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Abstract: This paper describes how high-speed computer vision can be used in a motion control 
application. The specific application investigated is a dart catching robot. Computer vision is used to 
detect a flying dart and a filtering algorithm predicts its future trajectory. This will give data to a robot 
controller allowing it to catch the dart. The performance of the implemented components indicates that 
the dart catching application can be made to work well. Conclusions are also made about what features of 
the system are critical for performance. 
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1. INTRODUCTION 

In robot applications it is often desirable to have systems that 
respond quickly to input from the robot environment. Using 
cameras as sensors has several advantages. They can make 
touch free measurements of very generic types, e.g. position, 
shape or color. The limitation for what can be done often lies 
in the image analysis algorithms. Some image properties may 
be very difficult to extract and the execution time is often 
significant. 

This paper describes how high speed computer vision can be 
used in a motion control application. The specific problem 
chosen was to develop the foundation for a dart-catching 
robot. A sketch describing the problem can be seen in Fig. 1. 
A dart board was mounted on a robot and when a dart was 
thrown toward the board, the robot should move the board so 
the dart always hit the bull’s eye. The detection of the dart 

was performed with cameras that provided data to the 
algorithms that estimated the position and future trajectory of 
the dart. In turn this information should be used to move the 
dart board to the correct position. 

An overview of object tracking techniques can be found in 
e.g. (Yilmaz et al. 2006). The focus of my work has been to 
use the simplest possible algorithm that does the job robustly 
in order to optimize for speed. 

The dart catching application is closely related to the table 
tennis playing robot, which has been treated in numerous 
works, e.g. (Matsushima et al. 2003), which uses an adaptive 
black-box model for prediction. 

2. METHODS 

2.1  Hardware and System Architecture 

Two cameras were located one on each side of the dart board. 
The application required good real-time camera performance 
and for this two Basler A602fc with an IEEE1394 serial 
interface (also known as Firewire) were used. They could 
supply color images at resolutions up to 656×490 pixels with 
a maximum frame rate of 100 fps at full resolution. A third 
slower camera was pointed toward the dart board to evaluate 
where the dart hit. 

Most off-line calculations were performed in Matlab®. 
Image acquisition, image analysis and state estimation were 
performed in C for speed and because the API used for image 
acquisition was made in C. The trajectory generation and 
robot control was done in Java, because the interface to the 
robot was made in Java. A schematic overview of the system 
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Fig. 1. Overview of the experiment setup. 



 
 

     

 

architecture can be seen in Fig. 2. For more information 
about the robot control system, see (Robertz et al. 2007). 

2.2  Camera Positioning 

Many different ways of positioning the cameras were 
possible. The chosen positions of the high speed cameras 
were on each side of the dart board, pointing toward the 
thrower, illustrated in Fig. 3. This positioning allowed the 
cameras to see the dart at a big distance if the thrower was 
straight in front of the board. The dart catcher application had 
a higher requirement on the accuracy of the estimated dart 
trajectory when the dart was close to the dart board, which 
was fulfilled by the chosen camera positioning, since the dart 
was close to the cameras and observed from better angles 
when it was close to the board. 

2.3  Camera Calibration 

For camera calibration the Camera Calibration Toolbox for 
Matlab® (Bouguet 2008) by Jean-Yves Bouguet was used. It 
uses series of images of a checkerboard pattern in different 

positions to extract both intrinsic camera parameters and the 
relative position of the cameras in a stereo pair. 

The stereo camera calibration feature in the calibration 
toolbox by Bouguet was not well adapted to the needs for this 
project, so a new script for calibration of the extrinsic 
parameters was developed. It used a function in the toolbox 
to extract the 3D position of a checkerboard grid with respect 
to a camera with known intrinsic parameters. To measure the 
relative position of two cameras, a set of synchronized 
images was captured, showing the checkerboard in the same 
positions from the different viewpoints of the cameras. Two 
sets of 3D points were then obtained, each belonging to one 
camera. The relative position of the cameras could be 
obtained by matching these points. For this purpose, a weight 
function was defined as the root-mean-square value of the 
distances between the corresponding points. Its minimum 
was then found numerically using the Nelder-Mead simplex 
method (Nelder and Mead 1965). 

2.4  Image Analysis 

In the development of the image analysis algorithms an 
important consideration was to make it simple and 
computationally efficient due to the high real-time 
requirements on the implementation. 

