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Abstract

In this paper an inverse source problem is investigated. The measurement

set-up is a re�ector antenna covered by a radome. Equivalent currents are

reconstructed on a surface shaped as the radome in order to diagnose the

radome's interaction with the radiated �eld. To tackle this inverse source

problem an analysis of a full-wave integral representation, with the equivalent

currents as unknowns, is used. The extinction theorem and its associated inte-

gral equation ensure that the reconstructed currents represent sources within

the radome. The axially symmetric experimental set-up reduces the compu-

tational complexity of the problem. The resulting linear system is inverted

by using a singular value decomposition. We visualize how the presence of

the radome alters the components of the equivalent currents. The method

enables us to determine the phase shift of the �eld due to the transmission of

the radome, i.e., the IPD (insertion phase delay). Also, disturbances due to

defects, not observable in the measured near �eld, are localized in the equiva-

lent currents. The results are also compared with earlier results where a scalar

integral representation was employed.

1 Introduction

The aim of this paper is to calculate and visualize the sources of a measured electric
�eld on a radome-shaped surface. The electric �eld is originating from an antenna
inside the radome and is measured in the near-�eld zone outside the radome. The
electrical size of the radome is 29 wavelengths at the frequency 8.0GHz.

This kind of calculations are important in diagnosing antennas, designing ra-
domes, etc., since the �eld close to the body of interest is di�cult to measure directly.
By doing so, the interaction between the source and the measurement probe can
give incorrect results [14, 36, 49]. In the process of designing a radome, the electric
�eld close to the antenna is requested as an input to software calculating the �eld
propagation through the radome wall [2, 39]. To get reliable results, it is crucial
that the representation of the �eld radiated from the antenna, i.e., the input data,
is well known. To determine the performance of the radome it is eligible to quantify
e.g., beam de�ection, transmission e�ciency, pattern distortion, and the electrical
thickness of the radome wall, i.e., the insertion phase delay (IPD). It is also of
interest to see how the mounting device and e.g., lightning conductors and Pitot
tubes, often placed on radomes, interact with the electric �eld.

One of the �rst techniques developed to solve the inverse source problems of
this kind employs the plane wave expansion [10, 25, 37]. The method works very
well when the equivalent currents are reconstructed on a planar surface. One recent
area of application is the determination of the speci�c absorption rate of mobile
phones [12]. A modal expansion of the �eld can be utilized if the reconstruction
surface is cylindrical or spherical [14, 26, 31]. This method has been used to calculate
the insertion phase delay (IPD) and to detect defects on a spherical radome [13].
More general geometries, e.g., needle shaped objects and �at disks, can be handled
by expanding the �eld in spheroidal wave functions [44]. A combination of the plane
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wave spectrum and the modal expansion has been utilized in [7, 8] and [50] where
�at antenna structures are diagnosed and safety perimeter of base stations' antennas
is investigated, respectively.

To be able to handle a wider class of geometries, diagnostic techniques based
on integral representations, which are solved by a method of moment approach, are
applied. The drawback is the computational complexity. If the object on which the
currents are to be reconstructed is metallic, i.e., a perfect electric conductor (PEC),
either the electric or magnetic �eld integral equation (EFIE or MFIE) can be em-
ployed [47] or combinations thereof [34, 40]. The equivalence principle is conveniently
used when analyzing �at antenna structures [23, 24, 38]. An integral representation
together with a priori information of the object and iterative solvers is used by [22]
and [11] to �nd the electric current on the walls of a PEC for diagnose of a pyramidal
horn antenna and a monopole placed on the chassis of a car.

In this paper we propose a technique using the integral representations to relate
the unknown equivalent currents to a known measured near �eld. In addition to
the integral representation, we also use an integral equation, originating from the
extinction theorem [9]. By using the extinction theorem together with the integral
representation we secure that the sources of the reconstructed currents only exist
inside the enclosing volume [46]. The equivalent currents can be reconstructed on a
surface arbitrarily close to the antenna. No a priori information of the material of
the object just inside the surface is utilized.

2 Prerequisites

In this section, we review the basic equations employed in this paper. We start with
a general geometry, and specialize to a body of revolution in Section 2.2.

2.1 General case

The surface integral representation expresses the electromagnetic �eld in a homo-
geneous, isotropic region in terms of its values on the closed bounding surface.
We engage the integral representations to a domain outside a closed, bounded sur-
face Srad. Carefully employing the Silver-Müller radiation conditions, the solution
of the Maxwell equations satisfy the following integral representation [17, 29, 42, 46]∫∫
Srad

(
−jωµ0µ g(r1, r2)

[
n̂(r1)×H(r1)

]
+

j

ωε0ε
∇1g(r1, r2)

{
∇1S ·

[
n̂(r1)×H(r1)

]}

−∇1g(r1, r2)×
[
n̂(r1)×E(r1)

])
dS1 =

{
E(r2) r2 outside Srad

0 r2 inside Srad

(2.1)
where the time convention used is ejωt, and the surface divergence is denoted ∇S· [9].
The variable of integration is denoted r1 and the observation point r2, see Figure 1.
The relative permittivity ε and the relative permeability µ may depend on the
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Figure 1: The surface Srad of integration. The unit normal to the surface is n̂. The
variable of integration is denoted r1 and the observation point r2.

angular frequency ω, i.e., the material can be dispersive, but they are constants as
a functions of space (homogeneous material). The scalar free space Green function
is

g(r1, r2) =
e−jk|r2−r1|

4π|r2 − r1|
(2.2)

where the wave number of the material is k = ω
√
ε0µ0εµ. The representation (2.1)

states that if the electromagnetic �eld on Srad is known, the electromagnetic �eld
outside Srad can be determined [15, 30, 46]. If these integrals are evaluated at a
point r2 lying in the volume enclosed by Srad these integrals cancel each other
(extinction). It is important to notice that this does not necessarily mean that the
�eld E is identically zero inside Srad, it only states that the values of the integrals
cancel.

The electric and magnetic equivalent surface current densities, J and M , are
introduced to simplify the notation and they are de�ned as [5]{

J(r) = n̂(r)×H(r)

M(r) =− n̂(r)×E(r)
(2.3)

The lower (or upper) representation in (2.1) is transformed into an integral equa-
tion letting r2 approach Srad, cf., Figure 1. However, care must be taken since
the integrands become singular when r2 approaches the surface [9, 17, 28, 46]. The
equation consists of three components, two describing the tangential �eld and one
describing the normal component of the �eld. Since the normal component can
be determined by the knowledge of the tangential parts, this representation has
redundancies, i.e., the normal component is eliminated [29].
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To this end, (2.1) splits into a surface integral representation of the electric �eld∫∫
Srad

{
−jωµ0µ g(r1, r2)J(r1) + j

1

ωε0ε
∇1g(r1, r2)

[
∇1S · J(r1)

]
+∇1g(r1, r2)×M(r1)

}
dS1 = E(r2) r2 outside Srad

(2.4)

and a surface integral equation in J and M

n̂(r2)×
∫∫
Srad

{
jωµ0µ g(r1, r2)J(r1)− j

1

ωε0ε
∇1g(r1, r2)

[
∇1S · J(r1)

]
−∇1g(r1, r2)×M (r1)

}
dS1 =

1

2
M (r2) r2 ∈ Srad

(2.5)

When necessary, the integrals in the surface integral equation are interpreted as
Cauchy's principal value [9, 35].

The integral equation is written in a weak form, i.e., it is multiplied by a test
function and integrated over its domain [6, 20, 28, 34]. The representation (2.4) does
not need this treatment since r2 consists of a discrete number of points outside Srad,
i.e., r1 and r2 do not coincide. The weak formulation of (2.5) is derived in Appendix
A, where the test function is denoted by Ψ, giving

jωµ0µ

∫∫
Srad

∫∫
Srad

Ψ(r2) · g(r1, r2)J(r1) dS1 dS2

− j
1

ωε0ε

∫∫
Srad

∫∫
Srad

[
∇2S ·Ψ(r2)

]
g(r1, r2)

[
∇1S · J(r1)

]
dS1 dS2

−
∫∫
Srad

∫∫
Srad

Ψ(r2) ·
[
∇1g(r1, r2)×M (r1)

]
dS1 dS2

− 1

2

∫∫
Srad

[
n̂(r2)×Ψ(r2)

]
·M (r2) dS2 = 0 (2.6)

2.2 Body of revolution

From now on the equations are adapted to a body of revolution (BOR) in vacuum,
i.e., ε = 1 and µ = 1. The surface is parameterized by the azimuth angle ϕ and the
height coordinate along the surface v, i.e., the position vector r can be expressed
as r(ϕ, v) = ρ(v) cosϕ êx + ρ(v) sinϕ êy + z(v) êz. The normalized basis vectors are
then

ϕ̂(ϕ) =
∂r

∂ϕ
/

∣∣∣∣∂r∂ϕ
∣∣∣∣ = − sinϕ êx + cosϕ êy and v̂(ϕ, v) =

∂r

∂v
/

∣∣∣∣∂r∂v
∣∣∣∣

and {n̂, ϕ̂, v̂} forms a right-handed triple of unit vectors. The curvilinear compo-
nents of the magnetic equivalent surface current and electric �eld are denoted as
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Figure 2: The regions of integration in (2.9).

Eϕ = −Mv and Ev = Mϕ, cf., (2.3), where Mϕ = M · ϕ̂, and Mv = M · v̂. The
magnetic �eld and the electric equivalent current are related in a similar way. The
explicit expressions of the normalized basis vectors, surface divergence, the gradient
of the Green function, and other useful formulas are derived in Appendix B.

Two functions, aϕmj and av
mj, are used as basis functions. They are de�ned as

aϕmj = fϕj (v) ejmϕϕ̂

av
mj = fv

j (v) ejmϕv̂
(2.7)

The height of the radome, v1, is discretized into points, vj, where j = 1, . . . , Nz.

The functions f
ϕ/v
j (v) can be chosen as a constant, linear, cubic, spline functions

etc., with support in a neighborhood of vj [6, 34]. For the results in this paper,

both f
ϕ/v
j (v) are chosen as piecewise linear functions, i.e., one-dimensional rooftops.

