AND JITTER

One of the motivations for event-based control is to save
communication bandwidth in networked control. However,
control over networks always means that delays are in-



duced in the feedback loop. If many applications share
the same network, there may also be delay jitter due to
unpredictable medium access times.

3.1 Constant Delay

We first consider the case of a constant control delay
τ ≤ Tc, meaning that the control action computed at time
tk will not be applied to the process until τ seconds later.
The control signal is now given by

u(t) =
∞
∑

k=0

δ(t − tk − τ)uk. (15)

To evaluate the costs, it is necessary to reconsider the
inter-sample behavior in the inactive state. From time
tk up to tk + τ (just before the control action has been
applied), the process evolves as

x(tk + τ) = eaτxk + vk(τ). (16)

The extra state cost during this interval becomes

Q(τ)E
{

x2
k

∣

∣

∣
|xk| ≥ r

}

. (17)

We assume that the delay is known at design time, so that
the controller can compensate for it by issuing the modified
control action

uk = −eaτxk. (18)

This will bring the expected value of the state to zero for
the remainder of the interval, eventually leading to

xk+1 = vk(Tc). (19)

Note that this expression is identical to the update equa-
tion (7) for the case |xk+1| ≥ r. Hence, viewing the system
only at the sampling instants, the stationary distribution
of xk will remain the same as without the delay. This
implies that Jactive and Ju will not be affected. Jx will
however increase, the new expression for Jinactive in (13)
being

Jinactive = Q(τ)E
{

x2
k

∣

∣

∣
|xk| ≥ r

}

+ Jw(Tc). (20)

3.2 Delay Jitter

In the case of variable delay, or delay jitter, it is not
realistic to assume that the actual value of the delay
is known when the control action is calculated. Rather,
we suppose that the delay compensation is based on the
estimated average delay, τ̄ . The real delay in each sample
is assumed to be given by a random variable τk with a
given probability density function.

The control signal is now given by

u(t) =
∞
∑

k=0

δ(t − tk − τk)uk,

where uk = −eaτ̄xk. Similar to before, from time tk up to
tk + τk in the inactive state, the process will evolve as

x(tk + τk) = eaτkxk + vk(τk). (21)

The extra state cost during this interval is given by

Q(τk)E
{

x2
k

∣

∣

∣
|xk| ≥ r

}

.

Because of the inexact delay compensation, the state just
after the control action will no longer have expected value
zero, but is given by

x(tk + τ+
k ) =

(

eaτk − eaτ̄
)

xk + vk(τk). (22)

The extra state cost during the final part of the inactive
interval becomes

Q(Tc−τk)
(

eaτk − eaτ̄
)2

E
{

x2
k

∣

∣

∣
|xk| ≥ r

}

.

Finally, the new state update equation becomes

xk+1 = eaTc

(

1 − ea(τ̄−τk)
)

xk + vk(Tc). (23)

In general, τ̄ 6= τk, which means that the stationary
distribution of xk will be different from the jitter-free case.
This implies that both Jx and Ju are affected by the jitter.
Taking the expected value over the different possible τk,
the new expression for the cost during an inactive interval
becomes

Jinactive = E
τk

{

(

Q(τk) + Q(Tc−τk)
(

eaτk − eaτ̄
)2

)

× E
{

x2
k

∣

∣

∣
|xk| ≥ r

}

}

+ Jw(Tc).

(24)

3.3 Example

To investigate the impact of delay and jitter on sporadic
control we fix Ts = Tc = 1 and then compare three cases:

• No delay.
• Constant delay τ = 0.5.
• Random delay τk ∈ {0, 1}, where both outcomes have

equal probability. The average delay is τ̄ = 0.5.

In Figs. 7 and 8, we show the state cost Jx and the
control cost Ju as functions of the threshold r for three
different systems. It is seen that both delay and jitter
increase the state cost, which is expected. Jitter is better
than a constant delay for the stable system, while the
opposite is true for the unstable system. As predicted,
the control cost is unaffected by the constant delay, while
the change is very small in the jitter case (indicating that
the distribution does not change much). In the integrator
case, it can be noted that the extra state cost due to delay
is always equal to τ . (Actually, this is true regardless of
the sampling scheme used: event-based, periodic, random,
etc.)

