
LUND UNIVERSITY

PO Box 117
221 00 Lund
+46 46-222 00 00

Vision Based Tracker for Dart-Catching Robot

Linderoth, Magnus; Robertsson, Anders; Åström, Karl; Johansson, Rolf

Published in:
IFAC Proceedings Volumes (IFAC-PapersOnline)

2009

Link to publication

Citation for published version (APA):
Linderoth, M., Robertsson, A., Åström, K., & Johansson, R. (2009). Vision Based Tracker for Dart-Catching
Robot. IFAC Proceedings Volumes (IFAC-PapersOnline), 42(16), 717-722.

Total number of authors:
4

General rights
Unless other specific re-use rights are stated the following general rights apply:
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors
and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.
 • Users may download and print one copy of any publication from the public portal for the purpose of private study
or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove
access to the work immediately and investigate your claim.

https://portal.research.lu.se/en/publications/ac765594-1787-4060-925e-3211e3fd42cb

Vision Based Tracker for Dart Catching Robot

Magnus Linderoth*. Anders Robertsson**. Karl Åström***. Rolf Johansson****

*Department of Automatic Control, LTH, Lund University, SWEDEN
(Tel: +46 46 222 0847; e-mail: magnus.linderoth@control.lth.se).

**Department of Automatic Control, LTH, Lund University, SWEDEN
(Tel: +46 46 222 8790; e-mail:anders.robertsson@control.lth.se).

***Centre for Mathematical Sciences, LTH, Lund University, SWEDEN
(Tel: +46 46 222 4548; e-mail: kalle@maths.lth.se).

****Department of Automatic Control, LTH, Lund University, SWEDEN
(Tel: +46 46 222 8791; e-mail: rolf.johansson@control.lth.se).

Abstract: This paper describes how high-speed computer vision can be used in a motion control
application. The specific application investigated is a dart catching robot. Computer vision is used to
detect a flying dart and a filtering algorithm predicts its future trajectory. This will give data to a robot
controller allowing it to catch the dart. The performance of the implemented components indicates that
the dart catching application can be made to work well. Conclusions are also made about what features of
the system are critical for performance.

Keywords: Dart catching, computer vision, camera calibration, state estimation.

1. INTRODUCTION

In robot applications it is often desirable to have systems that
respond quickly to input from the robot environment. Using
cameras as sensors has several advantages. They can make
touch free measurements of very generic types, e.g. position,
shape or color. The limitation for what can be done often lies
in the image analysis algorithms. Some image properties may
be very difficult to extract and the execution time is often
significant.

This paper describes how high speed computer vision can be
used in a motion control application. The specific problem
chosen was to develop the foundation for a dart-catching
robot. A sketch describing the problem can be seen in Fig. 1.
A dart board was mounted on a robot and when a dart was
thrown toward the board, the robot should move the board so
the dart always hit the bull’s eye. The detection of the dart

was performed with cameras that provided data to the
algorithms that estimated the position and future trajectory of
the dart. In turn this information should be used to move the
dart board to the correct position.

An overview of object tracking techniques can be found in
e.g. (Yilmaz et al. 2006). The focus of my work has been to
use the simplest possible algorithm that does the job robustly
in order to optimize for speed.

The dart catching application is closely related to the table
tennis playing robot, which has been treated in numerous
works, e.g. (Matsushima et al. 2003), which uses an adaptive
black-box model for prediction.

2. METHODS

2.1 Hardware and System Architecture

Two cameras were located one on each side of the dart board.
The application required good real-time camera performance
and for this two Basler A602fc with an IEEE1394 serial
interface (also known as Firewire) were used. They could
supply color images at resolutions up to 656×490 pixels with
a maximum frame rate of 100 fps at full resolution. A third
slower camera was pointed toward the dart board to evaluate
where the dart hit.

