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∗ Dipartimento di Elettronica ed Informazione, Politecnico di Milano,
Milano, Italy (e-mail: casella@elet.polimi.it).

∗∗ Dipartimento di Elettronica ed Informazione, Politecnico di Milano,
and Motus s.r.l., Milano, Italy (e-mail: donida@motus-it.com)

∗∗∗ Department of Automatic Control, Lund University, Lund, Sweden
and Modelon AB, Lund, Sweden

(e-mail: johan.akesson@control.lth.se)

Abstract: Modeling and optimization of complex systems traditionally have required significant
programming efforts in order to encode the model dynamics, the cost functions and the
constraints in a format suitable for state of the art numerical algorithms. The availability of
dedicated languages for physical modeling has made the design process simpler, but often tools
have been limited to a particular optimization algorithm. In this paper, we present a case study
where a combined cycle power plant model has been developed using first principles in the
modeling language Modelica. Based on the model, an optimal control problem for the start-up
of the power plant has been formulated in the Optimica extension and solved using the open
source software JModelica.org. The results demonstrate how high-level modeling languages and
tools can be used to bridge the gap between the engineering need for intuitive description formats
and the interfaces of efficient numerical algorithms.

Keywords: Nonlinear dynamic optimization, Power plant control, Object-oriented modeling,
Modelica, Optimica

1. INTRODUCTION

Optimization of industrial processes has been a strong
trend during the last decades, resulting in a large body
of research in the field as well as significant industrial
adoption. Applications of optimization techniques range
from plant-wide set-point optimization to improvement
of economic performance, up to on-line Model Predictive
Control (MPC) to track set-points and to reject distur-
bances. In the quest for improved performance to meet
increasing competition, increasingly rigorous, and thereby
complex, models are employed when formulating and solv-
ing optimization problems. This trend has increased the
effort required to encode models suitable for optimiza-
tion. Also, it is typical that existing tools use proprietary
description formats which limits portability and reuse of
models for different purposes.

The approach demonstrated in this paper is instead based
on the non-proprietary object-oriented modelling language
Modelica and on the open source platform JModelica.org,
Åkesson et al. (2010). This approach overcomes some of
the difficulties often associated with development of mod-
els to be used for optimization purposes by i) relying on
an open language supported by several tools for physi-
cal system modeling, ii) using a high-level language, the
Optimica extension, for formulation of the dynamic opti-
mization problem, and iii) using a computational platform

allowing the same model to be simulated, optimized and
analyzed in a fully integrated way.

Modelica models have been used in the past to solve op-
timal control problems in the field of power plant control,
see, e.g., Krueger et al. (2004), requiring extensive manual
coding to interface the simulation code generated by the
Modelica compiler with nonlinear optimization codes. The
main contribution of this paper is to demonstrate the
applicability of fully integrated object-oriented modelling
and optimization techniques and tools to solve such prob-
lems.

The plant model, albeit simple enough to be handled by
numerical optimization methods, is entirely derived from
first principle laws such as mass, energy and momentum
balance equations, or as the equations of state of the
working fluid. The model is built according to the object-
oriented principle: single components are described in
terms of a-causal differential-algebraic equations, then the
components are joined by means of additional a-causal
connection equations to form the complete system model.
The optimization problem addressed in this case study
is the minimum time start-up of a combined-cycle power
plant, subject to a constraint on the level of stress in the
steam turbine shaft, which determines the consumption of
residual life-time of the component. The goal is to increase
the availability and flexibility of such plants without
incurring in the additional costs caused by the life-time



reduction of one of the most expensive components in the
system, i.e., the steam turbine.

The paper is structured as follows: Section 2 gives some
background information about object-oriented modelling
and dynamic optimization; Section 3 describes the plant
model, while in Section 4 the optimal start-up problem is
formulated and the numerical results are briefly discussed.
Finally, Section 5 summarizes the results and gives per-
spectives for future work.

2. BACKGROUND

2.1 Physical modeling and Modelica

The Modelica language, The Modelica Association (2010),
is dedicated to modeling of complex heterogeneous physi-
cal systems. The language is object-oriented and imple-
ments concepts such as classes, components (class in-
stances), and inheritance. In addition, Modelica supports
declarative equation-based modeling. This formalism en-
ables the user to state declarative differential and alge-
braic relations, without the need to manually convert the
model to an ordinarily differential equation (ODE) by
solving for the derivatives, a procedure that is commonly
required when using block-based modeling systems such as
Simulink. Accordingly, the underlying mathematical for-
malism of Modelica models is that of differential-algebraic
equations (DAEs). In addition to declarative equations,
Modelica offers means to model, explicitly, a-causal physi-
cal interfaces which can be used to connect components
together. Modelica also implements support for hybrid
constructs such as conditional and instantaneous equa-
tions, boolean and integer equations and sampled systems,
which are however outside the scope of the work presented
in this paper.