Pixel Classification 
As a first step the color of each pixel was examined in order 
to determine whether it was likely to be part of a dart in the 
image. To do this the RGB (red, green, blue) image was 
converted to the HSV (hue, saturation, value) color space. To 
determine if a pixel was part of a dart, the likelihood criterion 

( ) ( )7.02.065.0360/55.0 <<∧<°< vh  (1) 

was found to work well empirically for the dart depicted in 
Fig. 4. The basic idea was to use mostly the hue, since it does 
not vary much with different lighting conditions. Bounds on 
the intensity were used to discard ranges where the hue 
calculation was not reliable. Using (1), a new image could be 
generated, where the value of each pixel was 1 if it was likely 
to be part of a dart, 0 otherwise. An example of this can be 
seen in Fig. 9 (c). 

Calculating the Number of Dart Pixels in a Rectangle 
In the process of finding darts in an image, the number of dart 
pixels in a rectangle was calculated a large number of times. 
To do this efficiently the integral image was first calculated. 
This was quite a heavy computation, but once it was done the 
number of dart pixels in any rectangle could be computed by 
only summing 4 values. 

Finding Darts 
The criterion (1) for detecting dart pixels generated quite a 
large number of false positives, as can be seen in Fig. 9 (c). A 
large number of these were caused by the Bayer pattern color 
decoding, which can be seen in Fig. 9 (b). Because of the 
displacement of the color filters a large number of colors 
were generated at sharp edges in the images. These artifacts 
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Fig. 2. A schematic overview of the components in the 
system and how they communicate. 

Fig. 3. Top view of the setup illustrating the stereo 
coverage. The cones show the field of view for the 
respective cameras. 
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occurred in lines that were one, or possibly two, pixels wide. 
Thus they could be eliminated by only keeping the pixels that 
were the centers of 3-by-3 pixel boxes where at least 7 out of 
the 9 pixels satisfied (1). This resulted in Fig. 9 (d). 

Still, some outliers remained. To filter these out, the pixel 
that was the center of the 5-by-5 pixel box with the largest 
number of pixels satisfying (1) was used as the estimate of 
the position of the dart. If several pixels shared the same 
number of neighbors satisfying (1), their center of gravity 
was used. By means of the integral image the darts could be 
found efficiently with a binary search over the image. The 
basic idea was to discard a rectangular part of the image if it 
did not contain enough dart pixels to contain a dart. 
Otherwise the rectangle was split in half and each half was 
recursively examined for the possibility of containing a dart. 

2.5  State Estimation and Prediction 

A standard Kalman filter (Kalman 1960) was used to estimate 
the state of the dart and to predict its future trajectory. The 
general form of the filter is derived e.g. in (Åström, 
Wittenmark 1997). 

Model of Dart Flight Dynamics 
The dart was assumed to fly with negligible air friction. Since 
the image analysis did not have the functionality to extract 
the dart’s orientation, the dart was modeled as a particle. This 
was represented by the state-space model 
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where h is the time step, g is the earth gravitation and v and e 
are discrete time Gaussian white noise processes. 

A problem with this simple model was that the point that 
conformed well to the model was the center of mass, but only 
the position of the tail was measured, and the point of interest 
was at the tip, since this determined where the dart hit the 
board. For the model to be good it was thus required that the 
throws were “friendly”, so that the three points traversed 

approximately the same trajectory in space. A wobbling tail 
would cause bad velocity estimates that got amplified when 
the trajectory was extrapolated to the dart board. The 
different parts of the dart are shown in Fig. 4. 

Prediction 
In each filtering iteration the dart trajectory was extrapolated 
to predict where the dart would hit the board. This was done 
by simply running more iterations of the Kalman filter, 
assuming that no measurements were available. The filtering 
was continued until dẑ  was equal to the z-coordinate of the 
dart board. The values of dx̂  and dŷ  at that instant were 
used as the hit point estimate. 

Outlier Detection 
Before a measurement of the dart position was used in the 
Kalman filter, it was checked that it was close to what was 
expected based on the state estimate. Otherwise the 
measurement was discarded. 

Each measurement, y, and each expected measurement based 
on the state estimate, xCy ˆˆ = , were associated with a 
covariance matrix. Hence the covariance of the difference 

yyd ˆ−=  and a corresponding confidence ellipsoid could be 
calculated. For the measurement to be accepted, d had to be 
within this ellipsoid. 

