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Nuclei at High Angular Momentum*

8. G. NILSSON

Lund Institute of Technology, Lund, Sweden

Recent experimental progress in the use of heavy ions [1] (Stephens) has opened
the interest for a theoretical study of very high-angular-momentum states in nuclei.
Such a study, based solely on the liquid-drop model, was undertaken in 1972 by
Cohen, Plasil and Swiatecki [2]. In this latter work many new features involving
radical changes of shape at high angular momenta were exhibited. Recently some
publications have also appeared where shell structure effects were added to the
liquid-drop background through the works of the groups at Warsaw, Lund, Dubna
and Jiilich [3,4,5.6] (see also the preceeding work by Bohr and Mottelson [7]).
In particular, the recent results of the Lund-Warsaw group will be reported here [4].

Parametrisation

. The shape parametrisation is that defined by the equipotential surfaces of the modi-

fied harmonic oscillator of the type

5 2 ¢ sin , 9
V~p? [1 + 1/71; 5 {a cos p- Yy + _VIEI (Yoo + &2_2)} + 28, Y4 VZE]

Thus the macroscopic calculations correspond to shapes defined in terms of ¢, v
and &, in such a way that to each point ¢ and y and given angular momentum I,
the total classical energy, i.e. surface 4 Coulomb + rotational energy, is mini-
mized with respect to ¢, The rotational energy is evaluated in terms of classical
rigid rotation around the x-axis. The potential-energy surfaces appropriate for
1%4Sm are shown in Fig. 1 and the equilibrium shape trajectories in the &, y plane
are exhibited in Figs. 2 and 3 for 15Sm and '®Yb respectively. As was found by
the authors of ref [1], the transition from oblate to triaxial shapes takes place between
I = 78 and 80 and between I = 70 and 72 for %Sm and 58YD, respectively.

* based on work by R. Bengtsson, S. E. Larsson, G. Learder, P. Méiler, 1. Ragnarsson,
S. Aberg, S. Szymanski, S. G. Nilsson and G. Andersson, to be published [4].
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Fig. 1. The classical energy surface in ¢, 3 for **Sm for a sequence of I-values. A minimisation with respect
to ¢, is made for each £ and y. The rotational energy is that of a rigid rotor around the x-axis.
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Fig. 2. The equilibrium trajectory of the classical equilibrium
shape for ¥4Sm (x = 0.526).
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Fig. 3. The same as Fig. 2 but for 13%Yb.

It is interesting to plot the minimum (shape-optimised) classical energy as a
function of I (the different shapes are then reflected in different parts of the curve).
We have as an alternative chosen to exhibit the usual plot of the second derivative

K2 . .. OE .
-— or — vs. the first derivative T the latter being Kw. The ‘‘shape tran-
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sition” point near I = 80 is then dramatically projected as a “super back-bend”
(Fig. 4).

These results are now strongly modified with the inclusion of so-called shell
eifects. The latter are calculated on the basis of the modified-oscillator model with

300 T T T T T
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the inclusion of 12 and 1-s-terms. Furthermore, the auxiliary condition of a given
angular momentum is taken into account by the addition in the generator Hamilt-
onian H, of a term wl,, where w is a Lagrangian multiplier. The quantity w
also has the physical meaning of the rotational frequency. The term wl, can then
be thought of as the Hamiltonian form of the Coriolis and centrifugal contributions
in the rotating system.

We have thus
H,=H — ol, =Xh,

to which corresponds the eigenfunction ¥ in the form ofa Slater determinant
of eigenfunctions of h,. The energy and angular momenta corresponding to ¥
are determined as

<y|Hly*> = E(w)
and

<Yy > = I(w)
respectively.

These expressions are now compared to those obtained for Strutinsky smeared

energies and angular momenta. Purely reflecting the positions of the energy levels
Jennings [8] defines an energy distribution function -

2.(e?) =§3 (e — e?)
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while angular momentum distribution by Jennings is reflected in a function
ga(e”) = 2 <m>, 8(e® — ¢¥).
b
These are easily generalised to the smeared case as

8i(e") =\ S(e"—e?) gy(e”) de®

and
Tale®) = S S(E"™ — ) gy(e?) de®-

From these one can calculate

I= S g, de”
and
E :S g,de” + wl.
On the basis of these expressions, for each value of w cne obtains a set of I(w)
and E(w), from which a curve E = E(I) can be defined. Intermediate values are

subsequsntly~o~btained by interpolation. Similarly, from (w) and ﬁ(cu) a “‘smooth”
curve, E = E(1), can be constructed. To define the latter only two or three points