Observe that ϕ/v in fϕ/v denotes a superscript and not an exponential. In the
azimuthal direction, a global function, ejmϕ, i.e., a Fourier basis, is used due to the
symmetry of the body, and m is an integer index. The current is expanded as

J =
∑
m,j

{
Jϕmj aϕmj + Jv

mj av
mj

}
(2.8)

The magnetic current M is expanded in a similar way, but with expansion coe�-
cients M

ϕ/v
mj .

Galerkin's method is used [6]. That is, the test functions are according to (2.7)
Ψϕ
ni = (aϕni)

∗ and Ψv
ni = (av

ni)
∗ where complex conjugation is denoted by a star and

the indicies run through the same integers as m and j. The surface divergence, the
tangential components of the test function and the current are explicitly derived
and listed in Appendix C.

The surface integral representation (2.4) is applied to the measurement set-up
described in Section 3, i.e., r2 belongs to a cylindrical surface Smeas, see Figure 2.
This surface has axial symmetry with constant radius and is parameterized by ϕ2
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and v2, in the same manner as the surface Srad is. The height is discretized into
points, vq, where q = 1, . . . , Nmeas

z . None of the integrals contains singularities since
r1 and r2 will not coincide. From equation (2.4) we get[

v̂
ϕ̂

]
·
{
−jωµ0

∫∫
Srad

g(r1, r2)J(r1) dS1 + j
1

ωε0

∫∫
Srad

∇1g(r1, r2)
[
∇1S · J(r1)

]
dS1

+

∫∫
Srad

∇1g(r1, r2)×M(r1) dS1

}
=

[
v̂ ·E(r2)
ϕ̂ ·E(r2)

]
=

[
Ev(ϕ2, v2)
Eϕ(ϕ2, v2)

]
r2 ∈ Smeas

(2.9)
where the tangential components are projected using scalar multiplication.

Since the currents are expanded in the Fourier series, the right hand side of (2.9)
is expanded in the same way, i.e., the Fourier expansion of Eϕ/v is

Eϕ/v(ϕ2, v2) =
∞∑

n=−∞

Eϕ/v
n (v2)ejnϕ2

where

Eϕ/v
n (v2) =

1

2π

∫ 2π

0

Eϕ/v(ϕ2, v2)e−jnϕ2 dϕ2 (2.10)

and n is an integer index. Observe that ϕ/v in Eϕ/v denotes a superscript and not
an exponential. The Fourier series reduce the dimensions of the problem by one
degree [27, 34, 45].

Equation (2.9) consists of nine di�erent angular integrals. These integrals are
non-singular and are derived and listed in Appendix D. Equation (2.9) is organized
as a system of matrices, i.e.,[

[Z11] [Z12]
[Z21] [Z22]

] [
[Jv]
[Jϕ]

]
+

[
[X11] [X12]
[X21] [X22]

] [
[Mv]
[Mϕ]

]
=

[
[Ev]
[Eϕ]

]
(2.11)

where the right hand side consists of the Fourier coe�cients of the electric �eld. The
details of the derivation and the explicit expressions of the matrix elements

[
Zkl
]

and
[
Xkl
]
are given in Appendix F.

The integral equation in (2.6) also contains nine di�erent integrals in the angular
direction. These are the same as in the integral representation, i.e., (2.9), but they
now contain singularities. The integrals are derived and listed in Appendix D.
Equation (2.6) is also organized as a system of matrices, i.e.,[

[Z11] [Z12]
[Z21] [Z22]

] [
[Jv]
[Jϕ]

]
+

[
[X 11] [X 12]
[X 21] [X 22]

] [
[Mv]
[Mϕ]

]
=

[
[0]
[0]

]
(2.12)

The details of the derivation and the explicit expressions of the matrix elements[
Zkl
]
and

[
X kl
]
are given in Appendix G.

Combining the matrix systems for the integral representation (2.11) and (2.12)
gives, in short-hand notation,[

[Z] [X]
[Z] [X ]

] [
[J ]
[M ]

]
=

[
[E]
[0]

]
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Figure 3: (a) Photo of the cylindrical near-�eld range at SAAB Bofors Dynamics,
Sweden. The antenna under test is rotated and the probe is moved in the vertical
direction. A close up of the re�ector antenna is shown in the upper right corner.
(b) The dimensions of the re�ector antenna, the radome, and the cylinder where the
electric near �eld is measured.

The magnitude of the entries of the matrices may di�er by several orders of magni-
tude. To avoid numerical errors, the system is solved for one current at a time,

[J ] = −[Z]−1[X ][M ] =⇒{
−[Z][Z]−1[X ] + [X]

}
[M ] = [E]

(2.13)

when J is eliminated. In the �rst line, J is expressed as a function of M utiliz-
ing the integral equation. The matrix [Z] is quadratic and inverted numerically in
MATLAB. The second equation is ill-posed. The matrix is no longer quadratic and
to solve for M , the linear system is inverted and regularized by the singular value
decomposition (SVD) in MATLAB [45]. Besides numerical errors also noise and
measurement errors show up. Here, the SVD helps in suppressing the ampli�cation
of noise in the inversion [3]. In our initial investigation we have not encountered any
problems with spurious modes [41] or by using the numerical inversion of MATLAB
or the SVD. However, a more detailed investigation of the ill-posed equations is
needed. Speci�cally, a discussion of how to chose the cut-o� value, i.e., the magni-
tude of the largest singular value that is excluded, needs to be addressed further.

3 Near-�eld measurements

The experimental set-up and the measured electric �eld is described in [32]. How-
ever, for convenience, the necessary information is summarized. The measurement
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set-up is shown in Figure 3. A re�ector antenna, fed by a symmetrically mounted
wave-guide, generates the electromagnetic �eld. The diameter of the antenna is
0.32 m, and the main lobe of the antenna is vertically polarized relative to the hor-
izontal plane. The radome surface is axially symmetric and its radius, in terms of
the height coordinate, is modeled by

ρ(z) =

{
0.213 m −0.728 m ≤ z ≤ −0.663 m

−(bz′ + d) +
√

(bz′ + d)2 − a(z′)2 − 2cz′ − e −0.663 m < z ≤ 0.342 m

where z′ = z + 0.728 m and the constants are a = 0.122, b = 0.048, c = −0.018 m,
d = 0.148 m, and e = −0.108 m2, respectively. The height of the radome corresponds
to 29 wavelengths for the frequency 8.0 GHz. The material of the radome has a
relative permittivity of about 4.32 and its loss tangent is about 0.0144. The thickness
of the wall of the radome varies over the surface in the interval 7.6− 8.2 mm.

The surface Srad in (2.6) and (2.9) is de�ned by the radome surface, closed with
smooth top and bottom surfaces. These added surfaces are needed since the integral
representation applies to a closed surface and the measurements are performed under
non-ideal conditions. The turntable, on which the antenna and radome are located,
see Figure 3a, re�ects some of the radiation, which is taken care of by the added
bottom surface. The top surface takes care of the electric �eld that is re�ected on
the inside of the radome and then radiated through the top hole. If these factors are
neglected, unwanted edge e�ects occur, since the electric �elds originating from the
turntable and the top of the radome are forced to originate from the radome itself.
The radome surface is divided into 8 cells per wavelength in the height direction,
and in each cell 4 points are chosen where the integrations are evaluated.

The electric �eld is measured on a cylindrical surface by moving the probe in
the z-direction and rotating the radome and the antenna under test, see Figure 3.
This surface is located in the near-�eld zone [4]. The near-�eld measurement probe
consists of a waveguide for which no compensation is made in the �nal data. With
this measurement set-up, the data on the top and the bottom of the cylindrical
surface cannot be collected. It would have been preferable to measure the �elds
on an in�nite cylinder. However, the size of the cylinder is chosen such that the
turntable below the radome does not have a major in�uence on the measurements
and such that the �elds above z = 800 mm are negligible. In the azimuth angle,
120 points are measured in steps of 3◦. The z-dimension is divided into 129 points,
every two points, vq and vq+1, are separated by 12.5 mm.

Three di�erent measurement con�gurations are considered; antenna without
radome, antenna together with radome, and antenna together with defect radome.
The defect radome has two copper plates attached to its surface. These are lo-
cated in the forward direction where the main lobe hits the radome and centered at
the heights 41.5 cm and 65.5 cm above the bottom of the radome. The side of the
squared copper plates is 6 cm, corresponding to 1.6 wavelengths at 8.0 GHz.

The absolute values of the measured co- and cross-polarized electric �elds, Ev and
Eϕ, respectively, are shown in Figures 4�5, where |Ev|dB = 20 log (|Ev|/|Ev|max) and
|Eϕ|dB = 20 log (|Eϕ|/|Ev|max), respectively. That is, all �elds are normalized with
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Figure 4: The co-component, |Ev|dB, of the experimentally measured near-�eld
data at 8.0 GHz, normalized with the largest value of |Ev| when no radome is present.
(a) No radome present. (b) Radome present. (c) Defect radome present.
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Figure 5: The cross-component, |Eϕ|dB, of the experimentally measured near-�eld
data at 8.0 GHz, normalized with the largest value of |Ev| when no radome is present.
(a) No radome present. (b) Radome present. (c) Defect radome present.
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Figure 6: The Fourier transformed measured �eld, |Ev|dB, at 8.0 GHz. All values
are normalized with the largest value of |Ev| when no radome is present. a) No
radome present. (b) Radome present. (c) Defect radome present.
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Figure 7: The Fourier transformed measured �eld, |Eϕ|dB, at 8.0 GHz. All values
are normalized with the largest value of |Ev| when no radome is present. a) No
radome present. (b) Radome present. (c) Defect radome present.

the largest value of |Ev| when no radome is present. In particular, Eϕ has a quite
complicated pattern. The di�raction is explained as environmental re�ections and
an o�-centered antenna feed. Observe that the amplitude of the azimuth component
is smaller than the amplitude of the height component, i.e., measurement errors are
more likely to show up here. The di�erences between the three di�erent antenna
and radome cases arise from constructive and destructive interference between the
radiated �eld and the scattered �eld. The absolute value of the Fourier transformed
measured �elds are shown in dB-scale in Figures 6�7. According to these �gures,
the spectrum is truncated at n = 30, above which the energy contents is too low.