Most off-line calculations were performed in Matlab®.
Image acquisition, image analysis and state estimation were
performed in C for speed and because the API used for image
acquisition was made in C. The trajectory generation and
robot control was done in Java, because the interface to the
robot was made in Java. A schematic overview of the system

-0.5

0

0.5

1

-1.2
-1

-0.8

-0.6
-0.4

-0.2
0

0.2
0.4

0.6

-0.2

0

0.2

0.4

Robot

Camera

z

Camera

Dart

x

Camera

y

Fig. 1. Overview of the experiment setup.

architecture can be seen in Fig. 2. For more information
about the robot control system, see (Robertz et al. 2007).

2.2 Camera Positioning

Many different ways of positioning the cameras were
possible. The chosen positions of the high speed cameras
were on each side of the dart board, pointing toward the
thrower, illustrated in Fig. 3. This positioning allowed the
cameras to see the dart at a big distance if the thrower was
straight in front of the board. The dart catcher application had
a higher requirement on the accuracy of the estimated dart
trajectory when the dart was close to the dart board, which
was fulfilled by the chosen camera positioning, since the dart
was close to the cameras and observed from better angles
when it was close to the board.

2.3 Camera Calibration

For camera calibration the Camera Calibration Toolbox for
Matlab® (Bouguet 2008) by Jean-Yves Bouguet was used. It
uses series of images of a checkerboard pattern in different

positions to extract both intrinsic camera parameters and the
relative position of the cameras in a stereo pair.

The stereo camera calibration feature in the calibration
toolbox by Bouguet was not well adapted to the needs for this
project, so a new script for calibration of the extrinsic
parameters was developed. It used a function in the toolbox
to extract the 3D position of a checkerboard grid with respect
to a camera with known intrinsic parameters. To measure the
relative position of two cameras, a set of synchronized
images was captured, showing the checkerboard in the same
positions from the different viewpoints of the cameras. Two
sets of 3D points were then obtained, each belonging to one
camera. The relative position of the cameras could be
obtained by matching these points. For this purpose, a weight
function was defined as the root-mean-square value of the
distances between the corresponding points. Its minimum
was then found numerically using the Nelder-Mead simplex
method (Nelder and Mead 1965).

2.4 Image Analysis

In the development of the image analysis algorithms an
important consideration was to make it simple and
computationally efficient due to the high real-time
requirements on the implementation.

Pixel Classification
As a first step the color of each pixel was examined in order
to determine whether it was likely to be part of a dart in the
image. To do this the RGB (red, green, blue) image was
converted to the HSV (hue, saturation, value) color space. To
determine if a pixel was part of a dart, the likelihood criterion

() ()7.02.065.0360/55.0 <<∧<°< vh (1)

was found to work well empirically for the dart depicted in
Fig. 4. The basic idea was to use mostly the hue, since it does
not vary much with different lighting conditions. Bounds on
the intensity were used to discard ranges where the hue
calculation was not reliable. Using (1), a new image could be
generated, where the value of each pixel was 1 if it was likely
to be part of a dart, 0 otherwise. An example of this can be
seen in Fig. 9 (c).

Calculating the Number of Dart Pixels in a Rectangle
In the process of finding darts in an image, the number of dart
pixels in a rectangle was calculated a large number of times.
To do this efficiently the integral image was first calculated.
This was quite a heavy computation, but once it was done the
number of dart pixels in any rectangle could be computed by
only summing 4 values.

Finding Darts
The criterion (1) for detecting dart pixels generated quite a
large number of false positives, as can be seen in Fig. 9 (c). A
large number of these were caused by the Bayer pattern color
decoding, which can be seen in Fig. 9 (b). Because of the
displacement of the color filters a large number of colors
were generated at sharp edges in the images. These artifacts

Cameras

Image
Acquisition

Image
Analysis

Image coordinate to
3D measurement

Kalman Filter Prediction

Trajectory
Generation

Robot
Control Robot

Socket

Firewire

E
therC

A
T

C

Java

Camera
Calibration

Matlab

Fig. 2. A schematic overview of the components in the
system and how they communicate.