Managing of Multiple Trajectories Simultaneously 
On top of the Kalman filter was a layer that could keep track 
of several state vectors, each representing the trajectory of 
one dart. The obvious advantage of this was that the 
trajectories of several darts could be tracked simultaneously. 
A more important advantage had to do with outlier detection. 
In each iteration of the Kalman filter, the measurements were 
discarded if they were not close to where they were expected 
to be (cf. Outlier Detection). If the measurement initiating the 
trajectory were a false positive, successive correct 
measurements would be discarded, since they were not close 
to what was expected after the incorrect measurement. This 
meant that one incorrect measurement would block the 
system. The algorithm used to handle this situation is 
described by the following pseudo code: 

for all trajectories 
    if the measurement is not an outlier to this 
    trajectory 
        perform iteration of Kalman filter 
    if the trajectory has not received a 
    measurement for a while 
        throw it away 
if the measurement did not match any existing 
trajectory 
    create a new trajectory 

2.6  Conversion from Image Measurements to 3D Space 
Measurements 

Two approaches were considered for converting the image 
coordinates of the darts to coordinates in 3D space. 

center of mass 
measured point point of interest 

Fig. 4. Image of dart. 



 
 

     

 

Approach 1 
In the first approach a pair of stereo images acquired 
simultaneously could be used only if the dart was detected 
properly in both images. The x, y, and z coordinates of the 
dart at that instant were then calculated and used as input to 
the Kalman filter that estimated the state of the dart. When 
the position of the dart was detected at two time samples, an 
estimate of both position and velocity could be estimated and 
be used as the initial state to the Kalman filter. 

From the position of the dart in a single image it was possible 
to determine a line in 3D-space along which the dart must be. 
In this paper this line will be referred to as the viewline (cf. 
Fig. 5). If viewlines for two cameras were known for the 
same dart, the position of the dart could be calculated as the 
point where the viewlines intersected. In practice, 
measurement noise caused the lines not to intersect. Instead, 
the points closest to each other (pa and pb in Fig. 6) were 
computed and the midpoint of the line connecting them, 

2/)( ba ppp += , was used as an estimate of the dart position. 
A simple way to detect outliers during triangulation was to 
examine the shortest distance  

2ba pp −=d  (3) 

between the viewlines. If d was above some threshold it was 
considered that in at least one of the images something else 
than the dart was found. 

Approach 2 
The second approach for converting measurements in the 
images into input to the Kalman filter was a bit more flexible 
and did not perform any explicit triangulation. This approach 
has not yet been implemented on the real system. 

A viewline could be expressed as the intersection of two 
planes, e.g. the one containing the focal point and lx, and the 
one containing the focal point and ly in Fig. 5. Each of these 
planes puts a constraint of the form 0=X�

T  on the dart 
position X. This could be rewritten to a constraint on the state 

vector of the Kalman filter: 
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3

2
2

2
1 =++ πππ , 4π−  can be 

interpreted as the signed length of the orthogonal projection 
of the dart position onto the direction ( )321 πππ . 

Each image with a measurement of the dart position gave two 
constraints, each specified by a row vector c in (4), one in the 
x direction and one in the y direction of the image. If several 
images were available, this was handled simply by adding 
rows in the measurement matrix C of the model (2): 
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No explicit triangulation was done. However, if the rows in C 
corresponded to measurements in many different directions, 
an estimate with low variance in all directions could be 
obtained. 

The Kalman filter was initialized to some reasonable state 
with a big variance in all directions. Thus, the actual value of 
the initial state was negligible when measurements had been 
done with c in (4) pointing in many different directions. 

One advantage of this second approach was that it easily 
extended to any number of cameras. Two more rows were 
simply added to C for every camera. Another advantage was 
that a measurement could be used even if there were no valid 
measurements from any other cameras. 

3. RESULTS 

3.1  Camera Calibration 

Performing camera calibration took quite long, up to 2 hours. 
No explicit error estimate of the extrinsic parameters has 
been derived. A good indicator of the accuracy, though, is the 
consistency of the position estimates made by the different 
cameras. Fig. 7 shows a histogram of the distances between 
two cameras’ 3D-coordinate estimates of the same point 
during calibration. Fig. 8 shows a histogram of d in (3) for 
flying darts. Small values of d indicate good accuracy in the 
image analysis and camera calibration. 

3.2  Image Analysis 

The image analysis worked well with few false positives and 
undetected darts. It was hard to give a useful quantitative 
measure of the error rate, since it varied much with the 
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Fig. 6. Illustration of triangulation process. 
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background and lighting conditions. An example of how the 
image analysis performed can be seen in Fig. 9. 

The computation time for the image analysis of a stereo 
image pair was approximately 10 ms. Considering that the 
system ran with a sampling period of 20 ms it becomes 
apparent that the image analysis was the step that consumed 
the most computing power, and a faster computer (or more 
efficient algorithms) would allow additional image analysis 
steps to increase robustness. 

