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“The man who moves a mountain begins by carrying away small stones.”

-Confucius: The Analects
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Abstract
Requirements on radiating structures are constantly increasing, demand for faster
speed, smaller size, and higher reliability drives today’s technical development.
However, for electrically small structures, less than half-a-wavelength in size, per-
formance is fundamentally limited by physical size. This thesis explores how to
construct and calculate physical bounds for advanced antennas and complex en-
vironments that are in use in modern communication today. Previously, physical
bounds have mainly been formulated for single feed, single resonance antennas in
free space. However, in modern communication settings antennas are much more
advanced. In all cellular networks after the third generation of mobile networks
(3G) Multiple-Input-Multiple-Output (MIMO) systems are being utilized, where
antennas have multiple feeds. Formulating physical bounds for these antennas is
not trivial due to classically limited performance metrics, such as the Q-factor,
being difficult to define or calculate. It is not only the antennas themselves that
are more advanced, antennas are also used in implants, medical devices, meta
materials, and in plasmonics. Calculating physical bounds in these scenarios re-
quire new methods that reliably predict accurate results for all different types of
materials.

In this thesis a method for constructing physical bounds for general MIMO
antennas is presented. By idealizing the channel and representing the antenna
by the equivalent currents excited across it, a bound can be calculated with
convex current optimization. It is shown that that bound is effectively reached
by exciting different sets of modes depending on what constraints are put on the
optimization. Different shapes and sub-regions are analyzed using the strength
of these modes.

A new method for calculating stored energy and Q-factor in the presence
of complex media is presented and investigated. By viewing the antenna as a
dynamic system the Method of Moments (MoM) impedance equation can be
formulated as a state space model. The energy stored within in such a model is
identified as the stored energy. This method can be generalized to dispersive and
inhomogeneous media.
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Populärvetenskaplig Sammanfattning
(in Swedish)
Antenner förekommer överallt i vår vardag. Den fullständiga uppkopplingen via
våra telefoner och datorer vi utnyttjar idag har blivit en extremt viktig del av vårt
sammhälle. I dagsläget ser den trenden ut att bara öka, med fler och fler enheter
i bruk, och mycket annan elektronik som behöver kommunicera med internet.
Med denna ökning i volym kommer nya krav på uppkopplingshastigheten och
mängden data som överförs. För detta krävs bättre antenndesigner.

I dagsläget är en stor del av antenndesign baserat på ingenjörsmässiga tumm-
regler och tidskrävande simuleringar. Att automatisera eller effektivisera den
processen är något som skulle frigöra en stor mängd tid för många högutbil-
dade inom telecom industrin. Denna avhandling undersöker en viktig del i den
processen kallad fysiska begränsningar för antenner. Fysiska begränsningar är
optimala gränser för prestanda hos antenner. De konstrueras genom att på för-
hand räkna ut hur bra det är möjligt för en antenn att fungera, givet en viss
storlek. De kan användas både som ett mål i automatiserad antenndesign eller
som ett riktmärke för hur mycket prestanda det finns kvar att utvinna för en
designer.

Dessa fysiska begränsingar räknas ut genom att representera en antenn med
de strömmar den har möjlighet att inducera i ett visst område. Dessa strömmar
används som variabler i optimeringsproblem som maximerar antennprestanda.
Genom att skriva dessa optimeringsproblem på konvex form kan vi garantera att
en optimal lösning finns. Konvexa problem är sådana problem som alltid har
ett unikt minimum värde, de kan enkelt beskrivas som kurvor med endast en
dal. Att hitta minimum värdet av en sådan kurva är ett problem som går att
lösa. Denna metod har tidigare används för att räkna ut maximal bandbredd,
strålningsfokusering, eller effektivitet för en antenn.

Tidigare har denna typ av begränsningar framförallt existerat för enkla an-
tenntyper i frirymd. I dagens användarscenarion är antenntyper mycket mer
avancerade än så. För all telefonkommunikation från 4G och framåt används
flera antenner tillsammans för att sända en större mängd data. Nästan alla an-
tenner byggs på dielektriska material eller används i närheten av förlustmaterial,
så som kroppen. Denna avhandling fokuserar på att skapa fysiska begränsningar
för dessa mer avancerade antenntyper. Multipelantennsystem undersöks genom
att idealisera vissa parametrar för att kunna beskriva antennerna på en form där
strömoptimering kan användas. Fysiska begränsningar för antenner i förlustma-
terial konstrueras genom att beskriva antennen som ett dynamiskt system och
därigenom kunna utvärdera dess bandbredd utan att behandla vissa antennbe-
grepp som är svåra att definiera i komplexa material.
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1 Background and Motivation 3

1 Background and Motivation
Antennas are more and more becoming an integral part of all user electronics.
As our society becomes fully connected the need for high speed communication
between devices is becoming more pressing [1, 21, 111]. With the emergence
of Internet of Things (IoT) many more devices will be connected and contain
antennas [50]. This, in conjunction with user demand, puts ever more pressing
requirements on high data rates and information transfer. While much of this is
achieved by clever communication schemes, the demand on antenna performance
increases as well. Being able to design antennas achieving as much performance
as possible is therefore very desirable. This naturally leads to the question: How
good is it possible to make an antenna? This is the question this thesis aims to
answer.

Antennas are implemented in many different environments, in the case of
base stations or tv-antennas, space and miniaturization is not a pressing issue.
In these cases antennas can be designed at their natural size, i.e., around half-
a-wavelength or larger. However, many antennas are placed within devices, such
as mobile phones or Bluetooth headphones, where space is at a premium. Here,
the antennas compete with other vital components, such as batteries, connectors,
screens etc., for design space. In these cases it becomes imperative to be able
to effectively place and utilize the space allotted to antenna design. This is
schematically shown in Fig. 1a, where only a sub-region of the device is dedicated
to antenna design. For such a scenario the question can therefore be formulated
as: Where should my design region be placed and what are the possibilities for my
antenna design within it, in the presence of this environment. Knowing this type
of information prior to designing an antenna has many uses. It gives an upper
limit for what is possible for the designer; they need not waste valuable time and
effort trying to achieve specifications handed down to them that are not possible.
It can be used as a goal or stopping criterion for optimization; when I am this
close to the limit it is not worth investing more time or effort. Such information
can be used to implement automated antenna design, where software carries out
much of the basic or rough antenna design, reducing cost.

Before the work carried out in this thesis there already existed a wealth of
work investigating the problem of calculating optimal antenna performance [13,
20, 22, 24, 40, 41, 51, 57, 60, 63, 66, 68, 81, 84, 94, 112, 116, 120, 122, 130]. These pa-
pers dealt mainly with calculating the optimal performance of simple, single feed,
single resonance, antennas in free space. These idealizations makes the mathe-
matical problem easier to define, more tractable, and have served the antenna
community well in scenarios where they are reasonable approximations of real-
ity. However, in modern communication settings antenna design complexity has
surpassed what many of these optimal limits are capable of describing. Since the
advent of the Fourth Generation Mobile Networks (4G) communication network,
antennas are designed to have several inputs or elements that work together to
maximize the bit-rate transferred [27, 45, 54, 79, 97, 104]. For these types of an-
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(a) (b)
Figure 1: (a) Schematic illustration of one of the possible regions within a
mobile phone dedicated to antenna design. (b) Illustration of a body area network
operating on the human body.

tennas, known as MIMO antennas, past optimal limits are not applicable. Many
devices and antennas also operate close to, or inside, of the human body, see
Fig. 1b. Most of the previous limits for optimal performance are based on the
assumption that the antenna is operating in free space, and therefore become
inaccurate in the presence of complex media. This thesis aims to begin to in-
vestigate how to construct optimal limits, or physical bounds, for more advanced
radiating systems, specifically MIMO antennas and antennas inside of complex
media.

1.1 Research Overview
From our intuitive understanding of the term optimal it might be logical to
assume that this value is close to unobtainable and only achieved by complex
and brilliant designs. However, an important part of calculating a bound for
antenna performance is that it should be “tight”. In this context that implies
that the bound is as close as possible to reality, a bound which is far away from
what can be achieved is less useful. In Paper I of this thesis, an overview of how
to reach the physical bounds for small antennas with simple antenna designs is
presented.

MIMO systems function based on the relationship between two sets of an-
tennas, typically a base station and a device. In both of these the antennas
are antennas with more than one input [104]. This makes it difficult to con-
struct general physical bounds for MIMO antennas. Previously, this has been
done for spherical surfaces [45, 54, 102] or through information theoretical ap-
proaches [9, 35–37, 39, 49, 80, 87, 93, 97, 98, 100,101, 118,128]. However, it is inter-
esting to consider how much performance can be gained from antenna design. In
Fig. 1a it can be seen that antennas are restricted to much more confined regions
in many applications. Physical bounds must therefore treat arbitrary design re-
gions. Papers II, and III illustrate how to calculate a general physical bound for
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a MIMO antenna, and investigate how that physical bound behaves.
Modal analysis through Characteristic Modes (CM) is a very popular method

for antenna design [10,16,69,71,91,92,96]. By analyzing the natural resonances
on a structure it is possible to gain an intuitive understanding of how to de-
sign an antenna that most efficiently excites those resonances, or modes. In
Papers III and IV it is shown that current distributions contributing to optimal
performance can be analyzed in terms of different sets of modes depending on
what criteria are placed on the optimization. How to effectively excite these to
generate the best MIMO performance is investigated as well.

One of the most enigmatic quantities for antennas is known as stored electro-
magnetic energy [11,14,15,23,43,53,105,108,108,125]. Stored energy is important
due to its connection to the bandwidth of an antenna, one of the most important
performance quantities. In Paper V an overview of how to define and calculate
stored energy is presented, dealing mainly with a historical perspective, focusing
on single resonance antennas in free space. In Paper VI a method for calculating
stored energy in complex media is presented, providing an important cornerstone
in constructing physical bounds for on/in-body antennas.

1.2 Structure
The introduction to this thesis is structured as follows. First in Sec. 2 the concept
of bounding antenna performance is introduced and a brief summary of what has
been done before the initialization of this work is presented. Then in Sec. 3
the concept of MIMO antennas is introduced and how to construct performance
bounds for them is detailed. Finally, in Sec. 4 stored electromagnetic energy
is discussed and methods for calculating it in the presence of complex media is
presented.

2 Optimal Antenna Performance and
Physical Bounds

Performance quantities of antennas are limited in certain applications [20,22,63,
66, 127, 130]. Specifically when the antenna size is smaller than the wavelength
it is operating at. This issue naturally leads to the investigation of the extent of
these limits. Some of these performance quantities, such as bandwidth, gain, and
efficiency, are calculated through convex expressions [59]. A convex function is
a function with an unique minimum value (or an unique maximum value in the
concave case), and all local minima of the function are also global minima [7].
What this is equivalent to is that the true extremal value of these functions
is unique. Therefore, it is possible to calculate the bounding values of these
performance quantities. This can be done for many other types of systems such
as cloaking devices or periodic structures, these limits are known, in general, as
Physical or Fundamental bounds [33,56,60,63].
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Historically the pursuit of physical bounds has been extensive. Perhaps most
famously the Chu bound [20] for Q-factor and bandwidth has permeated the
antenna community widely. This bound limits the Q-factor of omni-directional
antennas, effectively providing a lower limit for any electrically small antenna
that can be circumscribed by the considered sphere. These bounds were ex-
tended to consider antennas of arbitrary shape [57], utilizing the polarizability
of a structure to limit its Q-factor and gain. However, bounding other antenna
quantities require more general methods, one such method is convex current
optimization [59,63]. With the advent of this method it is possible to create fun-
damental limitations for any antenna quantity that can be described by a convex
function.

Previously, these physical bounds have mostly been calculated for single res-
onance, single feed, antennas in free space. Antenna quantities in such a config-
uration can often be calculated through quadratic forms which can be evaluated
with little computational cost [63]. While such expressions lend themselves to
antenna optimization and generation, antennas used in modern communications
have become much more complex, often including several feeders and placed in
close proximity to complex materials. The goal of this thesis is to investigate the
possibility of bounding the performance of these more complex antenna types
and configurations.

2.1 Electrical size
Antenna size is often classified in terms of its electrical size, i.e., it’s size in terms
of wavelengths. The generalized way of quantifying the antenna size is to consider
the radius a of the smallest sphere circumscribing the antenna structure. The
electrical size is measured as the wavenumber k = 2π

λ of the operating frequency
times the radius, ka, where λ is the wavelength. This is a unit less quantity that
lets us describe an antenna independent of its operating frequency or physical
size. Many phenomena and quantities scale with electrical size, such as Q-factor,
efficiency, and directivity.

2.2 Q-Factor
One of the most commonly bounded parameters for antennas is the Q-factor [103].
The Q-factor or quality factor is a parameter which describes how long a system
can stay oscillating without extra energy being supplied. A system with high Q
will oscillate for a longer time whereas a system with low Q-factor will dissipate
its energy quickly. It can conceptually be defined as the ratio of stored energy in
the system over the dissipated power per cycle. This concept works well for most
resonant systems such as springs, coils, electromagnetic cavities, and pendulums.
For these types of systems a high Q-factor is often desirable as one would like
the system to keep oscillating with as little input as possible [103]. However, for
antennas the object is the opposite. Here, we (usually) want to radiate as much
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Figure 2: Magnitude of the reflection coefficient |Γ | for RLC circuits with
resonance frequency ω0 and Q-factors Q = {6, 10, 30}. The fractional band-
widths for the Q = 6 case with threshold levels Γ0 = {1/

√
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energy as possible to our surrounding, minimizing the energy stored around the
antenna, and therefore unavailable for communication.

For an antenna the tuned Q-factor is defined as [75]

Q = 2ωmax{We,Wm}
Pd

, (1)

where ω = 2πf is the angular frequency, f is the frequency, We and Wm are
the stored electric and magnetic energies, respectively, and Pd is the dissipated
power. The dissipated power is defined as all power lost in the system and can
be divided as,

Pd = Pr + PΩ, (2)

where Pr is the radiated power, and PΩ are the conduction and dielectric losses
in the antenna. By defining the tuned Q-factor in (1) as the maximum of the
two types of stored energy its value is ensured even for antennas not operating
at resonance. Because the difference between the two energies is the same as the
cost of tuning the antenna to resonance with an ideal lumped circuit component,
i.e., an inductance or capacitance. The Q-factor can also be defined as

Qut = ω(We +Wm)
Pd

. (3)

This is sometimes referred to as the untuned Q-factor, where the average of the
two stored energies is taken as the energy to define the Q-factor. At resonance
the tuned and untuned Q-factors are equal.
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The Q-factor has special significance for antennas due to its connection to
bandwidth, see Fig. 2. For a single resonance, single input, antennas the Q
factor is inversely proportional to the fractional bandwidth B [103,138],

B ∝ 1
Q
. (4)

The bandwidth of an antenna is defined as the frequency range in which the
antenna adequately accepts electromagnetic waves, and is calculated from the
fractional bandwidth by multiplying it with the center frequency of the frequency
band. This is commonly defined based on a threshold level Γ0 of the reflection
coefficient. For narrow-banded single resonance systems the relation between the
fractional bandwidth and the Q-factor becomes explicit [138],

QFBW = 2Γ0√
1− Γ 2

0

1
B
. (5)

One of the most useful methods for calculating the Q-factor of an antenna
was presented by Yaghjian and Best in [138]. It is an approximation based on the
frequency derivative of the antenna input impedance Zin when tuned to resonance
by a lumped inductor or capacitor,

QZ′ = ω

2Rin

∣∣∣∣
∂Zin

∂ω

∣∣∣∣ , (6)

where Rin is the input resistance. This approximation is particularly useful due
to the ease of its evaluation. It also serves as a comparison to stored energy
results throughout this thesis as its calculation is not based on the evaluation of
stored energy.

2.3 Current Optimization
The physical bounds most commonly referred to in this thesis have been calcu-
lated using current optimization. Current optimization functions by letting the
equivalent currents that could be induced in the antenna volume be the opti-
mization variables [59]. Given full control of these currents any possible antenna
shape within the volume can be represented. If the expression that is optimized is
a convex function, this implies that if a minimum is found it represents the best
possible solution for any antenna that can be constructed within the volume.
These currents are not necessarily realizable using physical feeding structures,
see Fig. 3, but they do still provide an upper bound to the currents that can be
excited by an antenna constructed in the design region.

To numerically perform this optimization the currents and antennas need to
be represented by a method that lends itself to fast and efficient evaluation. For
antennas, and small antennas specifically, a method well suited to this purpose is
MoM. MoM is an integral equation based method that computes the currents of
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Re Im

Figure 3: The optimal current distribution for the maximization of gain over
Q-factor optimization problem for an aspect ratio 2 : 1, ka = 0.31 plate. To the
left the real part of the current distribution is a dipole current and to the right
the imaginary part is a loop current [59].

`

`/2

Figure 4: An `× `/2 plate typical for many small antenna simulations. On the
plate are shown rooftop basis functions that are used to approximate the current
density that flows across it.

an object based on its excitation [44,70,129]. The current density on the antenna
is expanded in basis functions ψn(r),

J(r) =
N∑
n=1

Inψn(r), (7)

with expansion coefficients In, see Fig. 4. The main equation within this method
takes the form,

ZI = V, (8)

where Z is the impedance matrix, I is the current matrix with elements In, and
V is the excitation matrix. The impedance matrix Z maps how the current
on every part of the antenna connects to itself and the other currents present
on it. If the excitation is known the currents can be found by inverting this
matrix. The construction and inversion of this matrix carries with it a plethora
of numerical details and difficulties [19, 70], which will not be discussed in this
thesis. The power of this method, from an optimization perspective, is the fact
that the evaluation of many antenna quantities essentially come for free after the
matrices have been constructed. Many performance quantities can be calculated
directly from the matrices in (8). For example, the radiated power is calculated
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as the quadratic form of the radiation matrix, which, for loss-less structures is
the real part of the impedance matrix, Rr = Re{Z},

Pr = 1
2IHRrI. (9)

Quadratic forms can be evaluated quickly and efficiently, and are used in ex-
plicit optimization routines such as Quadratically Constrained Quadratic Pro-
gramming (QCQP) [7]. From (8) the resonance of the antenna can be analyzed
through the imaginary part of the impedance matrix, known as the reactance
matrix X = Im{Z}, where zero reactance in the input impedance at the fre-
quency of operation defines resonance. X also defines the electric and magnetic
energy matrices [59],

Xe = ω

2

Å
∂X
∂ω
− X
ω

ã
, (10)

Xm = ω

2

Å
∂X
∂ω

+ X
ω

ã
. (11)

The matrices Xe, Xm and Rr can be used in (1) to give the expression for the
Q-factor, for the loss-loss case, in MoM matrices,

Q = max{IHXeI, IHXmI}
IHRrI

. (12)

The optimization problems that calculate the physical bounds, on e.g., Q-
factor or efficiency, can be written directly on convex form or be formulated as
QCQP taking the following form [51,55,59,78],

maximize IHAI
subject to IHBI ≤ 1

IHCI = 0
DI = d,

(13)

where the matrices A, B, C, D, and the vector d are general quantities that
can be replaced with the matrices above in order to create the physical bound
of interest. Here the currents are the variables of the problem, making matrix
inversion of (8) unnecessary. Depending on what matrices are put into (13),
these problems are usually solved by their dual formulation [7].

2.4 Gain over Q Bound
The problem formulation (13) lets us investigate performance limits tailored to
specific applications. In this subsection a brief summary of how to calculate one
of the most prolific performance bounds, the gain over Q bound, using current
optimization, is presented [59].
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To maximize gain over Q, the Q-factor must be minimized, however, (12) is
not a convex function and as such cannot be minimized directly. Therefore we
must formulate a convex function that can be maximized. Consider the partial
gain of an antenna, calculated as [75],

G(k̂, ê) = 4πP (k̂, ê)
Pr + PΩ

, (14)

where k̂ is the direction of radiation, ê is the polarization of the radiation, and
P (k̂, ê) is the radiation intensity for that direction and polarization.

The value of (14) in a certain direction is known as the gain, and it is equal to
the directivity for a loss-less antenna. The radiation intensity can be calculated
in a certain direction by

P (k̂, ê) = 1
2η0
|FHI|2, (15)

where F is the radiation vector in the k̂ direction with polarization ê. Dividing
the partial gain (14) with the Q-factor (1), and inserting the MoM matrices, gives
an expression that can be maximized,

G(k̂, ê)
Q

= 4π|FHI|2

η0 max{IHXeI, IHXmI} . (16)

The maximization of (16) can either be written as a maximization of the numer-
ator or a minimization of the denominator. Here, we will choose the second and
write the convex optimization problem [55]

minimize max{IHXeI, IHXmI}
subject to FHI = −j,

(17)

where restricting the number inside the absolute square, FHI is the same as
restricting the square, |FHI|2. This is a convex problem that can be solved by
inputting it on this form into freely available solvers, such as Matlab Software
for Disciplined Convex Programming (CVX) [7, 48, 59], given that the problem
is tractable, i.e., be of reasonable size. The optimal currents of this problem
are shown in Fig. 3. These currents will not always give minimum Q-factor for
all antennas. However, electrically small antennas have, in general, dipole-like
radiation patterns. It is possible to form a convex optimization problem on the
form of (17) that minimizes the Q-factor for a given radiation pattern, in this way
giving a lower bound for Q for small antennas [12, 55]. This type of formulation
opens the possibility to form other types of problems that calculate bounds for
other performance quantities for small antennas [51,81].

2.5 Reaching the Physical Bounds
A pressing issue for all physical bounds that have been established for antennas
are whether or not they are tight. The Chu bound deals with the optimal Q-
factor for radiating structures defined by their circumscribing sphere [20]. This
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bound sets a lower limit for the Q-factor for any structure that can be constructed
within the sphere [3, 6, 64, 65, 83, 84]. While being a seminal work and one that
is used to this day, the issue with this bound is that most antenna structures
do not fully utilize the volume of the sphere. A typical modern antenna, where
bandwidth performance is an issue, is printed on a substrate [38]. This means that
the Chu bound of that antenna is much lower than what is actually achievable
on that surface. Consequently, the Chu bound is not well suited as, e.g., a
stopping criterion in optimization. This deficiency lead to the investigation and
development of tighter physical bounds that bound the performance of arbitrarily
shaped radiators [34,57,58,121–123,126,127,136,137].

Verification of these bounds is done by simulating known antenna designs
and verifying their relation to the bound [4, 5, 58]. Their validity is predicated
on the fact that no antennas that are constructed in the considered volume have
better performance than the bound. However, one way to further validate this is
to consider heuristically optimized antennas. Techniques, such as, genetic algo-
rithms, particle swarm, Monte Carlo simulations, and others, have been utilized
successfully in antenna design [73, 86, 106, 107, 109]. These non-deterministic al-
gorithms are well suited for antenna design problems where a large number of
solutions produce acceptable results. By running these for many points along
the physical bounds its possible to show solutions that approach the bound for
every frequency point, see Fig. 5. In Paper I it is shown that simple antenna de-
signs can be made to approach the bound as long as the antennas are electrically
small. One of those simple antenna designs for small planar antennas that reach
the physical bound is the meanderline, as seen in Fig. 5.

3 Physical Bounds for MIMO Antennas
Utilizing multiple antennas in concert was one of the big technological leaps
forward with the introduction of the 4G cellular network, resulting in much higher
data rates [27]. Today the use of MIMO has become ubiquitous in communication
systems, being implemented in wireless LAN, 4G, and the soon to come Fifth
Generation Mobile Networks (5G) systems [27, 99, 104, 111]. The principle of
MIMO is to create several paths between the receiver and transmitter antenna
sets by including multiple antennas in each. When the channel describing the
propagation between the two sets is known or estimated it is possible to allocate
power to the different paths in an efficient manner that increases the overall
bit-rate sent through the link [26,79,99,104].

Physical limits for the optimal performance of MIMO systems has previ-
ously mainly been studied from an information theoretical perspective [35,37,39,
87, 118]. Where ideal antenna design has been considered and limits on differ-
ent channel models are studied [9, 93, 128], or on how to calculate a bound on
the number of degrees of freedom in a MIMO system [36, 49, 97, 98], as well as
bounds for antenna selection [100] or beamsteering within a channel [28]. Be-
fore the work carried out in this thesis, spherical modes and geometries had been
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meander lines have been optimized using a genetic algorithm, and the details of
their parametrization can be found in Paper I. In the top graph the directivity
of the bound is shown and how the directivity of the meander lines relate to it.
The meander lines have been optimized for maximum G/Q.
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Rx
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H

Figure 6: Schematic illustration of a MIMO channel where each of the path
ways between one input antenna on the transmitting set to an output antenna
on the receiving set make up the channel matrix between them.

considered, much in the same way as the early bounds for the Q-factor were estab-
lished [45, 54, 102]. Superdirective antennas and optimal antenna characteristics
for more arbitrary geometries have been considered as well [80,101]. However, to
construct a tighter bound, arbitrary geometries with constrained antennas must
be considered. This was carried out in Papers II, III, and IV. A brief summary
of the basics of MIMO antennas and the method used to bound them follows in
this section.

3.1 MIMO
A simple MIMO system, depicted in Fig. 6, with N transmitting antennas, M
receiving antennas, and additive noise is described by the equation [104]

y = Hx + n, (18)

where y is a M × 1 matrix containing the received signals, H is a M ×N matrix
describing the channel between the two sets of antennas, x is a N × 1 matrix
containing the transmitted signals, and n is a M × 1 matrix containing the noise
in each receiver. The maximal capacity that can be sent through this channel
is defined as when the mutual information between the received signal y and
the transmitted signal x is maximized [29,104]. This reduces to maximizing the
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differential entropy of the received signal y [26], for which we have the expression

C = max
Tr(A)=1

log2 det(1 + P

N0
HAHH), (19)

where

A = 1
2E
{
xxH} (20)

is the covariance matrix of the transmitted signals, P is the input power, and
N0 is the noise spectral power density. In a typical MIMO link the channel H
varies over time [104] and a statistical average is taken over all its variations
in (19), here, we consider the case of a fixed channel for simplicity. The capacity
calculated in (19) has the units bits/(sHz) and is referred to as the spectral
efficiency [104]. To gain the true capacity of the system, i.e., how many bits
per second can be transmitted through the link, the spectral efficiency must be
multiplied by the systems bandwidth. The spectral efficiency can alternatively
been interpreted as the capacity of a system with a frequency flat bandwidth of
1 Hz [104]. Note that all spectral power quantities are normalized to the 1 Hz
bandwidth, as in [104].

There are many different scenarios in which MIMO is utilized, sometimes the
channel is unknown to the transmitter and the maximization of (19) is difficult
to achieve, or simply carried out with equal power distribution [104]. Ideally the
channel is estimated so that power can be allocated optimally to the different
antennas. This is the case that is considered throughout this thesis as the body
of work deals with bounding the performance of MIMO antennas, and not in the
optimal power allocation for different channel scenarios. If the channel is known
to the receiver, the optimal power allocation can be found using an algorithm
known as water filling [26, 104]. This algorithm is based on performing a Singu-
lar Value Decomposition (SVD) of the channel matrix H. Each singular value
illustrates how much loss there is when transmitting through the mode associ-
ated with it, where, in the simplest case, a mode is a connection between one
antenna in the transceiver and one antenna in receiver. A large singular value is
associated with low loss, or a strong channel, and a small value with high loss,
or a weak channel. The SVD of the channel rewrites (19) as,

C = max
Tr(A)=1

log2 det(1 + P

N0
UΣVHAVΣHUH)

= max
Tr(A)=1

log2 det(1 + P

N0
ΣVHAVΣH), (21)

where U and V are unitary matrices, and Σ is matrix containing the singular
values σn of the channel matrix. The exterior unitary matrix U can be discarded
as it does not change the value of the determinant. The optimal power allocation
in A for a diagonal Σ makes the product VHAV a diagonal matrix [104], giving
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Figure 7: Schematic illustration of the water filling algorithm. The value µopt

shows the optimal “water” level for the power allocation, an , n = 1, . . . , 4 are
the power allocation levels in the used modes, and Nn , n = 1, . . . , 8 illustrates
the amount of loss in each mode.

the simpler optimization problem,

C = max∑r

n=1
an=1

r∑
n=1

log2(1 + P

N0
σ2
nan), (22)

where r is the rank of the channel matrix, and an ≥ 0 is the power allocation to
each of those paths. The optimal distribution of an can be found using the water
filling algorithm [26, 104]. This algorithm functions by calculating the optimal
filling level µopt, see Fig. 7, and allocating energy to each path way to match
that level. This level is calculated for each step of the algorithm p as [104],

µp = 1
p

(
1 + N0

P

p∑
n=1

1
σ2
n

)
, p ≤ r, (23)

where p can maximally be increased to the rank of the channel matrix r. The
allocation levels are calculated as,

an = µp −
N0

Pσ2
n

, n = 1, 2, . . . , p ≤ r. (24)

This algorithm starts by only allocating power into the first mode, if the last
value of an is non-negative, the iteration count p is increased by one and the
next mode is included. This is carried out until the algorithm tries to fill a mode
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with negative power, corresponding to mode number 5 in Fig. 7, at which point
the algorithm is terminated and the previous iterations power allocation vector
is the optimal solution.

3.2 Bounding MIMO Antennas
Constructing physical bounds for MIMO antennas is a not a trivial problem.
There are several considerations that must be taken into account.

• First, there are two sets of antennas that depend intimately on each other
to function, typically a base station and a hand-held device, see Fig. 6. In
this case the designer would most likely design one of these independently
of the other. Optimizing both simultaneously yields specific link to link
scenarios that do not model a general case.

• Second, optimizing over the input signals to the ports of the antenna, which
is traditionally done in information theoretical approaches [26, 104], does
not let us manipulate the antenna design and truly bound the performance
available from it.

• Third, the main performance quantity of MIMO antennas, capacity, is eval-
uated in the covariance of the input signals, increasing the computational
complexity of the expressions that must be evaluated.

• Finally, the antennas are constructed from several elements and ports which
make concepts such as Q-factor, which we traditionally use to quantify
antenna performance [138], hard to define.

To deal with these issues a simplified version of the original problem can be
considered. We rely on the fact that any idealization we perform will constitute
a relaxation of the original problem, therefore providing a bound to the optimal
performance.

First consider two sets of antennas, in a typical communication scenario one of
these sets is inside a device, and the other on a base station, see Fig. 6. The base
station antenna is typically electrically large and comprising of many elements.
Designing those types of antennas carry with them requirements and difficulties
relating to feeding network efficiency, line of sight blocking, etc. [18, 104, 117].
Because they are electrically large, they are not harshly limited by their physical
size. The other set of antennas, on the other hand, are limited by its size. Because
of their position within a device, they are competing with other components for
design space, often making them electrically small [17,38,135]. This carries with
it implicit restrictions on bandwidth, efficiency and directivity. Therefore it is
interesting to compute physical bounds for this set of antennas.