Fig. 3. Top view of the setup illustrating the stereo
coverage. The cones show the field of view for the
respective cameras.

0

0.5

1

1.5

2

2.5

3

-101

Dart
NW

FWA

x (m)

Y
Z

XFWB

z
(m

)

occurred in lines that were one, or possibly two, pixels wide.
Thus they could be eliminated by only keeping the pixels that
were the centers of 3-by-3 pixel boxes where at least 7 out of
the 9 pixels satisfied (1). This resulted in Fig. 9 (d).

Still, some outliers remained. To filter these out, the pixel
that was the center of the 5-by-5 pixel box with the largest
number of pixels satisfying (1) was used as the estimate of
the position of the dart. If several pixels shared the same
number of neighbors satisfying (1), their center of gravity
was used. By means of the integral image the darts could be
found efficiently with a binary search over the image. The
basic idea was to discard a rectangular part of the image if it
did not contain enough dart pixels to contain a dart.
Otherwise the rectangle was split in half and each half was
recursively examined for the possibility of containing a dart.

2.5 State Estimation and Prediction

A standard Kalman filter (Kalman 1960) was used to estimate
the state of the dart and to predict its future trajectory. The
general form of the filter is derived e.g. in (Åström,
Wittenmark 1997).

Model of Dart Flight Dynamics
The dart was assumed to fly with negligible air friction. Since
the image analysis did not have the functionality to extract
the dart’s orientation, the dart was modeled as a particle. This
was represented by the state-space model

)()()()(
)()()()(

khekhxkhCkhy

khvkhukhxhkhx

+=
+Γ+Φ=+

 (2)

with the state vector ()T
dddddd zyxzyxx ���= and

1)(,

0

0
0

2/
0

 ,

100000
010000
001000

00100
00010
00001

2

≡

�
�
�
�
�
�
�
�

�

�

�
�
�
�
�
�
�
�

�

�

−

−

=Γ

�
�
�
�
�
�
�
�

�

�

�
�
�
�
�
�
�
�

�

�

=Φ khu

gh

gh

h

h

h

where h is the time step, g is the earth gravitation and v and e
are discrete time Gaussian white noise processes.

A problem with this simple model was that the point that
conformed well to the model was the center of mass, but only
the position of the tail was measured, and the point of interest
was at the tip, since this determined where the dart hit the
board. For the model to be good it was thus required that the
throws were “friendly”, so that the three points traversed

approximately the same trajectory in space. A wobbling tail
would cause bad velocity estimates that got amplified when
the trajectory was extrapolated to the dart board. The
different parts of the dart are shown in Fig. 4.

Prediction
In each filtering iteration the dart trajectory was extrapolated
to predict where the dart would hit the board. This was done
by simply running more iterations of the Kalman filter,
assuming that no measurements were available. The filtering
was continued until dẑ was equal to the z-coordinate of the
dart board. The values of dx̂ and dŷ at that instant were
used as the hit point estimate.

Outlier Detection
Before a measurement of the dart position was used in the
Kalman filter, it was checked that it was close to what was
expected based on the state estimate. Otherwise the
measurement was discarded.

Each measurement, y, and each expected measurement based
on the state estimate, xCy ˆˆ = , were associated with a
covariance matrix. Hence the covariance of the difference

yyd ˆ−= and a corresponding confidence ellipsoid could be
calculated. For the measurement to be accepted, d had to be
within this ellipsoid.