35 T T T T T T
x = Egpll}-E(0)
o = E(1)-E(0)

R .
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Fig. 5. The total energy F ana the Strutinsky
smeared total energy E as functions of
angular momentum for given £ and y.
are required due to the fact that for the Strutinsky case, as already stated, a very

straight line in E vs. I? is obtained. The difference for constant I between E and E

is defined as the shell energy for each I-value, see Fig. 5. Itis to be noted that Fy,.;
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for I £ 0 also includes shell contributions to the rotational moment of inertia.
In fact a separation between ‘‘intrinsic shell energy” and “‘rotational shell energy”
cannot be made. From Fig. 6 one can also note that E,. changes drastically
with I for given ¢ and y. In fact a negative shell energy usually goes positive with
a change of I of 50—100 units. The period of Eg.; in I is of the order of
Al ~ 100—200. ‘

From the relation between E and I for given deformation, one may define
a ‘“‘dynamical” inertia, as plottedin Fig. 7 for a few s.p. potentials, namely, the

- -
pure harmonic oscillator and the modified oscillator with (12 — <1%>). Finally,
also the relation between E and T corresponding to the expectation value of the
“rigid” inertia p(z% 4 y®)dt is given as the dashed line, where the integration is
done over an equipotential surface for constant density.

The excess of the M.O. dynamic moment of inertia over the rigid value, as
first pointed out in ref [3], is found to be a spurious and undesirable effect due to the

12 term, as first illucidated by Mottelson[9], Brack [10], Leander [11], Hamamoto[12]
and the authors of ref[4]. In our calculations the Strutinsky method is-employed for
the rotating case and thereby the “‘smeared” inertia value is replaced by the rigid
equivalent.

Calculational results

We turn now to the final results. Calculations have been performed for about thirty
rare-earth nuclei with Z = 62—70 and thirty nuclei in the region Z = 72—382, i.e.
below 208Pb. The energy surfaces are based on a grid in & and y of 40 points.
Ten different w-values up to ®/w, = 0.14 are used. Based on these w-values the
values of Eg,; are thus obtained by interpolation for values of I equal to 30
to 90 (usually) in steps of 10. For the sake of simplicity, it is assumed over the
entire region that pairing can be neglected. Independent calculations by the Jiilich
group [6] bear out that pairing collapses for I> 30. Beyond this point the present
approximation should thus apply satisfactorily.
For this set of I-values one can now obtain the total energy as

E(I: €, V) = Eliq(gs P> ETin) + Eshen(a, 7) -+ Erot(g: ?s 3Tin):

The total energy is subsequently plotted as a function of & and y (with the liquid-
drop energy minimized with respect to &, in the most recent calculation ¢, is
also included for the shell energies). In this way surfaces corresponding to Figs §—9’
are obtained for *¥0Yb and 1%2Pt. In some of these cases also the region of negative
y-values, y = 0—20° is of some interest, as first pointed out by the authors of
ref [5], Such extended surfaces have also been constructed by the Lund group. They
are to be presented in ref [4].

Finally, also trajectories for the equilibrium shape of a sequence of nuclei
corresponding to the yrast energies have been constructed and are exhibited in
Figs 10—11.
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Fig. 8. The total-energy surface (with no pairing included) as a function of I, ¢ and y (with the g, degree
of freedom included for the liquid-drop and rigid rotational-energy terms) for the nucleus #0Yb,
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Fig. 11. The same as Fig 10 but for isotopes of Yb (negative v not included).

Summary of results

One may summarize the most interesting results as follows for the 150 < A < 208
region of nuclei as calculated by us. ’

a) Consider first the nuclei with neutron number less than 100 and A less
than 170. For the nuclei near the beta stability line, the trajectory stays largely
near the prolate axis before the shape finally turns triaxial with increasing I. These
nuclei also tend to initially contract in ¢ for, say, I increasing from 0 to 40.
Furthermore the trajectory involves negative y-values over certain intermediate
I-values,

b) In the same mass region A < 170 the very neutron-deficient nuclei in
certain regions of I have a trajectory along the y = 60° axis. Here “‘yrast traps”
appear to have a certain likelihood to occur.

c) For the mass region 170 < A < 208 the negative y-values play a minor
role. Furthermore the trajectories of those nuclides that are clearly prolate in their
ground state and have N > 100 tend to “stretch” in deformation, i.e. move along
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the y =0 axis with ¢ increasing with 1 (contrary to the light rare earths). Other
nuclides that already in the ground state are prolate but nearly y-unstable tend to
shift their equilibrium over to y = 50—60° with increasing I before finally turning
prolate. (2Pt is an example.)

A detailed analysis of the microscopic mechanisms behind the encountered
behaviour can be found in the forthcoming paper (4] by the Lund group. The co-
operation of Profs. Aage Bohr and Ben Mottelson as well as Drs. V. Pashkevich
and K. Nergaard is highly appreciated.
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