A general physical bound for MIMO antennas must be applicable for any
antenna. The nature of a MIMO system, that it depends on two different sets
of antennas, is contradictory to that aim. We resolve this by idealizing one of
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Figure 8: Schematic illustration of the difference between a normal channel a
and an idealized channel b. The typical channel a is made up of a receiving and
transmitting set of antennas, here depicted as general bodies ΩR and ΩT. Each
has a current densities, JR and JT, respectively, that is induced across them. In
the idealized channel b the receiver ΩR is fully enveloping the transmitter and
the current density JR is described by the spherical modes in the far-field [30].

the sets of antennas, in this way making a bound for a link between any MIMO
antenna to an idealized antenna. We choose the transmitting antenna as the
one we will bound, and idealize the receiving set, see Fig. 8. This is done by
representing the receiver as the spherical modes in the far-field [46, 47, 54, 62].
This is equivalent to having the receiver accept all energy radiated from the
transmitter, essentially making it the best possible receiver. Spectral efficiency
is measured in the diversity of the spherical modes that are radiated. A scenario
that this can be likened to is an antenna situated in a room where the walls
are covered by smart surfaces, as was suggested in [74]. This methodology has
the added benefit of greatly reducing the computational cost of the problem as
the receiver does not need to be meshed and can be evaluated analytically. In
this case no scattering phenomena or statistical models are used for the channel.
These can be included at added numerical cost but do not contribute to the
fundamental analysis of the problem [46,47].

As described in Sec. 3.1, typically, analysis and optimization of MIMO systems
are done by controlling the signals fed to the transmitting antenna. However,
this is done with the assumption that the antennas are already designed and
fixed. Essentially the methodology is to maximize bit rate through an information
theoretical approach given a set of transmitting antennas. What we are interested
in when constructing an antenna bound is the amount of performance to be gained
from efficient antenna design. Therefore, the problem must be reformulated to
include the design of the antennas as a variable. An antenna feed induces currents
on the element which radiate, in current optimization, the method outlined in
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Sec. 2.3, the currents are the optimization variables representing the antenna.
Each port n on the antenna induces a current across it,

In = Tnxn, (25)

where Tn is the matrix describing the map between the port and the current.
Each of these currents contribute to a total current across the structure. We
model our antenna and the currents that flow on it with MoM. The idealized
channel matrix is therefore the matrix that connects the MoM basis functions
on the antenna to the spherical modes in the far-field. This matrix is called S
and is a map between the MoM basis functions and the spherical vector wave ex-
pansion [119]. With that channel matrix we can formulate the maximal capacity
problem (19) when controlling the inputs to the antennas xn as,

maximizexn
log2 det

(
1 + γSTATHSH)

subject to 1
2E
{
IH
nRrIn

}
= pn, n = 1, . . . , N

In = Tnxn,

A = 1
2E
{
xnxH

n

}
,

N∑
n=1

pn = 1,

(26)

where T = [T1,T2, . . .TN ] is the collection of all the maps between the ports
and their respective currents, γ = P/N0 is the total Signal-to-Noise Ratio (SNR),
and each port is limited by its radiated power. This problem is not convex, and
therefore difficult for us to solve, however, it can be relaxed to a convex problem.
Let us begin by adding the conditions restricting the input power of the ports
together,

maximizexn
log2 det

(
1 + γSTATHSH)

subject to
N∑
n=1

1
2E
{
IH
nRrIn

}
= 1

In = Tnxn,

A = 1
2E
{
xnxH

n

}
.

(27)

This problem can be reformulated into a convex optimization problem through
semi-definite relaxation [7]. Semi-definite relaxation is well suited to optimizing
MIMO antennas as it is based on reformulating the problem in the correlation
matrix of the variables. In our case spectral efficiency is already formulated in
the covariance of the input signals (20). We need only to reformulate the problem
so that it is written in the covariance of the currents on the antenna in order to
use current optimization, as discussed in Sec. 2.3. Introduce the covariance of
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the currents P = 1
2E
{
IIH} such that,

P = 1
2E





(
I1 I2 · · · IN

)

á
IH
1

IH
2
...

IH
N

ë



= 1
2

N∑
n=1
E
{
TnxnxH

nTH
n

}
= TATH.

(28)
The covariance can be applied to the quadratic forms restricting (27) since they
are scalar quantities giving,

N∑
n=1

1
2E
{
IH
nRrIn

}
=

N∑
n=1

1
2 Tr E

{
IH
nRrIn

}
=

N∑
n=1

1
2 Tr E

{
RrInIH

n

}

= 1
2 Tr(RrTATH) = Tr(RrP), (29)

where the trace Tr(·) can be applied to scalar quantities as well, and its cyclic
property has been utilized. The problem formulated in the currents is now written
as,

maximize log2 det
(
1 + γSPSH)

subject to Tr(RrP) = 1
P � 0,
rank(P) = N,

(30)

where the restriction on the rank of P is due to the number of ports in the MIMO
antenna. This is still not a convex problem due to this finite rank restriction. The
semi-definite relaxation is done by dropping this rank constraint [7], effectively
allowing an infinite amount of feeders to be placed in order to find the optimal
solution. Finally giving a convex problem that can be solved to find an upper
bound on the optimal spectral efficiency,

maximize log2 det
(
1 + γSPSH)

subject to Tr(RrP) = 1
P � 0.

(31)

We have now formulated the optimal spectral efficiency on a form where the
two sets of antennas are the spherical modes in the far-field, for the receiver,
and the currents on the transmitting antenna, described by the MoM basis func-
tions. Both of these two sets can be arbitrarily large. If the SNR is scaled with
the number of channels that this implies, the optimal spectral efficiency is un-
bounded [30,104]. In this case we consider the SNR to be fixed and therefore the
optimal spectral efficiency converges. The analytical solution to this optimiza-
tion problem can be found by rewriting Rr = SHS [119] and utilizing the cyclic
property of the trace,

Tr(RrP) = Tr(SPSH) = Tr(Q), (32)
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where Q = SPSH. This is the trace of the same matrix as is found in the spectral
efficiency expression, therefore (31) can be written as,

maximize log2 det (1 + γQ)
subject to Tr(Q) = 1

Q � 0.
(33)

The problem (33) now has the variable Q and is not constrained by any conditions
that differentiate between the different modes. The analytical solution to such a
MIMO channel is simply equal energy distribution in every channel, giving the
optimal spectral efficiency,

log2 det (1 + γQ) = log2(1 + γ
1
N

)N ≈ γ

log 2 , N →∞ (34)

where N is the dimension of Q, and log is the natural logarithm. This presents
a fundamental bound, only dependent on SNR, to an unconstrained MIMO an-
tenna.

The bound calculated by (31) is obviously not very realistic since no con-
straints have been put on the antenna, letting the solution have unlimited losses
and infinitely narrow bandwidth, for example. This can be remedied by adding
constraints to the optimization problem to include what limits are put on differ-
ent design variables. Some of these parameters are well defined such as ohmic
losses that can be modeled by the Gram matrix of the MoM basis,

PΩ = 1
2E
{
IHRΩI

}
= Tr(RΩP), (35)

where RΩ = RsΨ, Ψ is the Gram matrix, and Rs is the surface resistance in
Ω/2. Where as other parameters, such as the Q-factor are more difficult to
define for MIMO antennas. Consider the perspective presented in (26) where
each antenna port is restricted individually. Each port has a well defined Q-
factor when considered individually, these can serve as a bandwidth restriction
for each port,

1
2IH
nXeIn = Qωpn, n = 1, . . . , N

1
2IH
nXmIn = Qωpn, n = 1, . . . , N,

(36)

where pm is the power allocation to each port. These conditions can be relaxed
in the same manner as before by adding them together and rewriting them in
the covariance of the total current density,

Tr(XeP) = Qω

Tr(XmP) = Qω.
(37)

This relaxation guarantees that the bound that is created always encompasses the
original problem restricted by the individual port Q-factors. Although the direct
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connection between bandwidth and the Q-factor of the total current density is
not determined, this means that the bandwidth of the system is still implicitly
restricted. The equality signs in (36) enforce resonance for each of the ports,
in (37) this means resonance for the total current. However, in MIMO antennas
such a concept is not necessarily desirable and can be dropped by adding the two
conditions together or replacing the equality with an inequality.

These constraints can now be added to (31) to create a bound for a specific
set of design criteria,

maximize log2 det
(
1 + γSPSH)

subject to Tr((Xe + Xm)P) ≤ 2Qω
Tr(XP) = 0
Tr(RΩP) ≤ δ
Tr(RrP) = 1
P � 0,

(38)

where δ = PΩ/Pr is the dissipation factor [66]. Additional constraints can be
added to this problem to investigate other quantities. The problem (38) is non-
trivial because it is a semi-definite programming problem, since such problems
are formulated in the correlation matrix they contain the square of the number
of unknowns typically considered. To put this in perspective to the quadratic
forms that are usually optimized in current optimization, see Sec. 2.3, take a typ-
ical small antenna discretized in MoM. If the antenna is meshed rectangularly
with 40 × 40 elements its total number of unknowns are n ≈ 3200, a manage-
able size for quadratic forms. However, if such an antenna is considered in (38)
the number of unknowns is close to n2/2 ≈ 5 · 106. In Paper II this issue is
addressed by performing a model order reduction in the form of a basis change.
The currents on the antenna are expanded in different sets of modes, such as
characteristic modes [16], energy modes [59], and radiation modes [110]. Only
the most dominant modes are included in the optimization, constituting a model
order reduction. This method enables the problem to be solved by readily avail-
able solvers, such as CVX, and can be input on the form of (38). However,
for convergence the required number of included spherical modes and current
modes still make the problem computationally demanding and time consuming.
This makes it difficult to run electrically larger problems, or investigating greater
solution spaces such as embedded antennas.

In Fig. 9 problem (38) has been solved in CVX for an `× `/2 loss-less plate,
see Fig. 4. The size of the plate and the restricting Q-factor has been swept
to create a Pareto tradeoff curve between the two. It is clear that a significant
amount of performance is lost in comparison to the ideal spectral efficiency (34).
We can also see that the solution is not realizable below the lower bound for Q
for the plate. The shape of that curve is followed for the spectral efficiency as
the size of the plate is increased.
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Figure 9: The Pareto tradeoff curve between Q and size in terms of spectral
efficiency loss in comparison with the ideal for an aspect ratio 2 : 1 plate. The
SNR has been set to γ = 50. The lower bound for Q is drawn separately, and
solutions below it are unfeasible.

3.3 Modal Analysis of MIMO Antennas
A method to handle larger, more computationally demanding problems, such
as (38), is to develop tailored solution methods or codes. This was done in Pa-
pers III and IV by investigating the problem when it is only restricted by one
condition other than the power normalization. This method is predicated on the
matrix in the condition being positive semi-definite, to allow certain decomposi-
tions to be used. The condition (35) has a positive semi-definite matrix defining
it, since the ohmic losses are modeled by the Gram matrix. The Q-factor restric-
tion is more difficult because (Xe + Xm) are, in general, indefinite. However, for
small electrical sizes, ` < λ/2, they are positive semi-definite [59].

The bound is constructed by formulating a dual problem to the initial opti-
mization problem. A dual problem calculates a bound on the value of the original
problem, the difference between the two values is known as the duality gap [7]. In
this case the duality gap was verified to be zero by solving the original problem in
CVX, where possible. The dual was constructed by taking a linear combination
between the two conditions restricting the optimization and using the fact that a
problem with less constraints will always have a greater solution. This problem is
then be solved by utilizing the good properties of the matrices in the conditions
to calculate the SVD of the optimal channel. The optimal spectral efficiency is
found by water filling [104].

In this solution the singular values of the optimal channel are constructed
based on the ratio of the linear combination of the two conditions, which is swept
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Figure 10: Radiation mode strength of different shapes normalized to the first
spherical mode. All shapes have size ka = 1.

in order to find the optimal channel. The important factor in the expression
for the singular values is the eigenvalues of the generalized eigenvalue problem
between the component matrices in the condition. If the ohmic losses in the
antenna was chosen, the eigenvalues that affect the solution are calculated from,

RrIn = %nRΩIn, (39)

where %n are the eigenvalues representing the strength of the modes, and In are
the mode currents. The modes that this eigenvalue problem produce are known
as radiation modes [110]. The greater number of strong radiation modes that a
structure has, the larger diversity it will be able to induce in its optimal channel,
for a problem restricted by the ohmic losses, and therefore higher optimal spectral
efficiency. This analysis is powerful for antenna design as the matrices in (39) are
mainly dependent on the geometry of the structure. It is, through this expression,
possible to a priori compare different structures or geometries viability as MIMO
antennas by studying their radiation mode strengths. Equivalently, if we consider
an optimization restricted by other parameters, the matrices involved create a
different set of modes that predict structural viability based on those metrics, e.g.,
energy modes [59] in the case of the stored energy condition with the matrices
(Xe+Xm), see Paper IV. This type of analysis is similar to the degrees of freedom
analysis that has previously been investigated for MIMO systems [36,49,97,98].

In Fig. 10 the radiation mode strength of different shapes has been plotted
normalized to the first radiation mode of the sphere. Here, we can see how
much worse different shapes are at inducing the radiation modes compared to the
sphere. All shapes are contained within the sphere and have size ka = 1. The
cylinder, for example, a popular antenna design for omnidirectional arrays [77,
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Figure 11: Sub-division of the plate in Fig. 4 into an antenna region and ground
region, as illustrated in Fig. 1b. Where the basis functions representing the
currents in the antenna region can be controlled [59].

82,90], has similar mode strengths for the first three modes. Whereas the planar
shapes, such as a plate or disc, have much weaker modes. Notice also the mode
grouping that occurs, where radiation modes for the sphere and cylinder come
in groups of three, whereas the only grouping that occurs for the planar shapes
are the first two which correspond to the dipole modes.

The geometry that affects the strength of the radiation modes in (39) is not
restricted to different shapes. Embedded antennas fed by sub-regions can be ana-
lyzed using the same metric. Reformulating the optimization problem in only the
controlled currents of the sub-region, can be done by the Schur compliment [139],
see Fig. 11. Divide the MoM matrices into block matrices relating to antenna
and ground regions [59]. Consider the MoM matrix equation ZI = V,Å

Zaa Zag
Zga Zgg

ãÅ
Ia
Ig

ã
=
Å

Va
0

ã
, (40)

where subscript a denotes the controlled or antenna region, and subscript g de-
notes the ground region. Zaa and Zgg connects the antenna and ground regions
to themselves, and Zag and Zga connect between the antenna and ground regions.
The system is only fed in the controlled region. It is possible to eliminate the
ground currents from (40) by rewriting the second equation as,

Ig = −Z−1
gg ZgaIa = ZtIa. (41)

This new matrix Zt is then used to rewrite all MoM matrices on a form that only
acts on the antenna currents. Take for example the reactance matrix X,

IaXIa = IH
a XaaIa + IH

a XagIg + IH
g XgaIa + IH

g XggIg

= IH
a (Xaa + 2 Re{XagZt}+ ZH

t XggZt)Ia = IH
a XpIa. (42)

By doing this (38) can be rewritten in terms of a controlled sub-region of a larger
shape, enabling the investigation of embedded antennas. This is investigated in
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Paper III for MIMO antennas restricted by radiation efficiency and in Paper IV
for MIMO antennas with bandwidth conditions.

In principal (38) is not limited to electrically small antennas once any con-
ditions related to Q or stored energy is discarded. This enables the investiga-
tion of electrically large antennas, however, computational issues do arise. A
direct MoM solver, as has been used throughout this thesis, is not well suited
to simulate electrically large structures due to the amount of unknowns. This
quickly makes assembling, and handling the matrices describing the antenna
computationally unfeasible. However, this is mainly an issue for dense matrices,
such as the impedance matrix Z. The gram matrix describing the ohmic losses
RΩ = RsΨ, for example, is a sparse matrix and can be stored efficiently for very
large structures. The radiation matrix Rr can similarly also be constructed in a
computationally efficient way. By decomposing it in the matrix connecting the
MoM basis functions to the spherical modes S, it can be written as a product
between low rank matrices, Rr = SHS, and evaluated accurately for much less
computational cost compared to the classical construction [119]. This enables
the investigation of the problem with restricted losses for large electrical sizes.

An interesting metric to study when investigating size is the number of degrees
of freedom available for different geometries. In principle this number serves as
an estimate of how many different modes can be induced on the object. We
define this as the number of viable modes with an eigenvalue greater than one.
This can be normalized to the number of available modes per unit area on the
object [74,98]. Which is defined for a sphere as [67]

2L(L+ 2) ≈ 2ka(ka+ 2) ≈ 2(ka)2 , ka→∞. (43)

Which can be put in relation to the area of an object by rewriting ka in the area
of the sphere A,

2(ka)2 = k2A

2π = 2πA
λ2 . (44)

This gives us an analytical measure of the number of degrees of freedom a shape
has. Normalizing the number of effective modes for a shape with this number
gives a measure of how many effective modes are being induced per area. This
gives a metric to compare different shapes to see if they effectively utilize their
surface area, such an analysis was carried out in Paper III.

4 Stored Electromagnetic Energy
Stored electromagnetic energy is interesting to define due to its appearance in
the calculation of the Q-factor (1), and therefore its role in estimating bandwidth
for antennas [75]. However, it is, in general, a difficult quantity to define due to
the vague separation between stored and radiating fields. The stored energy
commonly refers to the energy of the reactive fields surrounding the antenna,
the energy that is neither radiated nor reflected back by the system. In the
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circuit analog this is the energy stored by reactive circuit elements within the
system [134].

There exists many different ways of evaluating stored energy, all of them with
benefits and drawbacks. One general theme is the dependence on size. Most
methods of calculating stored energy agree for single resonance, electrically small
antennas. However, for electrically large antennas or antennas in the presence of
complex materials there are greater differences. In Paper V the existing methods
are divided into three broad categories:

• Stored energy evaluated from field quantities

• Stored energy evaluated from currents

• Stored energy calculated from a system perspective

Each of which are briefly touched upon here. There are different metrics on which
to judge these methods, e.g., how well they function as a physical definition of
an energy quantity or how numerically efficient their evaluation is. However,
as stated in Sec. 1 the motivation of this thesis is to further develop antenna
optimization. One of the main factors that are needed for these quantities to
be useful in optimization is fast and efficient evaluation. Therefore, expressions
that fulfill these requirements have been the focus of the work conducted in this
thesis.

4.1 Stored Energy Evaluated from Field Quanti-
ties

These methods are based around calculating the total stored energy in the field
and subtracting away the energy that is radiated. The energy density of a field
is evaluated as its absolute value squared [32, 76, 88]. The most common way
to remove the radiated energy is to subtract the far-field amplitude F , i.e., the
energy that is radiated to infinity [31,41,42,52,89,108,138],

Wstored = 1
4

∫
R3
ε0|E(r)|2 + µ0|H(r)|2 − 2ε0

|F (r̂)|2

|r|2
dV. (45)

Other methods calculating the stored energy through field quantities are also
based on the idea of subtracting the energy which travels away from the antenna,
utilizing the Poynting vector instead of the far-field amplitude [20, 22, 24, 25].
For the evaluation of (45) we must calculate the field in all space making the
numerical evaluation of this expression cumbersome. Additionally the far-field
amplitude is quiescent in general dispersive media, making these methods mostly
applicable for antennas in free space.
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4.2 Stored Energy Evaluated from Currents
Evaluating stored energy from the antenna current density synergizes well with
simulation methods such as MoM and are used extensively in current optimiza-
tion [12, 55, 59, 78]. Here, the antenna is typically represented by an equivalent
current distribution from which stored energy can be calculated. For Perfect Elec-
tric Conductor (PEC) antennas in free space many of these methods condense to
the same expression, calculating stored energy from the frequency derivative of
the reactance matrix,

Wstored = 1
4IH ∂X

∂ω
I. (46)

This expression was first proposed by Harrington and Mautz [72]. It is analogous
to the stored energy of a lumped circuit, if the MoM matrices are replaced with
circuit impedance matrices [115]. Other current based methods are derived from
representing the subtraction of the far-field in terms of the currents instead [125],
or as in Paper VI representing the antenna as a dynamic system. Both of these
and other [40] methods that converge to (46) for the simple case have the common
problem that X becomes indefinite for electrically large structures and therefore
cannot calculate stored energy for them. Stored energy has also been evaluated
using time domain methods, where the separation between radiated and stored
fields can be made clear [14].

4.3 Stored Energy Calculated from a System Per-
spective

Methods that fall under this categorization view the antenna as an input-output
relationship which can be represented by something for which we can calculate
stored energy. Most poignant of these being circuit synthesis, where the antenna
is represented by a circuit that produces the same input impedance response as
the antenna. The stored energy can be estimated by calculating the energy stored
in the equivalent circuit elements. These circuits can be synthesized by different
methods, e.g., Brune synthesis [8, 134]. Other examples of this methodology is
the Chu bound where the wave impedances of spherical modes is represented
by lumped circuit elements [20, 120, 122]. Here, it is important that the circuit
synthesized is a minimal representation of the input impedance. Because it is
possible to synthesize circuits with hidden reactive elements, such as the Zöbel
circuit, see Paper V, that do not affect the input impedance response of the
system, the stored energy estimation can vary wildly for inaccurately synthesized
circuits.

4.4 Stored Energy in Complex Media
Most ways of calculating stored energy have been constructed for antennas in free
space. However, many antennas operate close to, or insider of complex media.
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Figure 12: A lumped inductor and resistor circuit.

Application areas such as body area networks, mobile phones, in-body anten-
nas, submarines or plasmonics [2, 95, 131], all need to consider the media their
antennas are operating in the vicinity of during the design process. Due to the
design process of such antennas often being complicated [85, 95, 113, 114], devel-
oping quick and efficient optimization is important. To facilitate that process a
rigorous method for calculating stored energy is needed. Methods designed for
free space can serve as relatively good indicators for stored energy in complex
media. However, they often struggle with particularly difficult cases, such as dis-
persion or media with resonances close to the resonance frequency of the antenna.
In Paper VI a method for calculating stored energy in dispersive and inhomo-
geneous media is presented. The method is based on representing the antenna
as a dynamic system through a state-space method and using the methodology
presented in [132, 133] to calculate the energy stored in such a dynamic system.
The strength of this method is how it is generalized from free space to complex
media. The same procedure is followed as if it is derived for free space, extending
the matrices describing the system to encompas the complex behaviour of the
materials involved. Here follows a brief derivation of the state-space model for
stored energy for an antenna in free space.

4.5 State-Space model for Stored Energy
To illustrate the state-space model lets first consider a much simpler dynamic
system than an antenna. Consider the lumped circuit in Fig. 12. The power
in this system can be computed by multiplying the voltage v and the current i
together,

p = vi = iL
∂i

∂t
+Ri2 = ∂

∂t

Å
Li2

2

ã
+Ri2, (47)

where we have used the well known constitutive relations for an inductor vL =
L ∂i
∂t
, and a resistance vR = Ri. The energy of the system can be calculated by
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integrating the power over time,

W (τ) =
∫ τ

−∞
p(t) dt =

∫ τ

−∞
L
∂i

∂t
i+Ri2 dt = 1

2Li
2(τ) +

∫ τ

−∞
Ri2 dt, (48)

where we have used partial integration and the common assumption of quiescent
currents at early times i(−∞) = 0. The first term in (48) is recognizable as
the energy stored in an inductor and the second term is the dissipated energy
in the resistance. For a time harmonic signal, i(t) = Re{I0ejωt} and v(t) =
Re{V0ejωt}, the stored magnetic energy Wm in the inductor can therefore be
calculated as [134]

Wm = 1
T

∫ T

0

1
2Li

2(t) dt = 1
4L|I0|

2, (49)

where T is the time period. The time-average stored energy in a capacitor is
similarly

We = 1
4C|V0|2 = 1

4ω2C
|I0|2. (50)

This is indicative of how to calculate the stored energy of a general dynamic
system. In (47) it is the term with a partial time derivative which describes the
storage function of the system.

Suppose we have a circuit network characterized by its input impedance Zin.
The input impedance can be separated into a resistive and a reactive part. The
resistive part relates to the energy dissipation and the reactive part relates to
energy stored. For a lumped circuit network we have the relation [134],

Zin = Rin + jXin = 2Pd + 4jω(Wm −We)
|Iin|2

, (51)

where Rin and Xin are the input resistance and reactance, respectively, Pd is
the dissipated power, Wm and We are the stored magnetic and electric energies,
respectively, and Iin is the input current. Here, the reactance of the system
is proportional to the difference between the energy stored magnetically, in the
inductors, and electrically, in the capacitors. For a more general system one can
relate the currents I and the voltages V = ZI through the impedance matrix
Z using Kirchoff’s laws. The impedance matrix can be decomposed into its
resistance R, inductance L, and capacitance C = C−1

i matrices [115],

Z = R + jX = R + jωL + 1
jωCi = R + sL + 1

s
Ci, (52)

where s = jω is the Laplace parameter. The impedance matrix (52) is a second
order state-space model for the input impedance Zin = Vin/Iin with the input
V = BVin and output Iin = BTI, where B defines the port position of the circuit.
However, to define the stored energy of a system it is convenient to use the state-
space model of the first order [133]. This can be done by the introduction of the
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voltage state U = 1
sCiI,

s

Å
L 0
0 C

ãÅ
I
U

ã
+
Å

R 1
−1 0

ãÅ
I
U

ã
=
Å
sL + R 1
−1 sC

ãÅ
I
U

ã
. (53)

Because we are evaluating time harmonic frequency domain quantities, multipli-
cation by the frequency variable s is synonymous with a time-derivative in the
time domain. This lets us identify the first matrix in (53) as the stored energy
term analogous to that of the inductor in (47). Hence, the time-average stored
energy of the system is obtained by the quadratic form

W =
Å

I
U

ãT ÅL 0
0 C

ãÅ
I
U

ã
= 1

4IHLI + 1
4ω2 IHCiI, (54)

where the voltage state U has been substituted back to gain a quadratic form in
the current. Here, we see similarities with the expressions (49) and (50). Stored
energy in many other linear systems can be determined analogously [133].

Now we can consider a simple PEC antenna in free space modeled by MoM.
The impedance equation (8), describes the system and is written as,

ZI =
Å
sµ0L + 1

sε0
Ci

ã
I = sµ0LI + U = V, (55)

where L and Ci are now MoM matrices, and the voltage state U = 1
sε0

CiI now
includes the permittivity. This system is only slightly different from that of the
lumped circuit in (52), and stored energy can be calculated for it in the same
way as in (54). However, the L and Ci matrices have frequency dependence that
cannot be neglected. It is possible to approximate it as a linear dependence which
is estimated by differentiating the matrices with regards to the laplace variable.
This gives the energy expression,

W = Re
4

Å
I
U

ãH Å
µ0(L + jωL′) 0

0 ε0(C + jωC′)

ãÅ
I
U

ã
= Re

4
(
µ0IH(L + jωL′)I + ε0UH(C + jωC′)U

)

' Re
4 IH(µ0(L + jωL′) + 1

ω2ε0
(Ci − jωC′i)

)
I = 1

4IH ∂X
∂ω

I, (56)

where C′ = −CC′iC is used. This expression can be extended to complex media
by the inclusion of more advanced material models in ε and µ. These can be
expressed in terms of Lorentz resonances on the form [76,124],

ε(s) = ε∞ + α2

β2 + γs+ δs2 (57)

where ε∞ is the instantaneous response, and α, β, γ, δ are the Lorentz parameters
describing the materials frequency dependence. By changing the parameters
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Figure 13: A meanderline antenna from [4] of size `× 0.56` simulated in homo-
geneous Debye medium with relative permittivity depicted in the inset. Three
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in
[8], and from the

differentiation of the impedance matrix QZ′
in

[61, 138].

in (57) the model can be reduced to a variety of different material models, e.g.,
the Debye (δ = 0) or Drude (β = 0) models. To handle these new frequency
dependent terms new states, similar to the voltage state U, are introduced and
their relation to each other and the previous states extend the matrices in (56).
This procedure is detailed in Paper VI. In Fig. 13 a meander line embedded in
Debye media is depicted. Here we can see that the state-space model agrees well
with the Q-factor calculated from circuit synthesis [8] and differentiation of the
input impedance [138].

5 Conclusions
In this thesis a new and novel method for calculating physical bounds for MIMO
antennas is presented. These bounds calculate the optimal performance for an
antenna in an ideal channel, therefore providing a bound to the performance
of implemented MIMO antennas. While these bounds are idealized and might
be difficult to verify experimentally they do mirror the operating scenario of
electrically small MIMO antennas. The radiation pattern of such antennas are,
in general, relatively omnidirectional. Using the ideal spherical channel to bound
their performance is therefore relatively close to their operating scenario since
they rely on radiating in any direction to excite multipath propagation. It is also
shown that this method of constructing physical bounds for MIMO antennas
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gives insight into what modes are efficient for inducing optimal performance.
Depending on what conditions are put on the optimization problem, different
modes relating to those conditions induce optimal performance for the antenna.
This has the potential to provide insight into how to effectively design MIMO
antennas. The optimization problem presented is not limited to small electrical
sizes. For larger electrical sizes it is shown how the effective modes could be
used to investigate the number of degrees of freedom for a device. In this way
predicting if a geometry was an effective use of volume and surface area.

The second part of this thesis dealt with the theoretical problem of stored
electromagnetic energy. First providing an overview and categorization of pre-
viously existing methods, and then introducing a new method for calculating
stored energy in complex media. This method has the possibility to calculate
stored energy for an antenna in any background, as long as the antenna itself is
electrically small. This method is stable for many difficult to handle scenarios,
such as resonant dispersive media, or piecewise homogeneous media.

6 Future Work
The work carried out in this thesis is a first step to providing useful physical
bounds for MIMO antennas and antennas in complex media. The method for
calculating physical bounds for MIMO antennas can be extended to include chan-
nel characteristics and more realistic scenarios. It is also an interesting prospect
to run the optimization problem on real antenna structures and large arrays to
utilize the modal analysis that is derived from it. This connects back to inves-
tigating how these bounds compare to designed antenna performance, both in
simulation and measurement.

For complex media, developing MoM code that can efficiently simulate user
scenarios involving antennas in complex media is essential to calculating physical
bounds using the stored energy expressions presented in this thesis. With such
a code it would be interesting to formulate and investigate a procedure for cal-
culating physical bounds for implantable antennas. This could prove very useful
for performing automatic optimization of in-body and on-body antennas.
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Abstract
Considerable time is often spent optimizing antennas to meet specific

design metrics. Rarely, however, are the resulting antenna designs com-
pared to rigorous physical bounds on those metrics. Here we study the
performance of optimized planar meander line antennas with respect to
such bounds. Results show that these simple structures meet the lower
bound on radiation Q-factor (maximizing single resonance fractional band-
width), but are far from reaching the associated physical bounds on ef-
ficiency. The relative performance of other canonical antenna designs is
compared in similar ways, and the quantitative results are connected to in-
tuitions from small antenna design, physical bounds, and matching network
design.

1 Introduction
Antenna parameters such as gain, Q-factor, and efficiency are limited by the
geometry made available for a given design. Given bounds on these parameters
under certain constraints, a designer can rapidly assess the feasibility of design
requirements. This feasibility assumes the existence of an “optimal antenna"
design which approaches the bounds on certain specified parameters. Synthesis
of an optimal antenna is not a trivial task, and it remains to be demonstrated how
an antenna designed to be optimal in one parameter (e.g., radiation Q-factor)
performs relative to bounds on other parameters (e.g., efficiency). The goal of
this paper is to discuss the synthesis and analysis of optimal antennas starting
from classical antenna topologies.