Modelica is an open language, and is continuously updated
and maintained. Several tools are supporting the language,
including Dymola, Dassault Systemes (2010), Simulation
X, ITI GmbH (2010), and MapleSim, Maplesoft (2010).
Also, a freely available standard library provides basic
models in different fields, including electronics, multi-body
systems, and thermodynamics.

2.2 Dynamic optimization

In the 50s and 60s, two different methods for solving
optimization problems with constraints in the form of
dynamic systems were presented. In 1957, Bellman formu-
lated the celebrated principle of optimality, and showed
that dynamic programming was applicable to a broad
range of applications, Bellman (1957). Further, Pontyagin
and co-workers presented the maximum principle in 1962,
Pontryagin et al. (1962).

However, both dynamic programming and the maximum
principle have practical drawbacks that make them hard to
apply to large-scale systems. For example, in the presence
of inequality constraints, the activation sequence must be
known a priori. Also, it may be difficult to find initial
guesses for adjoint variables.

In the last two decades, a new family of methods has
emerged to overcome these difficulties. These methods are

referred to as direct methods. Direct methods attempt to
solve dynamic optimization problems by transcribing the
original infinite-dimensional dynamic problem into a finite-
dimensional static optimization problem.

There are two main branches within the family of direct
methods, referred to as sequential and simultaneous meth-
ods, see Binder et al. (2001) for an overview. The sequen-
tial methods rely on state of the art numerical integrators,
typically also capable of computing state sensitivities, and
standard nonlinear programming (NLP) codes. The con-
trols are then usually approximated by piece-wise poly-
nomials, which render the controls to be parameterized
by a finite number of parameters. These parameters are
then optimized. See e.g., Vassiliadis (1993) for details on
sequential methods.

Simultaneous methods, on the other hand, are based on
collocation, and approximate both the state and the con-
trol variables by means of piece-wise polynomials, see
Biegler et al. (2002) for an overview. This strategy requires
a fine-grained discretization of the states, in order to
approximate the dynamic constraint with sufficient accu-
racy. Accordingly, the NLPs resulting from application of
simultaneous methods are very large, but also sparse. In
order to solve large-scale problems, the structure of the
problem needs to be explored. A detailed treatment of
direct collocation methods is given in Betts (2001).

A popular extension of the single shooting algorithms is
multiple shooting Bock and Plitt (1984). In a multiple
shooting algorithm, the optimization interval [t0, tf ] is
divided into a number of segments. New optimization
variables corresponding to the initial conditions for the
states in each segment, are then introduced. This enables
the dynamics, as well as the sensitivity equations, to be
integrated independently in each segment. In order to
enforce continuity of the state profiles, equality constraints
are introduced in the optimization problem to ensure con-
tinuous state profiles. Extensions of the multiple shooting
algorithm include the DAE case, see Bock et al. (1988),
and application to real-time model predictive control, see
Diehl et al. (2002).

2.3 Optimica

While the Modelica language is well-suited for modeling
of physical systems, it does not natively support formu-
lation of optimization problems. In order to complement
Modelica with language constructs dedicated to optimiza-
tion, the Optimica extension, Åkesson (2008), has been
proposed. Optimica adds to Modelica syntactic and se-
mantic means to encode cost functions, constraints and
what quantities to optimize, which in turn can be used to
formulate optimal control problems, parameter estimation
problems and design optimization problems. In order to
highlight the main features of Optimica, a small example
is considered:

min
u(t)

tf (1)

subject to the dynamic constraint

ẋ(t) = v(t), x(0) = 0

v̇(t) = u(t), v(0) = 0
(2)

and



Fig. 1. The JModelica.org architecture.

x(tf ) = 1, v(tf ) = 0

v(t) ≤ 0.5, −1 ≤ u(t) ≤ 1
(3)

The corresponding Optimica specification is given by:

optimization DIMinTime (
objective=finalTime,
startTime=0,
finalTime(free=true,initialGuess=1))