The main limitation imposed by the image analysis algorithm 
was that the background must not contain large objects with 
the same color as the darts. Another limitation was that it 
could not handle the situation with more than one dart in the 
image correctly. Further, detection of the dart’s orientation 
would improve the ability of the system to predict the future 
movements of the dart. 

3.3  State Estimation 

The entire process of extracting 3D-coordinates from the 
image coordinates, running an iteration of the Kalman filter 
and predicting where the dart would hit the dart board plane 
took a fraction of a millisecond and its computation time was 
hence negligible in comparison to that of the image analysis.  

Approximately 1 % of the position measurements were 
erroneously classified as outliers by the state filter. If one, 
instead of throwing the dart, kept it in the hand and tried to 
move it as if it was thrown, it was not trivial to fool the state 
estimator into believing that it was an actual dart throw. 
Hence it can be concluded that the modeling worked well and 
most measurements were classified correctly with respect to 
being the position of a real dart or not. 

3.4  Composite System 

Fig. 10 and Fig. 11 show how the hit point estimate evolved 
as a dart approached the dart board. Each plot corresponds to 
one throw. The perimeter and center of the dart board are 

marked in red. The estimates of where the dart would hit the 
board are marked with blue stars and connected with blue 
lines to show how the estimate evolved. The last estimate is 
marked with a green star. Each estimate is surrounded by an 
ellipse at the distance of one standard deviation of the 
estimate. The coordinate where the dart actually hit the board 
is marked with a magenta star. 

When the experiments presented in Fig. 10 were performed, 
the thrower tried to make the dart wobble as little as possible. 
The last estimate of the hit point was then generally within 1 
or 2 cm of the actual hit point. When the experiments 
presented in Fig. 11 were performed, the dart wobbled more 
since the thrower did not pay any attention to reducing the 
wobbling. It was estimated that the dart orientation deviated 
up to 30° from the direction of movement. The error of the 
last estimate was then up to 5 cm. 

In all it took 40-50 ms from the time when an image was 
captured until the estimation of the hit point was received and 
could start being processed in the Java part of the system. 

The first successful measurements were usually done when 
m 2≈dz (when the dart was approximately 2 m away from 

the dart board) and the last when m 5.0≈dz . 

When the first hit point estimate was received in the Java 
program there was usually 150-200 ms left to impact and 
when the last estimate was received there was usually 40-60 

Fig. 7. Distribution of distances between corresponding 
points in the calibration of the extrinsic parameters. 
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ms left. During one throw 5-10 position measurements were 
usually acquired. 

4. DISCUSSION 

The two hours it took to calibrate the cameras was an issue, 
since it made one hesitate to perform a calibration. Much 
time was spent on manually clicking on the corners in every 
image. With fully automatic corner identification the 
calibration time could probably come down to 30-45 minutes. 

The implementation of the Kalman filter was straight 
forward, but the choice of covariance matrices has not been 
thoroughly investigated. The variances were set to crude 

estimates of what seemed reasonable. Possibly better tuning 
could e.g. filter out the wobbling of the dart tail better. 

With a frame rate of 50 fps 5-10 position measurements were 
made during one throw. This seemed quite sufficient, but if 
the wobbling of the dart should be modeled, its dynamics are 
probably so fast that a higher frame rate is needed. To allow 
this, prediction could be used to calculate where the dart is 
expected to be seen and only capture this part of the image, 
thus reducing time for data transfer and image analysis. 

CONCLUSIONS 

Seeing how wobbling of the dart degraded the performance, 
it became obvious that detection of the dart orientation was 
needed to get good performance. As a first step this could be 
used without making a more complex model of the dart 
dynamics. The orientation of the dart and the position of the 
tail could be used to calculate the position of the center of 
mass. If this was used as input to the Kalman filter describing 
a particle, the accuracy could probably be improved a lot. 

The system typically had to move the board to its destination 
in less than 200 ms. For comparison a robot with a maximum 
acceleration of 6g can move the dart board 0.2 m in 120 ms. 
This distance is probably longer than is usually needed, but 
on the other hand the final destination is not known from the 
beginning, causing the movement time to be longer. The 
numbers indicate that the system had the performance needed 
to catch a dart, but the margins were not large. 
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Fig. 10. Development of estimated hit points for darts 
thrown in a “friendly” non-wobbling way. 

 (a)  (b) 

 (c)  (d) 

Fig. 11. Development of estimated hit points for darts 
thrown in a “non-friendly” wobbling way. 