Many strategies have been employed to optimize antennas. Heuristic op-
timization methods such as genetic algorithms [30, 50] and particle swarm op-
timization have the advantage of generating design geometries outside of the
antenna designer’s usual catalog [13, 42, 49]. Such techniques have been used
to design optimal antennas with radiation Q-factors very close to the physical
bounds [10], though the resulting designs are computationally expensive to pro-
duce and offer only rough insight into guidelines for designing optimal antennas
in volumes with arbitrary shapes and electrical size. Conversely, canonical an-
tenna designs were shown [3,23] to reach the lower bound on radiation Q-factor,
but the question remains whether these designs represent optimal solutions over
arbitrary electrical sizes and whether they are optimal in other parameters, e.g.,
radiation efficiency and input impedance. The cost of matching an optimal an-
tenna design to arbitrary impedances is also unclear, regardless if matching is
performed on the antenna itself or through external networks.

In this paper we study whether there exists a simple “recipe" for an opti-
mal planar antenna (Throughout this paper, the term planar means to lie in a
plane.) with respect to radiation Q-factor and radiation efficiency. In doing so,
we ask whether, when prescribed with some form factor and electrical size, a
simple design can be readily employed to achieve an antenna whose properties
are sufficiently close to their bounds. The strategy adopted here is to optimize
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parameterizations of canonical antenna geometries known for good behavior in
certain parameters. The examples studied here give quantifiable results to this
end, i.e., how to design certain kinds of optimal antennas.

Along the way, we address the crossover of optimality of antennas across dif-
ferent performance parameters, e.g., do minimum radiation Q-factor antennas
have inherently high radiation efficiency? Also discussed are the impacts of cer-
tain constraints, particularly those related to an antenna’s input impedance, on
optimized parameters.

We stress out that this work differs significantly from other works on antenna
optimization through parametric, heuristic, or metaheuristic means which typ-
ically involves the iterative evaluation and modification of designs until a local
optimum or design goal is reached. Here, instead, we focus on designing antenna
performance with respect to physical bounds, which provide an absolute measure
in judging the quality of the synthesized design.

2 Minimum Radiation Q-Factor of Pla-
nar TM Antennas

We begin by studying the synthesis of electrically small dipole-like (TM) antennas
with minimal radiation Q-factor Qrad (see Box 1 and Box 2). This leads to
increased impedance bandwidth, however, the lower bound on radiation Q-factor
increases rapidly as an antenna design region becomes smaller (see Box 2). Thus,
obtaining low Q-factor Qrad is a key objective and challenge in the design of
electrically small antennas.

2.1 Synthesis of Meander Line Antennas
Drawing from the prevalence of meander line antennas in applications requir-
ing electrically small planar antennas [16, 63], as well as previous work studying
their optimality in radiation Q-factor [3], we focus on determining whether me-
ander lines present a consistent, simple solution, to obtaining minimum radiation
Q-factor at arbitrary frequencies within rectangular design regions. Here, and
throughout Section 3, we specify a rectangular design region of fixed aspect ratio
(L/W = 2). The impact of varying aspect ratios is demonstrated and discussed
in Section 2.2.

From the many possible meander line shapes (for example, rectangular, tri-
angular, sinusoidal [16]) we have chosen the simple parametrization from Fig. 1.
Thin wire versions of such antennas were previously shown to reach the lower
bound on radiation Q-factor Qrad for their corresponding rectangular design re-
gions with electrical sizes near ka = 0.3 [3]. Here, we use the parameterization
in Fig. 1 to optimize the meander line antenna for resonance by requiring the
magnitude of the normalized input reactance Xin/Rin to be smaller than a speci-
fied tolerance, |Xin/Rin| < 10−3. This procedure is repeated at many frequencies
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Box 1. Q-Factor

The Q-factor of an antenna system tuned to resonance (equality of mean mag-
netic and mean electric energy) is defined as [31]

Q = 2ωWsto

Prad + Pdiss
, (1)

whereWsto represents the cycle mean stored energy, while Prad and Pdiss denote
cycle mean radiated and dissipated powers, respectively. In single-resonance
systems, lower Q-factor implies larger fractional impedance bandwidth B by an
inverse relationship [9, 14,67]

B ∼ Q−1. (2)
Evaluated at a single frequency via (1), Q-factor thus becomes
a convenient measure of the frequency selectivity of a sys-
tem [7, 9, 11, 12, 14, 17, 19, 20, 25, 29, 52, 62, 67]. Calculation of a system’s
Q-factor can be carried out by a variety of approaches, from impedance-
based techniques [67] to methods based on the evaluation of stored energy
directly [10, 62]. All of these approaches generally agree for electrically small,
narrow-band antennas, see [53] for complete discussion and bibliography.

The radiation Q-factor Qrad, in which only radiated power is considered, can
be expressed in terms of Q in (1) and radiation efficiency η (see Box 3, (5)) as

Qrad = Q/η ∼ (Bη)−1. (3)

(electrical sizes, values of ka) to obtain a set of antenna designs, each resonant
at a specific frequency. The Q-factors Qrad of the resulting designs were then
calculated in AToM [1] and compared to the bounds discussed in Box 2. The
comparison is shown in Fig. 2. Note that the value of Q-factor Qrad is just
weakly dependent on dissipation factor (see Box 3) provided that dissipation is
not exceedingly high.

In order to verify the computed data in Fig. 2, an antenna design sample
with ka = 0.42 was scaled to 1.4GHz and fabricated on a 25µm-thick Polyimide
film with 17µm-thick copper foil bonded by an 25µm-thick acrylic adhesive (εr =
4) . Thanks to the very thin profile of the substrate as compared to wavelength,
the effect of dielectric can be neglected for a radiation Q-factor evaluation. The
input impedance of the prototype was measured using a differential technique [48]
and has been used to estimate the Q-factor via the QZ formula [67]. Radiation
efficiency of the antenna was measured via a multiport near-field method [51] and
was used to evaluate radiation Q-factor, and its confidence interval of width equal
to two times the standard deviation, see triangular marker and corresponding
error bar in Fig. 2.

Figure 2 illustrates that a simple parametrization, such as the one from Fig. 1,
is able to closely approach the radiation Q-factor bound limited to TM radia-
tion Qlb,TM

rad (see Box 2) in the entire frequency range of electrically small an-
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Figure 1: Panel (a) shows a parameterization of a meander line antenna used in
this work. The antenna is fed via delta gap source along a horizontal line cutting
the center of the meander line. The feeding region contains a taper between the
feeding strip of width d and the meander line of width w. The angle of the taper’s
cut is 45◦. Throughout the paper d = min (w,L/40) in order to keep the feeding
region realistically narrow. Panel (b) shows a meander line antenna design “M1"
from [3] within the parametrization used in this paper.
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Figure 2: Radiation Q-factors of self-resonant meander line antennas simu-
lated as made of PEC (markers) and the lower bound on radiation Q-factor (see
Box 1) corresponding to a rectangular region bounding the meander line. All
meander lines are designed using the parameterization in Fig. 1 with w/s = 1
and L/W = 2. The defining parameters of all meandered dipoles are depicted in
Fig. 3. A triangular marker with a corresponding error bar represents measured
radiation Q-factor of selected meander line design.
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Box 2. Lower Bounds on Radiation Q-Factor

The approximate inverse proportionality between the Q-factor and the
fractional bandwidth (see Box 1) induced considerable effort in lowering
the Q-factor for spherical [9, 12, 38, 40, 58, 63] and arbitrarily shaped anten-
nas [8, 22, 26, 56, 59, 64, 66]. The sole focus on the radiation Q-factor Qrad
in these works avoids the undesired possibility of reducing Q-factor Q by
degrading radiation efficiency.

For electrically small antennas, the lower bound on the Qrad, here denoted
as Qlb

rad, is a combination of electric and magnetic dipoles [5, 8, 9, 34, 40]. In
general, it is challenging to excite such a current with a single feeding position
see [32, Sec. IV] for related discussion. A constrained minimization which is
more representative for single port antennas is to restrict the radiation to TM
(electric dipole) modes, yielding the lower bound Qlb,TM

rad , see, e.g., [24].
The importance of Q-factor bounds arises from two key properties. First, the
Q-factor bound represents the physical lower bound among all possible currents
contained within the considered region. It thus presents an absolute measure
against which to compare the performance of different antenna designs. Practi-
cal feasibility of designing antennas which reach various bounds remains an open
question. Second, both Qlb

rad and Qlb,TM
rad scale approximately as (ka)−3 for elec-

trically small antennas (ka < 1), cf., [35]. Here k is the free-space wavenumber
and a is the radius of the smallest circumscribing sphere. This (ka)−3 scaling
is the root cause of the limited bandwidth in electrically small antennas. The
associated geometry coefficients for certain shapes are shown in Table 1, where
η0 denotes free-space impedance and Rs denotes surface resistance.

tennas. From this, it is possible to conclude that a complex design (e.g., the
parameterizations found in [44]) is not needed to reach the lower bound.

The absolute lower bound for radiation Q-factor Qlb
rad is unreachable by this

meander line antenna since its planar geometry and single feed scenario does
not allow for an efficient excitation of combined TE and TM radiation. This
contrasts to three-dimensional (e.g., spherical) geometries [5,58], where the dual
mode behavior can be realized by a single feed network.

Parameters of the self-resonant designs from Fig. 2 are shown in Fig. 3. De-
sign curves are fitted to the optimized parameters using a polynomial fit with
good agreement. While some of the curves from Fig. 3 can be found in [16] for
several parametrization, here all the designing curves are related back to Fig. 2
in which the Q-factor Qrad is minimized. The presented data series can therefore
be used for designing meandered dipoles approaching lower bounds on radiation
Q-factor for TM antennas. It should, however, be noted that design curves from
Fig. 3 depends on the used parametrization and are valid only for L/W = 2
and w/s ≈ 1.
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Table 1: Lower bounds on radiation Q-factors and efficiency in the limit of
electrical size ka → 0 for a sphere, a cylindrical tube, a rectangle, a thin strip
dipole and a square loop.

(ka)3Qlb
rad (ka)3Qlb,TM

rad (ka)4η0/Rsδ

a 1 3
2 3

`

`/2π
4.5 4.6 59

`
`/2 4.3 5.2 42

`

`/50
16 16 3400

`

0.9`
5.3 7.4 130

2.2 Varying Aspect Ratios
Meander line antennas, introduced in the previous section, are now studied
for various L/W and w/s aspect ratios and compared against the fundamen-
tal bounds calculated for each form factor.

In all cases, the value of radiation Q-factor Qrad is normalized with respect
to the minimal TM radiation Q-factor. Generally, Fig. 4 shows that the minimal
values can closely be approached for various L/W aspect ratios. Slightly better
performance is observed for higher L/W ratios, however, at the cost of higher
absolute bound on radiation Q-factor see top panel of Fig. 4.

With respect to the varying w/s ratio, slightly better performance is observed
for higher values, i.e., wider metallic strips. The differences become negligible for
small values of ka, see Fig. 5. Notice, however, that this behavior is substantially
changed when ohmic losses are introduced, mainly since the spatial proximity of
out-of-phased currents degrades the radiation and enhance the ohmic losses [4].
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Figure 3: Design curves for the meander line antennas from Fig. 1. The panels
show consecutively total number of meanders N , total length of the strip Leff
normalized to free-space wavelength, and input resistance Rin normalized to free-
space impedance. In all cases w/s = 1, L/W = 2 and PEC are considered. One
meander line (N = 1) consists of two horizontal strips and vertical connections,
i.e., meander line antennas in Fig. 1 have 3 and 20 meanders, respectively.

2.3 The Impact of Impedance Matching on Q-
Factor Qrad

The designs obtained above are all self resonant (Xin ≈ 0), but no constraint
was placed on the value of the input resistance Rin. In most practical cases,
the objective antenna input resistance is not driven by any antenna consider-
ation but is set by the radio frequency electronic equipment to be interfaced
with a particular antenna. Transmission lines and active receivers based on Low
Noise Amplifiers (LNA) often require matching to 50 Ω. However, where devices
with complex impedances are used, antenna resonance may not be ideal for con-
jugate matching and maximum power transfer. For example, a typical Power
Amplifier (PA) output impedance is complex [65], with an input resistance lower
than 50 Ω and an inductive (positive) reactive component. Similarly, passive
RFID receivers based on Schottky diode rectifiers typically exhibit input resis-
tances lower than 50 Ω and strong capacitive (negative) reactance [39]. Examples
of nominal impedances Z0 for these systems are listed in Table 2.
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Figure 4: Radiation Q-factor performance of PEC self-resonant meandered
dipoles from Fig. 2 for various L/W aspect ratios. The radiation Q-factor is
normalized to fundamental bound for a rectangular region which is shown in the
top panel as a function of the aspect ratio. The minimum of the fundamental
bound is found around ratio L/W ≈ 5/3. Generally, the higher the L/W ratio,
the closer the meander lines are to the bound, however, at the cost of increasing
absolute value of radiation Q-factor.

Table 2: Three impedances of practical significance for antenna system design.
System Input impedance Z0

Power amplifier (PA) 15 + j50 Ω
RFID chip (passive RX) 20− j200 Ω

Low-noise amplifier (LNA) 50 Ω
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Figure 5: The same study as in Fig. 4 done for various ratios of meander
line width w to spacing s.

Antennas may be designed to have input impedances which conjugate match
a desired load. However, any of the designs shown in Fig. 2 can be conjugate
matched to an arbitrary complex impedance Z0 through an L-network consisting
of two reactive components [47]. In many instances, the stored energies within
these reactances will raise the radiation Q-factor of the system. To assess the
cost of this form of simple matching, we select the design in Fig. 2 corresponding
to self resonance at ka = 0.479. A set of lossless networks was generated to
conjugate match the antenna to arbitrary complex impedances and the matched
radiation Q-factors were calculated. A typical frequency dependence of this cost
is depicted in Fig. 6 while the dependence on matching impedance is depicted in
Fig. 7. We observe that it is generally possible to transform the resonant antenna
impedance to an arbitrary real value with minimal increase in radiation Q-factor,
except when small resistance and high reactance is required. As expected, adding
a reactive component to the real-valued (resonant) antenna impedance necessar-
ily increases radiation Q-factor, though this increase is on the order of 30% for the
most extreme of the three test impedances (RFID) examined here. Additionally,
Fig. 6 shows that it is often possible to move slightly away from the self-resonant
frequency and lower the overall radiation Q-factor by a small amount. Nonethe-
less, the minimum radiation Q-factor of the matched antenna is, for practical
values of the matching impedance, within the vicinity of the self-resonance of the
antenna.

The importance of Q-factor is its relation to fractional bandwidth which is
predicated on simple, single resonance behavior [67]. We demonstrate that the
low variance in Q-factor corresponds to consistent realized bandwidth when L-
networks are used to conjugate match an antenna to an arbitrary impedance.
Figure 8 shows the power delivered Pdel to the meander line antenna studied
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Figure 6: Matched radiation Q-factor of a selected meander line antenna
for several impedance matching scenarios listed in Table 2. Matching to each
impedance is accomplished via a two-element reactive L-network, see inset in
Fig. 7 for a schematic. In cases when several L-networks exist for a given match-
ing impedance, the network with the lowest stored energy has been used. Abrupt
jumps of the matched radiation Q-factor curves result from non-existence of
matching by two inductances in certain frequency ranges. This double induc-
tance matching is the most favorable scenario for a capacitive antenna.

above using a matched source (Z0 = Rin) as well as with L-networks designed
to match the antenna to the three complex impedances of practical interest in
Table 2. In each case, a network tunes the antenna to the desired (possibly
complex) impedance at its natural resonant frequency. The frequency profile of
the mismatch factor [6, 47]

τ = Pdel

Pcm
= 4Rm

inR0

|Zm
in + Z0|2

(4)

is nearly identical in all four cases, in agreement with the predictions based
on the relatively invariant Q-factor across these cases. Here, Zm

in is the an-
tenna impedance including the tuning network, Pdel is the power delivered to
the antenna, and Pcm is the power delivered under a conjugate match condi-
tion. It is necessary to point out that we have assumed non-dispersive matching
impedances, i.e., ∂Z0/ ∂ω = 0. In practice, the matching impedance may be
dispersive within the band of interest, in which case the relation between Q-
factor and bandwidth described in [67] ceases to be valid. However, inclusion
of a dispersive load impedance may not necessarily cause major changes to the
realized bandwidth due to the already heavily frequency-dependent nature of the
impedance of high Q-factor antennas. Despite this simplification, when generat-
ing Fig. 8, lumped inductors and capacitors in each tuning network are modeled
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Figure 7: Matched radiation Q-factor of a selected meander line antenna for
varying complex matching impedance normalized to radiation Q-factor of bare
antenna. For each complex impedance, the meander line is conjugate matched at
its self-resonance (circle mark in Fig. 6, ka ≈ 0.479) using the lossless L-network
matching circuit with lowest Q-factor. The markers denote the three impedances
from Fig. 6 and Table 2.

as frequency dependent impedances.

The results in Figs. 7 and 8 numerically suggest that there is little cost in
bandwidth to match a self-resonant antenna to arbitrary impedances. How-
ever, further considerations reveal why it is of practical importance to design an
antenna with a given impedance, rather than relying on this form of matching.
First, the use of lumped components increases complexity and cost of an antenna
system and the required component values for the L-networks described in this
section may not be realizable. Second, lumped components made of any practi-
cal, lossy material (e.g., metallic inductors) increase the net loss in an antenna
system while not adding any potential radiation mechanism. This guarantees a
decrease in overall efficiency, particularly in high Q-factor antennas [57]. Addi-
tionally, tunability or the use of broadband multiple resonance matching may
benefit from the design of an antenna with specific impedance characteristics,
e.g., to increase the radiation resistance [2, 3].
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Figure 8: Frequency dependence of normalized power delivered Pdel/Pcm to the
meander line studied in Figs. 6 and 7. The separate curves correspond to devices
exhibiting the three practically relevant impedances from Table 2 and to a device
with impedance corresponding to that of the meander line at its self-resonance
(“Matched"). In each case, the antenna is conjugate matched using an L-network
at its self resonant frequency, ka ≈ 0.479. The −3 dB bandwidths 50% power
delivered bandwidths B−3 dB for each scenario are also listed.

3 Radiation Efficiency of Q-Optimal An-
tennas

The previous section demonstrated that meander line antennas are nearly optimal
with respect to radiation Q-factor, including the cases when matching to realistic
complex impedances is desired. This section studies how these antennas perform
with respect to another critical antenna metric: radiation efficiency (see Box 3).
Specifically, we examine their performance with respect to radiation efficiency
bounds (see Box 4).

Before presenting the radiation efficiency of matched meander line anten-
nas it is necessary to deal with losses in the matching circuit since, similarly
to the case of Q-factor, any matching circuit with finite losses will worsen the
overall efficiency of the antenna system. Throughout this section we will as-
sume that all matching networks are composed of lossless capacitors and lossy
inductors1. The inductors are further assumed to be planar, made of the same
material (metallic sheet, surface resistivity Rs) as the antenna itself. Under
such restrictions it is possible to estimate the loss added by a matching net-
work quite precisely using data from Fig. 9, which shows the normalized reac-
tance,

(
103/kaL

)
(Rs/η0) (XL/RL), of several spiral inductors as a function of

1Q-factors of lossy capacitors are typically much higher than those of lossy inductors.
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Figure 9: Normalized reactances of selected rectangular spiral inductors. The
quantities XL, RL, and Rs denote input reactance, input resistance, and surface
resistance, respectively. The radius aL defines the smallest sphere circumscribing
the inductor.

their electrical size. Here η0 denotes the free space impedance. The normalized
reactance in Fig. 9 is independent on surface resistance Rs and, at small elec-
trical size, just weakly dependent on number of turns and frequency, consistent
with classical relations for helical air-core inductors [41]. A conservative value(
103/kaL

)
(Rs/η0) (XL/RL) = 66 will be used in this section to determine losses

of all inductors within the L-matching network, assuming further that inductors
are always ten times smaller in electrical size than the antenna, i.e., aL = a/10.
This last assumption enforces the use of an electrically small, approximately
lumped element, matching network.

Lossy elements with the above mentioned specifications are used to match
the meander studied in Figs. 6–8 to impedance Z0 = 50 Ω over a band of interest
near the meander line’s self-resonant frequency. The resulting radiation Q-factor
and efficiency (here presented in the form of dissipation factor, δ) are depicted in
Fig. 10 as functions of frequency (scaled as electrical size ka). The figure reiterates
the previously-observed near-optimal performance of meander line antennas with
respect to radiation Q-factor, but, surprisingly, shows a rather poor performance
with respect to radiation efficiency. This metric is, at the self-resonance frequency
of the antenna, almost one order of magnitude worse than the value of the physical
bound (see Box 4). Similarly to radiation Q-factor, dissipation factor reaches its
minimum in the vicinity of the resonance frequency, at least in the case of realistic
values of matching impedances used here.

Within the used normalization of dissipation factor and radiation Q-factor, it
is reasonable to represent the data from Fig. 10 as a two dimensional curve (radi-
ation Q-factor vs. dissipation factor) parametrized by frequency, see Fig. 11. The
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Figure 10: Normalized radiation Q-factor and normalized dissipation factor
of a selected meander line antenna matched to 50 Ω over a range of frequencies
(scaled here as electrical size ka). The self-resonance of the antenna (ka = 0.47)
is denoted on each trace with a circular marker while the minimum of each trace
is also marked. The same data are also plotted as a curve parameterized by
frequency in Fig. 11.

figure also shows the Pareto front (represented by the black line) evaluated by the
method from [18], which demonstrates the optimal trade-off between radiation
Q-factor and dissipation factor for the given design geometry and frequency. The
Pareto front has been evaluated at ka = 0.5, but, due to the used normalization,
it is almost independent of electrical size. The Pareto front was evaluated for
a combination of TM and TE modes which, as normalized to the TM bound
Qlb,TM

rad , gives values lower than one. The reason for this particular normalization
is that TM bounds represent meaningful limit of one-port planar antennas.

The two-dimensional plot in Fig. 11 represents a complete comparison of
various antenna designs with respect to matched efficiency and matched radia-
tion Q-factor. An example of such comparison is shown in Fig. 12, where the
normalized and frequency-parameterized Q–δ curves are drawn for several small
antenna designs within the same design specifications2. Figure 12 clearly presents
the superior performance in efficiency and Q-factor of simple meander line an-
tennas shown in Fig. 1 with respect to other designs. It also shows that although
there exist other meander lines which perform slightly better in radiation effi-
ciency (Palmier pastry type, [43]) this improvement costs much in the radiation
Q-factor. In conclusion, simple meander line antennas present the best trade-off
between radiation Q-factor and dissipation factor from the depicted antennas

2The bounding geometry, material parameters, and restrictions on matching network topol-
ogy and losses are all kept constant across each design.
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Figure 11: A two-dimensional view of the lower bounds on dissipation factor and
radiation Q-factor. A black solid curve denotes the Pareto front describing the
trade-off between these quantities and the corresponding feasible region (shaded).
The data from Fig. 10 are drawn as a curve parameterized by frequency, with
the relevant points in Fig. 10 being similarly marked. The circle markers along
the curve representing the simulated antenna show the electrical size ka.

when matching to real impedances is demanded. As in the previous section, we
note that the use of more advanced matching topology (e.g., folding or impedance
transformer) may benefit from alternative antenna designs.

Figures 11 and 12 show that the considered antenna structures, which are
close to optimal in radiation Q-factor, are far away from the efficiency bounds.
This is puzzling since resonant modes optimal in radiation Q-factor and efficiency
are similar in nature. However, there are important differences. Radiation Q-
factor restricted to TM modes is minimized by separation of charges and inducing
dipole like currents [24]. These modes can be tuned to resonance by inducing
edge loops along the structure. TM efficiency, on the other hand, is minimized by
inducing homogeneous currents [54]. These are similar in nature to the dipole like
currents minimizing Q-factor, but the loop currents which minimize TE Q-factor
and maximize TE efficiency are fundamentally different. Where low Q-factor
loops tend to be confined towards the edges of the structure, high efficiency
loops are spread across the whole area [18, Fig. 4]. Such loop currents are nat-
urally restricted as an original simply connected object fully filling a prescribed
bounding box is perforated, forcing the current distribution into more inhomoge-
neous forms. Thus, low Q-factor loops are tolerant of alterations to a structure
whereas high efficiency loops are harshly disrupted.

In Fig. 13, the optimal resonant Q-factor and dissipation factor are plotted
normalized to the corresponding bounds of a rectangular plate. Data for differ-
ent shapes made by removing portions of the plate are shown. The currents on
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Figure 12: Two dimensional frequency parametrized plot representing the phys-
ical bound and several antennas. The matching impedance equals to 50 Ω. The
tip of each curve lies in the vicinity of resonance or anti-resonance of the an-
tenna. The electrical sizes at the resonance or anti-resonance frequency are: A
(ka = 0.48, res.), B (ka = 0.85, res.), C (ka = 0.50, res.), D (ka = 0.59, anti-res.),
E (no resonance).

the structures in Fig. 13 have been calculated with current optimization without
physical feeding. It is clear that removing metal does not greatly affect the achiev-
able radiation Q-factor, at worst reducing it to the TM-only bound. However,
when metal is removed from the plate the loss factor is significantly increased,
especially for small electrical sizes. Thus, while optimal radiation Q-factor and
radiation efficiency modes are fairly similar, removing design space has a much
greater effect on the loss factor than the Q-factor in relation to the physical
bounds. This can be seen in Fig. 13 where the loss factor of the optimal resonant
currents is very high for the structures with slots in them. Consider the meander
line antenna which has significantly higher loss factor at electrical sizes ka < 0.4,
here the loop modes are extremely disrupted, however, the Q-factor is hardly
affected. The sharp change in the meander line’s loss at around ka = 0.6 is due
to its resonance, where it is possible to induce a resonant dipole mode on the
structure. This example illustrates a fundamental challenge in designing effi-
cient small resonant antennas: many of the strategies normally utilized to induce
resonance, such as meandering, harshly limit the achievable efficiency.
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Figure 13: Illustration of how much different metrics deteriorate when a solid
plate is permuted. The figure shows four generic shapes, a single slot, three slots,
a meander line, and a loop. The ratio between optimal loss factor for different
geometries and the optimal loss factor for the full plate are shown in solid lines.
The ratio between the optimal mixed mode Q-factor for the same geometries and
the optimal mixed mode Q-factor of the full plate are shown in dashed lines.

4 Antennas Optimal in Other Parame-
ters

Determining the best possible Q-factor can be formulated as a minimization
problem. Therefore it is possible to add different or additional constraints to
such an optimization. So far, in this paper, we have considered the constraints
of efficiency and impedance matching. Another type of constraints are different
kinds of field-shaping requirements of near and/or far-fields [21, 36]. For small
antennas it is well known that the radiated far-field tends to resemble a dipole
pattern, meander line antenna treated in this paper being no exception, see
Fig. 14. However, with these types of Q-factor optimization procedures it is
possible to determine the Q-factor cost, to have the antenna radiating with a
certain front-to-back ratio or (super-) directivity in a given direction. These
classes of bounds indicate that for a limited bandwidth cost it is possible to
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Box 3. Radiation Efficiency

The radiation efficiency of an antenna is defined as

η = Prad

Prad + Pdiss
= 1

1 + δ
, (5)

where, as in (1), Prad and Pdiss are radiated and ohmic dissipated power,
respectively, and δ = Pdiss/Prad is the dissipation factor [27]. Along with
bandwidth radiation efficiency is a key antenna performance parameter,
particularly in electrically small systems where it is known to decrease rapidly
with antenna size.

For objects with homogeneous loss properties, e.g., uniform surface resistance
or conductivity, the dissipation factor δ is a linear function of those properties.
As such, values of dissipation factor can be normalized by surface resistivity for
ease of comparison.

extend, e.g., the directivity beyond the traditional dipole pattern, see [15,21,36,
37,46,55,68,69].

To illustrate bounds on superdirectivity, Q-factor optimization for a given
directivity described in [21, 36], was solved for a small antenna with length to
width ratio of 2:1, infinitesimal thickness, and electrical sizes ka ∈ {0.2, 0.5, 0.8}.
The bounds for low directivities are identical to the lower bound on the Q-factor,
where the radiation pattern changes from that of an elliptically polarized dipole
with D ≈ 1.5 to that of a Huygens source with directivity just below D = 3
and the main beam pointing in the direction of the longest side [7]. Higher
directivities require quadrupole and higher order modes which increases the Q-
factor rapidly [9]. The direction of the main beam changes from the longest side
of the antenna to an endfire pattern along the shortest side at Qrad/Q

lb,TM
rad ≈ 3

as indicated by circles in Fig. 15.
Much like bounds on other parameters (e.g., efficiency), it is an open prob-

lem if the directivity-constrained limits are reachable for all sizes and desired
directivity, even under idealized lossless conditions. As a demonstration of one
possible high directivity, low Q-factor design, a three port array composed of a
meander line and a loop structure with optimized feeding is presented in relation
to the bounds, see Fig. 15. However, high directivity for single port antennas
remains, as of yet, far from the bound and new designs ideas that allow a high
directivity with larger bandwidth are desired.
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Figure 14: Directivity (in dB scale) with respect to an isotropic radiator of
a meander line antenna depicted in Fig. 2 as the very right inset. Antenna is
placed in x-z plane, with a longer side aligned with z-direction.
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Figure 15: The cost in Q-factor for a desired directivity in a lossless 2:1 shaped
antenna. The three line colors represent electrical sizes ka = {0.2, 0.5, 0.8} and
the radiation patterns correspond to the ka = 0.5 case for the optimal current.
All Q- vs D-values for the meander lines of Fig. 2 are represented in purple, and
the relevant region is zoomed in the right bottom inset. Dashed curves show the
results for an array composed of a meander line antenna element with one feed
and a loop antenna element with two feeds.
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Box 4. Lower Bounds to Dissipation Factor

Two different paradigms for minimization of dissipation factor exist. The
first assumes that tuning or general impedance matching of the antenna
can be performed in a lossless manner. Under this assumption, the optimal
current density minimizing dissipation factor is the result of a generalized
eigenvalue problem [27, 28, 54, 61]. Such lower bounds were shown to scale
with electrical size as (ka)−2 and are straightforward to calculate. Their
major drawback, however, is that, by neglecting matching network losses, the
resulting dissipation factors are overly optimistic and unachievable by realistic
designs where some form of matching is required [57].

One solution to the aforementioned drawback is a paradigm in which the optimal
currents are calculated while taking into account the dissipation cost of achieving
resonance or general matching [33, 57]. Dissipation factors coming from this
second paradigm are generally closer to realistic designs and scale with electrical
size as (ka)−4 [18,33,45,60]. Lower bounds to tuned dissipation factor for several
selected shapes are shown in Table 1.