4 Results

The measured �eld on the cylindrical surface at 8.0 GHz, cf., Figures 4 and 5, is
transformed back onto a surface corresponding to the radome surface. Figures 8
and 9 show the recreated electric �elds, |Ev|dB and |Eϕ|dB, respectively, in the main
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(a) (c)(b)
-30
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-10
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Figure 8: The recreated |Ev|dB-component on the front side of the radome. All
values are normalized with the largest value of |Ev| when the defect radome is
present. (a) No radome present. (b) Radome present. (c) Defect radome present.
The arrows point out the locations of the copper plates.

lobe for the di�erent con�gurations. Observe that all values are normalized with the
largest value of |Ev| when the defect radome is present. The �gures show that the
near �eld close to the antenna is complex and hard to predict. In the case, when no
radome is located around the antenna, the electric �elds are calculated on a surface
shaped as the radome, see Figures 8a and 9a. The case when the radome is present,
see Figures 8b and 9b, shows that the radome interacts with the antenna and hence
disturbs the radiated �eld. How this interaction a�ects the amplitude is depicted
in Figures 10a and b, where (|Ev

no radome| − |Ev
radome|) and (|Eϕ

no radome| − |E
ϕ
radome|)

are shown in a linear scale and normalized with the maximum di�erence for each
component. Both components of the electric �eld are reduced in amplitude in the
main lobe whereas the �eld strength outside the main lobe is increased when the
radome is introduced. This is most likely due to transmission loss in the radome
wall and scattering against the inside wall.

The e�ect of the attached copper plates are detected as shown in Figures 8c
and 9c, where the lower plate appears clearly. Observe that the copper plates cannot
be localized directly in the near-�eld data, compare Figures 4c and 5c to Figures 8c
and 9c. The near-�eld data only shows that the �eld is disturbed, not the locations
of the disturbances. The upper plate is hard to discern in Figures 8c and 9c since
it is located in a region with small �eld magnitudes. However, the in�uence of the
upper copper plate can be detected in the cross section graphs, see Figures 11a
and b. To determine the exact position of the defects several cross section graphs
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Figure 9: The recreated |Eϕ|dB-component on the front side of the radome. All
values are normalized with the largest value of |Ev| when the defect radome is
present. (a) No radome present. (b) Radome present. (c) Defect radome present.
The arrows point out the locations of the copper plates.

have to be examined. It is interesting to see that even though the magnitude of the
cross-polarization is small, the locations of the copper plates can be found.

The presence of the radome also creates some backscattering (�ash lobes) as seen
in Figures 11 c�d, 12, and 13. In Figures 11 c�d, a cross section at an angle 180o

from the center of the main lobe, i.e., in the middle of the back side, is viewed.
Figures 12 and 13 depict both components on the back side of the radome for all
three con�gurations in a dB-scale. In these �gures it is also observed that the �ash
lobes are altered when the copper plates are present.

The copper plates can also be detected by subtracting the �eld of the defect
radome and the �eld of the non-defect radome. This result is shown in dB-scale in
Figure 14 for both the components of the electric �eld, i.e., |Ev

radome −Ev
def radome|dB

and |Eϕ
radome −E

ϕ
def radome|dB, each component normalized with the maximum di�er-

ence for each component. The reconstruction of the Eϕ-component, cf., Figure 14b,
only shows the e�ects of some parts of the copper plates. The reason is that parts of
the copper plates are located in an area where the amplitude of the Eϕ-component
is small, cf., Figure 5 and 9a.

Figure 14a indicates that there is an amplitude di�erence between the con�gu-
rations slightly above the location of the lower copper plate. To visualize what is
happening, the di�erence (|Ev

radome| − |Ev
def radome|), normalized with its maximum

value, in a linear scale, is depicted in Figure 15. The scale is truncated in order to
see the small �eld di�erence above the copper plate. Here it becomes clear that the
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(a) (b)

Figure 10: The subtraction between the �elds with and without radome present.
In (a) (|Ev

no radome| − |Ev
radome|)/max||Ev

no radome| − |Ev
radome|| is shown and in

(b) (|Eϕ
no radome| − |E

ϕ
radome|)/max||Eϕ

no radome| − |E
ϕ
radome||. The front side of the

radome, i.e., the side with the main lobe, is viewed. The scale is linear.

area, where the copper plate is attached, has a reduced electric �eld, when the defect
radome is present. The area above the copper plate has instead an increased electric
�eld, when the defect radome is present. This is most likely due to scattering of the
copper plate.

So far only the amplitudes of the reconstructed �elds has been investigated. How-
ever, even the phase can give useful information. The phase of the Ev-component,
i.e., ∠Ev, where ∠ denotes the argument, is depicted in Figure 16 for all con�gura-
tions. The vertical lines above the main lobe in Figure 16a are due to phase jumps,
and are caused by the low amplitude of the �elds in these areas.

Just showing the phase as in Figure 16 does not give very much information.
What is interesting is to study the phase di�erence (antenna - antenna with radome)
for the two recreated components, see Figure 17. It reveals how the phase is changed
due to the in�uence of the radome. It is observed that the phase shift in the main
lobe is almost constant, for both components. This con�rms that the radome is well
adapted to the frequency 8.0 GHz. Since the amplitude of Eϕ is low, cf., Figures 5
and 9, its phase contains much noise, and it is therefore somewhat more unreliable
than ∠Ev.

In Figure 18, a cross section in the middle of the main lobe of the phase di�erence
in Figure 17 is depicted. The cross section of ∠Eϕ is shown for a slightly acentric
angle, since the amplitude in the center of the main lobe is very low, see Figure 9. In
areas where the �eld is strong, the phase shift does not �uctuate as much. Outside
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Figure 11: Cross sections of the reconstructed �eld components. (a) |Ev|dB in the
main lobe. (b) |Eϕ|dB in the main lobe. (c) |Ev|dB on the back of the radome.
(d) |Eϕ|dB on the back of the radome. All values are normalized with the maximum
value of |Ev| when the defect radome is present. The black line corresponds to no
radome, the blue line has the radome present and the red line represents the defect
radome. The positions of the copper plates on the defect radome are marked by
thick lines on the horizontal axis.
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(a) (c)(b) -30

-20

-10

0

Figure 12: The recreated |Ev|dB-component on the back side of the radome. All
values are normalized with the maximum value of |Ev|, on the front side, when the
defect radome is present. (a) No radome present. (b) Radome present. (c) Defect
radome present.

(a) (c)(b) -30

-20

-10

0

Figure 13: The recreated |Eϕ|dB-component on the back side of the radome. All
values are normalized with the maximum value of |Ev|, on the front side, when the
defect radome is present. (a) No radome present. (b) Radome present. (c) Defect
radome present.
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Figure 14: The logarithmic di�erences revealing the copper plates,
(a) 20 log{|Ev

radome−Ev
def radome|/max|Ev

radome−Ev
def radome|}, and (b) 20 log{|Eϕ

radome−
Eϕ

def radome|/max|Eϕ
radome −E

ϕ
def radome|} on the front side of the radome. The arrows

point out the locations of the copper plates.

0

0.5

-0.5

amplitude
difference

Figure 15: The di�erence (|Ev
radome| − |Ev

def radome|)/max||Ev
radome| − |Ev

def radome|| in
a linear scale on the front side of the radome. The scale is truncated in order to see
the small �eld amplitude above the copper plate, marked with an arrow.
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(a) (c)(b)

0

-¼

¼

Figure 16: The recreated phase of the Ev-component on the front side of the
radome in a linear scale. a) No radome present. b) Radome present. c) Defect
radome present.
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¼

(a) (b)

Figure 17: The IPD, i.e., the phase di�erence between the �eld when no radome
is present and the �eld when the radome is present, on the front side of the radome.
a) (∠Ev

no radome − ∠Ev
radome). b) (∠Eϕ

no radome − ∠Eϕ
radome).
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Figure 18: Cross section in the middle of the main lobe of the IPD depicted in
Figure 17. The blue line corresponds to (∠Ev

no radome − ∠Ev
radome) and the red to

(∠Eϕ
no radome−∠Eϕ

radome), respectively. The insert shows the area with reliable data.
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Figure 19: The phase di�erence between the �eld when the radome is present and
the �eld when the defect radome is present, on the front side of the radome. The
arrows point out the copper plates. a) (∠Ev

radome − ∠Ev
def radome). b) (∠Eϕ

radome −
∠Eϕ

def radome).
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Figure 20: Cross section in the middle of the main lobe of the phase di�erences
depicted in Figure 19. The axis describing the radome height is truncated and shows
only the region where the phase information is reliable, cf., Figure 18. The blue line
corresponds to (∠Ev

radome − ∠Ev
def radome) and the red to (∠Eϕ

radome − ∠Eϕ
no radome),

respectively.

this areas the amplitude is low and the phase is not well de�ned, i.e., dominated by
noise, and it will not give valid information. This means that when looking at the
main lobe, the only area that contains reliable values is z ∈ [−0.5,−0.05].

The phase shift arising when the radome is introduced, i.e., the phase shift
viewed in Figures 17 and 18, is called the IPD (Insertion Phase Delay). It is one
of the parameters that quanti�es the performance of the radome, and depending on
the polarization, two di�erent IPD are de�ned [19]

T = |T |∠IPD (4.1)

where T = Et/Ei is the complex transmission coe�cient. The incoming �eld is
denoted Ei, and the transmitted Et. The phase shift is only known modulus 2π. To
validate the calculation of the IPD, an estimation of the thickness of the radome
wall is carried out. Under the assumption of negligible re�ections the IPD can be
expressed as [18, 21]

IPD =
ω

c

{
Re
√
εr(1− j tan δ) cos θt − cos θi

}
d (4.2)

for both polarizations, where ω is the angular frequency, c is the speed of light in
vacuum, θi is the incident angle, and θt is the transmission angle of the �eld on the
inside of the radome wall. Approximate values of the relative permittivity, εr ≈ 4.32,
and the loss tangent, tan δ ≈ 0.0144, are used. The thickness of the radome wall is
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Figure 21: A comparison between the code based on the scalar and full vector
integral representation when no radome is present. All values are shown i dB-scale
and normalized with the maximum value of |Ev|. (a) Vector code, |Ev|dB. (b) Scalar
code, |Ez/ cos θ|dB. (c) Di�erence, |Ev − Ez/ cos θ|dB.

denoted d. The incident angle is approximated to 40o, cf., Figure 3b. The measured
radome thickness, d, varies over the surface in the interval 7.6− 8.2 mm. The phase
shift in the main lobe is crudely approximated from Figure 18 to be 1.7 rad for both
components/polarizations. Solving for d in (4.2) results in a radome thickness of
8.4 mm. The agreement is quite well considering the approximations made.