Real x(start=0,fixed=true);
Real v(start=0,fixed=true);
input Real u;

equation
der(x)=v;
der(v)=u;

constraint
x(finalTime)=1;
v(finalTime)=0;
v<=0.5;
u>=-1;
u<=1;

end DIMinTime;

The variable declarations for x, v and u, as well as the
equations in the equation section, which together de-
scribes a double integrator, are encoded using standard
Modelica constructs. In contrast, the specification of the
cost function, given by the objective attribute, the spec-
ification of the optimization interval and the constraints
in the constraint section are expressed using Optimica
specific constructs. Note that the equation section need
not contain the equations in state-space form, as in this el-
ementary example, but can include generic DAE systems,
usually obtained by the connection of first-principles based
component models, written in standard Modelica.

In the example above, the actual system dynamics is
encoded inside the optimization class, which is valid in
Optimica. For the sake of clarity it is, however, customary
to store the system model in a separate model class and
to create a component in this class in the optimization
class.

2.4 JModelica.org

The optimization results presented in this paper have been
obtained using JModelica.org, Modelon AB (2009). The
project is described as 1 :

1 www.jmodelica.org

JModelica.org is an extensible Modelica-based open source
platform for optimization, simulation and analysis of com-
plex dynamic systems. The main objective of the project is
to create an industrially viable open source platform for
optimization of Modelica models, while offering a flexible
platform serving as a virtual lab for algorithm development
and research.

The JModelica.org platform is composed of several differ-
ent software components, including a compiler front-end,
code generation modules for C and XML, a run-time sys-
tem in C providing evaluation-oriented model interfaces,
and a Python interface for user interaction. A schematic
picture of the platform architecture is shown in Figure 1.

The JModelica.org compilers translate Modelica and Opti-
mica (see Section 2.3) source code into C and XML code.
The C code contains the model equations, cost function
and constraints in a format suitable for efficient evaluation.
The C code generated by the compilers is compiled and
linked with a run-time system that contains API func-
tions for evaluation of the DAE residual function, the
cost function and the contrain. In addition, the automatic
differentiation package CppAD, Bell (2008), is used to
provide Jacobian and sparsity information. The API func-
tions provided by the run-time system corresponds to the
requirements usually imposed by numerical simulation and
optimization algorithms.

The JModelica.org platform implements a simultaneous
optimization method based on Lagrange polynomials on
finite element with Radau points, see Biegler et al. (2002)
for an overview. The algorithm is implemented in C
and relies on the API functions for the JModelica.org
run-time system. In particular, Jacobians and sparsity
information are exploited in order to increase the efficiency
of the algorithm. The non-linear program resulting from
collocation is then solved by the solver IPOPT , Wächter
and Biegler (2006).

The scripting language Python, Python Software Foun-
dation (2009), is used to provide a user interaction envi-
ronment in JModelica.org. This choice is motivated by the
availability of Python packages for numerical and scientific
computations, as well as for visualization. The JModel-
ica.org compilers are interfaced with Python, as are the
API run-time functions for model equation evaluation.

For a full description of the JModelica.org platform, see
Åkesson et al. (2010).

3. COMBINED-CYCLE PLANT MODELING

The case study considered in this paper is the minimum
time start-up of a combined-cycle power plant. The main
limiting factor in this transient is the thermo-mechanical
stress on the outer surface of the steam turbine rotor.
This stress is proportional to the difference between the
surface temperature, which closely follows the superheated
steam temperature due to the relatively high heat transfer
coefficient, and the average temperature across the whole
body of the rotor, which lags behind due to the rotor’s
thermal inertia. The most stressed part is the slice of the
shaft corresponding to the first row of blades at the turbine
inlet; this is modeled by only considering the axial heat



Fig. 2. Object diagram of the plant model.

flow while neglecting the longitudinal heat flow, which is
much less relevant.

The Modelica object diagram of a representative, yet
simple, model of the process under consideration is shown
in Fig. 2. For reasons of simplicity, a one-pressure-level
generator is considered. The plant data have been derived
from those of a three-levels of pressure steam generator
used in a previous study by Casella and Pretolani (2006),
where the start-up sequence of a combined-cycle plant was
studied with a detailed process model, optimized by trial-
and-error.