5 Conclusion
The possibilities how to approach the fundamental bounds on selected antenna
metrics were investigated. A planar region of rectangular form factor was consid-
ered. It was observed that the lower bound on Q-factor with radiation restricted
to TM modes only is closely approached by a meander line antenna for a broad
range of electrical sizes. The optimal design parameters were depicted and various
aspect ratios of the bounding rectangle were studied together with selected ratios
of the strip and slot widths. The simulated results were verified by a measure-
ment of a fabricated prototype. The impedance matching and its impact on the
Q-factor of the antenna was studied, concluding that the effect of the impedance
matching on radiation Q-factor is minor and, in some cases, that matching the
antenna slightly away from its self-resonance can even decrease its Q-factor. Ra-
diation efficiency of the meander line antennas optimal in Q-factor was evaluated,
taking into account ohmic losses dissipated in the matching circuit. It was ob-
served that the radiation efficiency of the studied meander line antennas is far
from an upper bound of a rectangular patch. Several other planar antennas were
similarly evaluated against fundamental bounds yielding consistent conclusions:
synthesizing antenna designs which approach the upper bound on radiation ef-
ficiency is more difficult than designing those which reach the lower bound on
Q-factor. The reason was identified in the high sensitivity of radiation efficiency
to the perturbation of ideal constant current density. Namely, when an initial
structure fully filling the prescribed bounding box is perforated (as is done in a
practical synthesis procedure), the performance of maximum efficiency current
distributions drops much faster than that of a minimum Q-factor distribution.
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Finally, a Pareto-type bound between Q-factor and directivity has been calcu-
lated and compared to meander line antennas. An attempt has been made to
find an antenna with reasonably low Q-factor and directivity higher than that of
an electric dipole type antenna. Nevertheless, no planar antenna with one feed
fulfilling these contradictory constraints was found. This task and its feasibility
remains as a subject for ongoing research.

The fundamental bounds, i.e., the lower bounds on Q-factor, the upper
bounds on radiation efficiency, the Pareto-optimality between Q-factor and effi-
ciency, or Q-factor and directivity, were demonstrated to be powerful tools for
judging the performance of the radiating devices. If the realistic designs are com-
pared to the fundamental bounds, designer can assess how far from the optima
the design is, therefore, if further improvement is needed. Furthermore, incre-
mental progress in design improvement can be put into context by considering
the remaining distance between an antenna’s realized performance and the fun-
damental bounds. It is the normalized ratio of the actual device’s performance
to the fundamental bounds what reveals the real quality of the design.
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Abstract

Antenna current optimization is often used to analyze the optimal per-
formance of antennas. Antenna performance can be quantified in e.g.,
minimum Q-factor and radiation efficiency. The performance of MIMO
antennas is more involved and, in general, a single parameter is not suffi-
cient to quantify it. Here, the capacity of an idealized channel is used as
the main performance quantity. An optimization problem in the current
distribution for optimal capacity, measured in spectral efficiency, given a
fixed Q-factor and radiation efficiency is formulated as a semi-definite op-
timization problem. A model order reduction based on characteristic and
energy modes is employed to improve the computational efficiency. The
performance bound is illustrated by solving the optimization problem nu-
merically for rectangular plates and spherical shells.

1 Introduction
Wireless communication in modern systems utilize MIMO networks and anten-
nas [15, 17]. These systems consist of two sets of antennas, one transmitting,
and one receiving. Normally, one of these sets is situated in a location where
space allocation is not an issue, such as a base station. However, the other
set is usually contained within a small device, such as a mobile phone, where
design space is limited [20]. Naturally, antenna designs aim at maximizing per-
formance in such an environment. However, there is little knowledge of how
the performance depends on size, Q-factor, and radiation efficiency restrictions.
Having this knowledge a priori would enable designers to optimize their an-
tenna designs more efficiently. There has been efforts to bound MIMO antennas
performance for spherical surfaces [4, 7] and through information-theoretical ap-
proaches [13,14,18]. However, in order to create tight bounds for a design region
the bounding surface must be arbitrary.

Antenna current optimization can be used to determine physical bounds for
antennas of arbitrary shape [11]. These physical bounds are found by maximizing
a certain performance parameter by freely placing currents in the design space.
By having total control of the current distribution an optimal solution can be
reached. While these currents might not necessarily be realizable they provide an
upper bound for the considered problem. Construction of such physical bounds
are made possible by the ability to formulate convex optimization problems [1] for
the performance quantity of interest. The performance of simple antennas can be
quantified in e.g., the Q-factor, gain, directivity, and efficiency [9]. MIMO anten-
nas, on the other hand, are more complex and a single parameter is insufficient
to determine their performance. The maximization of their main performance
quantity, capacity, cannot be formulated as a classical quadratic programming
problem. As such, it is a challenging problem to construct physical bounds for
MIMO systems. However, it is still possible to utilize antenna current opti-
mization and semi-definite programming [1] to maximize a given performance



78 Paper II

ΩT

JT

H

a) b)

ΩR

JR

ΩT
JT

H
ΩR

JR

Figure 1: Illustration of the MIMO system model with transmitter region ΩT
and receiver region ΩR. Part (a) shows the classical MIMO setup with spatially
separated regions. Part (b) illustrates the idealized case when the receiver region
entirely surrounds the transmitter. The system in (b) is utilized in this paper to
determined performance bounds on MIMO antennas confined to the region ΩT.

quantity, such as capacity, with restrictions on, e.g., the Q-factor and radiation
efficiency.

In this letter a method for constructing a performance bound on capacity for
arbitrary shaped MIMO antennas using current optimization is presented. Trans-
mitting at maximum capacity is formulated as a convex optimization problem in
the current distribution on the MIMO antenna. The problem is constrained by
the radiation efficiency and Q-factor. These are expressed as quadratic forms in
the current density, where the stored energy in [19] is used. This leads to a convex
optimization problem that maximizes the capacity in terms of spectral efficiency
for a fixed SNR, radiation efficiency and Q-factor. The convex optimization
problem is a semi-definite program [1] expressed in the covariance matrix of the
current distribution. In order to bound the performance of a MIMO antenna,
rather than a specific channel, the receiver antenna set has been characterized as
the spherical modes in the far-field. This leads to an idealized channel in terms
of spherical modes [7], which can be thought of as a direct line of sight channel
where all radiation is received. Considering such a channel has the benefit of
reducing computational complexity. This is further reduced by a model order
reduction of the MoM impedance matrix characterizing the antenna.

2 MIMO Model
A classical MIMO system is modeled as [17]

y = Hx + n, (1)
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where x is a N ×1 matrix of the input signals, y is a M ×1 matrix of the output
signals, n is aM×1 matrix of additive noise, and H is theM×N channel matrix.
The channel matrix models how power is transmitted from the input signals to
the output signals, this includes the receiving and transmitting antennas and the
wave propagation between them [17].

Fig. 1a displays a classical MIMO setup where two sets of antennas form a
channel. Analysis of such systems depend greatly on external factors, such as,
scattering phenomena, channel characterization, and antenna location [17]. How-
ever, to investigate performance bounds for MIMO antennas we must limit the
degrees of freedom to a single antenna. This implies that H in (1) should model
the channel between an arbitrary antenna and an idealized receiver, correspond-
ing to Fig. 1b. The transmitting antenna is modeled with its current distribution
using a MoM approximation [9] such that each basis function corresponds to an
element of x. The receiver is modeled with the radiated spherical modes, where
each mode is an element in y [7, 10]. This leads to a MIMO system of infinite
dimension as N increases with mesh refinement and M increases with the num-
ber of included spherical modes. In numerical evaluation N and M are chosen
sufficiently large to ensure convergence.

The transmitted signals are modeled as the MoM current elements I = Tx,
where the matrix T maps the transmitted signals x to the current distribution on
the antenna I. The covariance matrix of the transmitted signal is P = E

{
xxH},

where E {·} denotes the temporal average [17]. With this matrix we can calculate
the average transmitted power,

P = 1
2E
{
IHRI

}
= 1

2E
{
xHTHRTx

}
= 1

2 Tr E
{
THRTxxH} = 1

2 Tr(ÙRP), (2)

where ÙR = THRT, and R is the resistive part of the MoM impedance matrix,
Z = R + jX [9]. Since we are concerned with connecting the currents on the
antenna structure to the spherical modes [8] in the idealized receiver we express
our channel as

y = MI + n = MTx + n = ıMx + n, (3)

where M denotes the map from the currents to the spherical modes. This is
a direct channel between the antenna current distribution and the spherical
modes [6]. The capacity, expressed as spectral efficiency ( b/(sHz)), of this chan-
nel is given by [17]

C = max
Tr(ÙRP)=P

log2 det
Å

1 + 1
N0
ıMPıMH

ã
, (4)

where 1 is theM×M identity matrix, and N0 is the noise spectral power density.
The noise is modeled as white complex Gaussian noise. The optimal energy
allocation in this channel for capacity maximization is given by the water-filling
solution [17]. Alternatively, the optimal solution for this problem can be solved
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by a semidefinite optimization program,

maximize log2 det(1 + γıMPıMH)

subject to Tr(ÙRP) = 1
P � 0,

(5)

where the unit transmitted power is considered, and γ = P/N0 is the total SNR.
Maximizing the capacity of this channel corresponds to focusing the radiation of
the antenna to the orthogonal spherical modes.

The solution to (5) is unbounded and increases as mesh refinement and the
number of spherical modes are increased if the SNR is scaled with the number of
channels in ıM. Here, we consider the case of a fixed SNR. The solution to (5)
can be made more realistic by adding constraints on the losses or Q-factor of the
transmitting antenna [7, 16]. The Ohmic losses are calculated as

PΩ = 1
2E
{
IHRΩI

}
= 1

2E
{
xHTHRΩTx

}
= 1

2 Tr(ÙRΩP), (6)

where ÙRΩ = THRΩT, and RΩ is the loss matrix of the antenna [9]. The stored
electric energy is

We = 1
4ωE

{
IHXeI

}
= 1

4ω Tr(ÙXeP), (7)

where ÙXe = THXeT, and Xe is the electric reactance matrix [9]. The stored
magnetic energy Wm is similarly defined by the magnetic reactance matrix Xm
as Wm = 1

4ω Tr(ÙXmP), where ÙXm = THXmT.
With these constraints in hand we can formulate our convex optimization

problem. We note that the solution is independent of the power P , so it is
sufficient to consider the case P = 1 giving

maximize log2 det(1 + γıMPıMH)

subject to Tr((ÙXe + ÙXm)P) ≤ 2Q

Tr(ÙXP) = 0

Tr(ÙRΩP) ≤ 1− η

Tr(ÙRP) = 1
P � 0,

(8)

where η is the radiation efficiency, and self-resonance is enforced. Here, the prob-
lem has been normalized to dissipated power, including losses. The consequence
of this is that the Q-factor considered includes losses in its calculation. It is pos-
sible, and sometimes advantageous, to normalize to different quantities such as
the radiated power. Equation (8) is a semi-definite optimization problem which
has a unique solution [1]. However, the problem is non-trivial due to the large
number of unknowns for realistic antenna problems. For example a rectangular
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plate of size `× `/2 discretized into 64× 32 rectangular elements has N = 4000
unknowns. This size is not a problem for convex optimization of type G/Q and
Q [2, 8, 9]. However, the semi-definite relaxation has close to N2/2 = 8 · 106 un-
knowns, making the problem much more computationally demanding. Moreover,
the logarithm used in the definition of capacity is more involved than the simple
quadratic functions in G/Q and Q type problems [8, 9]. Here, the number of
unknowns is reduced by expansion of the currents in characteristic, energy, and
efficiency modes [9], with similar results.

The expansion includes only the first several dominating modes and as such
constitutes a model order reduction. This implies a change of basis I ≈ UĨ,
where U maps between the old and the new currents. This reduces the number
of unknowns to the included modes N1 � N . With this approximation the stored
energy, for example, is calculated as

IHÙXeI ≈ ĨHUTÙXeUĨ = ĨH‹XeĨ = Tr(‹XeĨĨH) = Tr(‹Xe‹Y), (9)

where ‹Y = ĨĨH, and ‹Xe = UTÙXeU. Similarly ÙXm, and ÙR, are expressed as ‹Xm =
UTÙXmU, and ‹R = UTÙRU. These replace the corresponding matrices in (8),
with ‹Y replacing P. This reduces the number of unknowns from approximately
N2/2 to N2

1 /2.

3 Numerical Examples
In the following examples the optimization problem (8) has been solved for a
MIMO system resembling Fig. 1b using the Matlab library CVX [5,9]. The log-
arithm in the optimization problem (8) was replaced by a root of order M [5].
After the optimization has been carried out the capacity is calculated as normal
with the optimized currents. The energy restriction on the number of transmitter
modes and the number of spherical harmonic modes in the receiver have been
chosen sufficiently large to ensure convergence and varies from example to exam-
ple. The number of dominating channels in ıM are not many, shown in [3], thus
the model order reduction need only include enough modes for these channels to
be available. Since the performance of a MIMO antenna cannot be quantified
by a single parameter the optimization was run with different constraints. This
illustrates how capacity is bounded by different requirements on the transmitting
antennas. The optimization has also been run for a spherical shell circumscribing
the antenna.

In Fig. 2 the capacity has been optimized for a plate of electrical size ` =
0.21λ, and is depicted as a function of the Q-factor restriction. We see a cut-off
for Q ≤ 12 where the optimization problem is unable to realize a feasible current
distribution for so low Q-factor, cf., the lower bound on the Q-factor [2]. For
higher SNR the capacity increases but the cut-off stays the same, since the SNR
does not affect the Q-factor.

We can instead regard the problem with a fixed SNR and investigate how
the capacity varies with antenna size, see Fig. 3. Depending on which Q is
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Figure 2: Maximum spectral efficiency achievable for a loss-less rectangular
plate of size ` × `/2 for the wavelength ` = 0.21λ given maximum Q-factor
on the horizontal axis. The dashed lines show the maximum spectral efficiency
achievable for the corresponding circumscribing sphere.
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Figure 3: Maximum spectral efficiency achievable for a loss-less rectangular
plate of electrical size `/λ for maximum Q-factor with SNR γ = 50, cf., Fig. 2.
The dashed lines show the maximum spectral efficiency achievable for the corre-
sponding circumscribing sphere.
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Figure 4: Maximum spectral efficiency achievable for a rectangular plate of
electrical size `/λ for minimum radiation efficiency η. The losses are modeled as
a resistive sheet with R = 0.2 Ω/2. The minimum Q-factor is set to 30 for the
three main graphs and SNR γ = 50. Solid lines are optimized without enforcing
resonance and dashed lines are optimized with resonance. For ` = 0.21λ the
Q-factors [20, 30, 40] are plotted.

chosen the solution is only realizable for sizes above a certain cut-off. This cut-
off corresponds to the size which has the chosen Q as its minimum achievable Q.
Above this size the capacity seems to depend linearly on the antenna size. This
is consistent with how capacity scales with the number of antennas included in
a MIMO system [17].

In Figs. 2 and 3 the dashed lines show the optimization problem solved for
a spherical shell circumscribing the planar region. We see that the spectral
efficiency achievable by a planar antenna is much less than that of the sphere.

Setting an radiation efficiency requirement on the optimization may restrict
which modes are realizable. Fig. 4 illustrates how capacity varies as a function
of radiation efficiency. We see that the capacity is unaffected until some cut-
off value where the solution is no longer realizable. For electrical sizes ` =
0.21λ and 0.29λ this occurs when the radiation efficiency requirement is high,
above 90%. However, for smaller sizes, such as ` = 0.13λ, we see that this cut-off
occurs at lower radiation efficiencies. The optimization problem has been solved
both with and without enforcing resonance. When resonance is enforced, showed
in dashed lines, we see that the cut-off occurs at lower radiation efficiencies, this
is due to self-resonant currents being inherently less efficient [12]. For the size ` =
0.21λ the Q-factor requirement was varied as well, leading to a slight reduction
or increase in capacity. Close to the cut-off efficiency we see a slight decrease in
capacity for all cases. This corresponds to the requirement on radiation efficiency
limiting the optimization problem. For lower radiation efficiency requirements
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Figure 5: Illustration of the bounding surface of spectral efficiency for a loss
less rectangular plate as a function of size and Q-factor with SNR γ = 50. The
red curve shows minimum Q [2]

other constraints limit the optimization and the capacity is unaffected by the
bound on radiation efficiency.

In Fig. 5 both the size of the antenna and the Q-factor are varied to create
a two dimensional bounding surface. This surface has a sharp cut-off along the
minimum Q line [2] seen on the left in Fig. 5. We see that the increase in
capacity follows the shape of the minimum Q curve as `/λ and Q are increased.
This surface provides a bound on the capacity achievable for MIMO antennas of
different sizes and with different bandwidth requirements.

4 Conclusions
In this letter we have presented a framework for constructing performance bounds
for MIMO antennas. We simplified the channel problem often considered in
communication theory to an idealized channel consisting of a spherical receiver
surrounding the antenna region. This enables the formulation of a semi-definite
optimization problem that gives a bounding capacity for any antenna that can
be constructed within the considered region limited by size, SNR, radiation effi-
ciency, and Q-factor. By utilizing a model order reduction based on energy and
characteristic modes the complexity of the problem is reduced such that it is
solvable.

These physical boundaries of MIMO antennas represent the ideal solutions
possible given complete freedom of current placement within the design area.
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While the shape of these current distributions are not easily realizable [12], the
bounding values provide an upper limit to what is possible for real antenna
topologies. Investigating how these bounds are affected by dielectric materials is
very interesting and can be done by including them in the MoM simulation. It
remains as future work to explore how these bounds compare to antenna designs
and measurements.
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Abstract

Modern antenna design for communication systems revolves around two
extremes: devices, where only a small region is dedicated to antenna design,
and base stations, where design space is not shared with other components.
Both imply different restrictions on what performance is realizable. In this
paper properties of both ends of the spectrum in terms of MIMO perfor-
mance is investigated. For small antennas the size restriction dominates the
performance parameters. The regions dedicated to antenna design induce
currents on the rest of the device. Here a method for studying fundamen-
tal bound on spectral efficiency of such configurations is presented. For
larger structures the number of degrees of freedom available per unit area
is investigated for different shapes. Both of these are achieved by formulat-
ing a convex optimization problem for maximum spectral efficiency in the
current density on the antenna. A closed form solution for this problem is
formulated and investigated in relation to constraining parameters, such as
size and efficiency.

1 Introduction
In modern communication technology the use of several antennas organized in
MIMO systems have become ubiquitous. This enables much greater bit rate
(capacity) to be sent through the link between device and base station [25, 26].
Within smaller devices, such as hand-held electronics, the space allotted for an-
tenna design is extremely limited. Here, both space and power efficiency needs
to be utilized as effectively as possible. It is therefore of interest to investigate
fundamental bounds on performance of MIMO systems, both in terms of size and
efficiency. Previously, bounds on capacity has been investigated for spherical ge-
ometries [10, 13], and through information theoretical approaches [6, 8, 9, 21, 28],
such as investigating the role of the number of degrees of freedom in the sys-
tem [7,12,23,24]. Characteristic modes have been utilized to design antennas for
maximum capacity and diversity [3,22]. However, this does not solve the issue of
predicting the optimal performance available through antenna design in an ar-
bitrary geometry. A method for calculating optimal spectral efficiency available
in an arbitrary volume was presented in [5]. However, in most applications it is
effective to use only a small region of the device volume to excite currents over
the entire device [17]. Therefore bounding the performance of such sub-regions
and finding their optimal placement is of interest.

Current optimization has been utilized to construct fundamental bounds on
many different antenna parameters previously, such as, Q, directivity, and effi-
ciency [5,14–16,20]. By controlling the current density in the full design space of
the antenna an optimal solution can be reached for that configuration. The power
of this method comes from the ability to formulate these optimization problems as
convex optimization problems. This means that all local minima of the problem
are also global minima [1]. Therefore there is no risk of getting caught in local
minima and the optimality of the solution can be guaranteed [1]. This method
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works very well for single feed, single resonance antennas where their perfor-
mance, in e.g., Q-factor, can be calculated as simple quadratic forms [15]. Such
expressions can be evaluated very efficiently using eigenvalue expressions that
enables their optimization [2]. The performance of MIMO antennas on the other
hand is usually quantified in terms of capacity, which is not calculated through a
quadratic form in the current density, but through a log-determinant of the co-
variance of the current density. Such an optimization problem is a semi-definite
optimization program in the covariance of the current distribution, which has, in
general, one more order of unknowns [1]. To solve such optimization problems
the number of unknowns need to be reduced [5].

In this paper the method presented in [5] is reformulated in order to find a
closed form expression of its solution. A convex optimization problem to maxi-
mize the spectral efficiency of an arbitrary transmitter antenna in an ideal channel
is formulated in the current density on the antenna. The problem is restricted by
the allowed ohmic loss in the structure and normalized by the radiated or dissi-
pated power. This problem is solved by utilizing the good properties of the ma-
trices calculating radiated power and ohmic losses. The solution to this problem
is dependent on the radiation modes, which are modes that maximize the fraction
between the radiated power and the power dissipated in ohmic losses [27]. These
modes are dependent on the geometrical structure of the object they are induced
over, therefore the designer has control over how well they can be induced. The
relative strength of these modes is investigated for a sphere, a cylinder, a disc,
and a plate and its sub-regions. This information is used to analyze how many
sub-regions are required to fully utilize the potential of a plate design region.
The optimal spectral efficiency of the sub-region configurations is compared to
optimizing the currents over the plate and sphere. Larger structures and their
number of viable radiation modes are also investigated.

The paper is organized in the following way. In Sec. 2 the MIMO system
studied in this paper is introduced and its convex optimization problem is stated.
The dual of that problem is formulated and solved in Sec. 3, creating an upper
bound for the original problem. In Sec. 4 the results of the optimization problem
is illustrated in several examples split into the following sub-sections: Sec. 4.1
where the radiation modes of different shapes are studied, Sec. 4.2 where the
radiation modes of a plate are excited by sub-regions, Sec. 4.3 where the optimal
spectral efficiency of several structures is investigated, and Sec. 4.4 where the
mode availability of larger structures is calculated. The paper is concluded in
Sec. 5.

2 MIMO
The received signals in a MIMO system is described by the expression,

y = Hx + n, (1)
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Figure 1: Schematic illustration of a MIMO setup. Rx is the set of receiving
antennas, Tx is the set of transmitting antennas, and H is the channel matrix
describing the propagation between Tx and Rx.

where y is a vector containing the received signals, x is a vector containing the
input signals, H is a matrix describing the propagation channel, and n contains
the noise perturbing the system. In communication theory what is typically opti-
mized is the power distribution in x in order to send the maximum number of bits
through a channel. However, in that configuration the antennas in the system are
assumed fixed [26], see Fig. 1. Here, we are interested in how much performance
can be attained from optimizing those antennas for the specific application of
transmitting the highest capacity. In order to calculate that performance, the
problem must be reformulated slightly. First, the system in (1) concerns two
sets of antennas. However, in most cases we are not designing both the antennas
in the system simultaneously, such as the base station and the mobile phone.
Therefore, we reformulate the problem to optimizing a single device with regards
to a general situation. In order to create such conditions, one set of antennas is
idealized; here we choose the receiving antennas. Consider a receiving antenna
completely circumscribing the transmitting antenna. This is similar to massive
MIMO and the intelligent surfaces discussed in [19], covering all surfaces of a
room. In such a configuration all radiated energy would be absorbed by the re-
ceivers on the walls. This can be characterized by using the spherical modes in
the far-field as the receiving antennas [5,10,13], which will be used in this paper,
see Fig. 2.

The second issue lies in the method of calculating optimal performance for the
antennas. Since we do not know what shape an optimal antenna design would
take, we want to incorporate every possible antenna in our solution space. To
accomplish this we optimize the currents in the design space of the antenna, as
these have the ability to represent every possible antenna within it. Normally a
MIMO system is optimized through controlling the input signals to the antennas.
These input signals generate the currents on the antenna, that are connected by a
fixed mapping. However, since we are controlling the currents directly we simply
utilize this map in order to calculate the performance quantities, such as capacity,
from the currents [5]. For example, instead of optimizing over the covariance of
the input signals, we optimize over the covariance of the currents,

P = 1
2E
{
IIH} . (2)

Essentially, each current element becomes an input signal to the system, whereas
for actual antennas the number of inputs is restricted by the number of antenna
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Figure 2: Schematic illustration of the idealized MIMO system where the receiv-
ing antennas are the spherical modes in the far-field. The transmitting antennas
are illustrated as a plate with antenna design regions marked as small patches.

feeds.
The antenna region is modeled with a MoM code, where each basis function

corresponds to an element in I. We call the matrix mapping the current distri-
bution on the plate to spherical modes S [29], see App. A, which gives a new
formulation of (1),

y = SI + n. (3)

In this formulation the received signals y are the radiated spherical modes, see
Fig. 2. The average transmitted power of the system is calculated as,

Pr = 1
2E
{
IHRrI

}
= 1

2 Tr E
{
RrIIH} = Tr(RrP), (4)

where Rr is the radiation matrix, and we have utilized the cyclic properties of the
trace. The capacity of this channel, expressed as spectral efficiency, is calculated
as [26]

C = max
Tr(RrP)=Pr

log2 det
Å

1 + 1
N0

SPSH
ã
, (5)

where 1 is the identity matrix, and N0 is the noise spectral power density. The
noise is modeled as white complex Gaussian noise. This spectral efficiency is a
measure of the capacity per Hz, which can equivalently be viewed as the capacity
of a frequency flat channel with a 1Hz transmission bandwidth [26]. The noise
and power considered in (5) have been normalized to that bandwidth. Maximum
capacity and optimal energy allocation for (5) can be calculated by the water
filling algorithm [26]. However, it can also be written as an optimization problem
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solved by semidefinite programming,

maximize log2 det(1 + γSPSH)
subject to Tr(RrP) = 1

P � 0,
(6)

where the radiated power is normalized to one, and γ = Pr/N0 is the total
SNR. If the SNR is scaled with the number of included channels, in this case
mesh discritization and number of spherical modes, the spectral efficiency is
unbounded [5, 26]. However, if the SNR is fixed the problem converges to

log2 det(1 + γSPSH) = M log2

Å
1 + Pr

MN0

ã
≈ γ

log(2) , (7)

as mesh discretization and number of spherical modes is increased, where M
is the number of channels. This problem formulation has the advantage that
additional constraints can be added in order to gain a more realistic solution.
Here, we can, for example, limit the losses in the structure. Loss is modeled as a
uniform impedance sheet with surface resistance Rs in Ω/� and calculated as,

PΩ = 1
2E
{
IHRΩI

}
= Tr(RΩP), (8)

where RΩ = RsΨ is the loss matrix of the antenna [15], and Ψ is the Gramian
matrix of the MoM basis functions on the antenna. Adding this constraint to (6)
gives the formulation

maximize log2 det(1 + γSPSH)
subject to Tr(RΩP) ≤ δ

Tr(RrP) = 1
P � 0,

(9)

where δ = PΩ/Pr is the dissipation factor of the antenna, which is related to
radiation efficiency as,

η = Pr

Pr + PΩ
= 1

1 + δ
. (10)

This problem is bounded and converges as the mesh discretization is refined, and
the included number of spherical modes is increased [5]. However, it contains
many unknowns and is cumbersome to solve numerically. Because it is a semi-
definite programming problem the number of unknowns scale as the square of the
number of mesh cells, necessitating model order reductions or other numerical
procedures to run the optimization [5].

3 Dual Problem
One way of bounding the solution to (9) is to construct a problem that will always
have a solution greater than or equal to that of the initial problem. This problem
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is known as the dual to (9). The infimum of the dual problem provides an upper
bound to the maximum of (9) and they coincide when the duality gap is zero [1].

To construct a dual problem to (9) we can combine the two constraints in (9)
into one, as a convex optimization problem with less constraints will always have
a greater solution than the same problem with more constraints [1]. A linear
combination of the two constraints can be taken to restrict the dual problem

Tr
Å1
δ
RΩP + νRrP

ã
= 1 + ν, (11)

where ν is a real scalar. Dividing the right-hand side to the left allows the
introduction of a new matrix

Rν = 1
1 + ν

Å1
δ
RΩ + νRr

ã
. (12)

The dual to (9) can now be written as

min.
ν

max.
P

log2 det(1 + γSPSH)

Tr(RνP) = 1
P � 0.

(13)

This problem is valid and convex for all values of ν for which Rν is positive
semi-definite.

To solve the dual problem, we rewrite it on such a form that it can be solved by
water filling. This can be done by simplifying the condition restricting it. Rν is
positive semi-definite by construction and can therefore be Cholesky factorized as
Rν = BHB [1]. By utilizing the cyclic invariance of the trace the condition can be
rewritten as Tr(BHBP) = Tr(BPBH). The matrix B can be seen as a coordinate
change for P. This allows the introduction of a new variable ‹P = BPBH to write
the optimization problem as,

min.
ν

max.‹P log2 det(1 + γ‹H‹P‹HH)

Tr(‹P) = 1‹P � 0,

(14)

where the new channel is ‹H = SB−1. The maximum of this problem can be found
by water filling [26]. To perform water filling it is a simple matter of following
the same methodology outlined in [26], i.e., find the SVD of the channel matrix‹H and iteratively fill the feeding vector ‹P such that the lowest loss channels are
utilized the most. With the singular values of the channel matrix, (14) can be
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written more simply as

min.
ν

max.
Pn

N∑
n=1

log2(1 + γσ2
nPn)

N∑
n=1

Pn = 1

Pn ≥ 0,

(15)

where σn, n = 1 . . . N are the singular values of ‹H, and Pn is the power allocated
to each mode associated with those singular values. These singular values σn can
be expressed as, see Appendix B,

σ2
n = %n(1 + ν)

δ−1 + ν%n
, (16)

where %n are eigenvalues to modes known as radiation modes [27] and are calcu-
lated through the generalized eigenvalue problem,

RrIn = %nRΩIn. (17)

These modes maximize the fraction between radiated power and power dissi-
pated in ohmic losses, and have orthogonal currents and far-fields. It is evident
from (16) that these modes are a dominating factor in the singular values of the
optimized channel. With this expression, water filling can be performed fast and
efficiently with minimal numerical calculations. The minimization over ν, which
can be calculated using conventional minimizers such as fminbnd in MATLAB,
finally provides an upper bound to the initial problem (9).

4 Results
The solution to the optimization problem (9) provides an upper bound on the
spectral efficiency available for different structures. This bound has been verified
by optimizing the same problems in CVX [1, 11] for several of the considered
cases confirming that the duality gap is zero for these cases. However, it is also
interesting to investigate the radiation modes that contribute to the spectral effi-
ciency in (16). To illustrate both of these results this section is divided into four
sub-sections. First, the mode strength of different shapes is studied in Sec. 4.1,
then feeding a plate through sub-regions is investigated in Sec. 4.2. The optimal
spectral efficiency of the same plate is discussed in Sec. 4.3, and finally the mode
availability of larger shapes is shown in Sec. 4.4.

4.1 Mode Strength
In the derivation of the optimized channels singular values (16), the radiation
modes (17) are the only contributing factors that depend on the geometry of
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the structure. All other parameters are either material parameters or design
specifications. The influence of antenna design and geometry on the problem
is therefore fully described by these radiation modes. Their relative strength
can be calculated for different geometries in order to evaluate the availability of
these modes. This can serve as a measure of how many orthogonal modes are
available to provide diversity for those structures. In Fig. 3 the relative strength
of the radiation and loss-less characteristic modes [3, 18] of a ka = 0.06, ` × `/2
plate, and the radiation modes of the circumscribing disc and sphere are shown
normalized to the first radiation mode of the plate. We see that the two first
radiation modes have the same strength and the third and higher order modes are
significantly weaker. This means that inducing the first two modes of this plate
are enough to harness most of its available diversity. The higher order modes are
significantly weaker and require more input power to be utilized, or an increase
in the plates size to be effective. The characteristic modes of the plate have been
evaluated in the same metric, cf., (17), i.e.,

%c,n =
IH
c,nRΩIc,n

IH
c,nRrIc,n

, (18)

where Ic,n are the characteristic mode currents, as a comparison. We can see that
the characteristic modes preform slightly worse than the radiation modes, and
have different radiation patterns for higher order modes. The relative strength
of radiation modes for the circumscribing disc and sphere, normalized to the first
radiation mode of the plate, have been included as a reference. We see that
the disc has slightly higher mode strengths than the plate, whereas the sphere’s
modes are much stronger and grouped into a set of three for the first modes,
rather than two.