0 1 2 3
0

0.2

0.4

0.6

0.8

1

1.2
a = −0.5

S
ta

te
c
o
st

J
x

Threshold r

τk = 0
τk = 0.5

τk ∈{0, 1}

0 1 2 3
0.5

1

1.5

2

2.5

3
a = 0

S
ta

te
c
o
st

J
x

Threshold r

τk = 0
τk = 0.5

τk ∈{0, 1}

0 1 2 3
0

2

4

6

8

10
a = 0.5

S
ta

te
c
o
st

J
x

Threshold r

τk = 0
τk = 0.5

τk ∈{0, 1}

Fig. 7. State cost Jx for three systems with constant delay or jitter.

Note the different vertical scales.
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Fig. 8. Control cost Ju for three systems with constant delay or jitter.
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The optimal threshold r∗ as a function of the weight ρ
is shown in Fig. 9. We observe that a delay increases the
optimal threshold for stable systems but decreases it for
unstable systems. For stable systems, the controller need
not care about small deviations, since it is likely that the
state will decay before the control action takes effect. The
opposite reasoning holds for unstable systems.

Finally, we compare the achievable optimal performance
J∗ of sporadic control to periodic control for the integrator
process in Fig. 10. The sporadic controller outperforms the
periodic controller (except for ρ = 0 where the controllers
coincide, since Tc = Ts). In both cases, a jitter τk ∈{0, 1}
with mean value 0.5 increases the total cost by the same
amount.
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4. MEASUREMENT NOISE

So far, we have assumed that the controller has access
to perfect measurements of the state variable. We now
investigate the notion of sporadic control in the case when
the measurements are distorted by noise. For simplicity, it
is assumed that Ts = Tc = T .

The sampled system is

xk+1 = Φxk + uk + vk,

yk = xk + ek,

where Φ = eaT . The noise vk and ek are (mutually)
independent zero-mean Gaussian random variables with
V {vk} = P (T ) and V {ek} = σ2

e .

4.1 Controller Structure

Since the system is linear with Gaussian noise, the optimal
state estimate is given by the standard Kalman filter,

x̂k = Φx̂k−1 + uk−1 + K(yk − Φx̂k−1 − uk−1)

= (1 − K) (Φx̂k−1 + uk−1) + K(xk + ek),

where K is the Kalman filter gain.

Given x̂k, then xk+1 is Gaussian and

E
{

x2
k+1|x̂k, uk

}

= V {xk+1|x̂k, uk} + E {xk+1|x̂k, uk}
2

= V {xk+1|x̂k} + (Φx̂k + uk)
2
.

The conditional variance of xk+1 is not affected by uk,
so the expected contribution to the cost at time k + 1,
given x̂k, is minimized by uk = −Φx̂k. The same holds for
succeeding terms. Thus, the optimal control law is

uk =

{

0, |x̂k| < r,

−Φx̂k, |x̂k| ≥ r,
(25)

where the threshold r remains to be determined.

4.2 Evaluation of Cost

The cost for a given threshold can be evaluated through
numerical computation of the stationary distribution of
the system and filter states. The closed-loop system may
be regarded as a two-dimensional stochastic process. Let
fx,x̂(v1, v2) be the probability density of the stationary
distribution just prior to any control event. The costs can
then be expressed as

Jd−
x =

∫∫

v2
1fx,x̂(v1, v2) dv1dv2

Ju =

∫∫

|v2|≥r

fx,x̂(v1, v2) dv1dv2.
(26)



Here, the discrete-time state cost Jd−
x = E

{

x2
k

}

is evalu-
ated at sampling instants before any control action. The
variance after control action can be found by going one
sample backwards in time:

Jd−
x = Φ2Jd+

x + V {vk(T )} .

The continuous-time state cost is then given by

Jx =
Q(T )

T
Jd+

x + Jw(T ).

The stationary distribution is found numerically by prop-
agating the distribution of the two-dimensional state on a
discretized state-space, until convergence. In order to do
this, we need to know the joint distribution of (xk+1, x̂k+1)
conditioned on Z = (xk, x̂k, uk). Some simple calculations
give that

E {xk+1|Z} = Φxk + uk,

V {xk+1|Z} = σ2
w,

E {x̂k+1|xk+1, Z} = (1 − K) (Φx̂k + uk) + Kxk+1,

V {x̂k+1|xk+1, Z} = K2σ2
e .

By the definition of conditional density, we have that

fxk+1,x̂k+1|Z(v1, v2|z) = fx̂k+1|xk+1,Z(v2|v1, z)·fxk+1|Z(v1|z).