Starting from the lower left, the gas turbine model gen-
erates a prescribed flow of exhaust gas at a prescribed
temperature. Both quantities are a function of the elec-
trical load input signal and follow the typical behavior of
large units with IGV-controlled exhaust temperature: from
100% down to about 50% load, the exhaust temperature
is kept constant by reducing the exhaust gas flow via the
IGVs; for lower load levels, the IGVs cannot be closed
further, so the exhaust gas flow is approximately constant,
and the exhaust temperature decreases. The typical curves
are well-approximated by piecewise linear functions, which
are smoothed out at the corner points in order to avoid
numerical problems with the optimization algorithm, that
requires smooth equations. Since the fundamental dynam-
ics of the gas turbine is much faster than that of the steam
cycle, an algebraic model is employed for simplicity.

The turbine exhaust gases enter the hot side of a counter-
current heat exchanger, and are then discharged to the at-
mosphere. Each segment of the hot side is modeled by a dy-
namic energy balance equation, accounting for the energy
stored in the gas and for the heat transfer to the cold side.
Changes in mass storage and pressure losses are neglected,
since their effects are irrelevant for this application. The
convective heat transfer to the cold side is then modeled
by components that are connected to the heat ports of
both sides. The economizer and the superheater are also
modeled by dynamic energy balance equations, while the
changes in mass storage and the pressure losses are also
neglected. The evaporator model instead requires dynamic
mass and energy balance equations, and is written assum-
ing thermodynamic equilibrium between the liquid and the
vapour phase. For all the three water/steam components,
the temperature of the surrounding steel walls is assumed

to be the same as the fluid’s, and the corresponding
heat storage is modeled accordingly in the energy balance
equation. This assumption is reasonable, since the heat
transfer coefficients are large enough to allow neglecting
the temperature differences between the fluid and the wall,
at least in a first approximation model.

The feedwater system is appoximated by a prescribed
flow rate source with fixed temperature, driven by the
drum level controller. A PI level controller is included
in the model, to stabilize the level dynamics and keep
the void fraction around 0.5. There is no need of optimal
level control for this kind of application, so the model to
be optimized can include the closed-loop level dynamics,
comprehensive of the PI feedback loop.

Finally, the superheated steam enters the steam turbine,
which is modeled as an expansion to the condenser pres-
sure, assuming a constant isentropic efficiency. The turbine
model also exposes a thermal port, corresponding to the
surface where the inlet steam comes into contact with the
turbine rotor, exchanging heat by convective heat transfer.
This port is in turn connected to a thermal model of the
shaft, given by Fourier’s heat equation, discretized by the
finite difference method. This thermal model allows to
compute the surface and average temperatures of the rotor
shaft, and thereby the surface stress level, which is propor-
tional to the difference between these two temperatures.

In order to keep the model as simple as possible, to ease the
convergence of the optimization algorithms, the following
additional assumptions have been made. First of all, the
gas, the subcooled liquid and the superheated steam are
modeled as incompressible fluids with constant cp, while
the properties of saturated liquid and vapour in the
evaporator are approximated by low-order polynomials.
Secondly, lumped-parameter models are assumed for the
heat exchanger segments, with just one temperature state
for each side. The finite-difference turbine rotor model has
8 nodes and six states, in order to accurately describe the
temperature profile that determines the suface stress level.
The resulting nonlinear model has 15 state variables and
141 algebraic variables. The most severe non-linearity is
given by the change of derivative of the gas turbine curves
at 50 % load. Other milder nonlinearities are caused by the
fluid equations of state and by the flow-specific enthalpy
products in the energy balance equations.

4. OPTIMAL START-UP PROBLEM SET-UP AND
NUMERICAL RESULTS

As already stated in the Introduction, the goal of the
optimization problem is to reach the full load level as
fast as possible, while limiting the peak stress value on
the rotor surface; this peak value determines the life-time
consumption during the entire start-up phase, under the
hypothesis that the stress curve follows a simple cycle, i.e.,
it is monotonically non-decreasing up to the peak value,
and then monotonically non-increasing after the peak has
been reached. Since the steam cycle is assumed to operate
in a pure sliding pressure mode, the full load state is
reached when the load level of the turbine u(t) (which is
the control variable) has reached 100% and the normalized
value of the evaporator pressure pev has reached the
target reference value prefev . A Lagrange-type cost function,



Fig. 3. Optimal start-up trajectories. The upper curve
shows the pressure in the evaporator, the middle
curve shows the thermal stress in the steam turbine
shaft and the lower curve shows the control input
represented by the load.

penalizing the sum of the squared deviations from the
target values, drives the system towards the desired set-
point (pevap, u) = (prefevap, 1) as quickly as possible. It turns
out that the relative weight of the two deviations is not
that important, as long as normalized values having the
same order of magnitude are employed.