4.2 Plate Sub-regions
In wireless communication only a small part of the device is typically dedicated
to antenna design. It is therefore interesting to see how well small sub-regions can
excite the diversity available from the plate in Fig. 3. The optimization problem
in Sec. 3 can be reformulated for a sub-region of a geometry with the rest of the
volume acting as a ground plane, see App. E. In Fig. 4, the sub-region problem
has been solved for several different orientations of sub-regions on the plate in
Fig. 3, where each region covers 1 % of the plate’s total area. Here, we can see
how well different configurations of sub-regions are able to induce the diversity
available in the plate when fed optimally. It is clear that a single sub-region,
in case A, is only able to effectively induce the first radiation mode. However,
two diagonally situated sub-regions, as in case B, are only marginally better
at inducing the second mode. This is due to that the first two radiation and
characteristic modes are induced diagonally across the plate [22]. Therefore, the
diagonally opposite regions do not effectively induce the second diagonal mode.
However, if the two regions are placed on the same side of the plate, as in case
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Figure 3: The strength of the first 5 radiation, %n, and characteristic, %c,n,
modes of a ka = 0.06, `× `/2 plate, as well as the radiation modes of its circum-
scribing disc and sphere. All values have been normalized to the first radiation
mode of the plate. The corresponding far-fields for the radiation and charac-
teristic modes of the plate can be seen as insets in the figure. The first two
radiation and characteristic modes are visually identical and represented by the
same patterns.

C, the second order mode is induced effectively. The radiation mode strengths
are very similar if these two regions are placed on the long side of the plate.
When going to higher order modes, this configuration is no longer as effective,
here, the diagonal regions in case B dominate. If three or four sub-regions are
utilized, as in cases D and E, we can get both of these properties. However,
adding the fourth sub-region only marginally increases the strength of the three
first radiation modes.

The values in Fig. 4 have a negligible dependence on the surface resistance
Rs. However, the calculation to produce the sub-region problem is dependent
on the full impedance matrix Z and thus the surface resistance, see App. E.
This marginally changes the relation between the mode strength. However, the
surface resistance plays an important role in which modes are utilized when
feeding the structure for optimal spectral efficiency. Fig. 5 illustrates the water-
filling procedure for two plates with different surface resistance. When the surface
resistance is increased the loss in the higher order modes is increased. This pushes
the third order mode out of viability for the signal strength P available in this
example. Therefore the number of modes utilized decreases with greater losses.
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Figure 4: The strength of each mode in Fig. 3 when controlling only the current
on sub regions of the ka = 0.06, ` × `/2 plate with Rs = 0.01 Ω/2. The sub-
regions each cover 1% of the plates total area. The current is controlled in the
blue regions on the plate and only induced currents live on the yellow part of the
plate. The black curve without marks is the strength of each mode for the full
plate normalized to the first mode, all other curves have been normalized to the
same quantity.
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Figure 5: A schematic illustration of water-filling for a plate of size ka =
0.06, ` × `/2 with surface resistance Rs = 0.01 Ω/2 (left) and Rs = 0.07 Ω/2
(right) fed by three sub-regions. The green bars illustrate the loss in each mode.
The blue area P represents the total signal strength the system is fed with.
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Figure 6: The optimal spectral efficiency solved with the dissipated power
normalization for different SNR values for a ka = 0.06, ` × `/2 plate, its cir-
cumscribing sphere, and the sub-region configurations from Fig. 4. The required
radiation efficiency is η = 0.5.

4.3 Optimal Spectral Efficiency

The optimization problem in (9) is normalized to the radiated power. However,
this is only one way of normalizing the power fed to the structure. In App. D
the derivation is carried out for the problem normalized to the dissipated power,
i.e., changing Rr in (9) to Rr + RΩ, see [5]. The resulting optimized channel is
described by (16), but with a more complex dependence on the material parame-
ters. This includes the losses in the structure in the normalization and therefore
shifts the results. Notably this normalization shifts the dependence on the SNR
γ. When the problem is normalized to radiated power all considered permuta-
tions of the same structure produces the same spectral efficiency for low SNR
values. This is due to the fact that the power lost in resistive losses is not limited
as long as the power radiated to the far-field is the same.

In Fig. 6 the problem normalized to dissipated power has been solved for
a ka = 0.06, ` × `/2 plate and its circumscribing sphere. Here, the difference
between the different sub-regions is visible. The differences in spectral efficiency
corresponds to the difference in mode strength shown in Fig. 4. In the inset we
can see the point where case B (diagonally opposed sub-regions) and case C (sub-
regions on the same side of the plate) cross, around γdB = 3.5. This corresponds
to the point where the second order mode, more effectively induced by case C, see
Fig. 4, starts to be profitable to excite. For high SNR values we see that the curves
from the plate converge to two distinct groups, one containing the configurations
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Figure 7: The number of modes used to induce optimal spectral efficiency with
normalized dissipated power for different SNR values for a ka = 0.06, ` × `/2
plate, its circumscribing sphere, and the sub-region configurations from Fig. 4.

that effectively induce the two first modes, and one with cases A and B which
only effectively induce the first mode. The optimal spectral efficiency of the
circumscribing sphere has been plotted as a reference. The number of modes
that the different cases induce is plotted in Fig. 7. It can be seen that cases C,
D, and E induce the second order mode at much lower SNR values than cases A
and B. Interestingly, case C starts to induce the second mode around 8 dB before
its spectral efficiency passes case B in Fig. 6.

The restriction in (9) can equivalently be expressed as a requirement on the
radiation efficiency η, see (10), of the antenna. In Fig. 8, the optimization prob-
lem (9) has been solved normalized to radiated power for different required ra-
diation efficiencies. It can be seen that all sub-region orientations except for
cases A and B almost fulfill the maximum spectral efficiencies for all radiation
efficiencies before their cut-offs. The cut-offs correspond to radiation efficiencies
where a solution is no longer feasible. From this it is possible to infer that two or
three cleverly placed regions is enough to induce all available spectral efficiency
for a ka = 0.06 plate. Interestingly case C (two regions on the same side of the
plate) has an earlier cut-off than case B (two diagonally opposed regions) even
though case C outperforms B for lower radiation efficiency requirements. This
most likely corresponds to the slightly higher mode strength of the first mode
for case B seen in Fig. 4. For this plate the optimal spectral efficiency of the
sphere illustrates that the plate bound is much tighter for planar structures than
that of the circumscribing sphere. In Fig. 9 the same optimization problem has
been solved for a slightly larger ka = 0.56 plate. Here it can be seen that the
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Figure 8: The optimal spectral efficiency with normalized radiated power for a
ka = 0.06, ` × `/2 plate, its circumscribing sphere, and the sub-region cases in
Fig. 4 for different required radiation efficiencies. The SNR is fixed to γ = 30.

different sub-region configurations start to seperate in terms of performance. It
is no longer possible to induce the maximal spectral efficiency of the plate with
just a few sub-regions.

4.4 Mode Availability

The examples in Sec. 4.1, 4.2, 4.3 have concerned small structures. The smaller
sizes accentuate the availability of the lower order modes. When the size of
the structure starts to grow in terms of wavelength a plethora of modes become
effective, i.e., have high associated eigenvalues. Through solving the eigenvalue
problem (17) the number of viable modes, %eff , can be defined as those with an
eigenvalue greater than 1. This is seen as when the excitation of the mode does
not accrue more losses. Since (17) depends on the geometry of the structure
it is possible to analyze different shapes and study how many modes they have
available. However, it is intuitive that shapes with greater surface area will
induce more modes. To understand if these shapes are actually inducing these
extra modes efficiently per area the number of modes can be normalized to the
natural number of degrees of freedom for that area [19, 24]. That number is
defined as

2L(L+ 2) ≈ 2ka(ka+ 2)→ 2(ka)2 , ka→∞, (19)
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Figure 9: The optimal spectral efficiency with a normalized radiated power for
a ka = 0.56, `× `/2 plate, its circumscribing sphere, and the sub-region cases in
Fig. 4 for different required radiation efficiencies. The SNR is fixed to γ = 30.

for a sphere [18]. This term can be rewritten in terms of the area of the sphere
A,

2(ka)2 = k2A

2π = 2πA
λ2 . (20)

For the analysis of different shapes presented in Fig. 10 the degrees of freedom
for each shape has been calculated by (20) using the surface area of each geom-
etry. We can see that the curves are divided into two distinct groups, the three
dimensional shapes A, B, and C, and the two dimensional D and E. This metric
shows that a shape such as a cylinder induces modes almost as efficiently per area
as a sphere. By arbitrarily permuting the surface of a shape to increase its area,
such as for the cylinder F, we can see that the efficiency does not increase with
increased area. In fact the efficiency of this shape is much lower. It is reasonable
to conclude that convex shapes with maximum area, such as the sphere, will be
able to induce the greatest number of modes efficiently. The jagged jumps in
the curves are due to the fact that the efficiency of modes is not continuously
distributed, e.g., see Fig. 3 where there is a significant jump from the first two
modes of the plate to the higher order modes. The consequences of this is that
the number of efficient modes is monotonically increasing with frequency, but
when it is normalized with the wavelength, as in Fig. 10, discrete jumps will
occur when new groups of modes become available. For closed shapes, such as
the sphere, the internal resonances produce numerical difficulties in MoM and
therefore reduce the number of efficient radiation modes for certain sizes.
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Figure 10: The number of viable modes, %eff , normalized to their natural num-
ber of degrees of freedom for different shapes. This is plotted against the surface
area normalized to wavelength, see (20). The surface resistance of the shapes is
Rs = 0.01 Ω/2.

5 Conclusions
In this paper a closed form expression based on water-filling and radiation modes
for calculating an upper bound on the optimal spectral efficiency for an arbitrary
shape, constrained by the radiation efficiency, was presented. It was illustrated
that the radiation modes play an important part in the optimal channel distri-
bution. The strength and availability of the radiation modes were studied for
several shapes including a plate, disc, cylinder, and sphere. Through this analy-
sis it was shown that it is possible to excite currents producing optimal spectral
efficiency for a plate using only a few small sub-regions. The number of effective
modes for large shapes was investigated, and it was illustrated that cylindrical
shapes produce roughly as many effective modes per surface area as a sphere.

It remains as an interesting future prospect to formulate similar solutions for



104 Paper III

different constraining quantities, such as the Q-factor.

Appendix A Spherical Wave Matrix
The elements of the loss less impedance matrix are calculated by the integral

Zpq = jkZ0

∫
Ω

∫
Ω

ψp (r1) ·G (r1, r2) ·ψq (r2) dA1 dA2, (21)

where Z0 is the free wave impedance, Ω is the source region, ψp and ψq are
the basis and test functions on the antenna, and dA denotes the area element
integrated over [4]. The Greens dyadic inside of this expression can be written as
a product between out-going and regular spherical vector waves. The radiation
matrix can be found by taking R = Re(Z). By taking the real value of (21) both
of the spherical vector waves become regular and it is possible to split the double
integral into two identical integrals,

Sαp = k
√
Z0

∫
Ω

ψp (r) · u(1)
α (kr) dA, (22)

where u(1)
α are the regular spherical vector waves [29]. Those integrals produce a

matrix denoted as S which is the matrix connecting the basis functions in Ω to the
spherical modes in the far-field. The radiation matrix can thus be decomposed
as Rr = SHS.

Appendix B SVD of the New Channel Matrix
The singular values of a matrix can be calculated by taking the positive square
root of the eigenvalues of the matrix times itself, (eig(‹H‹HH))1/2. By expanding
the channel matrix to its component matrices,

eig(SB−1B−HSH) = eig(SR−1
ν SH), (23)

it can be seen that R−1
ν = (1 + ν)( 1

δRΩ + νRr)−1 needs to be determined inde-
pendent of ν. Due to their good properties, it is possible to decompose both RΩ
and Rr into more manageable matrices. Let’s start with Rr, this matrix is the
real valued part of the MoM impedance matrix Z. It is possible to decompose
Rr as a multiplication between two instances of the S matrix, Rr = SHS, see
Appendix A. The loss matrix can be decomposed using a Cholesky factorization
RΩ = ΥHΥ. Multiplying the two decomposed matrices together, C = SΥ−1,
the expression in (23) can be written as

SR−1
ν SH = (1 + ν)C(δ−1 + νCHC)−1CH

= (1 + ν)UΣ(δ−1 + νΣ2)−1ΣUH (24)
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where an SVD has been taken on C = UΣVH. Putting this back into the
eigenvalue problem (23) a closed form expression can be formed for its solution,

eig(SR−1
ν SH) = (1 + ν)%n

δ−1 + ν%n
, (25)

where %n are the eigenvalues of the generalized eigenvalue problem,

RrIn = %nRΩIn. (26)

The solutions to this eigenvalue problem are known as radiation modes [27].
These are related to the singular values of the matrix C as,

svd(SΥ−1) = (eig(SR−1
Ω SH))1/2 = (eig(Rr,RΩ))1/2 = %1/2

n . (27)

It is evident that one of the main contributions to the singular values of the
optimal channel are these radiation modes. In fact, the only other part of (25)
is a requirement on dissipation factor δ. This is a parameter which the designer
does not, in general, have control over. However, the strength of the radiation
modes %n depend on the geometry of the structure, which is controllable.

Appendix C ν Interval

The linear combination of the two conditions in (9) are valid for values of ν that
ensure that the resulting matrix Rν is positive semidefinite. Since both of its
constituent matrices are positive definite this implies that ν > ν0. The lower
bound can be established by studying the eigenvalue problem in (16),

%n(1 + ν)
δ−1 + ν%n

≥ 0, (28)

%n is always positive since it is a generalized eigenvalue of two positive semi-
definite matrices, therefore the numerator is positive as long as ν > −1. δ and
Rs are positive constants. Therefore we can study the sign of the denominator

δ−1 + ν%n ≥ 0, (29)

giving

ν ≥ − 1
δ%n

, (30)

which provides two lower limits to the interval. The greatest of the two will
provide the limit, i.e., ν0 = max {−1,−1/(δ%n)}.
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Appendix D Dissipated Power Normalization
We can alternatively choose to normalize (9) to dissipated power instead of ra-
diated power. This gives the following optimization problem

maximize log2 det(1 + γ′SPSH)
subject to Tr(RΩP) ≤ 1− η

Tr((Rr + RΩ)P) = 1
P � 0.

(31)

Combining the two conditions gives,

Tr
ÅÅ 1

1− ηRΩ + ν(Rr + RΩ)
ã

P
ã

= 1 + ν (32)

which can be simplified by the introduction of a new matrix, as in (12),

Rν = 1
1 + ν

Å 1
1− ηRΩ + ν(Rr + RΩ)

ã
. (33)

In this case the eigenvalue problem is calculated as in (25) but replacing δ with
1− η

1 + ν(1− η) . (34)

The lower limit on ν is thus calculated as
1 + ν(1− η)

1− η + ν%n ≥ 0, (35)

where we can multiply by the denominator since 0 ≤ (1− η) ≤ 1 because the ra-
diation efficiency exists in the interval 0 ≤ η ≤ 1. This gives, after simplification,

ν(1− η)(%n + 1) + 1 ≥ 0, (36)

which provides a lower limit for ν,

ν ≥ − 1
(1− η)(%n + 1) , (37)

or ν > −1 as concluded in App. C.

Appendix E Sub-Regions
In order to simulate embedded antennas the antenna problem must be reformu-
lated in the currents that are controlled [14]. Consider the MoM matrix for-
mulation ZI = V, divide it into sub-matrices related to the controlled currents,
denoted to subscript a, and induced currents, denoted by subscript g,Å

Zaa Zag
Zga Zgg

ãÅ
Ia
Ig

ã
=
Å

Va
0

ã
, (38)
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where Zag connects the controlled region to the induced region, and Zga connects
the induced region to the controlled region. The right hand side is only non-zero
for the controlled region. The second equation is used to express the induced
currents in terms of the controlled ones,

Ig = −Z−1
gg ZgaIa = ZtIa. (39)

The MoM matrices of the problem can now be reformulated into forms which
only act on controlled currents. Take the Gram matrix Ψ as an example,

IH
a ΨIa = IH

a ΨaaIa + IH
a ΨagIg + IH

g ΨgaIa + IH
g ΨggIg

= IH
a (Ψaa + 2 Re{ΨagZt}+ ZH

t ΨggZt)Ia = IH
a ΨpIa, (40)

where Re{·} is defined as,

Re{A} = A + A∗

2 . (41)

Similarly the S matrix connecting the currents to the spherical waves in the
far-field can be rewritten as,

SHI = SH
a Ia + SH

g Ig = SH
a Ia + SH

g ZtIa = SH
p Ia. (42)
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Abstract

The optimal spectral efficiency of MIMO antennas in an ideal line-
of-sight channel is investigated when bandwidth requirements are placed
on the channel. By posing the problem as a convex optimization problem
restricted by the stored energy a semi-analytical expression is formed for its
solution. It is shown that this solution is solely dependent on energy modes
of the antenna. The ability to induce these modes by utilizing only a few
sub-regions of the antenna is analyzed and compared to the full plate. The
position of these regions is also investigated when they are raised above the
ground plane. The performance of these cases is illustrated by calculating
the optimal spectral efficiency of the unrestricted problem and plotting how
much is lost when extra constraints are added. It is demonstrated that the
spatial diversity of the controlled regions correlates with the number of
significant energy modes.

1 Introduction
Design of MIMO antennas is based on effectively exciting discrete communication
channels with low correlation [18], in so doing the transmittable bit-rate, or
capacity, is increased. A proposed strategy for accomplishing this is to design
the antennas such that they effectively induce modes with orthogonal radiation
patterns, such as characteristic modes, of the structure which they are embedded
in [15–17]. Previously, a method for calculating the optimal performance bound
of a MIMO antenna in an ideal channel was presented in [4, 5]. This upper
bound serves as a measure of how well a certain configuration is utilizing the
total available performance of the design region [5].

Electrically small antennas suffer from a degradation in possible performance
as their size is reduced compared to the wavelength. Some of the parame-
ters where this is most evident are radiation efficiency, directivity, and band-
width [10, 12, 22, 23]. It was shown in [5] that restricting the radiation efficiency
of the antenna does not necessarily restrict embedded regions from inducing the
full available performance of the entire structure. This could be achieved by an-
alyzing the modes that contribute the most to the performance of the antenna
and exciting them effectively. This observation motivates further investigations
of the maximum spectral efficiency for a channel with restricted bandwidth, a
scenario typically valid in the electrically small regime.

Bandwidth can be estimated, for electrically small systems, through the quo-
tient of the energy stored in a system over the energy dissipated by it [19]. This
relation produces accurate estimations and is equal to the Q-factor for single feed,
single resonance systems [25]. This classical relation does not hold for multi-port
systems, such as MIMO antennas, however, for each individual port feeding a
MIMO antenna we have a well defined Q-factor calculated from the stored en-
ergy of the current induced by that port [21]. All of the currents these ports
induce create a total current distribution on the antenna. Restricting the stored
energy calculated from the total current serves as a relaxed problem to limiting
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the stored energy of each port. In this way limiting the stored energy of the total
current density implicitly imposes a bandwidth requirement on the system.

The ports of a MIMO antenna induce a current distribution across the an-
tenna, optimizing the inputs to those ports is a very restricted way of manipulat-
ing the currents on the antenna. Optimizing the current distribution directly is
a relaxed problem to optimizing the ports. This means that the optimal value of
that optimization will always bound the initial problems solution, therefore pro-
viding a performance bound for the antenna. Current optimization is a method
used for calculating the optimal performance of a design region by optimizing
over the possible currents within that region [10]. These currents have the abil-
ity to express all possible solutions that could be created within the considered
volume. By formulating the optimization problem as a convex problem the opti-
mality of the solution is guaranteed, as by definition all local minima of a convex
problem are also global minima [1]. Previously this method has been used to de-
termine performance bounds for antennas in terms of, e.g., Q-factor [10, 11, 13],
efficiency [7,14], directivity [9], and in multi-objective optimization such as spec-
tral efficiency [4,5] or trade-off between Q-factor and radiation efficiency [7]. For
single feed, single resonance antennas these problems can be solved efficiently due
to being expressed as quadratic forms. However, spectral efficiency (capacity), is
evaluated based on the covariance of the current distribution and as such cannot
be formulated as a quadratic form. The capacity expression creates a semi-
definite optimization problem which has one order more of unknowns, making it
computationally demanding to solve [4]. In [5] a method for solving such prob-
lems was introduced. By formulating a dual of the optimization problem [1] and
utilizing the good properties of the matrices restricting it, it is possible to solve
them semi-analytically.

In this letter the method from [5] is applied to an optimization problem re-
stricted by the stored energy of an antenna. A convex optimization problem
for the maximization of the spectral efficiency in the covariance of the current
distribution is stated and solved in Section 2 restricted by the stored energy and
radiated power of the structure. This optimization problem is a multi-criteria op-
timization problem, that forms a Pareto frontier between the spectral efficiency,
stored energy, and SNR. The MIMO antenna is optimized in an ideal line-of-sight
channel consisting of the spherical modes in the far-field [6, 8]. It is shown that
the optimal channel is constructed from the set of modes maximizing radiated
energy while minimizing stored energy, denoted here as energy modes [10]. In
Section 3 this set of modes is used to analyze the ability of embedded anten-
nas to effectively induce the available performance of the entire structure. The
relationship between stored energy restriction and SNR is investigated for these
antennas. Finally, regions situated above the ground plane region are considered,
mimicking the way common cellphone antennas are designed and fed [24]. The
position of these is considered in relation to the edge of the structure.
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2 Theory

A MIMO system is described by

y = Hx + n, (1)

where y are the received signals, H is the channel matrix, x are the transmitted
signals, and n is the noise density in each of the receivers [18]. In order to calculate
optimal performance bounds for a MIMO antenna in an arbitrary scenario either
the transceiver or receiver needs to be idealized. Here we choose to model the
receiver as an idealized absorber perfectly matched to all spherical waves reaching
the far-field, characterized as the spherical modes in the far-field. The diversity of
the transmitted signal is measured as the diversity in the spherical modes. This
configuration lets us bound the performance of one MIMO antenna in terms of
its total transmitted power to the far-field [4–6, 8]. The currents induced across
the antenna are modeled by MoM [2]. Instead of optimizing the ports inducing
these currents, the currents themselves serve as the inputs to the MIMO system
in (1).

The optimal spectral efficiency of a MIMO channel can be calculated by
solving the optimization problem [5],

maximize log2 det(1 + 1
N0

SPSH)

subject to Tr(RrP) = Pr

P � 0,

(2)

where N0 is the noise spectral density, Pr is the radiated power, S is the channel
matrix connecting the antenna to the spherical modes [6,20], P is the covariance
of the currents [4], and Rr = SHS is the radiation matrix [2,20]. Because none of
the channels are penalized in this formulation, the optimal solution has equally
allocated power [18]. Therefore, the optimal spectral efficiency converges to

log2 det(1 + γSPSH) = M log2

Å
1 + Pr

MN0

ã
≈ γ

log(2) , (3)

where M is the number of channels, log is the natural logarithm, and γ = Pr/N0
is the total SNR. This is the optimal unconstrained spectral efficiency. When
adding any constraints or penalties to the channel or antenna we can measure
how much is lost in comparison with this ideal spectral efficiency.

Additional constraints must be added to (2) in order to reflect realistic re-
quirements put on the antenna design [4,5]. Here we want to investigate how the



116 Paper IV

bandwidth affects the spectral efficiency and thus formulate the problem,

maximize log2 det(1 + γSPSH)

subject to Tr((Xe + Xm)P) ≤ 2ωWtot

Pr

Tr(RrP) = 1
P � 0,

(4)

where Xe and Xm are the stored electric and magnetic energy matrices, respec-
tively, all equations have been normalized to the radiated power, unit radiated
power is considered, ω is the angular frequency, and Wtot is the allowed stored
energy. This stored energy converges to the Q-factor for single feed, single res-
onance systems at resonance [10]. However, for a multi-port system, such as
a MIMO antenna, this problem is a semi-definite relaxation [1] of the problem
where the stored energy is limited for each port feeding the antenna. This means
that the solution to (4) will always be an upper bound to the problem limited by
the individual stored energies of the ports.

The optimization problem (4) is solved by reformulating it in such a way that
the constraints are included into the channel matrix [5]. If this is done (4) can
be written in the same form as (2), with the difference that the channels are still
penalized by their stored energy. A problem of this form can be solved by taking
the singular value decomposition of its channel matrix, and performing water
filling to find the optimal energy allocation over those singular values [18]. The
water filling optimization is formulated as,

maximize
M∑
n=1

log2
(
1 + anγσ

2
n

)

subject to
M∑
n=1

an = 1

(5)

where an ≥ 0 is the power allocation fraction in each channel, and σn is the
singular value of the corresponding channel. The maximum to this problem is
easily found by iteratively filling each channel until it is more beneficial to fill the
next instead [18].

The singular value decomposition of the channel matrix in (4) can be found by
formulating a dual problem which is only restricted by one condition formed from
an affine combination of the first two [1,5]. This solution method is reliant on the
matrices present in (4) being positive semi-definite which ensures the problem to
be convex. The matrices Xe and Xm are in general indefinite, however, it was
shown in [10,19] that they are positive semi-definite when the electrical size of the
considered structure is less than half-a-wavelength. By restricting our problems
to that size it allows us to use the method presented in [5] to compute the singular
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values of the optimal channel matrix. That method gives the singular values

σ2
n = wn(1 + ν)

Pr

2ωWtot
+ wnν

, (6)

where ν is the scalar combining the two conditions in (4), and wn are the eigenval-
ues of a set of modes we call energy modes [10]. The energy modes are calculated
through the generalized eigenvalue problem

RrIn = wn(Xe + Xm)In, (7)

where In are the mode currents. These modes are similar to characteristic modes
in the sense that they have the property of orthogonal radiation patterns. How-
ever, instead of being resonant across the structure they minimize the total stored
energy in it. This has the effect of implicitly maximizing the bandwidth of the
modes. Effectively inducing these modes improves the optimal channel (6), there-
fore increasing the optimal spectral efficiency. The amplitude of this set of modes
is solely dependent on the geometry of the structure, i.e., the design of the an-
tenna.

3 Results
Antennas inside communication devices are in general much smaller than the
total device size [24]. This means that only a sub-region is utilized to excite
currents over the entire device that are used for communication. It is possible to
solve for the optimum solution of (4) when controlling only a sub-region of the
device by reformulating the problem in only the controlled currents of the sub-
region [5]. This is interesting to investigate since bandwidth and stored energy
are usually harshly punished by reducing the size of the structure. By studying
the eigenvalues wn for a few sub-region cases relative to the energy modes of the
entire plate we can determine if it is possible to induce the full performance of
the plate through them. In Fig. 1 we see that there is a considerable gap between
the eigenvalue of the full plate compared to the sub-regions. This contrasts to
the results in [5] where it was shown that, when restricting (4) by efficiency,
it is possible to induce the entire structures available performance while only
feeding a couple of small sub-regions. We can also see that the two diagonally
placed elements in case B outperform the two elements in case C for all mode
indexes except the second. This is similar to the case in [5] due to the first and
second order modes being induced diagonally across the plate. Therefore the two
diagonally situated sub-regions do not effectively induce the second mode across
the opposite diagonal. The eigenvalues of the circumscribing spherical shell have
been included as a reference, and we can see that they are significantly higher
than those of the plate.

In Fig. 2 the optimal spectral efficiency loss, in comparison with the ideal (3),
for the plate and its sub-regions presented in Fig. 1 is depicted as a function of
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Figure 1: The eigenvalues wn of a spherical shell, a rectangular plate with
aspect ratio 2 : 1, and several of its sub-region arrangements. All the eigenvalues
have been normalized to the first energy mode of the full plate, the electrical size
is ka = 1 with k being the wavenumber and a being radius of the smallest sphere
circumscribing all the sources.

the maximum allowed stored energy. This Pareto-type curve delimits the feasible
region of the problem and reveals that the capacity and the stored energy are
strictly conflicting parameters. Here, it is evident that even with four sub-regions
placed in the corner of the plate, as in case E, we are far from achieving the
optimal spectral efficiency available to the entire plate. In contrast to the case
studied in [5] that was restricted by efficiency, this effect remains the same when
the size of the plate is reduced. Instead of narrowing the gap between the full plate
and its sub-regions, as in [5], a reduction of size makes the sub-region solution
unfeasible, due to their lower bound for stored energy increasing [3]. Therefore,
we can conclude that the optimal performance of the embedded MIMO antennas
is more restricted by the limited bandwidth than the requirements on radiation
efficiency.

By picking a value of ωWtot/Pr = 50 where all sub-region solutions are feasi-
ble we can instead study the effect of the SNR on the optimal spectral efficiency
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Figure 2: The optimal spectral efficiency loss in comparison to the ideal (3)
for the ka = 1 spherical shell, plate with aspect ratio 2 : 1, and its sub-regions
presented in Fig. 1 for different stored energy restrictions. The SNR has been
set to γ = 10.

loss. In Fig. 3 we see that all cases studied converge towards the ideal optimal
spectral efficiency when the SNR γ is very small. This is due to the formulation
of problem (4) where the radiated power is normalized. All different solutions
radiate the same small amount of power at these values without any discernible
difference. As SNR increases we see how the cases start to deviate. It is inter-
esting to note that case C, from Fig. 1, outperforms case B, even though case B
has a higher mode strength for all modes except the second one, indicating that
the two first modes are the two most heavily utilized in this simulation. This has
been verified by viewing the power allocation after optimization.

For many applications where embedded antennas are used, such as mobile
phones, the antennas are not truly embedded inside the ground plane. Normally
there is a substrate layer, or edge that the antennas have been designed upon [24].
In the top of Fig. 4 such a geometry, with regions raised above the ground plane,
is illustrated. Here the gap between the regions and the ground plane has not
been filled with any material. The placement of the regions has been done in
accordance with the intuitive understanding for minimizing stored energy, i.e.,
maximal charge separation, see Fig. 1. In Fig. 4 the performance of case E, with
4 regions, has been considered when the placement of the regions is shifted in
from the edge. Here, it is possible to see the cost of moving away from the edge
position considered in the other examples. By shifting incrementally we can see
that we quickly loose a significant amount of performance. This effect may be
due to the fact that currents need to flow around the outer edges of the regions
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Figure 3: The optimal spectral efficiency loss in comparison to the ideal (3) for
a spherical shell, a plate with aspect ratio 2 : 1 and its sub-regions presented in
Fig. 1 for different SNR. The stored energy has been chosen as ωWtot/Pr = 50
and electrical size as ka = 1.

rather than being fed directly along the plate. In this case the regions are only
connected to the ground plane on two edges, if all edges are connected the loss
is even greater. Such a case is similar to when the regions are fully embedded
within the ground plane. The raised regions can realize their solution for regions
shifted more from the edge, but upon comparison of the case when the regions
are placed on the edge, in Figs. 2 and 4, it is clear that the performance does not
increase dramatically.