Managing of Multiple Trajectories Simultaneously
On top of the Kalman filter was a layer that could keep track
of several state vectors, each representing the trajectory of
one dart. The obvious advantage of this was that the
trajectories of several darts could be tracked simultaneously.
A more important advantage had to do with outlier detection.
In each iteration of the Kalman filter, the measurements were
discarded if they were not close to where they were expected
to be (cf. Outlier Detection). If the measurement initiating the
trajectory were a false positive, successive correct
measurements would be discarded, since they were not close
to what was expected after the incorrect measurement. This
meant that one incorrect measurement would block the
system. The algorithm used to handle this situation is
described by the following pseudo code:

for all trajectories
 if the measurement is not an outlier to this
 trajectory
 perform iteration of Kalman filter
 if the trajectory has not received a
 measurement for a while
 throw it away
if the measurement did not match any existing
trajectory
 create a new trajectory

2.6 Conversion from Image Measurements to 3D Space
Measurements

Two approaches were considered for converting the image
coordinates of the darts to coordinates in 3D space.

center of mass
measured point point of interest

Fig. 4. Image of dart.

Approach 1
In the first approach a pair of stereo images acquired
simultaneously could be used only if the dart was detected
properly in both images. The x, y, and z coordinates of the
dart at that instant were then calculated and used as input to
the Kalman filter that estimated the state of the dart. When
the position of the dart was detected at two time samples, an
estimate of both position and velocity could be estimated and
be used as the initial state to the Kalman filter.

From the position of the dart in a single image it was possible
to determine a line in 3D-space along which the dart must be.
In this paper this line will be referred to as the viewline (cf.
Fig. 5). If viewlines for two cameras were known for the
same dart, the position of the dart could be calculated as the
point where the viewlines intersected. In practice,
measurement noise caused the lines not to intersect. Instead,
the points closest to each other (pa and pb in Fig. 6) were
computed and the midpoint of the line connecting them,

2/)(ba ppp += , was used as an estimate of the dart position.
A simple way to detect outliers during triangulation was to
examine the shortest distance

2ba pp −=d (3)

between the viewlines. If d was above some threshold it was
considered that in at least one of the images something else
than the dart was found.

Approach 2
The second approach for converting measurements in the
images into input to the Kalman filter was a bit more flexible
and did not perform any explicit triangulation. This approach
has not yet been implemented on the real system.

A viewline could be expressed as the intersection of two
planes, e.g. the one containing the focal point and lx, and the
one containing the focal point and ly in Fig. 5. Each of these
planes puts a constraint of the form 0=X�

T on the dart
position X. This could be rewritten to a constraint on the state

vector of the Kalman filter:

()() ⇔== T
ddd zyx 10 4321 ππππX�

T

()
()T

dddddd zyxzyxx

c

cx

���=

=
=−

 and

 000 where

321

4

πππ
π

 (4)

If � is normalized so 12
3

2
2

2
1 =++ πππ , 4π− can be

interpreted as the signed length of the orthogonal projection
of the dart position onto the direction ()321 πππ .

Each image with a measurement of the dart position gave two
constraints, each specified by a row vector c in (4), one in the
x direction and one in the y direction of the image. If several
images were available, this was handled simply by adding
rows in the measurement matrix C of the model (2):

�
�
�
�
�
�

�

�

�
�
�
�
�
�

�

�

=

�

y

x

y

x

c

c

c

c

C

2

2

1

1

No explicit triangulation was done. However, if the rows in C
corresponded to measurements in many different directions,
an estimate with low variance in all directions could be
obtained.

The Kalman filter was initialized to some reasonable state
with a big variance in all directions. Thus, the actual value of
the initial state was negligible when measurements had been
done with c in (4) pointing in many different directions.

One advantage of this second approach was that it easily
extended to any number of cameras. Two more rows were
simply added to C for every camera. Another advantage was
that a measurement could be used even if there were no valid
measurements from any other cameras.

3. RESULTS

3.1 Camera Calibration

Performing camera calibration took quite long, up to 2 hours.
No explicit error estimate of the extrinsic parameters has
been derived. A good indicator of the accuracy, though, is the
consistency of the position estimates made by the different
cameras. Fig. 7 shows a histogram of the distances between
two cameras’ 3D-coordinate estimates of the same point
during calibration. Fig. 8 shows a histogram of d in (3) for
flying darts. Small values of d indicate good accuracy in the
image analysis and camera calibration.