It can be shown that the joint distribution is Gaussian,

(xk+1, x̂k+1)
T |Z ∈ N (µ (z) , R) ,

with parameters given by

µ (z) =

[

Φxk + uk

(1 − K) (Φx̂k + uk) + K (Φxk + uk)

]

,

R =

[

σ2
w Kσ2

w

Kσ2
w K2(σ2

w + σ2
e)

]

.

The computations required for a good approximation
are quite demanding since the computation time scales
roughly with the number of grid points to the power of 4.

4.3 Example

To investigate the impact of measurement noise on spo-
radic control, we evaluate the performance for different
values of σe. The state cost Jx is plotted in Fig. 11 as a
function of the threshold r. Not surprisingly, it is seen that
measurement noise yields additional state variance. When
a < 0, Jx approaches a constant as the threshold increases,
for any σe. This is because the open-loop variance is finite
(= −1/2a) and provides an upper bound. For a ≥ 0,
the extra cost seems to be fairly constant for moderate
thresholds.

The corresponding control cost Ju is shown in Fig. 12.
It appears that the control rate changes with the level
of measurement noise when a 6= 0. The reason is that
when σe = 0 it is both necessary and sufficient for |x| to
exceed r at one sample in order to issue a control action.
When there is more measurement noise, the Kalman
filter puts more emphasis on the model and less on the
measurements, which are averaged out. In the stable case
this makes it less likely for |x̂| to exceed r than what it is
for |x|, and thus the control rate decreases. The situation
is reversed in the unstable case. For the integrator process,
these effects balance out, with the interesting result that
the average control rate is invariant to σe.
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Fig. 11. State cost Jx for three systems with varying measurement

noise. Note the different vertical scales.
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Fig. 12. Control cost Ju for three systems with varying measurement

noise.

It is even more interesting to see how measurement noise
affects the optimal threshold r∗, which is plotted in Fig. 13
as a function of ρ. It turns out that for the integrator
process, the optimal threshold is independent of the mea-
surement noise. For other systems, the difference is small.
The conclusion is that the certainty equivalence principle
does not hold for sporadic control with measurement noise,
although there seems to be almost separation between
estimation and control for moderate values of σe and ρ.

Furthermore, it is noted that when σe increases, the opti-
mal threshold r∗ changes in different directions depending
on the sign of a. This is a consequence of the shape of Ju.
Consider e.g. the case when a = −0.5: with measurement
noise, the control actions are imperfect since they are
based on an uncertain estimate. It is therefore beneficial
to decrease the control rate somewhat and let the stable
dynamics take care of things. Intuitively, this should lead
to a higher threshold. However, as seen in Fig. 12, the
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Fig. 13. Optimal threshold r∗ as a function of relative cost of control

ρ for three systems with varying measurement noise. Note the

different vertical scales.
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Fig. 14. Minimum achievable cost J∗ as a function of relative cost of

control ρ, using sporadic and periodic controllers. The system

is an integrator with and without measurement noise.

control rate is already smaller for a given r. In fact, it
is so much smaller that the optimal threshold becomes
somewhat lower. It could be said that the filtering itself
decreases the control rate just a little more than needed,
making r∗ insensitive to σe.

The optimal performance of the sporadic controller is
compared to the standard periodic LQG controller, for an
integrator process with and without measurement noise,
in Fig. 14. It is clear that sporadic control delivers su-
perior performance in terms of the specified cost function.
Moreover, using sporadic control, the performance loss due
to measurement noise is constant when ρ changes. For
periodic control however, there is a slight increase in the
performance loss. Accordingly, the gain of using sporadic
control is actually somewhat larger if there is measurement
noise.

5. CONCLUSIONS

This paper has provided several extensions to the concept
of sporadic impulse control of first-order linear stochastic
systems. Some of the results of this analysis deserve special
attention: a generalization of the two sampling patterns
analyzed in Johannesson et al. [2007] is provided, exhibit-
ing a smooth transition between the two special cases
Ts = 0 and Ts = Tc. It can be noted that the advantage

of sporadic control over periodic control remains even if
there is delay, jitter, or measurement noise. Surprisingly,
the detection threshold should be adjusted in opposite
directions if the delay increases and if the measurement
noise increases. We also note that there is approximate
separation between control and estimation for moderate
parameter values.
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