An investigation of the phase di�erence (radome - defect radome), see Figures 19
and 20, reveals that its harder to localize the actual positions of the copper plates by
using the phase instead of only the amplitude, cf., Figures 8 and 9. Nevertheless, the
upper copper plate is visible in the 3-D visualization in Figure 19a, and by looking
at a cross section over the main lobe of the phase di�erence, the position of the
upper copper plate is located for both components, see Figure 20. We only show
the interval, where the phase is not too contaminated by noise, cf., Figure 18. The
upper copper plate is located on the boundary to where noise dominates. Thus, if
the positions of the copper plate were not known in advance, the phase shift might
be interpreted as noise. The lower copper plate also introduces a phase shift, but
these e�ects are hard to interpret and not con�ned to the exact position of the plate.

4.1 Veri�cation

To verify the code, the new results for the Ev-component is compared with the
results given by the scalar integral representation, see [32, 33]. The comparison is
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shown in Figure 21 for the case when no radome is present. In the scalar case, the
Ez-component is calculated whereas in the vector code it is the component tangential
to the surface, i.e., Ev. To compensate for this the Ez-component is divided by cos θ,
where θ is the angle between the z-axis and the radome surface. In Figure 21 all
�elds are normalized with the maximum value of |Ev| and shown in dB-scale. We
notice that the �eld pattern given by both codes are very similar. The amplitudes
are higher in the vector case, and the largest di�erence, about −19 dB, occurs in
the main lobe where both �eld-components are strong. This is evident since the
interaction between both �eld components, Ev and Eϕ, is taken into account in
the vector calculations. Whereas, in the scalar case, Eϕ was assumed to be zero.
Veri�cation of the scalar code has been made in [32]. Speci�cally, the reconstructed
�elds on the radome surface was transformed to the far �eld. Comparison with
measured far �eld shows good agreement.

5 Conclusions

The aim of this paper is to reconstruct equivalent currents on a surface bounding the
sources of an electromagnetic �eld. A vector-valued surface integral representation
is utilized together with the extinction theorem. The surface integral representa-
tion gives a linear map between the equivalent surface currents and the near-�eld
data for general geometries. It is shown that this map can be inverted for axially
symmetric geometries with the measured near �eld. The theory can be adapted
to geometries lacking symmetry axes. However, it is not a feasible approach for
radome applications today due to the computational demand to solve the integral
equations. An alternative approach would be to address this problem using fast
multipoles methods [43].

In previous papers only the dominating vertical co-component of the measured
�eld has been used in the reconstruction by using a scalar integral representation,
where comparison with measured far �eld shows good agreement [32, 33]. In this
paper it is shown that both components of the equivalent currents can be recon-
structed by using a full-wave surface integral representation. The results for the
cross-component show that also this component provides useful insight of the com-
plex �eld close to the antenna and the �eld altered by the radome. It is illustrated
how the radome interacts with the electric �eld. In particular, transmission losses in
the radome wall and re�ections on the inside decrease the �eld in the main lobe, and
new side and �ash lobes appear. Both components of the experimentally measured
�eld can also be used to locate the e�ect of defects, i.e., copper plates, not directly
visible in the measured near-�eld data. Furthermore, the copper plates introduce
scattering and alter the �ash lobes.

Also, the phase of the reconstructed �elds is investigated. The IPD, i.e., the
phase di�erence, arising when the radome is located between the antenna and the
measurement probe, is visualized. The results give a good estimate of the thickness
of the radome wall. The e�ects of the copper plates are visible in the phase shift.
However, the exact location of the defects is hard to determine solely from the phase



22

images.
By comparison with the results given by the scalar integral representation, it

is concluded that the patterns of the electric �eld, obtained by the di�erent codes,
are similar. The amplitude does however di�er somewhat between the codes. This
result is expected since in the scalar case assumes zero azimuthal component of
the measured electric �eld. However, in this paper, the interaction between both
components is taken into consideration.

This paper shows the potentials of the approach in radome diagnostics. Next
step is to analyze if the electric equivalent current, i.e., the magnetic �eld, on the
radome surface gives some more information. Moreover, investigations with di�erent
frequencies are expected. To localize the exact positions of the defects, a deeper
analyze of 3D-pictures, cf., Figures 8c and 9c, and cross-section graphs, cf., Figure
11, combined with the phase shift data, is planned. To use this method in verifying
radomes, i.e., calculating the IPD, more analysis of the phase and its noise levels is
needed.
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Appendix A Investigation of the weak formulation

In this appendix, the weak formulation of (2.5) is evaluated. The aim is to show
that all singularities are removable, and the �nal result is presented in (2.6).

The weak formulation is attained by multiplying with a test function and inte-
grating over the domain. We chose to multiply with the test function

Ψort = −n̂×Ψ

The reason for this choice will become clear as we proceed.

Term 1: ∫∫
Srad

Ψort(r2) ·

(
n̂(r2)×

∫∫
Srad

g(r1, r2)J(r1) dS1

)
dS2

= −
∫∫
Srad

(∫∫
Srad

g(r1, r2)J(r1) dS1

)
·
{

n̂(r2)×Ψort(r2)
}

dS2

= −
∫∫
Srad

∫∫
Srad

Ψ(r2) · g(r1, r2)J(r1) dS1 dS2

The integral causes no numerical problems since the singularity in g(r1, r2) is inte-
grable.

Term 2:

∫∫
Srad

Ψort(r2) ·

(
n̂(r2)×

∫∫
Srad

∇1g(r1, r2)
[
∇1S · J(r1)

]
dS1

)
dS2

= −
∫∫
Srad

Ψort(r2) ·

(
n̂(r2)×∇2

∫∫
Srad

g(r1, r2)
[
∇1S · J(r1)

]
dS1

︸ ︷︷ ︸
K(r2)

)
dS2

(1)
= −

∫∫
Srad

Ψort(r2) ·
(

n̂(r2)×
{
∇2S + n̂(r2)

[
n̂(r2) · ∇2

]}
K(r2)

)
dS2

= −
∫∫
Srad

Ψort(r2) ·
[
n̂(r2)×∇2SK(r2)

]
dS2 =

∫∫
Srad

Ψ(r2) · ∇2SK(r2) dS2

(2)
=

∫∫
Srad

∇2S ·
[
Ψ(r2)K(r2)

]
dS2 −

∫∫
Srad

[
∇2S ·Ψ(r2)

]
K(r2) dS2

(3)
=

∫
Γ

n̂0(r2) ·
[
Ψ(r2)K(r2)

]
dΓ−

∫∫
Srad

[
∇2S ·Ψ(r2)

]
K(r2) dS2
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Figure 22: (a) The surface Srad and its outward unit vector n̂. (b) The surface S ′

bounded by the curve Γ. The unit normal vectors are; n̂ϕ - tangent to Γ and S ′, n̂0

tangent to S ′ and normal to Γ. That is n̂0 = n̂ϕ × n̂.

= −
∫∫
Srad

∫∫
Srad

[
∇2S ·Ψ(r2)

]
g(r1, r2)

[
∇1S · J(r1)

]
dS1 dS2

The nabla operator is divided into one part intrinsic to the surface and one part oper-
ating in the direction normal to the surface in step 1, i.e., ∇2S = ∇2− n̂(r2)

[
n̂(r2) ·

∇2

]
[9, 48]. In step 2 the identity ∇S · (fa) = f(∇S · a) + (∇Sf) · a is utilized [48].

Step 3 uses the theorem of Gauss on surfaces where n̂0(r2) and Γ are depicted in
Figure 22 [29]. The line integral over the closed surface is zero, since there is no
bounding curve on Srad [1].

Term 3: ∫∫
Srad

Ψort(r2) ·
(

n̂(r2)×
∫∫
Srad

∇1g(r1, r2)×M(r1) dS1

)
dS2

= −
∫∫
Srad

Ψ(r2) ·
∫∫
Srad

∇1g(r1, r2)×M (r1) dS1 dS2

(A.1)

The gradient of the Green function cannot easily be moved to the test function.
However, it is shown below that the singularity is removable.
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We start by rewriting the expression, i.e.,∫∫
Srad

Ψ(r2) ·
∫∫
Srad

∇1g(r1, r2)×M (r1) dS1 dS2

(1)
=

∫∫
Srad

Ψ(r2) ·
∫∫
Srad

∇1g(r1, r2)×
[
n̂(r1)×

∼
MS(r1)

]
dS1 dS2

=

∫∫
Srad

Ψ(r2) ·
∫∫
Srad

n̂(r1)
[
∇1g(r1, r2) ·

∼
MS(r1)

]
dS1 dS2

−
∫∫
Srad

Ψ(r2) ·
∫∫
Srad

∼
MS(r1)

[
∇1g(r1, r2) · n̂(r1)

]
dS1 dS2

(A.2)

where
∼

MS(r1) is introduced as M (r1) ≡ n̂(r1)×
∼

MS(r1), in step 1.
The gradient of the Green's function is, cf., (2.2)

∇1g(r1, r2) =
e−jk|r2−r1|

4π

r2 − r1

|r2 − r1|2

[
1

|r2 − r1|
+ jk

]
The singularity in r2−r1

|r2−r1|2 is integrable. However, the �rst term has an additionally

singularity 1
|r2−r1| that needs to be dealt with.