3.2 Image Analysis

The image analysis worked well with few false positives and
undetected darts. It was hard to give a useful quantitative
measure of the error rate, since it varied much with the

p

pa

pb viewline a

viewline b

Fig. 6. Illustration of triangulation process.

focal point

Y

X Z

ly

lx
image plane

viewline

image point

Fig. 5. Illustration of viewline. An object
projected onto some image point, can be
located anywhere along the corresponding
viewline.

background and lighting conditions. An example of how the
image analysis performed can be seen in Fig. 9.

The computation time for the image analysis of a stereo
image pair was approximately 10 ms. Considering that the
system ran with a sampling period of 20 ms it becomes
apparent that the image analysis was the step that consumed
the most computing power, and a faster computer (or more
efficient algorithms) would allow additional image analysis
steps to increase robustness.

The main limitation imposed by the image analysis algorithm
was that the background must not contain large objects with
the same color as the darts. Another limitation was that it
could not handle the situation with more than one dart in the
image correctly. Further, detection of the dart’s orientation
would improve the ability of the system to predict the future
movements of the dart.

3.3 State Estimation

The entire process of extracting 3D-coordinates from the
image coordinates, running an iteration of the Kalman filter
and predicting where the dart would hit the dart board plane
took a fraction of a millisecond and its computation time was
hence negligible in comparison to that of the image analysis.

Approximately 1 % of the position measurements were
erroneously classified as outliers by the state filter. If one,
instead of throwing the dart, kept it in the hand and tried to
move it as if it was thrown, it was not trivial to fool the state
estimator into believing that it was an actual dart throw.
Hence it can be concluded that the modeling worked well and
most measurements were classified correctly with respect to
being the position of a real dart or not.

3.4 Composite System

Fig. 10 and Fig. 11 show how the hit point estimate evolved
as a dart approached the dart board. Each plot corresponds to
one throw. The perimeter and center of the dart board are

marked in red. The estimates of where the dart would hit the
board are marked with blue stars and connected with blue
lines to show how the estimate evolved. The last estimate is
marked with a green star. Each estimate is surrounded by an
ellipse at the distance of one standard deviation of the
estimate. The coordinate where the dart actually hit the board
is marked with a magenta star.

When the experiments presented in Fig. 10 were performed,
the thrower tried to make the dart wobble as little as possible.
The last estimate of the hit point was then generally within 1
or 2 cm of the actual hit point. When the experiments
presented in Fig. 11 were performed, the dart wobbled more
since the thrower did not pay any attention to reducing the
wobbling. It was estimated that the dart orientation deviated
up to 30° from the direction of movement. The error of the
last estimate was then up to 5 cm.

In all it took 40-50 ms from the time when an image was
captured until the estimation of the hit point was received and
could start being processed in the Java part of the system.

The first successful measurements were usually done when
m 2≈dz (when the dart was approximately 2 m away from

the dart board) and the last when m 5.0≈dz .

When the first hit point estimate was received in the Java
program there was usually 150-200 ms left to impact and
when the last estimate was received there was usually 40-60

Fig. 7. Distribution of distances between corresponding
points in the calibration of the extrinsic parameters.

0 5 10 15 20
0

2

4

6

8

10
Histogram of distances beween identical points in the two cameras

distance (mm)

N
um

be
r o

f o
cc

ur
re

nc
es

Fig. 8. Distribution of the triangulation error, d.

0 0.01 0.02 0.03 0.04 0.05
0

20

40

triangulation error: d (m)

fre
qu

en
cy

Fig. 9. Illustration of image analysis process.