4 Conclusions
The optimal spectral efficiency bound of a MIMO antenna in an ideal channel has
been considered when restricted by the stored energy. The Pareto-type bound
has been illustrated in comparison to the degradation of the optimal spectral
efficiency of the unrestricted problem. It has been shown that a set of modes
known as energy modes serves as a useful design tool when analyzing performance
of such antennas. However, due to the harsh penalties on stored energy when
reducing the design region, it has been concluded that it is not possible to reach
the full potential of the plate while only feeding it with a set of small sub-regions.
The placement of these regions has also been analyzed, and it could be seen that
the performance quickly deteriorated when they were moved away from the edge
of the structure.
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Figure 4: The optimal spectral efficiency loss compared to the ideal case for
the ka = 1 spherical shell, plate with aspect ratio 2 : 1, and case E, present in
Fig. 1 with its regions raised L/20 above the ground plane, as well as when those
regions are shifted in a number of mesh cells towards the center as shown above.
The restricting stored energy Wtot has been swept and the SNR has been set to
γ = 10.

While out of the scope of this letter, this method has the potential to in-
clude statistical channel models and more realistic scenarios. The modal analysis
could also be carried out on designed antennas to evaluate their adherence to the
principals suggested here. Generalizing this method to include several different
design parameters remains an interesting future prospect.
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Abstract
Though commonly used to calculate Q-factor and fractional bandwidth,

the energy stored by radiating systems (antennas) is a subtle and challeng-
ing concept that has perplexed researchers for over half a century. Here, the
obstacles in defining and calculating stored energy in general electromag-
netic systems are presented from first principles as well as using demonstra-
tive examples from electrostatics, circuits, and radiating systems. Along
the way, the concept of unobservable energy is introduced to formalize such
challenges. Existing methods of defining stored energy in radiating systems
are then reviewed in a framework based on technical commonalities rather
than chronological order. Equivalences between some methods under com-
mon assumptions are highlighted, along with the strengths, weaknesses,
and unique applications of certain techniques. Numerical examples are
provided to compare the relative margin between methods on several radi-
ating structures.

1 Introduction
For many in the field of electromagnetics, stored energy is best known by its
appearance in the definition of a time-harmonic system’s Q-factor (quality factor,
antenna Q, radiation Q) [47,48],

Q = 2πWsto

Wdiss
, (1)

from which an estimate of fractional bandwidth is available. In the above ex-
pression, Wsto and Wdiss denote the cycle-mean stored and dissipated energies
within the system, respectively. The dissipated energy is typically well defined
and can be easily calculated, while in many cases the definition of stored energy
is ambiguous. This issue is particularly troublesome in distributed and radiating
systems, where there exists no consistent, physically-intuitive method of delin-
eating the overlap between energy which is stored and that which is propagating.
Analogous problems can be encountered in lumped circuits, where specific net-
works can be arbitrarily inserted to increase the total energy without altering
the impedance characteristics as seen from a port. The first of two goals of this
paper is to elucidate the challenges involved in defining stored energy within a
general electromagnetic system. To do so, we draw upon examples of lumped
circuits and radiating systems which exhibit the general issue of “unobservable
energy states”. Although this concept is somewhat abstract, it provides a consis-
tent framework for understanding what makes defining stored energy in certain
systems so difficult.

Because of the powerful relationship between fractional bandwidth and stored
energy, many researchers have worked to rigorously define stored energy in an
attempt to obtain bounds on the broadband behavior of systems. Of particular
practical and historical importance is the study of stored energy in radiating
systems, i.e., antennas. Work in this area dates back over half a century and
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has given rise to many unique (and sometimes controversial) interpretations and
claims. One regime where most methods agree is in the quasi-static limit, i.e., for
small antennas. However, for problems involving larger antennas or antennas next
to larger objects (e.g., ground planes or human bodies), most methods disagree
and there is no consensus on a definition of stored energy. In some cases, the
similarities and differences between these existing approaches are clear, though in
other instances the technical and philosophical connections between works from
different eras are more subtle. The second goal of this paper is to provide a clear
summary of the many previously published approaches to defining stored energy,
with emphasis on works studying distributed and radiating systems. We aim to
provide not a chronological history of this topic, but rather an organized guide
to the major themes and concepts used in previous works.

The paper is organized as follows. In Section 2, we present a general definition
for stored energy within an electromagnetic system using the concept of unobserv-
able energy states. In Section 3, existing approaches to defining and calculating
stored energy within radiating systems are summarized. Where applicable, the
similarities and differences between these methods are highlighted, along with
their strengths, weaknesses, and relation to the formal definition of stored energy
given in Section 2. Analytical and numerical examples are presented in Section 4,
giving both quantitative and qualitative insight into the relative results obtained
by the methods outlined in Section 3. The paper concludes with a discussion of
applications of certain methods in Section 5 and general conclusions in Section 6.
Further details are provided on the classical definition of stored energy in Box 1,
unobservable states in Boxes 2 and 3, and electrostatic energy in Box 4.

2 Definition and Physical Rationale of
Stored EM Energy

The total energy of a dynamic system, see Box 1, represents a well-known and
fundamental characteristic describing the energy stored in all of its degrees of
freedom. By contrast, the observable part of total energy is a more subtle quan-
tity typically defined in such a way that its value has a direct correspondence
with the input / output relation of the system as seen by a fixed observer [89]. In
lossless systems, these two quantities are equal due to the Foster’s reactance the-
orem [43, Sec. 8-4], [11]. In general dissipative systems, however, they lose their
relation due to the presence of states not observable from outside the system, see
Boxes 2 and 3.

The energy supplied to a radiating system is converted into several different
forms. Consider a radiator made of non-dispersive isotropic medium with per-
mittivity ε, permeability µ and conductivity σ, which is placed in otherwise free
space (effects induced by frequency dispersion are discussed in Appendix A). The
radiator is enclosed within a volume V with bounding surface S, see Figure 1.
Here we use, E and H to represent the time-domain electric and magnetic fields,
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Box 1. Stored Energy in Circuits and Systems

Many dynamic systems in nature can be modeled as

∂

∂t
Wu + Pu = Bvin with uout = BTu, (2)

where vin and uout denote the input and output signals, u the system’s internal
states, and W, P, and B are matrices describing the system [89]. To construct
an energy balance of such a system over an interval [t1, t2] we multiply with the
states u and integrate to getñ

uTWu
2

ôt2
t1

+
∫ t2

t1

uTPu dt =
∫ t2

t1

uT
outvin dt, (3)

in which T denotes matrix transpose. The left-hand side can be identified as
the difference in stored energy and dissipation of energy during the interval and
the right-hand side is the supplied energy, cf., the definition in Section 2. The
definition and interpretation of the stored energy depend on the properties of
the matrices W, P, and B.
Systems representable by (2) can contain states that are unobservable to an
observer seeing only the input and output signals. These states can contain
unobservable energy [89]. The time-average stored energy (3) for time-harmonic
signals u(t) = Re{Uejωt} is UHWU/4, where we note that the system matrix
W can be determined by frequency differentiation of the matrix Z obtained
from (2), i.e.,

Z = P + jωW with W = ∂ Im{Z}
∂ω

. (4)

By (2), it is implicit that P and W are frequency-independent in this classical
system model. Probably one of the most familiar systems which follows the
form (3) is a lumped circuit. Here, the input and output states are the voltages
V and currents I, respectively. These are related through either the explicit
summation of all circuit components or their impedance matrix [70]

Z = R + jωL + 1
jωCi, (5)

where R describes the resistive components of the circuit and matrices L and
Ci represent the reactive elements. The impedance matrix relates the current to
the voltage as ZI = V. To reach the stored energy form in (3) we differentiate
the impedance matrix with respect to ω and multiply with the current I and its
hermitian conjugate IH from the right and left, respectively. This expresses the
time-average stored energy, average of the first term in (3) for a time-harmonic
signal, as the quadratic form [70]

Wsto = 1
4IHLI + 1

4ω2 IHCiI, (6)

where the classical expressions for the stored energy in inductors and capacitors
are recognized [90].
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Box 2. Unobservable Energy, Part 1
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Unobservable states are defined as those states which cannot be identified by an
observer performing a macroscopic electromagnetic measurement. To provide an
example, let us suppose a yet unknown system, schematically depicted in panel
(a). This system is examined by an observer at its input port and quantified by
its reflection coefficient Γ , [21]. From the information obtained at the port, we
can attempt to construct the system within. The simplest circuit that fits the
measured data, depicted in panel (b), is an RLC circuit, see panel (c). However,
the resistor in the RLC circuit can be arbitrarily replaced by circuit elements
of the Zöbel type [96], see panel (d), without affecting exterior results observed
at the port. If we now assume to be able to access the internal structure of the
constructed circuits, we can calculate the energy stored in the reactive elements.
It then becomes apparent that the added Zöbel circuit does affect the stored
energy without changing what is observed at the port. Thus, these two valid
circuit realizations for the same mea+sured reflection coefficient predict different
values of stored energy. This illustrates that depending on the specific circuit
realization, the stored energy, unlike the reflection coefficient, can potentially
be altered by states unobservable to the outside observer. This is true for
all quantities inferred from stored energy, including the Q-factor in (1). It
is also important to appreciate that how much of a system’s stored energy is
observable explicitly depends on the observer. If, for example, the observation
procedure would include both measurement of the the reflection coefficient Γ
and measurement of heat produced by the circuit, the observer will be able to
distinguish circuit (c) from circuit (d), since the time evolution of heat differs
in them. Heat however belongs to a microscopic electromagnetism and does not
belong the set of measurements allowed in this paper.
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Box 3. Unobservable Energy, Part 2
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Unobservable energy can be encountered in many basic electromagnetic devices,
such as a matched transmission line or a radiating antenna system, see panels (a)
and (b) above. In both of these cases, traveling energy exists but is unobservable
for an observer at the input port. Specifically, the total energy within the
transmission line circuit in panel (a) can be arbitrarily altered through changes
to the line length l with no effect on the impedance seen from the input port cf.,
with lumped circuit models for a transmission line [26]. Similarly, the energy
stored within the radiating system in panel (b) depends on the definition of the
spatial boundary at which energy “leaves” the system, though this boundary
has no effect on the port impedance. For time-harmonic signals and a system
boundary chosen at infinity, i.e., the far-field sphere, the system in panel (b)
contains an infinite amount of traveling energy.

respectively, while J source denotes an impressed current distribution. Assuming
the initial conditions E (r, t→ −∞) = 0, H (r, t→ −∞) = 0, Poynting’s theo-
rem can be written as [49,66]

Wsupp (t0) =WEM (t0) +Wheat (t0) +Wrad (t0) , (7)

where the supplied energy is

Wsupp (t0) = −
t0∫

−∞

∫
V

E ·J source dV dt, (8)

the energy lost in heat is

Wheat (t0) =
t0∫

−∞

∫
V

σ |E|2 dV dt, (9)

and the net energy escaping the volume through the bounding surface S is

Wrad (t0) =
t0∫

−∞

∫
S

(E ×H) · n̂ dS dt. (10)



132 Paper V

R3

S∞

V

S ≡ ∂V

n̂

r = a

O

r →
∞

Ω

Figure 1: Sketch of an antenna region Ω, a smallest circumscribing sphere of
radius a, an arbitrary volume V with its boundary surface S and the far-field
sphere bounded by S∞.

These terms account for energy supplied to and lost from the system, letting
us define the remaining term in Poynting’s theorem as the total electromagnetic
energy stored within the volume V at time t = t0,

WEM (t0) = 1
2

∫
V

Ä
ε |E|2 + µ |H|2

ä
dV. (11)

All aforementioned quantities depend upon a choice of volume V and its bounding
surface S. A specific choice of the surface S lying in the radiation zone1 [49] leads
to (11) representing the total electromagnetic energy and (10) the total radiated
energy. This division, however, depends on surface S due to time retardation.

The energy defined in (11) encompasses all electromagnetic energy localized
in the chosen volume V containing the system. Nevertheless, for an observer
situated at the input port of the system, the entirety of energy WEM is not
necessarily observable, see Box 2. By definition, Unobservable energy states
cannot affect physical measurements at the location of the observer. For this
observer a more sensible definition of the stored energy is,

Wsto (t0) =WEM (t0)−Wunobs (t0) , (12)

where Wunobs (t0) is the energy of all unobservable states. This definition sug-
gests that the value of stored energy depends on the position of the observer.
Throughout this paper it is assumed that the observer is positioned at the input
port of the electromagnetic system and therefore perceives the minimum stored

1Here we make an assumption that electric and magnetic fields are temporarily bandlimited
and thus the radiation zone can be defined in a usual manner by the dominance of the 1/r field
components.
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energy from all observers. Note, however, that even the minimum value of en-
ergy Wsto (t0) is not necessarily recoverable [23, 62] by experiments performed
at the location of the observer (recoverable energy Wrec (t0) is detailed later in
Section 3). The stored energy is fully recoverable only in special cases, the most
important being closed lossless systems satisfying Wheat (t0) + Wrad (t0) = 0.
Examining the properties of aforementioned energy definitions, we arrive at the
following inequality

0 ≤ Wrec (t0) ≤Wsto (t0) ≤We (t0) ≤ Wsupp (t0) . (13)

In the preceding discussion, all quantities are defined in the time domain.
However, in many cases cycle mean values of the energies in (10), (11) and (12)
in time-harmonic steady state are of interest, where time-harmonic quantities at
angular frequency ω are defined as G(t) = Re{G(ω)ejωt} and cycle means are
denoted as 〈·〉. The conversion of all preceding energy terms into time-harmonic
domain is straightforward, but induces an issue with potentially unbounded en-
ergy values. This happens when the volume V is chosen to consist of all space
(denoted V∞) with bounding surface S being a sphere at infinity (denoted S∞).
In such a case the time-averaged total electromagnetic energy

WEM = 〈WEM〉 = 1
4

∫
V∞

Ä
ε|E (ω)|2 + µ|H (ω)|2

ä
dV (14)

is infinite due to the infinite amount of radiation energy contained in propagating
fields within the volume V∞. Subtracting the propagating energy from the total
energy WEM, i.e., to identify unobservable energy with radiation, is the aim
of several approaches calculating the stored energy Wsto = 〈Wsto (t0)〉. These
methods rely on the fact that time-averaged radiated power

Prad =
∫
S∞

P (ω) · r̂ dS = 1
2Z0

∫
S∞

|E (ω)|2 dS = 1
2Z0

∫
S2
|F (ω)|2 dS (15)

in time-harmonic steady state is the same for all surfaces enclosing the sources.
The quantities

F (ω) = lim
r→∞

rejkrE(ω) (16a)

P (ω) = 1
2 Re{E (ω)×H∗ (ω)} (16b)

used above denote the far field and the real part of the Poynting’s vector, respec-
tively. In the far right-hand-side of (15), surface S2 denotes the unit sphere and
k = ω/c0 in (16a) denotes the free-space wavenumber. When used to evaluate
Q-factor, the cycle-mean stored energy Wsto is normalized by the cycle-mean
dissipated energy (see (1)). In radiating systems without ohmic losses, the cycle-
mean dissipation reduces to the radiated power Prad in (15).

Note that in many cases, the Q-factor in (1) is assumed to be tuned such
that the system as a whole is resonant. In general, a non-resonant system can
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Box 4. Electrostatic Energy Expressed in Fields, Circuits, and
Charges

Electrostatic energy We is thoroughly treated in many classical textbooks [26,
49, 56] with a clear consensus on its definition, see [26] for a discussion. The
energy We can be expressed in three equivalent ways as

We = 1
2

∫
R3
ε0|E(r)|2 dV = 1

2

∫
Ω

φ(r)ρ(r) dV

= 1
2ε0

∫
Ω

∫
Ω

ρ(r1)ρ(r2)
4π|r1 − r2|

dV1 dV2, (18)

where E denotes electric field intensity, φ electric potential and ρ charge density
supported in Ω ⊂ R3, see Figure 1. Below, we consider a PEC object Ω with
the total charge

∫
ρ dV = qtot. From left to right, the terms in (18) represent

energy expressed in:
• fields, where the electric energy density ε0|E|2/2 is integrated over all

space,
• circuits, where a constant potential φ = V on the PEC object is used to

rewrite the energy We = V qtot/2 = CV 2/2 in terms of capacitance C,
• charges, where a double integral over the source region is used.

These representations offer alternative expressions and ways to evaluate the
energy. Similar interpretations are observed for the electromagnetic energy
discussed in Section 3.

be tuned by the addition of a specific reactance, which stores additional energy
Wtune. The tuned Q-factor can then be explicitly rewritten as

Q = 2π (Wsto +Wtune)
Wdiss

. (17)

Since the stored energy in a pure reactance is well-defined, throughout this paper
we discuss only the general stored energy Wsto.

3 Existing Methods
So far, we have discussed stored energy only in terms of the abstract definition
in (12) involving the total and unobservable energies. For practical purposes,
more specific expressions are required to evaluate a system’s stored energy. This
Section compares many methods developed to calculate the stored energy in
electromagnetic systems. These methods vary in approach and generality, though
most were motivated by the desire to calculate the Q-factor of radiating systems,
as defined in (1).
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Method Properties Requirements Reference

rind Wsto ≥ 0 J -opt Data Domain Region

Fi
el
d WPr E,H ω0 R3 §3.1.1

WP E,H ω0 R3 §3.1.2
WF E,H or Xin,F ω0 R3 or Port, S∞ §3.1.3

C
ur
re
nt

WX′ Z, I ω0 Ω §3.2.1
Wreac J ω0 Ω §3.2.2
W‹X′ Z, I ω0 Ω §3.2.3
Wtd (t0) J t Ω, S∞ §3.2.4

Sy
st
em WZB

in
Zin, Iin ω Port §3.3.1

Wrec(t0) Zin, Iin ω Port §3.3.2

QFBW Zin ω Port §3.4.1
QZ′ Zin ω0 Port §3.4.2

Table 1: Methods for evaluating stored energy. Rows are grouped by the data
required for its evaluation, i.e., methods derived from fields (blue), source distri-
butions (green), and systems (red). The final two uncolored methods are metrics
not generally related to stored energy which are used for comparison purposes.

The many attempts at defining and calculating stored energy in radiating
systems can be classified and grouped in several ways, cf., the electrostatic case
in Box 4. In this section, we briefly discuss these methods using the physical
quantities required in each technique as a primary distinguishing feature. All
discussed methods are listed in Table 1, where they are grouped using this con-
vention. Specifically, methodologies are grouped into those derived mainly from
electromagnetic fields (blue color), those with energy values directly calculable
from source current distributions (green color), and those which take a more
abstract system-level approach (red and gray color).

This particular division is by no means unique, and throughout this section
mathematical equivalences and philosophical similarities between methods are
discussed.

The data required for implementing each method are listed in the Require-
ments column, along with the region over which those data sets are required.
These regions are denoted using R3 to represent all space, Ω the support of
sources, S∞ the far-field sphere, and Port the port of the system. Three salient
features are indicated for each method in the Properties column. These features
are:

• coordinate independence, rind: A check mark in this column indicates that
energy expressions are coordinate independent, i.e., they are independent
of an antenna’s position within a coordinate system.

• positive semi-definiteness, Wsto ≥ 0: In Section 2 it was argued that the
stored energy Wsto should always be non-negative. A check mark in this
column indicates that energies obtained by a given method obey this re-
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E

R3

Figure 2: Sketch of electric field intensity E generated by dominant TM10
spherical mode.

quirement.

• applicability to current optimization, J -opt: A check mark in this column
indicates that a given formulation of stored energy can be directly applied to
source current optimization, useful in determining certain physical bounds.

For the sake of simplicity, all the methods described in Section 3 are presented
assuming radiators made only of PEC or assuming electric currents placed in
a vacuum environment. All presented methods however allow generalization to
non-dispersive inhomogeneous media of finite extent, although validations of such
generalizations are scarce. Specific information regarding this procedure for each
method is left to corresponding subsections. Similarly, certain methods may
be applicable to systems containing dispersive media, though the accuracy and
interpretation of results in these cases is still an open area of study.

3.1 Stored Energy Expressed in Terms of Elec-
tromagnetic Fields

Methods derived from the fields E andH attempt to calculate stored energy (12)
by subtracting unobservable energy from the total energy locally at the level of
electromagnetic fields around the radiator, see Figure 2. These procedures com-
monly allow for the definition of a local stored energy density by identifying
energy in radiating fields as unobservable energy. An explicit relation for the
unobservable energy density can be identified in these methods, and is given by
the subtraction terms in (19), (20) and (21). An advantage of these methods is
that they require only field quantities, not the physical structure of the radia-
tor. However, these methods are typically computationally demanding, render-
ing even simple optimization tasks prohibitively expensive. Other common issues
are the unknown form of unobservable energy within the smallest sphere circum-
scribing a source region Ω (which can lead to over-subtraction [38]) and omission
of other forms of unobservable energy such as non-radiating currents [79], see
also Boxes 2 and 3. In all known cases, general dispersive materials cannot be
treated with these methods. The inclusion of non-dispersive materials can be
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made [18, 20, 94] in all methods described in this subsection by changing ε0 → ε
and µ0 → µ in the first two terms in (19), (20) and (21).

The published results are dominated by analytic evaluation of the stored
energy for spherical modes in the exterior region of a sphere circumscribing the
radiator [18,20,25]. The radiated power (15) expressed in the power flux and the
far field are identical for this case and the classical expressions can be extended to
arbitrary shapes in several ways. Here, we consider radiated energy expressed as
the: power flux in the radial direction, magnitude of the power flux, and far-field
amplitude, see first three rows in Table 1.

3.1.1 Subtraction of the radial power flow r̂ · P
Collin and Rothschild [20] suggested identification of radiated energy with the
power flux in the radial direction to define the stored energy as

WPr = 1
4

∫
R3

(
ε0|E|2 + µ0|H|2 − 4√ε0µ0 r̂ · P

)
dV. (19)

They used this expression to evaluate the stored energy in the exterior of a sphere
using mode expansions and produced explicit results on the Chu [15] lower bound,
see also [18] for a time-domain extension. The expression (19) is non-negative
and does not subtract energy for standing waves, e.g., in the interior of a sphere
for spherical mode expansions [20, 25]. The main drawbacks of (19) are the
coordinate dependence and the need for numerical integration for general fields,
see [71,72] for spheroidal geometries and [17] for an FDTD approach.

3.1.2 Subtraction of the magnitude of the power flow |P |
The problem with coordinate dependence in (19) can be resolved by subtraction
of the magnitude of the power flow |P |, i.e.,

WP = 1
4

∫
R3

(
ε0|E|2 + µ0|H|2 − 4√ε0µ0|P |

)
dV. (20)

This expression for the stored energy was originally proposed in an equivalent
form by Counter [22]. The expression is identical to (19) for fields expressed as
a single spherical mode [22]. It is non-negative and less than or equal to (19)
for general fields with a power flow in non-radial directions. The main drawback
with (20) is the numerical evaluation of the energy density over R3.

3.1.3 Subtraction of the far-field amplitude |F |2

The energy of the radial component of the power flow, subtracted in the pre-
vious method (19), can be expressed in the far-field amplitude |F |2 outside a
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J

Ω

Figure 3: Illustration of surface current of dominant TM10 mode on a spherical
shell Ω.

circumscribing sphere. This leads to the formulation [25,29,30,33,57,65,94]

WF = 1
4

∫
R3

Å
ε0|E|2 + µ0|H|2 − 2ε0

|F |2

|r|2

ã
dV

= 1
4
∂Xin

∂ω
|I0|2 −

Im
2Z0

∫
S2

∂F

∂ω
· F ∗ dS (21)

for the stored energy, where S2 denotes the unit sphere and the frequency deriva-
tives are evaluated for a frequency independent input current I0. Here, all radi-
ated energy is subtracted and the expression makes no difference between stand-
ing and radiating waves, e.g., in the interior of the smallest circumscribing sphere.
Hence, the energyWF differs fromWPr by kaPrad for spherical modes and implies
a difference of the Chu bound by ka, i.e., QChu − ka. Variations of (21) exist in
the literature and, e.g., Rhodes [65] suggested to use subtraction (21) only in the
exterior region, keeping the total electromagnetic energy in the interior region.
A shielded power supply is also often excluded from the integration in (21), [94].
This is equivalent to setting the E and H to zero in the region of the power
supply.

The stored energyWF in (21) can be rewritten using the frequency-differentiated
input reactance X ′in and far field F ′ for antennas with a fixed feeding current I0
using a reactance theorem [25,65,94]. This form of the stored energy is shown in
the far right of (21) and simplifies the numerical evaluation from a volume inte-
gral to a surface integral. Moreover, it shows that the energy WF is coordinate
dependent for non-symmetric radiation patterns [33,94]. The reactance theorem
is extended to complex media in [91, 94]. The formula (21) is also rewritten in
the current density in [33], see Section 3.2.2.

3.2 Stored Energy Expressed in Currents
Several methods exist for calculating the energy stored by a source current distri-
bution J placed in vacuum, see Figure 3. These methods can be used to evaluate
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stored energy from any system (including materials, feeds, and ports) which can
be represented by an equivalent current distribution J . A powerful feature of
this approach is an immense reduction of information needed to evaluate stored
energy. Commonly, only current densities on finite surfaces are needed. These
methods are also well suited for various tasks in antenna design [37], since the
feeding which leads to the current density J need not be known. This makes it
possible to determine fundamental performance bounds on antennas with given
support [8, 35,37,50] or to utilize modal decomposition methods [4].

Similarly to field approaches, the methods discussed in this subsection identify
radiation energy as unobservable energy. In contrast to the field-based methods,
however, the explicit form of the unobservable energy is, with an exception of
Sec. 3.2.4, not known for current-based methods. Their use for evaluation of
(12) for lumped circuits will thus always count the entire electromagnetic energy
WEM regardless of the complexity of the circuit. The formulation of the methods
for general dispersive materials is not well studied except for the state-space
MoM approach in Section 3.2.3. In the case of non-dispersive materials, electric
polarization can be included in the current density J .

3.2.1 Differentiated MoM reactance matrix X′

Harrington and Mautz [46] proposed to use frequency differentiation of the MoM
reactance matrix

WX′ = 1
4IH ∂X

∂ω
I = 1

4IHX′I (22)

to estimate the stored energy. The reactance matrix is determined from the
impedance matrix Z = R + jX derived from the MoM approximation of the
Electric Field Integral Equation (EFIE) [14]. The expression (22) is not derived
in [46], but is merely motivated by the analogous expression of Foster’s reactance
theorem for lossless systems [44], see also (30). The stored energy for lumped
circuit networks can be determined with the formula (22) by substituting the
MoM impedance matrix with the lumped circuit impedance matrix, see (5) and
[70].

For currents in free space, the expression (22) is identical to the MoM state-
space approach in Section 3.2.3 and the MoM approximation of the stored energy
expressions by Vandenbosch [80]. Hence, it also suffers from the matrix X′ being
indefinite for large structures and potentially producing negative values for the
stored energy [38]. The expression (22) is easily applied to temporally dispersive
materials but is inaccurate for many cases [40], cf., the state-space MoM approach
in Section 3.2.3.

3.2.2 Reactive energy
The expressions in the frequency domain introduced by Vandenbosch [80] start
from the same classical idea as described by Collin and Rothschild [20]: the sub-
traction of the radiated energy density from the total energy density. However,
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the subtracted term is defined in a slightly different way on the basis of an energy
balance equation involving the derivatives of Maxwell’s laws. The resulting dif-
ference is analytically integrated over all space, yielding closed-form expressions
for the reactive energy (both the electric and magnetic part) in terms of the cur-
rents flowing on the radiator. The new definition thus eliminates the coordinate
dependency, resulting in the expression

Wreac = Z0

4ω

∫
Ω

∫
Ω

Å (
k2J1 · J∗2 +∇1 · J1∇2 · J∗2

) cos(kr12)
4πr12

− k
(
k2J1 · J∗2 −∇1 · J1∇2 · J∗2

) sin(kr12)
4π

ã
dV1 dV2. (23)

This expression was later found to conform [33] to the coordinate independent
part of energy WF given by (21). The same expression is found also from a line
of reasoning starting in time domain [83], [84]. The expression is positive semi-
definite for circuits and small radiators but indefinite for larger structures [38].
This method essentially can be seen as a “transformation” of the original field
based definition (21), acting on all space, into a current based interpretation,
acting only within the volume of the radiator. The MoM approximation of (23)
is identical to (22) for the free-space case and hence (23) offers a rigorous motiva-
tion for (22). The first term in (23) is also similar to the time-domain formulation
using the product of sources and potentials proposed by Carpenter in [12]. More-
over, Geyi presented an approximation of (23) for small antennas in [28]. This
small regime formulation was also addressed in [81], [82]. The formulation based
on (23) is generalized to electric and magnetic current densities in [51,53].

3.2.3 State-space MoM model ‹X′

The state-space method is based on the classical approach to define stored energy
in a dynamic system, see (3). The stored energy for a radiating system is more
complex as the dynamics are not described by the simple system in (3). In [39],
a state-space model

Z̃Ĩ =
(

jωµL 1
−1 jωεC

)(
I
U

)
=
(

B
0

)
Vin (24)

is derived from the MoM impedance matrix Z = jωµL + Ci/(jωε), where U is
the voltage state and V = BVin = ZI is the excitation. The stored energy is con-
structed by differentiation of the state-space reactance matrix ‹X = Im{Z̃} with
respect to the frequency, cf., (4). The resulting stored energy is identical to the
X′-formulation in Section 3.2.1 for PEC structures in free space and suffers from
the same problem of being indefinite for larger structures. The advantage of the
state-space approach is that the quadratic forms for the stored energy are derived
for small structures in temporally dispersive and inhomogeneous materials.
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ε0a
µ0a Z0

Zin

Figure 4: Synthetized circuit for dominant TM10 mode of a spherical shell with
radius a [15].

3.2.4 Subtraction of the radiated power in time domain
The subtraction of unobservable energy (12) in the form of radiation can advan-
tageously be applied in time domain [10]. In this paradigm the system is brought
into a given state (for example time-harmonic steady state) during time t < t0
and then its excitation is switched off. The system is then let to pass a subse-
quent transient state in which all its energy is lost via radiation and heat. With
the time-dependent current density J (t) existing in the system, which has been
recorded during the entire time course, the stored energy can be calculated as

Wtd (t0) =
∞∫
t0

(
Pheat (J ) + Prad (J )− Prad (J freeze)

)
dt, (25)

where Pheat and Prad are the power lost and power radiated corresponding to
the lost and radiated energy Wheat and Wrad defined by (9), (10), with bound-
ing surface Sfar located in the far field. The current density J freeze (t) is de-
fined as the current density at time t = t0 artificially frozen for times t > t0,
i.e., J freeze (t > t0) = J (t0). Cycle-mean stored energy in time-harmonic case
is achieved by moving time t0 within one period and averaging. Note that al-
though the power terms in (25) are evaluated for time t > t0, the time retardation
demands knowledge of the current density also in preceding times.

This subtraction technique closely follows the stored energy definition (12)
and its more detailed exposition [10] also shows that the method gives non-
negative stored energy, is coordinate independent, and can subtract the radiation
energy inside the smallest circumscribing sphere. The unobservable energy can in
this case be identified with the subtracted term in (25). The major disadvantage
of this approach is that it requires numerically expensive evaluation.