To remove the singularity in the �rst term of (A.2), we show that Ψ(r2)·n̂(r1) ≤
K|r2−r1| as r1 → r2 and K is a constant. A Taylor expansion of n̂(r1) at r2 gives

Ψ(r2) · n̂(r1) = Ψ(r2) · n̂(r2) + Ψ(r2) ·
[
C · (r2 − r1)

]
as r1 → r2 and the di�erential is

C =


∂nx(r1)
∂x′

∂nx(r1)
∂y′

∂nx(r1)
∂z′

∂ny(r1)

∂x′
∂ny(r1)

∂y′
∂ny(r1)

∂z′
∂nz(r1)
∂x′

∂nz(r1)
∂y′

∂nz(r1)
∂z′


∣∣∣∣∣∣∣
r1=r2

The �rst term is zero since the test function is tangential to the surface which gives
|Ψ(r2) · n̂(r1)| ≤ K(r2− r1) as r1 → r2 and the singularity in the �rst term of the
integral is removed.

To remove the singular part in the second term in (A.2), we show that∇1g(r1, r2)·
n̂(r1) ≤ K 1

|r2−r1| and thus integrable.This is true since

|n̂(r1) · [r2 − r1]|
|r2 − r1|3

≤ L

|r2 − r1|
when r1 → r2 and L is a positive constant [9].

Term 4:∫∫
Srad

Ψort(r2) ·M(r2) dS2 = −
∫∫
Srad

[
n̂(r2)×Ψ(r2)

]
·M(r2) dS2

This term does not contain any singularity.
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Appendix B Parametrization of the surface

The surface is parameterized by the azimuth angle ϕ and the height coordinate along
the surface v, i.e., the position vector r can be expressed as

r(ϕ, v) = ρ(v) cosϕ êx + ρ(v) sinϕ êy + z(v) êz

Evaluation of |r2 − r1| in cylindrical coordinates give

|r(ϕ2, v2)− r(ϕ1, v1)| =
√
C(v1, v2)− 2ρ(v1)ρ(v2) cos(ϕ1 − ϕ2) (B.1)

where C(v1, v2) = ρ2(v1) + ρ2(v2) + [z(v2)− z(v1)]2.
Normalized basis vectors, convenient for the problem, are

ϕ̂ =
∂r

∂ϕ
/|∂r
∂ϕ
| = − sinϕ êx + cosϕ êy

v̂ =
∂r

∂v
/|∂r
∂v
|

where

hϕ(v) ≡
∣∣∣∣∂r∂ϕ

∣∣∣∣ = ρ(v) hv(v) ≡
∣∣∣∣∂r∂v

∣∣∣∣ =

√(
∂ρ(v)

∂v

)2

+

(
∂z(v)

∂v

)2

The Jacobian is given by

J (v) =

∣∣∣∣∂r∂ϕ × ∂r

∂v

∣∣∣∣ = ρ(v)

√(
∂ρ(v)

∂v

)2

+

(
∂z(v)

∂v

)2

= hϕ(v)hv(v)

and the di�erential area element is

dS = J (v) dϕ dv = ρ(v)hv(v) dϕ dv

The normalized basis vectors of the coordinate system are explicitly

ϕ̂(ϕ) =
1

ρ(v)

∂r

∂ϕ
= − sinϕ êx + cosϕ êy

v̂(ϕ, v) =
1

hv(v)

∂r

∂v
=

1

hv(v)
{ρ′(v) cosϕ êx + ρ′(v) sinϕ êy + z′(v)êz}

n̂(ϕ, v) = ϕ̂(ϕ)× v̂(ϕ, v) =
1

hv(v)
{z′(v) cosϕ êx + z′(v) sinϕ êy − ρ′(v)êz}

(B.2)

and the scalar products between them are

ϕ̂(ϕ1) · ϕ̂(ϕ2) = cos(ϕ1 − ϕ2)

ϕ̂(ϕ1) · v̂(ϕ2, v2) = − ρ
′(v2)

hv(v2)
sin(ϕ1 − ϕ2)
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v̂(ϕ1, v1) · ϕ̂(ϕ2) =
ρ′(v1)

hv(v1)
sin(ϕ1 − ϕ2)

v̂(ϕ1, v1) · v̂(ϕ2, v2) =
1

hv(v1)hv(v2)
{ρ′(v1)ρ′(v2) cos(ϕ1 − ϕ2) + z′(v1)z′(v2)}

ϕ̂(ϕ1) · n̂(ϕ2, v2) = − z
′(v2)

hv(v2)
sin(ϕ1 − ϕ2)

n̂(ϕ1, v1) · ϕ̂(ϕ2) =
z′(v1)

hv(v1)
sin(ϕ1 − ϕ2)

v̂(ϕ1, v1) · n̂(ϕ2, v2) =
1

hv(v1)hv(v2)
{ρ′(v1)z′(v2) cos(ϕ1 − ϕ2)− z′(v1)ρ′(v2)}

n̂(ϕ1, v1) · v̂(ϕ2, v2) =
1

hv(v1)hv(v2)
{z′(v1)ρ′(v2) cos(ϕ1 − ϕ2)− ρ′(v1)z′(v2)}

The surface divergence for the parametrization and coordinate system described
above is [16]

∇S · F (ϕ, v) =
1

J (v)

{
hv(v)

∂

∂ϕ
Fϕ(ϕ, v) +

∂

∂v

[
ρ(v)Fv(ϕ, v)

]}
(B.3)

where Fx = F · x̂, x = ϕ, v. That is, the surface divergences of the tangential basis
vectors in (B.2) are given by

∇S · ϕ̂(ϕ) =
1

J (v)

∂

∂ϕ

[
hv(v)1

]
= 0

∇S · v̂(ϕ, v) =
1

J (v)

∂

∂v
[ρ(v)1] =

ρ′(v)

J (v)

(B.4)

The Green function is parametrized as, cf., (2.2),

g(ϕ1 − ϕ2, v1, v2) =
1

4π

e−jk
√
C(v1,v2)−2ρ(v1)ρ(v2) cos(ϕ1−ϕ2)√

C(v1, v2)− 2ρ(v1)ρ(v2) cos(ϕ1 − ϕ2)

as is the gradient of the Green function

∇1g(r2, r1) = g(r2, r1) (1 + jk|r2 − r1|)
r2 − r1

|r2 − r1|2

= g(ϕ1 − ϕ2, v1, v2)D(ϕ1 − ϕ2, v1, v2){[
ρ(v2) cosϕ2 − ρ(v1) cosϕ1

]
êx +

[
ρ(v2) sinϕ2 − ρ(v1) sinϕ1

]
êy

+
[
z(v2)− z(v1)

]
êz

}
where we used the notation

C(v1, v2) = ρ2(v1) + ρ2(v2) + [z(v2)− z(v1)]2

D(ϕ1 − ϕ2, v1, v2) =
1 + jk

√
C(v1, v2)− 2ρ(v1)ρ(v2) cos(ϕ1 − ϕ2)

C(v1, v2)− 2ρ(v1)ρ(v2) cos(ϕ1 − ϕ2)

(B.5)
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In the coordinate system, {ϕ̂, v̂, n̂} the components of ∇1g(ϕ1 − ϕ2, v1, v2) are

∇1g

∣∣∣∣
ϕ̂

= ϕ̂(r1) · ∇1g(r2, r1) = −gD ρ(v2) sin(ϕ1 − ϕ2)

∇1g

∣∣∣∣
v̂

= v̂(r1) · ∇1g(r2, r1)

= gD

{
ρ′(v1)ρ(v2)

hv(v1)
cos(ϕ1 − ϕ2)−

ρ′(v1)ρ(v1)− z′(v1)
[
z(v2)− z(v1)

]
hv(v1)

}
∇1g

∣∣∣∣
n̂

= n̂(r1) · ∇1g(r2, r1)

= gD

{
z′(v1)ρ(v2)

hv(v1)
cos(ϕ1 − ϕ2)−

ρ(v1)z′(v1) + ρ′(v1)
[
z(v2)− z(v1)

]
hv(v1)

}
(B.6)

The arguments of ∇1g(ϕ1 − ϕ2, v1, v2), g(ϕ1 − ϕ2, v1, v2) and D(ϕ1 − ϕ2, v1, v2) are
suppressed for simplicity.

Appendix C Expansion in basis functions

The test functions and the currents are expanded in the basis functions described
in (2.7). The two test functions are chosen as{

Ψϕ
ni = (aϕni)

∗ = fϕi (v) e−jnϕϕ̂

Ψv
ni = (av

ni)
∗ = fv

i (v) e−jnϕv̂

where the star denotes complex conjugation. This gives, cf., (B.3),
∇S ·Ψϕ

ni = −jn
fϕi (v)

ρ(v)
e−jnϕ

∇S ·Ψv
ni =

e−jnϕ

J (v)

∂

∂v

[
ρ(v)fv

i (v)
]

and {
n̂×Ψϕ

ni = fϕi (v) e−jnϕv̂

n̂×Ψv
ni = −fv

i (v) e−jnϕϕ̂

with the integer indices i = 1, . . . , Nz and n.
The current J is expanded as

J =
∑
m,j

{
Jϕmj aϕmj + Jv

mj av+
mj

}
=
∑
m,j

{
Jϕmj f

ϕ
j (v) ejmϕϕ̂ + Jv

mj f
v
j (v) ejmϕv̂

}
which gives, cf., (B.3),

∇S · J =
∑
m,j

ejmϕ

{
jm
fϕj (v)

ρ(v)
Jϕmj +

1

J (v)

∂

∂v

[
ρ(v)fv

j (v)
]
Jv
mj

}
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and
n̂× J =

∑
m,j

{
Jϕmj f

ϕ
j (v) ejmϕv̂ − Jv

mj f
v
j (v) ejmϕϕ̂

}
with the integer indices j = 1, . . . , Nz and m, and J

ϕ/v
mj denoting the expansion

coe�cients. The magnetic current M is expanded in a similar way with expansion
coe�cients Mmj.