The main limiting factor in the start-up problem is the
constraint acting on the thermal stress in the steam tur-
bine, σ(t). In addition, inequality constraints are imposed
on the rate of change of the gas turbine load: on one hand,
the load is forbidden to decrease, in order to avoid as
much as possible the multiple cycling of the stress level
during the transient; on the other hand, it cannot exceed
the maximum rate prescribed by the manufacturer.

The start-up optimization problem is then formally stated
as:

min
u(t)

∫ tf

t0

(pevap(t) − prefevap)2 + (u(t) − 1)2 dt (4)

subject to the constraints

σ(t) ≤ σmax

u̇(t) ≤ dumin

u̇(t) ≥ 0

(5)

and to the DAEs representing the plant dynamics. The
initial state for the DAE represents the state of the plant
immediately after the connection of the electric generator
to the grid. It is assumed that the initial rotor temperature
is uniform and equal to the steam temperature, which
roughly corresponds to a warm start-up case. A more
realistic initial distribution would require modelling the
boiler and turbine start-up phases, which is beyond the
scope of this paper.

The optimization problem was solved using the direct
collocation method in JModelica.org. The algorithm was
set up to use 40 collocation points and cubic interpolation
polynomials to approximate the state profiles. Also, the

Fig. 4. Optimal start-up trajectories. The upper curve
shows the live steam temperature, the middle and
low curves show the turbine rotor surface and mean
temperatures.

control variable was approximated by a piecewise linear
function with as many segments as finite elements.

The resulting non-linear program had 22663 variables and
was solved by IPOPT in 107 seconds on a PC with a
2.60Ghz Intel Core 2 Duo processor.

The nonlinear optimization algorithm requires an initial
trajectory of all the problem variables as a first guess for
the nonlinear solvers. In this case, a reference simulation
was used, where the gas turbine load was increased from
the initial value of 15% to the final value of 100% in 10000
seconds.

The result of the optimization is shown in Figure 3. During
the first 200 seconds, the gas turbine load is increased
at the maximum allowed rate and the stress builds up
rapidly, until it reaches the target limit. Subsequently, the
load is slowly increased, in order to maintain the stress
level approximately constant at the prescribed limit. When
the 50% load level is reached, further increases of the
load do not cause additional increase of the gas exhaust
temperature, and therefore cause only small increases
of the steam temperature, due to the steam generator
dynamics. It is then possible to resume increasing the load
at the maximum allowed rate, while the stress level starts
to decrease. The full load is reached at about 4200 s.

Figure 4 show the corresponding temperature transients
in the turbine shaft: the upper curve shows the live
steam temperature, while the middle and low curves show
the turbine rotor surface and mean temperature. The
surface temperature follows the steam temperature due
to convective heat transfer phenomena, while the mean
temperature lags behind because of the large thermal
inertia of the bulk of the rotor (recall that the thermal
stress is actually proportional to the difference between
the two).

This result is qualitatively comparable to the results
obtained by Casella and Pretolani (2006) with a detailed



plant model, even though the mismatch in the initial
conditions of the rotor temperature distribution and the
absence of the intermediate and low pressure circuits do
not allow to exactly superimpose the results.

5. SUMMARY AND CONCLUSIONS

In this paper, we have shown how the high level modeling
languages Modelica and Optimica have been used to solve
a start-up optimization problem for a combined-cycle
power plant. The open source platform JModelica.org has
been used to obtain computational results by means of a
direct collocation algorithm.

The use of high-level design tools has enabled short design
iteration cycles, where tuning of the model and the opti-
mization problem, rather than the details of their imple-
mentation, has been put into focus. Since the power plant
model relies on library components, it is well suited for
reuse and modular extension with more rigorous models
regarding, e.g., the thermodynamic media properties.

Future enhancements to this work include using more
accurate 1D models of the heat exchangers and of the fluid
properties, including the boiler start-up and turbine start-
up phases in the optimization, and using the optimization
algorithm for NMPC control, possibly by closing the loop
on a more accurate plant model to evaluate the behaviour
of the control system in a realistic set-up.
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Åkesson, J. (2008). Optimica—an extension of modelica
supporting dynamic optimization. In In 6th Interna-
tional Modelica Conference 2008. Modelica Association.
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