3.3 Approaches Using System, Port, or Feed
System-level approaches evaluate energy storage directly from quantities avail-
able in the input/output ports of the system, see Figure 4. Grounded in ther-
modynamic principles, energy balance calculations of this kind preceded local
approaches in mechanics, however, they are not commonly seen in the domain
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of electromagnetic stored energy evaluation. The oldest application of system-
level energy quantification in electromagnetics uses circuit synthesis [15, 70] and
is also tightly related to the concept of recoverable energy [62]. The generality of
these approaches is unprecedented as they are applicable to arbitrarily complex
electromagnetic systems. Unfortunately, this generality comes at the price of los-
ing all physical interpretation of the unobservable energy content. Additionally,
application of these techniques require systems with well defined input ports.
This latter restriction makes these techniques inappropriate for evaluating the
Q-factors of currents without a well-defined port, such as those encountered in
modal decompositions and current optimization.

3.3.1 Circuit synthesis
Chu’s classical antenna bound was originally derived using the stored energy
in lumped inductors and capacitors within circuit models representing wave
impedances of spherical modes [15]. Thal has extended this approach to hol-
low spheres [75] and arbitrarily shaped radiators [77]. The stored energy for
arbitrarily shaped antennas can analogously be estimated from equivalent circuit
networks synthesized solely from the input impedance [32], where Brune syn-
thesis [3, 90] is used. Alternative synthesis methods [90] can be used but it is
essential that the synthesized circuit is a reciprocal minimal representation [89].
Non-reciprocal methods such as the minimum-phase Darlington synthesis [69,70]
can be used to estimate the recoverable energy in Section 3.3.2.

It is hypothesized [32] that the Brune circuit synthesis procedure produces
a circuit with minimal stored energy from all reciprocal realizations, and thus
best estimates the stored energy Wsto. By definition, this means the procedure
only includes the observable part of the stored energy. Note that this is zero for
the Zöbel network in Box. 2. The formulation can be used for arbitrary anten-
nas and material models, but its application requires approximation of the input
impedance Zin(ω) as a positive-real function. This approximation is computa-
tionally difficult for electrically large antennas that require high-order rational
functions.

3.3.2 Recoverable energy
The recoverable energy Wrec (t0) is defined as the maximum energy which can
be extracted from a system which has been driven for times t < t0 by a known
set of sources [23, 62]. In the most general sense, calculating Wrec (t0) involves
finding the optimal “recovery source” [62] as a function of time t > t0. This
recovery signal implicitly depends on the sources applied at times t < t0 and
the locations where recovery is allowed to occur. The optimal recovery source
extracts maximum energy from the system and equivalently minimizes energy
lost by the system during recovery. When both driving and recovery sources are
confined to a single port as they are in many antenna systems, the task of finding
the optimal recovery source is greatly simplified [24]. Given a port impedance
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Zc and a system reflection coefficient Γ (ω), the recovery source (in the form of
an incident voltage u+

in(t)) is obtained by solving

F−1
ß 1
Zc

Ä
1− |Γ (ω)|2

ä™
∗ u+

in(t) = 0 (26)

for times t > t0, where ∗ denotes convolution and F−1 {·} denotes the inverse
Fourier transform.

Applying this recovery source to the antenna port, the recoverable energy is
given by

Wrec (t0) = −
∞∫
t0

uin(t)iin(t) dt, (27)

where uin and iin are the total port voltage and current corresponding to the
optimal time course u+

in(t) from (26).
For time-harmonic excitation prior to time t0, the cycle-mean recoverable

energy can be calculated directly in closed-form from a rational function fit of
the system’s input impedance [24]. The process of approximating an antenna’s
input impedance as a rational function, however, suffers from the same problems
as Brune synthesis for electrically large antennas. The formulation of energy
Wrec in terms of field quantities can be found in [62] and an overview of its
physical properties and more detailed exposition can be found in [67]. A first
generalization of the concept to more arbitrary excitations of radiators can be
found in [95].

3.4 System-level Metrics not Directly Derived
from Stored Energy

Determining the stored energy in a system is largely motivated by its approx-
imate inverse proportionality2 to frequency selectivity of a single resonant sys-
tem, which is most commonly described by its Fractional Bandwidth (FBW) or
Q-factor. There are however methods which attempt to evaluate Q-factor with-
out knowledge of stored electromagnetic energy. The most well known are the
Q-factors QZ′ derived from the frequency derivative of an input impedance and
QFBW derived directly from the fractional bandwidth of the system. Both of
these methods belong to the system-based class of approaches and share those
properties. For comparison purposes, both methods will be calculated alongside
Q-factors derived from stored energy.

2Often, this inverse proportionality is taken for granted. It is, however, important to stress
that a strict functional relation of Q-factor based on stored energy and fractional bandwidth
does not exist [34], and the discrepancy from the inverse proportionality can in specific cases
be enormous [6]. On the other hand, in many cases, including practically all electrically small
radiators, the inverse proportionality is almost exact.
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3.4.1 Fractional bandwidth
The Q-factor QFBW is calculated directly from the fractional bandwidth B as [94]

QFBW = 2Γ0√
1− Γ 2

0

1
BΓ0

, (28)

where Γ0 denotes the level of the reflection coefficient |Γ | at which the frac-
tional bandwidth BΓ0 is evaluated. The relation assumes that the system is
matched and tuned to resonance at the evaluation frequency, i.e., Γ (ω) = 0. The
most important merit of the Q-factor QFBW is its exact proportionality to frac-
tional bandwidth. The major drawback of this method is its inability to evaluate
Q-factor from data at a single frequency and its dependence on the choice of
parameter Γ0.

3.4.2 Differentiated input impedance
The Q-factor QZ′ has been derived [94] from QFBW in the limit where Γ0 → 0
and it represents the differential fractional bandwidth of the system. Similarly
to QFBW, it assumes the system is matched and tuned to resonance. It is most
commonly defined as [94]

QZ′ = ω

2Rin

∣∣∣∣
∂Zin

∂ω

∣∣∣∣ = ω

∣∣∣∣
∂Γ

∂ω

∣∣∣∣ . (29)

Alternatively, QZ′ can be viewed as the classical Q-factor (1) derived from a local
approximation of an input impedance by a single resonance (RLC) circuit [61,
94] for which relation QZ′ = Q ≈ QFBW holds. The advantage of QZ′ over
QFBW is its much simpler evaluation and its independence of the parameter Γ0.
However, the cost of this simplification is the loss of a direct relation to fractional
bandwidth [94], the possibility of predicting QZ′ = 0 [6,34], and the problematic
interpretation in cases of closely spaced resonances [73]. The Q-factor QZ′ can
also be written solely in terms of source current density [7,40] which relates it to
the Q-factor based on energies WF and Wreac, see Section 4.1.

In systems which are not self-resonant, tuning via an ideal series or parallel
lumped reactance is commonly assumed [94]. The values of the corresponding
QZ′ factors differs in those two scenarios, but in practical cases (including those
shown in this paper), the differences are minor. The evaluation of QZ′ factor
with parallel reactance tuning can also be seen as evaluating the tuned QY′

factor which would result from using (29) on the input admittance and input
conductance [40].

3.5 Other Methods
The list of methods discussed above is not complete and we have intentionally
selected those which follow the definition (12) and at the same time exhibit
generality. In this subsection we briefly comment on those not explicitly treated.
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First concept is that of employing angular field decomposition, identifying
stored energy with the energy of the evanescent (invisible) part of the spectra
[19,64]. A similar concept was proposed in [78] to evaluate Q-factors of electrically
small dipole radiators and in [55] to evaluate Q-factors of arrays. This spectral
decomposition method is an interesting scheme which gives important insight into
the subtraction of the radiation part of unobservable energy. Its most important
drawback is its applicability solely to planar radiators. A generalization to general
radiators has been proposed in [59,60], but has not been tested.

The second concept, proposed by Kaiser [52], bears similarity to the time
domain version of the method of Collin and Rothschild [18] and claims to be its
relativistic generalization. The major difference from (20) is the use of squared
instead of linear subtraction which was introduced as an analogy to relativistic
energy-momentum relation [1, 52]. The merit of this concept is positive semi-
definiteness, coordinate independence, and the capability to deliver a local stored
energy density. In canonical cases it leads to stored energy values [5] very close
to (20), but its testing in more general scenarios is not available.

The last presented concept is based on a fact that the stored energy in a
lossless network can be determined by differentiation of the input reactance Xin
or susceptance Bin [44] as

WX′
in

= 1
4IH

in
∂Xin

∂ω
Iin (30a)

WB′
in

= 1
4VH

in
∂Bin

∂ω
Vin, (30b)

respectively. This formula is related to the Foster’s reactance theorem [27] where
a positive energy implies a positive slope of the reactance. The input resistance
of antennas is, however, non-zero and the approximation (30) is hence generally
inadequate. This is also concluded from (21), as (30) neglects the far-field term
in (21). Moreover, it is necessary to include the input resistance to accurately
estimate the fractional bandwidth as shown by QZ′ expression in (29). Although
the expression (30) has the same form as the differentiated reactance matrices
in Sections 3.2.1 and 3.2.3 there are substantial differences. It is sufficient to
know only the input-output relation for the lossless system in (30) whereas (22)
requires knowledge of the internal dynamics of the system.

4 Analytic and Numerical Comparisons
In this section, two classes of comparisons are made between the methods de-
scribed in the preceding section. First, we study the analytic relation between
some methods under certain specific conditions. Following that, numerical ex-
amples are presented where the Q-factor of driven antennas are calculated and
compared.
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4.1 Analytical Comparison of Various Methods
When methods from Table 1 are applied to fields and currents generated by
PEC structures operating in the quasi-static limit where radiation is negligible,
the stored energy predicted by them reduces to the electro- and magnetostatic
expressions, see Box 4. They however start to differ for electrically larger struc-
tures. Here, the methods are analytically compared for canonical cases such as
spherical geometries, PEC structures, and single-resonance models.

Spherical modes have dominated evaluation of stored energy and Q-factors
since the publication by Chu [15]. Collin and Rothschild [20], see Section 3.1.1,
presented closed form expressions of the Q-factor and stored energy WPr for a
single radiating spherical mode outside a sphere with radius a. Comparing the
definitions of the methods in Table 1 for this case reveals the identities

WPr = WF + a

c0
Prad = WP = WZB

in
, (31)

where the difference with aPrad/c0 (ka for the Q-factor) for the subtracted far-
field expression WF originates from the subtraction of the radiated power inside
of the sphere in (21) and the equality for the Brune circuit follows from the
circuit model of the spherical modes [15]. Thal [75] analyzed the corresponding
case with electric currents by inclusion of the stored energy in standing waves
inside the sphere. This case is identical to (31) for the field-based methods but
with an added connection to Wreac, i.e.,

WPr = WF + a

c0
Prad = WP = Wreac + a

c0
Prad, (32)

where the spherical mode expansion in [33] is used for Wreac in (23). The iden-
tity (32) can be generalized to arbitrary electric current densities on the sphere
with exception for WP.

When stored energy WF given by (21) is written as a bilinear form of source
current density [33], it relates to energy (23) as WF = Wreac +Wcoord, where
coordinate-dependent term Wcoord is given by [33, Eq. 26]. The coordinate de-
pendent part vanishes in the important case of equiphase current densities, i.e.,
|ITI| = IHI, which appear as a result of characteristic mode decomposition [4],
minimum Q-factor modes [8], and often approximately for small self-resonant
antennas. The equiphase case is also related to differentiation of the input ad-
mittance (30) for a fixed voltage source [40] revealing the following connection
between the field, current, and port based methods:

WF = Wreac = |WB′
in
| ≈ QZ′

Prad

ω
, (33)

where the final step is valid for self-resonant cases for which the change of reac-
tance dominates over the resistance.

The MoM discretized version of (23) for PEC structures is also identical to
the differentiated reactance matrix (22) and the state-space MoM (24), i.e.,

Wreac = WX′ = W‹X′ . (34)
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This equality is used for the presented numerical results in Section 4.2, where
the energy Wreac is used to indicate all three methods in (34).

Finally, the system methods agree for single-resonance RLC circuit networks

QZB
in

= Qrec = QZ′ ≈ QFBW, (35)

where the subscripts used are the same as for corresponding energies.
The above comparison suggests that the proposed methods agree for many

cases. However, the identities are based on specific assumptions and discarding
the imposed restrictions on the geometries, equiphase currents, and single reso-
nance can produce very different estimates of the stored energy. For an example
designed to demonstrate the effects of breaking these assumptions, we generalize
the single mode case (32) to to a TM01 electric current mode distributed on two
spherical shells with radii a1 and a2 > a1. Let the inner current have amplitude
J1 and normalize the outer current amplitude with J0 such that J2 = J0 cancels
the radiation from the inner surface. This non-radiation current has no dissipated
power and hence an infinite Q-factor. Lowering the amplitude to J2 = 0.5J0 in-
creases total the radiation as only half of the radiated field is canceled. Figure 5a
depicts the case a2 = 6a1 with J2 = (0.5 + 0.05j)J0, where the small imaginary
part is added to invalidate the equiphase identity (33). In the figure, we observe
that QF ≈ Qreac ≈ QZ′ as expected from (33) as the current is approximately
equiphase. The Q-factors from the subtracted power flow (19) and (20) are sub-
stantially lower than the other Q-factors around ka2 ≈ 5. This is contrary to the
expectation from the single mode case (32) and can be explained by the power
flow between the spherical shells that is not subtracted by the far field in (21).
The effects on the Q-factors of an increased phase shift between the current is
depicted in Figure 5b, where J2 = (1−0.5j)J0 is used. Here, all considered meth-
ods produce different results. These simple examples illustrate the challenges to
define stored energy and that the challenge increases with the electrical size of
the object and phase variation of the current.

4.2 Numerical Comparison of Various Methods
Numerical results for different antenna types are presented in this section. The
examples are: a center fed cylindrical dipole, an off-center fed cylindrical dipole,
a strip folded dipole, and a Yagi-Uda antenna. The tuned Q-factor (17) is chosen
as an appropriate measure to compare the different methods, as it is only a
renormalization of the stored energy along with an addition of a known tuning
energy, see Section 2. This permits us to compare and contrast methods for
evaluating the stored energy with the methods in Section 3.4 which only calculate
the tuned Q-factor, such as QZ′ and QFBW. All example structures are modeled
as PEC in free space and are each fed by a single delta-gap voltage source. In
this case many of the methods described in Section 3 are formally equivalent, see
Section 4.1. Hence, only one representative of each such group is presented here.
Each method follows the notation introduced in Table 1. The frequency axis of
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Figure 5: Q-factors for concentric spherical current shells radiating the spherical
TM01 mode with a2 = 6a1: a) J2 = (0.5 + 0.05j)J0, b) J2 = (1 − 0.5j)J0. Note
that the energy WF has been evaluated according to the first line of (21) which
does not demand the frequency normalization of the current and QZ′ is calculated
using the current based formulation in [40].
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Figure 6: Q-factors of a hollow cylindrical dipole of length L and radius r =
L/200, fed at its center. The gray solid and dashed vertical lines denote resonance
and anti-resonances of the antenna.

all plots is expressed in the dimensionless quantity ka, where a is the radius of
the smallest sphere that circumscribes each antenna. The Q-factor QFBW has
been calculated at the level Γ0 = 1/3 ≈ −10 dB in (28).

4.2.1 Center fed cylindrical dipole
Figure 6 depicts the Q-factors calculated by the methods discussed in Section 3
for a hollow cylindrical dipole. All the methods agree well for low ka values,
which are typical dimensions for electrically small antennas. The methods start
to diverge for electrically larger structures, when ka � 1.5. It should be noted
that the relative difference in Q-factor is very small, even for larger structures.
The only major divergence is the Q-factor from the recoverable energy Wrec
which predicts significantly lower values than the other methods for ka > 3.
This, however, is to be expected as the recoverable energy is the lower bound to
the stored energy, see (13).

4.2.2 Off-center fed cylindrical dipole
The dipole examined here is identical to the center fed dipole in Section 4.2.1
except that its feeding point is shifted by a distance l = 0.23L from the center.
This gives rise to a phase shift which changes the stored energy and Q-factor.
If we compare Figures 6 and 7 we see that the Q-factors fluctuate much more
than observed in the center fed dipole. However, the Q-factors retain the same
behavior with respect to each other as for the center fed dipole for most of the
simulated interval. They predict essentially the same results for low values of ka
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Figure 7: Q-factors for a hollow cylindrical dipole of length L and radius r =
L/200, with an off-center feed l = 0.23L from the center. The gray solid and
dashed vertical lines denote resonance and anti-resonances of the antenna.

and diverge slightly for ka > 1.5. However, around ka = 6.2 the Q-factor QZ′ has
a dip which is not mimicked by the other methods. The recoverable energy Wrec
predicts lower values of Q-factor than the other methods but seems to follow the
behavior of the curves with smaller fluctuations.

4.2.3 Strip folded dipole

In Figure 8, Q-factors are depicted for a folded strip dipole. Due to computational
complexity the subtraction of the power flow |P |, the energy WP has not been
calculated for this example. With exception of recoverable energy, the depicted
methods shown agree well for ka < 4, above this point the Q-factors QZ′ and
QFBW start to diverge from the other methods.

4.2.4 Yagi-Uda

Figure 9 depicts Q-factors calculated for a Yagi-Uda antenna, again the sub-
traction of the power flow, |P | has not been calculated due to computational
complexity. All methods presented agree well over the entire interval, exclud-
ing a small dip from Q-factor QZ′ at ka = 1.8 and some small divergence at
ka > 6. This can be explained by the off resonance behavior of the Yagi-Uda
antenna. When the parasitic elements are no longer active, the antenna essen-
tially behaves as a center-fed dipole. Because of this simple behavior the relative
difference between the methods becomes very small.
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Figure 8: Q-factors for a folded strip dipole of circumscribing dimensions L ×
L/2, with strip width L/200. The gray solid and dashed vertical lines denote
resonance and anti-resonances of the antenna.
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Figure 9: Q-factors for a Yagi-Uda antenna specified in the upper right corner
of the figure. All the dimensions of the Yagi-Uda antenna are normalized to the
center dipole length L. The elements have been modeled as strips of width L/200.
The gray solid and dashed vertical lines denote resonance and anti-resonances of
the antenna.
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5 Applications
Stored energy for radiating systems was initially used by Chu [15] to derive
his classical antenna bounds for spherical shapes. Bounds have continued to
be a major driving force for research into stored energy [42, 87, 88] as antenna
designers are, naturally, interested in how good their antennas are and how far
they are from the optima [41, 68, 86]. The Chu bound was originally derived
with a circuit model for spherical modes 3.3.1, see also [75–77]. The model
was reformulated in fields (19) by Collin and Rothschild [20] and subsequently
refined in [25,58,94], see [41,68,86] for an overview. Formulations as optimization
problems has generalized the classical bounds on the Q-factor to a multitude of
problems formulated as combinations of stored energy, radiated fields, induced
currents, and losses [8, 35, 37, 50]. Many problems are formulated as convex
optimization problems [8,31,35,37,74] which are efficiently solved with standard
algorithms. Here, it is essential that the quadratic forms for the stored energy
are positive semidefinite, see Table 1. Unfortunately, several presented methods
are indefinite for electrically large structures. This restricts the problems to
sub-wavelength structures where the expressions are positive semidefinite. Apart
from convex optimization and considering mainly sub-wavelength radiators, other
techniques like parameter sweeps [81, 82], polarizabilities [51, 92, 93], or modal
decomposition [9, 13,50,53] can be applied to determine bounds.

Although stored energy has so far mainly been used to determine physical
bounds, stored energy has great potential to be an important concept also for
an antenna design. The results by Chu [15] showed that small antennas are
dipole radiators and the explicit shape of the current distribution can give in-
sight to design. Thal [75] showed how the stored energy in the interior of a
sphere contributes [2,54]. The importance of the polarizability and its associated
charge separation was shown in [36,92]. With the current-based formulations in
Section 3.2 and optimization of the current distribution we get suggestions for
optimal currents for many antenna parameters [8, 35,37,38,50].

Another direction from which the problem of minimization of Q-factor was
attacked is characteristic mode theory [45] as it provides favorable separation
of reactive stored energy (23), constituting thus modal Q-factors for arbitrary
bodies [4]. Mixing rules similar to those used with spherical modes can be applied,
leading to approximative, but straightforward rules for fundamental bounds on Q-
factor of arbitrarily-shaped radiators. Stored energy expressions are also used to
construct new type of modes with properties differing from those of characteristic
modes. Energy modes formed from eigenvalue problems involving the matrix
X′ in (22) were introduced in [46]. These types of modes are also useful to
determine and interpret the physical bounds discussed above [9,37]. Moreover, as
these modes are real-valued many of the proposed expressions for stored energy
agree (33) and the resulting Q-factor is also a good estimate of the fractional
bandwidth for single mode antennas.

Stored energy can also be used to simplify some antenna optimization by



6 Summary 153

replacing simulations over a bandwidth with a single frequency calculation of the
Q-factor [16]. This single frequency optimization increases the computational
efficiency but is restricted to narrow band cases. A typical representative of an
application which can benefit from this approach is a design and optimization
of Radio Frequency Identification (RFID) tags with minimal mutual coupling
[63,85].

6 Summary
A definition of stored energy in a general electromagnetic system was proposed
and discussed using the concept of unobservable energy. Various aspects of sub-
tracting the unobservable energy have been pointed out in the examples of Zöbel’s
network, matched transmission lines, and, most importantly, radiating structures.
It has been shown that a majority of the well-established concepts for evaluating
stored energy in radiating systems can be categorized into three different groups
– whether they used field quantities, source currents, or rely solely on knowledge
in system as a whole without possibility to probe its internal structure. An im-
portant outcome of this paper is understanding that all existent concepts, in fact,
attempt to define unobservable energy. Nevertheless, the common association of
unobservable energy purely with radiated energy is insufficient. By the proposed
definition, the unobservable energy represents the difference between the total
electromagnetic energy WEM and the stored energy Wsto so that it contains the
energy of all unobservable states.

Careful analysis of the presented results revealed good agreement between
all evaluated methods for equiphased currents and electrically small (ka < 1.5)
antenna structures, though simple analytically-constructed examples and larger
objects revealed significant disagreements. The systematic difference between re-
coverable energyWrec and stored energyWsto is due to reciprocity of the resulting
realizations. While the recoverable energy allows for non-reciprocal circuits, the
stored energy approaches, as illustrated by Brune synthesis, deal with reciprocal
systems only. Taking QFBW as reference measure of fractional bandwidth, it is
obvious that the Q-factor resulting from recoverable energy considerably over-
estimates the fractional bandwidth. The other presented methods have much
better agreement with fractional bandwidth. However, from this point of view,
the best predictor of bandwidth potential is Q-factor QZ′ , but only when the
system under study can be approximated as a single resonance system.

For practical aspects of stored energy evaluation, the method evaluating en-
ergy Wreac or, alternatively, energy WX′ , gives precise approximation of stored
energy for electrically small structures, offers simple implementation, and, in ad-
dition, is fully compatible with present approaches to minimization of Q-factor
like convex optimization and pixeling. Whenever negative values of stored energy
could be an issue, an alternative method, possibly Brune synthesis, is recom-
mended since the breaking point at which stored energy Wreac fails is not exactly
known. As confirmed by all treated examples, Brune synthesis is capable of dis-
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tilling the maximum amount of unobservable energy from the total energy, thus
surpassing other contemporary approaches. However, complications in perform-
ing Brune synthesis for electrically large antennas may be an obstacle limiting
its application.

Though many researchers have contributed to the study of stored energy with
corresponding indisputable achievements, several fundamental questions remain
open. The missing proof of the minimal reciprocal realizations generated by
Brune synthesis as well as closely related reformulation of this circuit synthesis
in terms of the electromagnetic quantities, may open the final stage to explicit,
coherent, and exact definition and evaluation of unobservable energy. Addition-
ally, further work is needed on the calculation, verification, and interpretation of
stored energy in general dispersive media.

Appendix A Stored Energy in Dispersive Media
The definition in Section 2 covers antennas in a non-dispersive background. Con-
sider instead a radiator embedded in an isotropic dielectric material described by
a Lorentz dispersion model

∂
2P
∂t2

+ Γ ∂P
∂t

+ ω2
r P = ε0ω

2
pE, (36)

where P is the polarization, Γ is the loss factor, ωr is the resonance frequency
of the material, and ωp is the coupling constant [49]. If we divide the energy
analogously to (7), the material properties influence the heat and total energy
terms [66]. The new heat term reads

Wheat (t0) =
t0∫

−∞

∫
V

σ |E|2 + Γ
ε0ω2

p

∣∣∣∣
∂P
∂t
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2

dV dt, (37)

and the total energy reads

WEM (t0) = 1
2

∫
V

ε0 |E|2 + µ0 |H|2 + 1
ε0ω2

p

ñ∣∣∣∣ ∂P
∂t
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2

+ ω2
r |P |

2
ô

dV. (38)

The stored energy definition (12) still applies, but the dispersion generally rise
the energy of unobservable states. The subtraction of unobservable energy states
becomes especially problematic in dispersive background since in a such case far
field is no longer well defined and many classical methods break down. Sys-
tem based methods, see Table 1, and engineering metrics QZ′ and QFBW are
unaffected, in principle, but, in certain cases, they are more likely to predict un-
physical results, see [40]. Extensive comparison of the relation between Q-factor
and fractional bandwidth in dispersive environments are scarce but the case of
antennas in Lorentz media (36) is treated in [39] using state-space models.
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Abstract

Accurate and efficient evaluation of the stored energy is essential for
Q-factors, physical bounds, and antenna current optimization. Here, it
is shown that the stored energy can be estimated from quadratic forms
based on a state-space representation derived from the electric and mag-
netic field integral equations. The derived expressions are valid for small
antennas embedded in temporally dispersive and inhomogeneous media.
The quadratic forms also provide simple single frequency formulas for the
corresponding Q-factors. Numerical examples comparing the different Q-
factors are presented for dipole and meander line antennas in conductive,
Debye, and Lorentz media for homogeneous and inhomogeneous media.
The computed Q-factors are also verified with the Q-factor obtained from
the stored energy in Brune synthesized circuit models.

1 Introduction
Antennas are placed in the proximity of, or inside, lossy media in applications
involving mobile phones, body area networks, implants, submarines, and plas-
monics [2, 41, 58]. The losses in such systems are associated with conduction
or relaxation phenomena. These effects lead to a frequency dependent permit-
tivity, and hence temporal dispersion. Temporal dispersion is present in natu-
ral [33, 39, 52] and artificial materials [5, 8, 15]. Dispersion is often neglected for
antenna modeling in the microwave range by considering antennas in free space or
embedded in non-dispersive dielectrics, however it is usually necessary for mod-
eling of phenomena in the mm, THz, and optical range. Electromagnetic energy
density in dispersive media builds on the classical results in [39] with extensions
to applications such as antennas, metamaterials, and photonics [45,51,57,62].

Stored energy is instrumental for antenna analysis in terms of the Q-factor [7,
10,13,24,28,46,55,63]. In [29,61,62] stored energy is considered for small antennas
composed of dispersive or lossy media, embedded in free space. However, when
calculating stored energy for antennas embedded in lossy background media,
new challenges arise. The classical subtraction technique, where the energy in
the far-field is subtracted from the total energy density, is difficult to generalize
to lossy media due to the exponential decay of the far-field and its associated
coordinate dependence [42]. Here, we follow the approach in [17, 31, 53] and
express the stored energy and Q-factors in terms of the current density on the
antenna structure. The derivation is based on a state-space representation [59]
together with frequency differentiation of the MoM impedance matrix.

Stored energy is investigated for state-space models in [59], where it is shown
that the stored energy is associated with minimal systems having internal sym-
metry, i.e., reciprocity. We use this approach to construct symmetric state-space
models for antennas in dispersive media, and calculate their stored energy. The
explicit results are given for conductivity, Debye, Drude, and Lorentz models and
are simply generalized to models with multiple terms [33, 39, 52]. The resulting
models are classical state-space models for small antennas, but contain a phase
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shift (time delay) for larger structures that is not considered in [59]. Here, we
use a local approximation based on differentiation with respect to the frequency
to include time-delay effects [26]. In total, this offers a stored energy that is
identical to the stored energy defined by subtraction of the far-field energy term
for the free space coordinate independent case [22]. Moreover, the stored energy
derived from the state-space model in dispersive media equals the stored energy
determined from synthesized circuit models for small antennas.

This paper is organized as follows. In Sec. 2, the Q-factor and stored energies
are discussed. A state-space model based on the MoM impedance matrix and
its stored energy is introduced in Sec. 3. The state-space models and stored
energies are generalized to temporally dispersive and inhomogeneous media in
Secs 4 and 5, respectively. The paper is concluded in Sec. 6.

2 Stored Energy, Q-Factor, and State-
Space Models

Stored energy for antennas is a concept which arose by necessity to calculate the
Q-factor [10,28,43,55,63]. The Q-factor measures how well an oscillating system
stores energy as opposed to dissipating it. The Q-factor for an antenna tuned to
resonance is defined as [28,55,63]

Q = 2ωmax{We,Wm}
Pd

= ω
W + |Wm −We|

Pd
, (1)

where W = We +Wm, We, and Wm denote the stored electromagnetic, electric,
and magnetic energies, respectively, ω is the angular frequency, and Pd is the
dissipated power. The dissipated power Pd and energy difference Wm −We are
well defined and follows directly from Poynting’s theorem [19, 22]. Because of
its relation to the bandwidth the Q-factor is an important parameter for an-
tenna design. Thus it has become imperative to define stored energy for anten-
nas [7, 10, 28, 46, 55, 63]. However, this is not trivial as electromagnetic fields,
current densities, and circuit models can give different interpretations of the
stored energy, see Fig. 1. In this section follows a brief overview of previous
methods used to define stored energy.

The classical way of interpreting stored energy is as the energy stored in the
fields that radiate from the antenna, but do not escape its vicinity, see Fig. 1b.
This naturally leads to the subtraction calculation method, where the stored
energy, WF, is calculated by subtracting the power flow or the far-field power
from the total energy [13,16,28,55,63]. Subtraction of the far-field term yields

WF = 1
4

∫
R3

r

ε|E(r)|2 + µ|H(r)|2 − 2ε |F (r̂)|2

r2 dV, (2)

where ε is the permittivity, µ is the permeability, E and H are the electric and
magnetic fields, and F (r̂) is the electric far-field; F ∼ ejkrrE as r → ∞ with
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Im

Re

f

Zin

Figure 1: The three different approaches to express stored energy, electromag-
netic fields, current density, and input impedance. Here, all are illustrated for
the same capacitive dipole. a) snapshot of the magnetic field around the antenna.
b) stored energy density around the antenna. c) current density on the antenna.
d) input impedance and circuit model for the antenna.

r = |r| and r̂ = r/r. This definition of stored energy has been generally accepted
since the classical work by [13], see also [16, 40, 63]. The stored energy (2) can
also be expressed in the current density on the antenna structure [18, 22, 53, 54],
see Fig. 1c. This simplifies the evaluation of stored energy and enables antenna
current optimization [6, 23–25, 34]. The main drawbacks with (2) are possible
coordinate dependence [22, 63] and negative stored energies [25, 63]. Moreover,
as soon as losses are introduced in the background material, the far-field van-
ishes, i.e., F (r̂) = 0. This implies that WF equals the total energy and it is
hence not possible to distinguish the stored energy from the total energy in lossy
backgrounds using (2) [63].