C.1 Evaluation of a cross product

In this appendix the cross product in (2.9) is evaluated, i.e.,

∇1g(r2, r1)×M(r1) = g(ϕ1 − ϕ2, v1, v2)D(ϕ1 − ϕ2, v1, v2)

·
({[z′(v1)ρ(v2)

hv(v1)
cos(ϕ1 − ϕ2)−

ρ(v1)z′(v1) + ρ′(v1)
[
z(v2)− z(v1)

]
hv(v1)

]
v̂(ϕ1, v1)

+
[
−ρ
′(v1)ρ(v2)

hv(v1)
cos(ϕ1 + ϕ2) +

ρ′(v1)ρ(v1)− z′(v1)
[
z(v2)− z(v1)

]
hv(v1)

]
n̂(ϕ1, v1)

}
·
∑
m,j

Mϕ
mj f

ϕ
j (v1) ejmϕ1

+
{[
−z
′(v1)ρ(v2)

hv(v1)
cos(ϕ1 − ϕ2) +

ρ(v1)z′(v1) + ρ′(v1)
[
z(v2)− z(v1)

]
hv(v1)

]
ϕ̂(ϕ1)

− ρ(v2) sin(ϕ1 − ϕ2)n̂(ϕ1, v1)
}
·
∑
m,j

Mv
mj f

v
j (v1) ejmϕ1

)
(C.1)

where (2.8) and (B.6) are used. The function D(ϕ1 − ϕ2, v1, v2) is labeled in (B.5).

Appendix D Integration over ϕ

The integration in the angular direction of (2.6) and (2.9) is investigated in detail.
Nine di�erent integrals Ia/A−Ii/I appear. The integrals from (2.6) and (2.9) have the
same form, but the ones in (2.6) contain singularities and are denoted by upper-case
indices. One of the integrals is studied in detail, while the others are listed at the
end of this section. The cross product in (2.6) and (2.9) is evaluated separately in
Appendix C.1.

The relevant integral is

Ib =

2π∫
0

2π∫
0

g(ϕ1 − ϕ2, v1, v2)e−jnϕ2ejmϕ1 cos(ϕ1 − ϕ2) dϕ1 dϕ2

A change of variable, ϕ1 = ϕ2 + φ, gives

Ib =

2π∫
0

g(φ, v1, v2)ejmφ cos(φ)

2π∫
0

ej(m−n)ϕ2 dϕ2 dφ
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The inner integral is zero if m 6= n. Therefore, the only interesting case is n = m,
giving

Ib = 2π

2π∫
0

g(φ, v1, v2) [cos(mφ) + j sin(mφ)] cos(φ) dφ

= 4π

π∫
0

g(φ, v1, v2) cos(mφ) cos(φ) dφ

= 2π

π∫
0

g(φ, v1, v2) cos([m− 1]φ) dφ+ 2π

π∫
0

g(φ, v1, v2) cos([m+ 1]φ) cos dφ

using that g(φ, v1, v2) is an even function in φ.
The rest of the integrals in the angular direction of (2.9) are derived in the same

manner and listed below.

Ia =

2π∫
0

2π∫
0

g(ϕ1 − ϕ2, v1, v2)ejm(ϕ1−ϕ2) dϕ1 dϕ2 = 4π

π∫
0

g(φ, v1, v2) cos(mφ) dφ

= 4π Gm(v1, v2)

Ib =

2π∫
0

2π∫
0

g(ϕ1 − ϕ2, v1, v2)ejm(ϕ1−ϕ2) cos(ϕ1 − ϕ2) dϕ1 dϕ2

= 4π

π∫
0

g(φ, v1, v2) cos(mφ) cos(φ) dφ = 2π
[
Gm−1(v1, v2) +Gm+1(v1, v2)

]

Ic =

2π∫
0

2π∫
0

g(ϕ1 − ϕ2, v1, v2)ejm(ϕ1−ϕ2) sin(ϕ1 − ϕ2) dϕ1 dϕ2

= 4πj

π∫
0

g(φ, v1, v2) sin(mφ) sin(φ) dφ = 2πj
[
Gm−1(v1, v2)−Gm+1(v1, v2)

]

Id =

2π∫
0

2π∫
0

g(ϕ1 − ϕ2, v1, v2)D(ϕ1 − ϕ2, v1, v2)ejm(ϕ1−ϕ2) dϕ1 dϕ2

= 4π

π∫
0

g(φ, v1, v2)D(φ, v1, v2) cos(mφ) dφ = 4π Gm(v1, v2)

Ie =

2π∫
0

2π∫
0

g(ϕ1 − ϕ2, v1, v2)D(ϕ1 − ϕ2, v1, v2)ejm(ϕ1−ϕ2) cos(ϕ1 − ϕ2) dϕ1 dϕ2

= 4π

π∫
0

g(φ, v1, v2)D(φ, v1, v2) cos(mφ) cos(φ) dφ
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= 2π
[
Gm−1(v1, v2) + Gm+1(v1, v2)

]
If =

2π∫
0

2π∫
0

g(ϕ1 − ϕ2, v1, v2)D(ϕ1 − ϕ2, v1, v2)ejm(ϕ1−ϕ2) sin(ϕ1 − ϕ2) dϕ1 dϕ2

= 4πj

π∫
0

g(φ, v1, v2)D(φ, v1, v2) sin(mφ) sin(φ) dφ

= 2πj
[
Gm−1(v1, v2)− Gm+1(v1, v2)

]
Ig =

2π∫
0

2π∫
0

g(ϕ1 − ϕ2, v1, v2)D(ϕ1 − ϕ2, v1, v2)ejm(ϕ1−ϕ2) cos(ϕ1 − ϕ2) sin(ϕ1 − ϕ2) dϕ1 dϕ2

= 2πj

π∫
0

g(φ, v1, v2)D(φ, v1, v2) sin(mφ) sin(2φ) dφ

= πj
[
Gm−2(v1, v2)− Gm+2(v1, v2)

]
Ih =

2π∫
0

2π∫
0

g(ϕ1 − ϕ2, v1, v2)D(ϕ1 − ϕ2, v1, v2)ejm(ϕ1−ϕ2) cos2(ϕ1 − ϕ2) dϕ1 dϕ2

= 2π

π∫
0

g(φ, v1, v2)D(φ, v1, v2) cos(mφ)
[
1 + cos(2φ)

]
dφ

= 2πGm(v1, v2) + π
[
Gm−2(v1, v2) + Gm+2(v1, v2)

]
Ii =

2π∫
0

2π∫
0

g(ϕ1 − ϕ2, v1, v2)D(ϕ1 − ϕ2, v1, v2)ejm(ϕ1−ϕ2) sin2(ϕ1 − ϕ2) dϕ1 dϕ2

= 2π

π∫
0

g(φ, v1, v2)D(φ, v1, v2) cos(mφ)
[
1− cos(2φ)

]
dφ

= 2πGm(v1, v2)− π
[
Gm−2(v1, v2) + Gm+2(v1, v2)

]
The new Green functions are de�ned as

Gm(v1, v2) =

π∫
0

g(φ, v1, v2) cos(mφ) dφ

Gm(v1, v2) =

π∫
0

g(φ, v1, v2)D(φ, v1, v2) cos(mφ) dφ

(D.1)

where φ = ϕ1 − ϕ2, the function D is de�ned in (B.5), and m is an integer index.
Observe that these Green functions are not singular as r1 and r2 are always di�erent.

The angular integrals of (2.6), IA − II, have the same appearance as Ia − Ii.
However, the Green functions contain singularities and are denoted by gm(v1, v2)
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and �m(v1, v2). The numerical treatment of these singularities is addressed in Ap-
pendix E.

Appendix E Singularities in the Greens functions

Two new Greens functions, i.e.,
gm(v1, v2) =

π∫
0

g(φ, v1, v2) cos(mφ) dφ

�m (v1, v2) =

π∫
0

g(φ, v1, v2)D(φ, v1, v2) cos(mφ) dφ

are de�ned in the derivation of the integral equation (2.6), where g(φ, v1, v2) is
de�ned in (2.2), D(φ, v1, v2) in (B.5), and m is an integer index. These Green func-
tions contain singularities. In this appendix, one way of handling these singularities
is shown.

Integrals containing gm have the form
∫∫

f(v1, v2)gm(v1, v2) dv1 dv2. The inte-
grand gm(v1, v2) has a logarithmic singularity, i.e., gm(v1, v2) ∼ ln|v1 − v2|, i.e., the
integral is of the type [6] ∫ b

a

f(x) lnx dx

Changing variables x = y2gives an integral where the singularity is removed, i.e.,∫ √b
√
a

f(y2) ln y2 2y dy

The second Green function contains a singularity of the third order, i.e.,

�m(v1, v2) =

∫
g(φ, v1, v2)D(φ, v1, v2) cos(mφ) dφ =

∫
e−jkR

[
1 + jkR

]
4πR3

cos(mφ) dφ

where R = |r2 − r1|. This Green function occurs in two di�erent combinations,
either as

�m−1(v1, v2)− �m+1(v1, v2)

or
f(v1, v2) �m (v1, v2) + h(v1, v2) [�m−1(v1, v2) + �m+1(v1, v2)]
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The �rst combination can be rewritten as

�m−1 (v1, v2)− �m+1(v1, v2) = 2

π∫
0

g(φ, v1, v2)D(φ, v1, v2) sin(mφ) sin(φ) dφ

=
1

2π

π∫
0

{e−jkR

R
+ jk e−jkR

}sin(mφ) sin(φ)

R2︸ ︷︷ ︸
singularity removed

dφ

=
1

2π

π∫
0

{ e−jkR − 1

R︸ ︷︷ ︸
singularity removed

+
1

R︸︷︷︸
analytically solved

+ jk e−jkR
}sin(mφ) sin(φ)

R2
dφ

That is, the singularities are removed.
The second combination is rewritten as

f(v1, v2) �m (v1, v2) + h(v1, v2) [�m−1(v1, v2) + �m+1(v1, v2)]

=

π∫
0

g(φ, v1, v2)D(φ, v1, v2)
[
f(v1, v2) + h(v1, v2) cos(φ)

]
cos(mφ) dφ

=

π∫
0

1

4π

{ e−jkR − 1

R︸ ︷︷ ︸
singularity removed

+
1

R︸︷︷︸
analytically solved

+ jk e−jkR
}

·
[
f(v1, v2) + h(v1, v2) cos(φ)

][ 1

R2
− 2

sin2
(
mφ
2

)
R2︸ ︷︷ ︸

singularity removed

]
dφ

Continuing with the term that still contains a singularity gives

π∫
0

1

4π

{e−jkR − 1

R
+

1

R
+ jk e−jkR

}[
f(v1, v2) + h(v1, v2) cos(φ)