100 200 300 400 500 600

50

100

150

200

250

300

350

400

450

275 280 285 290 295 300 305 310 315

290

295

300

305

310

315

100 200 300 400 500 600

50

100

150

200

250

300

350

400

450

70 80 90 100 110 120 130 140

70

80

90

100

110

120

100 200 300 400 500 600

50

100

150

200

250

300

350

400

450

(a) Original image. There is a
dart at (r, c) = (303, 289).

(b) Close-up showing artifacts
of Bayer pattern.

(c) Pixels with colors similar to
a dart. Many false positives.

(d) Pixels left after dart
detection.

(e) Close-up of dart with
estimated position marked.

ms left. During one throw 5-10 position measurements were
usually acquired.

4. DISCUSSION

The two hours it took to calibrate the cameras was an issue,
since it made one hesitate to perform a calibration. Much
time was spent on manually clicking on the corners in every
image. With fully automatic corner identification the
calibration time could probably come down to 30-45 minutes.

The implementation of the Kalman filter was straight
forward, but the choice of covariance matrices has not been
thoroughly investigated. The variances were set to crude

estimates of what seemed reasonable. Possibly better tuning
could e.g. filter out the wobbling of the dart tail better.

With a frame rate of 50 fps 5-10 position measurements were
made during one throw. This seemed quite sufficient, but if
the wobbling of the dart should be modeled, its dynamics are
probably so fast that a higher frame rate is needed. To allow
this, prediction could be used to calculate where the dart is
expected to be seen and only capture this part of the image,
thus reducing time for data transfer and image analysis.

CONCLUSIONS

Seeing how wobbling of the dart degraded the performance,
it became obvious that detection of the dart orientation was
needed to get good performance. As a first step this could be
used without making a more complex model of the dart
dynamics. The orientation of the dart and the position of the
tail could be used to calculate the position of the center of
mass. If this was used as input to the Kalman filter describing
a particle, the accuracy could probably be improved a lot.

The system typically had to move the board to its destination
in less than 200 ms. For comparison a robot with a maximum
acceleration of 6g can move the dart board 0.2 m in 120 ms.
This distance is probably longer than is usually needed, but
on the other hand the final destination is not known from the
beginning, causing the movement time to be longer. The
numbers indicate that the system had the performance needed
to catch a dart, but the margins were not large.

REFERENCES

Bouguet, J.Y. Camera Calibration Toolbox for Matlab,
California Institute of Technology. Site visited August
2008. http://www.vision.caltech.edu/bouguetj/calib_doc/

Kalman, R.E. A new approach to linear filtering and
prediction problems, Trans. ASME—J. Basic
Engineering, 82 (1960), pp. 35–45.

Matsushima, M., Hashimoto, T. and Miyazaki, F. Learning to
the Robot Table Tennis Task – Ball Control & Rally with
a Human, Proc. 2003 IEEE Int. Conf. SMC, pp. 2962-
2969, 2003.

Nelder, J.A. and Mead, R. (1965). A simplex method for
function minimization, Comput. J., 7, pp. 308–313.

Robertz, S.G., Henriksson, R., Nilsson, K., Blomdell, A.,
Tarasov, I. Using Real-time Java for Robot Control,
Journal 2007 IEEE Conference on Emerging
Technologies & Factory Automation (EFTA 2007), pp.
1453-1456, 2007.

Yilmaz, A., Javed, O. and Shah, M. Object Tracking: A
Survey, ACM Computing surveys, Vol. 38, No. 4, pp. 1-
45, 2006.

Åström, K.J. and Wittenmark, B. (1997). Computer
Controlled Systems, Chapter 11. Prentice Hall, Upper
Saddle River, New Jersey

(a) (b)

(c) (d)

Fig. 10. Development of estimated hit points for darts
thrown in a “friendly” non-wobbling way.

 (a) (b)

 (c) (d)

Fig. 11. Development of estimated hit points for darts
thrown in a “non-friendly” wobbling way.