] 1

R2
dφ

=

π∫
0

1

4π

{e−jkR − 1

R
+

1

R
+ jk e−jkR

}[f(v1, v2)

R2
+
h(v1, v2)

R2
− 2h(v1, v2)

sin2
(
φ
2

)
R2︸ ︷︷ ︸

singularity removed

]
dφ

This means that the only term where the singularities are not removed so far is
π∫
0

g(φ, v1, v2)D(φ, v1, v2)[f(v1, v2) + h(v1, v2)] dφ. To remove this last singularity we

investigate the triple integral, i.e.,
∫∫∫

. . . dφ dv1 dv2 instead of performing the in-
tegrations over φ and v separately. The actual expressions of the terms containing
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this last singularity are,cf., Appendix G,

∫∫
−ρ(v1)z′(v2) �m (v1, v2)

+
[
ρ(v2)z′(v2)− ρ′(v2)[z(v2)− z(v1)]

]
�m−1(v1, v2) + �m+1(v1, v2)

2
dv1 dv2∫∫

−z′(v1)ρ(v2) �m (v1, v2)

+
[
ρ(v1)z′(v1) + ρ′(v1)[z(v2)− z(v1)]

]�m−1(v1, v2) + �m+1(v1, v2)

2
dv1 dv2

Both integrals are treated in the same way, i.e., only the �rst one is investigated in
detail. Only the part of the Green functions containing the singularity is investigated∫∫ π∫

0

−ρ(v1)z′(v2)g(φ, v1, v2)D(φ, v1, v2)

+
[
ρ(v2)z′(v2)− ρ′(v2)[z(v2)− z(v1)]

]
g(φ, v1, v2)D(φ, v1, v2) dφ dv1 dv2

=

∫∫ π∫
0

[
z′(v2)[ρ(v2)− ρ(v1)]− ρ′(v2)[z(v2)− z(v1)]

]e−jkR
[
1 + jkR

]
4πR3

dφ dv1 dv2

(E.1)
Now, both ρ(v1) and z(v1) are expanded in its Taylor series about v1 = v2.

ρ(v1) = ρ(v2) + ρ′(v2)(v1 − v2) +
ρ′′(v2)

2
(v1 − v2)2 +O((v1 − v2)3)

z(v1) = z(v2) + z′(v2)(v1 − v2) +
z′′(v2)

2
(v1 − v2)2 +O((v1 − v2)3)

That is, in the vicinity of v2, (E.1) can be written as∫∫ π∫
0

[
z′(v2)[−ρ′(v2)(v1 − v2)− ρ′′(v2)

2
(v1 − v2)2]

− ρ′(v2)[−z′(v2)(v1 − v2)− z′′(v2)

2
(v1 − v2)2]

]e−jkR
[
1 + jkR

]
4πR3

dφ dv1 dv2

=
1

2

∫∫ π∫
0

[
−z′(v2)ρ′′(v2) + ρ′(v2)z′′(v2)

]
(v1 − v2)2 e−jkR

[
1 + jkR

]
4πR3

dφ dv1 dv2

=
1

8π

∫∫ π∫
0

[
−z′(v2)ρ′′(v2) + ρ′(v2)z′′(v2)

] (v1 − v2)2

R2︸ ︷︷ ︸
singularity removed

·
{ e−jkR − 1

R︸ ︷︷ ︸
singularity removed

+
1

R︸︷︷︸
analytically solved

+ jk e−jkR
}

dφ dv1 dv2

and all the singularities are removed.
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Appendix F Matrix expression of the integral rep-

resentation

In this section equation (2.9), i.e.,[
v̂
ϕ̂

]
·
{
−jωµ0

∫∫
Srad

g(r1, r2)J(r1) dS1 + j
1

ωε0

∫∫
Srad

∇1g(r1, r2)
[
∇1S · J(r1)

]
dS1

+

∫∫
Srad

∇1g(r1, r2)×M (r1) dS1

}
=

[
v̂ ·E(r2)
ϕ̂ ·E(r2)

]
=

[
Ev(ϕ2, v2)
Eϕ(ϕ2, v2)

]
r2 ∈ Smeas

⇐⇒

− jωµ0 I1 + j
1

ωε0
I2 + I3 = E

is rewritten into a system of matrices. Start by writing I1, I2 and I3 as

(I1)ij = Z11a
ij Jv

j + Z12a
ij Jϕj

(I2)ij = Z11b
ij Jv

j + Z12b
ij Jϕj

(I3)ij = X11
ij M

v
j +X12

ij M
ϕ
j

for the v̂-component and

(I1)ij = Z21a
ij Jv

j + Z22a
ij Jϕj

(I2)ij = Z21b
ij Jv

j + Z22b
ij Jϕj

(I3)ij = X21
ij M

v
j +X22

ij M
ϕ
j

for the ϕ̂-component. The indices are j = 1, . . . , J , where J = Nz and i = 1, . . . , I,
where I = Nmeas

z . This gives the matrix system,

− jωµ0 [I1] +
j

ωε0
[I2] + [I3] =[

−jωµ0 [Z11a] + j
ωε0

[
Z11b

]
−jωµ0 [Z12a] + j

ωε0

[
Z12b

]
−jωµ0 [Z21a] + j

ωε0

[
Z21b

]
−jωµ0 [Z22a] + j

ωε0

[
Z22b

] ] [ [Jv]
[Jϕ]

]
+

[
[X11] [X12]
[X21] [X22]

] [
[Mv]
[Mϕ]

]
=

[
[Ev]
[Eϕ]

]
⇐⇒[

[Z11] [Z12]
[Z21] [Z22]

] [
[Jv]
[Jϕ]

]
+

[
[X11] [X12]
[X21] [X22]

] [
[Mv]
[Mϕ]

]
=

[
[Ev]
[Eϕ]

]
(F.1)

for all m. Expressions for the matrix elements
[
Zkl
]
and

[
Xkl
]
are derived in the

next section.
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F.1 The impedance matrices

For a given value of the index m, the impedance matrices in (F.1) are given by
Z11
ij = −jωµ0Z

11a
ij + j

ωε0
Z11b
ij where

Z11a
ij =

1

hv(v2)

∫
fv
j (v1)ρ(v1)

{
ρ′(v1)ρ′(v2)Ib + z′(v1)z′(v2)Ia

}
dv1

= 2

∫
fv
j (v1)ρ(v1)z′(v1)Gm(v1, v2) dv1

Z11b
ij =

1

hv(v2)

∫
∂

∂v1

[
ρ(v1)fv

j (v1)
]{
ρ′(v2)ρ(v2)Ii + ρ′(v2)ρ(v2)Ih

+ z′(v2)[z(v2)− z(v1)]Id − ρ(v1)ρ′(v2)Ie

}
dv1

= 2

∫
∂

∂v1

[
ρ(v1)fv

j (v1)
][
z(v2)− z(v1)

]
Gm(v1, v2) dv1

and Z12
ij = −jωµ0Z

12a
ij + j

ωε0
Z12b
ij where

Z12a
ij = − ρ

′(v2)

hv(v2)

∫
fϕj (v1)hv(v1)ρ(v1)Ic dv1 = 0

Z12b
ij = j

m

hv(v2)

∫
fϕj (v1)hv(v1)

{
ρ′(v2)ρ(v2)Ii + ρ′(v2)ρ(v2)Ih

+ z′(v2)
[
z(v2)− z(v1)

]
Id − ρ(v1)ρ′(v2)Ie

}
dv1

= 2jm

∫
fϕj (v1)hv(v1)

[
z(v2)− z(v1)

]
Gm(v1, v2) dv1

and Z21
ij = −jωµ0Z

21a
ij + j

ωε0
Z21b
ij where

Z21a
ij =

∫
fv
j (v1)ρ(v1)ρ′(v1)Ic dv1

= j

∫
fv
j (v1)ρ(v1)ρ′(v1)

[
Gm−1(v1, v2)−Gm+1(v1, v2)

]
dv1

Z21b
ij =

∫
ρ(v1)

∂

∂v1

[
ρ(v1)fv

j (v1)
]
If dv1

= j

∫
ρ(v1)

∂

∂v1

[
ρ(v1)fv

j (v1)
][
Gm−1(v1, v2)− Gm+1(v1, v2)

]
dv1

and Z22
ij = −jωµ0Z

22a
ij + j

ωε0
Z22b
ij where

Z22a
ij =

∫
fϕj (v1)hv(v1)ρ(v1)Ib dv1

=

∫
fϕj (v1)hv(v1)ρ(v1)

[
Gm−1(v1, v2) +Gm+1(v1, v2)

]
dv1

Z22b
ij = jm

∫
fϕj (v1)ρ(v1)hv(v1)If dv1

= −m
∫
fϕj (v1)ρ(v1)hv(v1)

[
Gm−1(v1, v2)− Gm+1(v1, v2)

]
dv1
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and

X11
ij =

∫
fv
j (v1)

ρ(v1)

hv(v2)

·
[
−ρ(v1)z′(v1)ρ′(v2)− ρ′(v1)ρ′(v2)

[
z(v2)− z(v1)

]
+ ρ′(v1)ρ(v2)z′(v2)

]
If dv1

= j

∫
fv
j (v1)ρ(v1)ρ′(v1)ρ(v2)

[
Gm−1(v1, v2)− Gm+1(v1, v2)

]
dv1

X12
ij =

1

hv(v2)

∫
fϕj (v1)ρ(v1)hv(v1)

(
−ρ(v1)z′(v2)Id

+
[
ρ(v2)z′(v2)− ρ′(v2)[z(v2)− z(v1)]

]
Ie

)
dv1

=

∫
fϕj (v1)ρ(v1)hv(v1)

(
−2ρ(v1)Gm(v1, v2) + ρ(v2)

[
Gm−1(v1, v2) + Gm+1(v1, v2)

])
dv1

X21
ij =

∫
fv
j (v1)ρ(v1)

(
−z′(v1)ρ(v2)Ih +

[
ρ(v1)z′(v1) + ρ′(v1)[z(v2)− z(v1)]

]
Ie

− z′(v1)ρ(v2)Ii

)
dv1

=

∫
fv
j (v1)ρ(v1)

(
−2z′(v1)ρ(v2)Gm(v1, v2)

+
[
ρ(v1)z′(v1) + ρ′(v1)[z(v2)− z(v1)]

][
Gm−1(v1, v2) + Gm+1(v1, v2)

])
dv1

X22
ij = −

∫
fϕj (v1)hv(v1)ρ(v1)

[
z(v2)− z(v1)

]
If dv1

= −j

∫
fϕj (v1)hv(v1)ρ(v1)

[
z(v2)− z(v1)

][
Gm−1(v1, v2)− Gm+1(v1, v2)

]
dv1

where the integrals Ia − Ii are given in Appendix D and the Green functions are
de�ned in (D.1).
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Appendix G Matrix expression of the integral equa-

tion

In this section equation (2.6), i.e.,

jωµ0

∫∫
Srad

∫∫
Srad

Ψ(r2) · g(r1, r2)J(r1) dS1 dS2

− j
1

ωε0

∫∫
Srad

∫∫
Srad

[
∇2S ·Ψ(r2)

]
g(r1, r2)

[
∇1S · J(r1)

]
dS1 dS2

−
∫∫
Srad

∫∫
Srad

Ψ(r2) ·
[
∇′g(r1, r2)×M(r1)

]
dS1 dS2

− 1

2

∫∫
Srad

[
n̂(r2)×Ψ(r2)

]
·M(r2) dS2 = 0

⇐⇒

jωµ0 I4 − j
1

ωε0
I5 − I6 −

1

2
I7 = 0

(G.1)

is rewritten into a system of matrices. Start by writing I4-I7 as

(I4)ij = Z11A
ij Jv

j + Z12A
ij Jϕj

(I5)ij = Z11B
ij Jv

j + Z12B
ij Jϕj

(I6)ij = X11A
ij Mv

j +X12A
ij Mϕ

j

(I7)ij = X11B
ij Mv

j +X12B
ij Mϕ

j

when Ψ = Ψv
mi and

(I4)ij = Z21A
ij Jv

j + Z22A
ij Jϕj

(I5)ij = Z21B
ij Jv

j + Z22B
ij Jϕj

(I6)ij = X21A
ij Mv

j +X22A
ij Mϕ

j

(I7)ij = X21B
ij Mv

j +X22B
ij Mϕ

j

when Ψ = Ψϕ
mi. The indices are j = 1, . . . , J , where J = Nz and i = 1, . . . , I, where

I = Nz. This give the matrix system,

jωµ0 [I4]− j

ωε0
[I5]− [I6]− 1

2
[I7] =[

jωµ0

[
Z11A

]
− j

ωε0

[
Z11B

]
jωµ0

[
Z12A

]
− j

ωε0

[
Z12B

]
jωµ0

[
Z21A

]
− j

ωε0

[
Z21B

]
jωµ0

[
Z22A

]
− j

ωε0

[
Z22B

] ] [ [Jv]
[Jϕ]

]
+

[
−
[
X11A

]
− 1

2

[
X11B

]
−
[
X12A

]
− 1

2

[
X12B

]
−
[
X21A

]
− 1

2

[
X21B

]
−
[
X22A

]
− 1

2

[
X22B

] ] [ [Mv]
[Mϕ]

]
=

[
[0]
[0]

]
⇐⇒
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[
[Z11] [Z12]
[Z21] [Z22]

] [
[Jv]
[Jϕ]

]
+

[
[X 11] [X 12]
[X 21] [X 22]

] [
[Mv]
[Mϕ]

]
=

[
[0]
[0]

]
(G.2)

for all m. Expressions for the matrix elements
[
Zkl
]
and

[
Xkl
]
are derived in the

next section.

G.1 The impedance matrices

For a given value of the index m, the impedance matrices in (G.2) are given by
Z11
ij = jωµ0Z

11A
ij −

j
ωε0
Z11B
ij where

Z11A
ij =

∫∫
fv
i (v2)fv

j (v1)ρ(v2)ρ(v1)

{
ρ′(v2)ρ′(v1) IB + z′(v1)z′(v2) IA

}
dv1 dv2

= 4π

∫∫
fv
i (v2)fv

j (v1)ρ(v2)ρ(v1)

{
ρ′(v2)ρ′(v1)

gm−1 + gm+1

2
+ z′(v1)z′(v2)gm

}
dv1 dv2

Z11B
ij =

∫∫
∂

∂v2

[
ρ(v2)fv

i (v2)
] ∂
∂v1

[
ρ(v1)fv

j (v1)
]
IA dv1 dv2

= 4π

∫∫
∂

∂v2

[
ρ(v2)fv

i (v2)
] ∂
∂v1

[
ρ(v1)fv

j (v1)
]
gm dv1 dv2

and Z12
ij = jωµ0Z

12A
ij −

j
ωε0
Z12B
ij where

Z12A
ij = −

∫∫
fv
i (v2)fϕj (v1)ρ′(v2)ρ(v2)ρ(v1)hv(v1) IC dv1 dv2

= −j 4π

∫∫
fv
i (v2)fϕj (v1)ρ′(v2)ρ(v2)ρ(v1)hv(v1)

gm−1 − gm+1

2
dv1 dv2

Z12B
ij = jm

∫∫
∂

∂v2

[
ρ(v2)fv

i (v2)
]
fϕj (v1)hv(v1) IA dv1 dv2

= j 4πm

∫∫
∂

∂v2

[
ρ(v2)fv

i (v2)
]
fϕj (v1)hv(v1)gm dv1 dv2

and Z21
ij = jωµ0Z

21A
ij −

j
ωε0
Z21B
ij where

Z21A
ij =

∫∫
fϕi (v2)fv

j (v1)ρ(v1)ρ′(v1)ρ(v2)hv(v2) IC dv1 dv2

= j 4π

∫∫
fϕi (v2)fv

j (v1)ρ(v1)ρ′(v1)ρ(v2)hv(v2)
gm−1 − gm+1

2
dv1 dv2

Z21B
ij = −jm

∫∫
fϕi (v2)hv(v2)

∂

∂v1

[
ρ(v1)fv

j (v1)
]
IA dv1 dv2

= −j 4πm

∫∫
fϕi (v2)hv(v2)

∂

∂v1

[
ρ(v1)fv

j (v1)
]
gm dv1 dv2
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and Z22
ij = jωµ0Z

22A
ij −

j
ωε0
Z22B
ij where

Z22A
ij =

∫∫
fϕi (v2)fϕj (v1)ρ(v2)hv(v2)ρ(v1)hv(v1) IB dv1 dv2

= 4π

∫∫
fϕi (v2)fϕj (v1)ρ(v2)hv(v2)ρ(v1)hv(v1)

gm−1 + gm+1

2
dv1 dv2

Z22B
ij = m2

∫∫
fϕi (v2)fϕj (v1)hv(v2)hv(v1) IA dv1 dv2

= 4πm2

∫∫
fϕi (v2)fϕj (v1)hv(v2)hv(v1) gm dv1 dv2

and X 11
ij = −X11A

ij − 1
2
X11B
ij where

X11A
ij =

∫∫
fv
j (v1)fv

i (v2)ρ(v1)ρ(v2)

·
[
−ρ(v1)z′(v1)ρ′(v2)− ρ′(v1)ρ′(v2)

[
z(v2)− z(v1)

]
+ ρ′(v1)ρ(v2)z′(v2)

]
IF dv1 dv2

= 4πj

∫∫
fv
j (v1)fv

i (v2)ρ(v1)ρ(v2)

·
{
−ρ(v1)z′(v1)ρ′(v2)− ρ′(v1)ρ′(v2)

[
z(v2)− z(v1)

]
+ ρ′(v1)ρ(v2)z′(v2)

}
· �m−1(v1, v2)− �m+1(v1, v2)

2
dv1 dv2

X11B
ij = 0

and X 12
ij = −X12A

ij − 1
2
X12B where

X12A
ij =

∫∫
fϕj (v1)fv

i (v2)ρ(v1)ρ(v2)hv(v1)

(
−ρ(v1)z′(v2)ID

+
[
ρ(v2)z′(v2)− ρ′(v2)[z(v2)− z(v1)]

]
IE

)
dv1 dv2

= 4π

∫∫
fϕj (v1)fv

i (v2)ρ(v1)ρ(v2)hv(v1)

(
−ρ(v1)z′(v2) �m (v1, v2)

+
[
ρ(v2)z′(v2)− ρ′(v2)[z(v2)− z(v1)]

]
�m−1(v1, v2) + �m+1(v1, v2)

2

)
dv1 dv2

X12B
ij = −2π

∫
fv
i (v2)fϕj (v2)ρ(v2)hv(v2) dv2
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and X 21
ij = −X21A

ij − 1
2
X21B
ij where

X21A
ij =

∫∫
fv
j (v1)fϕi (v2)ρ(v1)ρ(v2)hv(v2)

(
−z′(v1)ρ(v2)IH

+
[
ρ(v1)z′(v1) + ρ′(v1)[z(v2)− z(v1)]

]
IE − z′(v1)ρ(v2)II

)
dv1 dv2

= 4π

∫∫
fv
j (v1)fϕi (v2)ρ(v1)ρ(v2)hv(v2)

(
−z′(v1)ρ(v2) �m (v1, v2)

+
[
ρ(v1)z′(v1) + ρ′(v1)[z(v2)− z(v1)]

]�m−1(v1, v2) + �m+1(v1, v2)

2

)
dv1 dv2

X21B
ij = 2π

∫
fϕi (v2)fv

j (v2)ρ(v2)hv(v2) dv2

and X 22
ij = −X22A

ij − 1
2
X22B
ij where

X22A
ij = −

∫∫
fϕj (v1)fϕi (v2)ρ(v1)ρ(v2)hv(v1)hv(v2)

[
z(v2)− z(v1)

]
IF dv1 dv2

= −4πj

∫∫
fϕj (v1)fϕi (v2)ρ(v1)ρ(v2)hv(v1)hv(v2)

[
z(v2)− z(v1)

]
· �m−1(v1, v2)− �m+1(v1, v2)

2
dv1 dv2

X22B
ij = 0

where the integrals IA − II are given in Appendix D and the Green functions are
singular versions of the ones de�ned in (D.1). The numerical treatment of the
singularities in the integrals is addressed in Appendix E.
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