Using the same concept of stored energy defined as energy in the fields around
the antenna, subtraction of the power flow from the energy density suggests the
stored energy [14]

WP = 1
4

∫
R3

r

ε|E(r)|2 + µ|H(r)|2 − 4|√εµP (r)|dV, (3)

where P = 1
2 Re{E ×H∗} is the time-average Poynting vector. This definition
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is coordinate independent and can be used in inhomogeneous and lossy back-
grounds. However, the integral needs to be evaluated numerically and it is not
clear how to generalize the formulation to temporally dispersive backgrounds.
As an alternative, the radial component of the Poynting vector r̂ · P can be
subtracted instead of the far-field amplitude [13, 40]. This leads to a coordinate
dependent expression that differs from (2) by the radiated energy of the standing
waves within the structure [22].

The problems with (2) and (3) call for alternative methodologies to define
and evaluate the stored energy. To circumvent some of these problems, we con-
sider the stored energy for the antenna as the stored energy seen from the input
impedance, Zin, see Fig. 1d. This has several advantages, such as being related
to the impedance bandwidth, coordinate independent, and valid in arbitrary sur-
rounding materials.

The input-impedance is separated into a resistive and reactive part, where
the resistive part relates to dissipated energy and the reactive part relates to
stored energy. For a lumped circuit network the reactance is proportional to the
difference between energy stored capacitively and energy stored inductively

Zin = Rin + jXin = 2Pd + 4jω(Wm −We)
|Iin|2

, (4)

where Rin is the input resistance, Xin the input reactance, and Iin the input cur-
rent. The input impedance of the antenna can be modeled with circuit elements
using, e.g., Brune synthesis [4, 21], see also Fig. 1d. Kirchoff’s laws are used to
relate the currents I and voltages V = ZI via the impedance matrix Z, in the
circuit network. The impedance matrix is further decomposed in its resistance
R, inductance L, and capacitance C = C−1

i matrices [47,48]:

Z = R + jX = R + jωL + 1
jωCi = R + sL + 1

s
Ci, (5)

where s = jω is the Laplace parameter. The impedance matrix (5) can be
considered as a second order state-space model for the input impedance Zin =
Vin/Iin with the input V = BVin and output Iin = BTI, where B is the feeding
matrix, and the superscript T denotes the transpose. State-space models are used
to model input output systems by ordinary differential equations [59]. They can
be written in many forms and the order (degree of s→ ∂

∂t
) can be traded to the

dimension of the system (number of states). For the analysis in the paper, the
second order state-space model (5) is rewritten as the first order model [59]

s

Å
L 0
0 C

ãÅ
I
U

ã
+
Å

R 1
−1 0

ãÅ
I
U

ã
=
Å
sL + R 1
−1 sC

ãÅ
I
U

ã
=
Å

V
0

ã
or Z̃Ĩ = ‹V, (6)

where the voltage state U = 1
sCiI is introduced, and 1 is the identity matrix.

The time-domain (s→ ∂
∂t
) stored energy is defined from the energy balance that
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is derived by multiplication of (6) with the states, (IT UT), from the left and
temporal integration, i.e.,ïIT(t)LI(t) + UT(t)CU(t)

2

òt2
t1

+
∫ t2

t1

IT(t)RI(t) dt

=
∫ t2

t1

IT(t)V(t) dt =
∫ t2

t1

Iin(t)Vin(t) dt, (7)

where for notational simplicity time t is used to define time-domain quantities.
The first and second terms in the left-hand side are identified as the change of
stored energy and dissipated energy during the time interval [t1, t2], respectively.
The right-hand side is the supplied energy during the same period. The time-
average stored energy for a time-harmonic signal in (7) is alternatively obtained
from the quadratic form constructed from the matrix multiplying s in (6), i.e.,

W = IHLI
4 + UHCU

4 = IHLI
4 + IHCH

i CCiI
4ω2

= 1
4IH
Å

L + Ci

ω2

ã
I = IHX′I

4 = ĨH‹X′Ĩ
4 , (8)

where the superscripts H and prime ′ denote the conjugate transpose and dif-
ferentiation with respect to ω, respectively, we have used that CH

i = Ci, and
Z̃ = ‹R + j‹X. It is essential that the matrices L = LT and Ci = CT

i are symmet-
ric, frequency independent, and real valued to determine the stored energy [59].

The stored energy expression (8) is a Hermitian quadratic form in terms of
the frequency derivative of the reactance or state-space reactance matrix. The
difference between the stored magnetic and electric energies are directly propor-

tional to the quadratic form of the reactance matrix, Wm−We = IHXI
4ω cf., (4).

This gives us explicit formulas for the stored magnetic and electric energies

Wm = 1
8IH
Å
∂X
∂ω

+ X
ω

ã
I = 1

4IHLI (9)

and
We = 1

8IH
Å
∂X
∂ω
− X
ω

ã
I = 1

4ω2 IHCiI, (10)

respectively. The stored energy (8) can hence be interpreted as the sum of the
electric energy in the capacitors and the magnetic energy in the inductors. The
relations (9) and (10) resemble the expressions in [19,30] for the input impedance
of single and array antennas. Here, it is essential to note that (9) and (10) are
expressed in the state-space matrix and not in the input impedance, cf., [19,30].
The expressions based on the input impedance are only valid for single resonance
RLC circuits and lossless circuit networks [30]. The Brune synthesized circuit and
the state-space representation are mathematical models created from a rational
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Figure 2: Illustration of an antenna geometry composed of three materials
modeled by their permittivity εn and permeability µn, n = 1, 2, 3 in the regions
Ωn. The electromagnetic fields are denoted En and Hn in Ωn. The equivalent
(surface) currents Jm and Mm have support on the boundary between Ωm and
Ωm+1, m = 1, 2. (left) three dimensional and (right) two dimensional cut.

approximation of the input impedance. Here, it is also important to realize that
the circuit model is non-unique and that there are several methods to synthesize
circuit models [60], see also [46, 59] for discussions about minimum realizations
and unobservable energy. The Zöbel network [64] is a classical example that
illustrates these properties. The unobservable stored energy does not contribute
to the input impedance and the bandwidth of the system. Hence, we are seeking
the observable part or equivalently the minimum stored energy in the system.

The Q-factor (1) is expressed in the reactance matrix and its frequency deriva-
tive as

Q = max{IH(ωX′ ±X)I}
2IHRI = ωIHX′I + |IHXI|

2IHRI , (11)

where we used the time average dissipated power Pd = 1
2 Re{IHV} = 1

2IHRI,
with R = Re Z. The Q-factor (11) is determined from the input impedance (4)
and hence related to the fractional bandwidth of the antenna. However, the
dependence on the input impedance is also the main draw back of this method,
as it is based on the antenna geometry including its feed. In this paper we view
the antenna as a input output system, but instead of synthesizing an equivalent
circuit model we create a state-space model from the MoM impedance matrix.
This model is based on Maxwell equations, includes the antenna geometry, and
can be used for antenna current optimization.

We consider antennas in an inhomogeneous temporally dispersive background
medium, see Fig. 2. The background medium has permittivity ε = ε0εr and
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permeability µ = µ0µr which depend on the angular frequency ω or Laplace
parameter s = jω. The wave impedance η =

√
µ/ε, the index of refraction

n =
√
s2εrµr/s, the wavenumber k = −jκ, where κ =

√
s2εµ, speed of light c0 =

1/√ε0µ0, and the intrinsic impedance of vacuum η0 =
√
µ0/ε0 are also used to

simplify the notation. To start, we restrict the analysis to electric surface current
densities in free space in Sec. 3. This case is thoroughly analyzed using (2) in [21,
22, 53, 54]. The background material is subsequently generalized to temporally
dispersive in Sec. 4, piecewise inhomogeneous in Sec. 5.1, and inhomogeneous in
Sec. 5.2.

3 Stored Energy for Antennas in Free
Space

The state-space model is based on the EFIE impedance matrix Z. A standard
MoM implementation of the EFIE determines the impedance matrix [9, 44, 56]
which can be written as

Z = sµL + 1
sε

Ci = ηκL + η

κ
Ci, (12)

where the matrices L and Ci depend on the wavenumber and have the elements

Lmn =
∫
∂Ω

∫
∂Ω

ψm(r1) ·ψn(r2)e−jkR12

4πR12
dS1 dS2 (13)

and
Cimn =

∫
∂Ω

∫
∂Ω

∇1 ·ψm(r1)∇2 ·ψn(r2)e−jkR12

4πR12
dS1 dS2, (14)

where R12 = |r1 − r2| is the distance between the spatial points r1 and r2 and
∂Ω denotes the antenna boundary modeled as a PEC. The material parameters
are ε = ε0 and µ = µ0 for the free space case. The basis functions, ψm(r),
are assumed to be real valued and divergence conforming with vanishing normal
components at the antenna boundary [30, 44]. The decomposition of the MoM
impedance matrix (12) resembles the impedance matrix for lumped circuits (5)
with the major differences that R is missing and that L and Ci are complex
valued and depend on k (or s) in (12). The MoM impedance matrix (12) can al-
ternatively be decomposed as (5) using the real and imaginary parts, see App. B.
It is however advantageous to keep (12) for the presentation in this paper.

The state-space model is constructed for the input impedance, Zin = Vin/Iin,
with the voltage excitation Vin and current output Iin. The current column
matrix I contains the expansion coefficients In for the current density J(r) =∑N
n=1 Inψn(r) that is determined from the linear system

ZI = V = BVin and Iin = BTI, (15)
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where B is the matrix containing feed position of the antenna. Inspired by the
stored energy in circuit models (8) and more general state-space models [59], we
use a state-space approach based on a MoM formulation to determine the stored
energy for antennas. This changes the interpretation of stored energy from energy
expressed in the electromagnetic fields to energy expressed in the states. These
states (in the MoM formulations) are the current densities and hence the sources
of the fields, see Fig.1. The state-space model also shows that the stored energy
determined from the current density is related to the stored energy determined
from the input impedance for small antennas ka� 1, where a denotes the radius
of the smallest circumscribing sphere [10].

A PEC antenna structure embedded in a homogeneous isotropic media is
modeled by the EFIE (12) and (15). The system can be written

ZI = (sµL + 1
sε

Ci)I = sµLI + U = V = BVin and Iin = BTI, (16)

where a voltage state U = 1
sεCiI is introduced, cf., (6), to rewrite the second

order system (16) to the first order system

s

Å
µL 0
0 εC

ãÅ
I
U

ã
=
Å

0 −1
1 0

ãÅ
I
U

ã
+
Å

B
0

ã
Vin. (17)

The system is a classical state-space model for the free space case, ε = ε0 and
µ = µ0, in the limit of small antennas ka � 1. Moreover the symmetry of the
system implies that the stored energy is defined for minimal representations [59].
Following the approach in Sec. 2, the stored energy is given by the quadratic form
generated by the matrix that multiples s (temporal derivative). However, the
frequency dependence of L and Ci cannot be neglected for finite sized antennas.
Moreover, the matrices L and Ci have an imaginary part for ω > 0, see App. B.
To resolve the issue of frequency dependence, we use differentiation with respect
to s of the state-space model to estimate the term that is proportional to s. This
expresses the time average stored energy as

W‹X′ = 1
4 ĨH ∂‹X

∂ω
Ĩ = Re

4

Å
I
U

ãH Å
µ0(L + ωL′) 0

0 ε0(C + ωC′)

ãÅ
I
U

ã
= Re

4
(
µ0IH(L + ωL′)I + ε0UH(C + ωC′)U

)

' Re
4 IH(µ0(L + ωL′) + 1

ω2ε0
(Ci − ωC′i)

)
I = 1

4IH ∂X
∂ω

I, (18)

where C′ = −CC′iC and Re{ ∂Z
∂s
} = ∂X

∂ω
are used and the differentiated matrices

have the entries

L′mn = ∂Lmn

∂ω
= −j ∂k

∂ω

∫
∂Ω

∫
∂Ω

ψm(r1) ·ψn(r2)e−jkR12

4π dS1 dS2, (19)

and

C ′imn = ∂Cimn

∂ω
= −j ∂k

∂ω

∫
∂Ω

∫
∂Ω

∇1 ·ψm(r1)∇2 ·ψn(r2)e−jkR12

4π dS1 dS2. (20)
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The use of frequency differentiation is an approximation to handle the fre-
quency dependence of L and Ci. The stored energy (18) is dominated by the
contribution from L and Ci for small antennas [22] and the contributions from
L′ and C′i are lower order corrections. The ' in (18) is used to indicate that we
neglect the low order correction term Re{IH(1−CH

i C−1
i )C′iI} ≈ 0. These terms

are neglected in the remainder of this paper.
The expression (18) for the stored energy is identical to the expressions pro-

posed by [31], and [53] which is equal to the stored energyWF in (2) for the cases
where (2) is coordinate independent [22]. The stored electric and magnetic ener-
gies, and Q-factor are determined as for the circuit network case in (9) to (11).
The time average dissipated power is determined from the Poynting vector and
can be expressed as the quadratic form [19, 22, 53] Pd = 1

2 Re{IHV} = 1
2IHRI,

where R = Re Z, as in (72). The stored energy expression (18) is compared
with the stored energy determined from Brune synthesized circuit models in [21],
see also [11, 12, 24, 32]. The results agree very well for antenna sizes up to ap-
proximately half-a-wavelength and Q-factors above 5. The problems with larger
antennas are caused by the frequency dependence of the matrices L (13) and
Ci (14). This frequency dependence implies that (16) is not a first order state-
space model, hence, the frequency differentiation in (18) is only an approximation.
This interpretation is analogous to the difficulties to define the radiated energy
in (2) and (3) for larger antenna structures and originates in the wave nature
of the electromagnetic fields that causes phase, or equivalently time, shifts. The
state-space approach suggest a possible remedy using rational approximations of
the Green’s function in (13) and (14). The problem with the frequency depen-
dence of L and Ci is, however, negligible for small antennas with Q� 1 that are
the main focus of this paper.

4 Stored Energy for Temporally Disper-
sive Background Media

The classical approach to define stored energy by subtraction of the far-field (2) is
difficult to generalize to lossy background materials as the far-field vanishes. This
implies thatWF equals the total energy in a lossy background and thatWF →∞
as the losses approach zero. Here, we use the state-space approach to generalize
the expressions for the stored energy in Sec. 3 to background materials with losses
and temporally dispersive permittivity in Sec. 4.1, and combined permittivity and
permeability in Sec. 4.2.

4.1 Temporally Dispersive Permittivity
The MoM impedance matrix in temporally dispersive media is formally identical
to the free space case (12) with the use of the complex-valued wavenumber k in
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the background medium. Consider for simplicity a non-magnetic media with the
permittivity described by a single Lorentz resonance [33,52]

ε(s) = ε∞ + α2

β2 + γs+ δs2 = ε∞ + α2

χ
, (21)

where ε∞ is the instantaneous response, α, β, γ, δ are the Lorentz parameters, and
χ is introduced for notational simplicity. This model reduces to conductivity (β =
δ = 0), Debye (δ = 0), and Drude (β = 0) models with specific parameter choices
and is easily extended to multiple resonances. The system (16) is rewritten to a
first order system by introduction of the voltage state U, polarization state P,
and its temporal derivative Ṗ = β−1sP, i.e.,

I = sεCU =
(
sε∞ + sα2

β2 + γs+ δs2

)
CU = sε∞CU + αṖ, (22)

where C = C−1
i is used for simplicity. Note that Ci has a null space and is not

invertible. This is resolved in the final expressions for the stored energy below.
The rational and second order s-term in αṖ are removed by multiplication with
χCi/(sα), i.e.,

αU = (β2 + γs+ δs2)1
s
CiṖ = βCiP + (γ + δs)CiṖ. (23)

Collecting the equations (16), (22), sCiP = βCiṖ, and (23) gives the linear
system

Z̃Ĩ =

Ü
sµL 1 0 0
−1 sε∞C 0 1α
0 0 sCi −βCi
0 −1α βCi (sδ + γ)Ci

êÜ
I
U
P
Ṗ

ê
=

Ü
V
0
0
0

ê
= ‹BVin, (24)

with the output Iin = BTI = ‹BTĨ, and input Vin. This is a classical state-space
representation [59] in the limit of small antennas, where the s-dependence of the
matrices L and Ci is negligible. Furthermore, the representation is reciprocal
with internal symmetry diag(1,−1,−1,1), see [59].

To calculate the stored energy of the system (24), the term proportional to s
is estimated by differentiation with respect to s

∂Z̃
∂s

=

Ü
µL + ωµL′ 0 0 0

0 ε∞C + ωε∞C′ 0 0
0 0 Ci + ωC′i jβC′i
0 0 −jβC′i δCi + (ωδ − jγ)C′i

ê
, (25)

where frequency dependence of the matrices L and Ci are approximated locally
using frequency differentiation [26]. The stored energy is finally calculated by
the quadratic form obtained by multiplication of (25) with the states from the
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left and right. A closed form expressions is derived by back substitution of the
explicit expressions of the states expressed in the current I. Use that CU = 1

sεI,
Ṗ = s

βP, P = αβ
sεχI, and

jβ
(
PHC′iṖ− ṖHC′iP

)
=
(
−ωPHC′iP− ωPHC′iP

)
= −2ωPHC′iP (26)

to express the stored energy as

W‹X′ = Re
4 IH

Å
µL + ε∞

|ωε|2
Ci + ωµL′ − ωε∞

|ωε|2
C′i
ã

I

+ Re
4 PH

Å
Ci + Ciδ

ω2

β2 + ωC′i + ω2ωδ − jγ
β2 C′i − 2ωC′i

ã
P, (27)

where the low-order term in (18) is neglected. The second part multiplying P
can be written as

(β2 + δω2)Ci − ω(β2 − ω2δ + jωγ)C′i = (β2 + δω2)Ci − ωχC′i, (28)

that together with elimination of P express the stored energy as the quadratic
form

W‹X′ = Re
4 IH

Å
µL + ε∞

|ωε|2
Ci + ωµL′ − ωε∞

|ωε|2
C′i +

α2 ((β2 + ω2δ)Ci − ωχC′i
)

|ωε|2|χ|2

å
I

(29)
in the current I. The solution simplifies for the reduced models, e.g., the con-
ductivity model ε = ε∞ + σ/s with α2/γ = σ, β = δ = 0, and χ = sγ has the
stored energy

W‹X′ = Re
4 IH

Å
µL + ε∞

ω2ε2∞ + σ2 Ci + ωµL′ − jσ + ωε∞
ω2ε2∞ + σ2 C′i

ã
I. (30)

It is also straight forward to generalize the stored energy expressions to multiple
resonances by adding multiple polarization states.

We follow (9), (10), and (11) to determine the stored electric and magnetic
energies and Q-factor for the state-space model. The frequency derivative of
the state-space matrix ‹X′ produces the quadratic forms for the stored energies
in (18), i.e.,

W‹X′ = We‹X′ +Wm‹X′ = 1
4 ĨH ∂‹X

∂ω
Ĩ = 1

4ω IH(Xe + Xm)I, (31)

where (29) is used to introduce the electric, Xe, and magnetic, Xm, reactance
matrices for dispersive media [23,24]. The difference between the stored magnetic
and electric energies give the explicit formulas for the stored magnetic and electric
energies

Wm‹X′ = 1
8 ĨH
Ç
∂‹X
∂ω

+
‹X
ω

å
Ĩ = 1

4ω IHXmI (32)
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and

We‹X′ = 1
8 ĨH
Ç
∂‹X
∂ω
−
‹X
ω

å
Ĩ = 1

4ω IHXeI, (33)

respectively. The relations (32) and (33) are formally identical to the stored
energy expressions for the lumped circuit networks (9) and (10). The Q-factor
for antennas tuned to resonance (1) is

Q‹X′ = max{ĨH(ω‹X′ ± ‹X)̃I}
2IHRI = ωĨH‹X′Ĩ + |IHXI|

2IHRI

= max{IHXeI, IHXmI}
IHRI (34)

for the stored energy (31).
We compare the Q-factor determined from the state-space model Q‹X′ us-

ing (29) with the differentiated input impedance QZ′
in

(66), Brune synthesis
QZB

in
[21], and Γ0 = 0.3 reflection coefficient Q0.3 (68) in Figs. 3, 4, and 5.

The antenna parameters are computed using a MoM code based on rectangu-
lar elements for planar (negligible thickness) structures modeled as PECs. We
consider non-dispersive, conductivity, and Lorentz permittivity models for dipole
antennas with length ` and width 0.01` in Figs 3 and 4. The results are presented
in the dimensionless parameter `/λ, where λ is the free space wavelength. The
material parameters are functions of the dimensionless parameter ω = 2π`/λ.

Fig. 3 depicts strip dipoles, fed at the center and 0.27` from the center, in a
homogenous medium with relative permittivity εr = 1 − j2πα/ω. The off-center
feed is chosen to eliminate some of the symmetries of the induced current density
distribution in comparison to the center-fed case, and increase the phase shift of
the induced current density. The calculated Q-factors are depicted in Fig. 3 for
free space and background media with relative permittivity εr = 1 − j0.25/ω ≈
1− j0.04λ/`. All Q-factors seem to agree well for the center fed dipole in the left
hand figure. For the off-center fed dipole in the right hand figure the Q-factors
agree well for low frequencies, but tend to deviate slightly at higher frequencies.
At low frequencies the loss tangent 0.25/ω is high and thus all Q-factors are
small. The Q-factor from the Brune circuit QZB

in
follow Q‹X′ but gives slightly

lower values. The Q-factor from the differentiated input impedanceQZ′
in
is similar

to QZB
in

except for `/λ ≈ 2 in the off-center fed case, where QZ′ has a dip. This
dip is mimicked in the free space case where QZ′ ≈ 0 , see also [21]. Q0.3 also
deviates from Q‹X′ at `/λ ≈ 2 where it has a fixed lower level. Q‹X′ and QZB

in
do

not seem to be affected by these effects and predict values of around 7 in this
region.

Fig. 4 shows the Q-factors for a center fed dipole in a background Lorentz
media. The background has been modeled by the Lorentz model

εr = 1 + ν2ω2
0/2

ω2
0 + sνω0 + s2 , (35)
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Figure 3: Q-factors for strip dipoles with length `, width `/100, and fed in
the center and 0.27` from the center in the top and bottom figure, respectively.
The antennas are placed in a homogeneous medium with relative permittivity
εr = 1−2παj/ω, where ω = 2π`/λ. The Q-factors are determined from the state-
space matrix Q‹X′ in (34), the Brune synthesized circuit model QZB

in
as in [21], the

differentiated input impedance QZ′
in

in (66), and fractional bandwidth Q0.3 (68)
with Γ0 = 0.3.

with the values

εr(ω0) = 1− jν/2 and (ωεr)′|ω=ω0
= 0, (36)

where ω0 is the resonance frequency of the material. All Q-factors agree well
outside the resonance ω0 ≈ 0.25. The state-space model Q‹X′ and Brune circuit
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Figure 4: Q-factors for a center fed strip dipole with length `, and width `/100,
placed in a homogeneous medium with relative permittivity (35), where ω =
2π`/λ and ν = {0.25, 0.05}. The permittivity is depicted in the bottom right.
The Q-factors are determined from the state-space matrix Q‹X′ in (34), the Brune
synthesized circuit model QZB

in
as in [21], the differentiated input impedance QZ′

in

in (66), and fractional bandwidth Q0.3 (68) with Γ0 = 0.3.

QZB
in
are similar at ω0, whereas QZ′

in
and Q0.3 are lower. The similarities between

Q‹X′ and QZB
in
indicate that (29) is accurate for small antennas in highly dispersive

backgrounds. The lower values for QZ′
in

show that Zin is not well approximated
with a single resonances model around ω0. The fractional bandwidth Q0.3 agrees
with QZ′

in
as Γ0 → 0, but is closer to QZB

in
for larger values of Γ0.

Fig. 5 depicts the Q-factors for a meander line antenna following the design
in [3]. The Q-factors have been calculated for an interval around the operating
frequency of the antenna and seem to agree well with QZB

in
and QZ′

in
predicting

slightly lower values than Q‹X′ for greater losses. This illustrates the state-space
methods ability to also accurately calculate the Q-factor for more advanced an-
tenna structures.

4.2 Temporally Dispersive Permittivity and Per-
meability

Temporally dispersive permittivity and permeability are used to model meta-
materials and can produce exotic phenomena such as negative refraction [1,2,8].
These are very challenging material models and good cases to verify the accuracy
of the stored energy expressions [27]. Here, the state-space model is generalized
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Figure 5: Q-factors for meander line antenna ’M1’ in [3], with height `, width
0.56`, and placed in a homogeneous Debye medium with relative permittiv-
ity (21). The Lorentz parameters are chosen as α = 0.2, β = 1, γ = 4, δ = 0.
The antenna geometry is depicted in the upper right hand corner as well as
the permittivity over the frequency interval. The Q-factor has been calculated
with the state-space model Q‹X′ , Brune synthesis QZB

in
, and differentiation of the

impedance matrix QZ′
in
.

to Lorentz models in the permittivity and permeability, i.e.,

ε(s) = ε∞ + α2

β2 + γs+ δs2 and µ(s) = µ∞ + α2
1

β2
1 + γ1s+ δ1s2 , (37)

where the parameters are defined in analogy to (21), and are assumed to be
non-negative. Following the approach in Sec. 4.1, we introduce the voltage state
U, electric polarizability P and Ṗ, and the magnetic polarizability Pm and Ṗm.
The EFIE MoM system is rewritten,

ZI = (sµL + 1
sε

Ci)I = sµ∞LI + α1Ṗm + U = V = BVin, (38)

with the magnetic polarizability Ṗm = sα1
β2

1+γ1s+δ1s2 LI. The equation is divided
into its electric and magnetic parts relating to the permittivity and permeability,
respectively. The electric part is identical to (22) and analyzed as in Sec. 4.1.
The magnetic part is similarly rewritten using

α1LI = (β
2
1
s

+ γ1 + δ1s)Ṗm = β1Pm + γ1Ṗm + δ1sṖm. (39)
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Collecting the terms gives the state-space model



sµ∞L 1 0 0 0 α11
−1 sε∞C 0 1α 0 0
0 0 sCi −βCi 0 0
0 −α1 βCi (sδ + γ)Ci 0 0
0 0 0 0 sL−1 −β1L−1

−α11 0 0 0 β1L−1 (sδ1 + γ1)L−1







I
U
P
Ṗ

Pm
Ṗm




=




B
0
0
0
0
0



Vin.

(40)
The stored energy is approximated as the quadratic form generated by the dif-
ferentiated system matrix in (40),



µ∞L + ωµ∞L′ 0 0 0 0 0
0 ε∞C + ωε∞C′ 0 0 0 0
0 0 Ci + ωC′i jβC′i 0 0
0 0 −jβC′i δCi + (ωδ − jγ)C′i 0 0
0 0 0 0 Li + ωL′i jβ1L′i
0 0 0 0 −jβ1L′i δ1Li + (ωδ1 − jγ1)L′i



.

The electric terms are analyzed in Sec. 4.1 and the magnetic terms are similarly
simplified asÅ

Pm
Ṗm

ãH ÅL−1 − ωL−1L′L−1 −jβ1L−1L′L−1

jβ1L−1L′L−1 δ1L−1 − (ωδ1 − jγ1)L−1L′L−1

ãÅ
Pm
Ṗm

ã
=
Ç
α1β1
χ1

LI
α1s
χ1

LI

åH Å
L−1 − ωL−1L′L−1 −jβ1L−1L′L−1

jβ1L−1L′L−1 δ1L−1 − (ωδ1 − jγ1)L−1L′L−1

ãÇα1β1
χ1

LI
α1s
χ1

LI

å
'
Ç
α1β1
χ1

I
α1s
χ1

I

åH Å
L− ωL′ −jβ1L′

jβ1L′ δ1L− (ωδ1 − jγ1)L′
ãÇα1β1

χ1
I

α1s
χ1

I

å
= α2

1
|χ2

1|
IH(β2

1(L− ωL′) + 2ωβ2
1L′ + ω2(δ1L− (ωδ1 − jγ1)L′)

)
I

= α2
1
|χ2

1|
IH((β2

1 + ω2δ1)L + ω(β2
1 − ω2δ1 + jωγ1)L′)

)
I

= α2
1
|χ2

1|
IH((β2

1 + ω2δ1)L + ωχ1L′
)
I, (41)

where we again neglect the lower order terms.
If we consider a medium with permittivity and permeability according to

the Lorentz model (37) and µr = εr. This synthesizes a case where Z′ ≈ 0
for antennas that are resonant at ω0 [27] for any ν > 0. Furthermore, the
corresponding impedance matrix does not change significantly as ν → 0, i.e.,
Zν ≈ Zν=0 as ν � 1. Therefore, the energy distribution in the fields, currents,
or circuit models of the antenna depend weakly on ν as ν � 1.

In Fig. 6 a strip dipole with length ` and width 0.01` are used to illustrate
the estimated Q-factors. Consider the resonance frequency ω0 = 2π`/λ = 3 and
the damping ν = 0.1 in the Lorentz model (37). The maximal susceptibility is
|1 − εr| = ν/

√
4− ν2 ≈ ν/2 for ν � 1. The Q-factors give similar results away
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Figure 6: Q-factors for a strip dipole with length `, width `/100, fed at the
center, and placed in a homogeneous electric and magnetic Lorentz medium with
relative permittivity and permeability (37) as depicted in the bottom left inset,
where ω = 2π`/λ and ν = 10−1. The Q-factors are determined from the state-
space matrix Q‹X′ , the Brune synthesized circuit model QZB

in
, the differentiated

input impedance QZ′
in
, and fractional bandwidth Q0.3.

from the resonance frequency ω0, which coincides with the dipole resonance of
the antenna. At ω0 QZ′

in
has a substantial dip, whereas Q‹X′ and QZB

in
increase

slightly. QZB
in

has slightly lower values than Q‹X′ at the resonance ω0. Q0.3 on
the other hand also displays a bottoming out of its values around the resonance,
cf., with [27]. This in conjunction with QZ′

in
behavior indicate that the single

resonance approximation for Zin is not satisfied in this kind of resonant media.
The multiple resonance also increases the fractional bandwidth and invalidates
the simple relation (68).

5 Stored Energy for Inhomogeneous Me-
dia

The numerical examples in Sec. 4 indicate that the state-space approach produces
accurate estimates of the stored energy for homogeneous background media. Fol-
lowing this approach, we analyze piecewise homogeneous background media using
the surface equivalence principle, and inhomogeneous media with volume integral
equations in Secs 5.1 and 5.2, respectively.
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5.1 Piecewise Homogeneous Media
The surface equivalence principle is used to express the electromagnetic fields in
piecewise homogeneous media [9, 35, 44, 52, 56]. Consider for simplicity a PEC
antenna structure embedded in a media with permittivity and permeability as
depicted in Fig. 2. The geometry is divided into three regions Ωp p = 1, 2, 3,
with corresponding material parameters εp and µp. Let ∂Ωp denote the exterior
surface of Ωp, i.e., the boundary of

⋃p
q=1Ωq. The field in region Ωp is expressed

by the equivalent currents Jp−1,Jp,Mp−1, and Mp, where J0 = M0 = 0. We
follow the state-space approach and construct a system for the input impedance
Zin = Vin/Iin.

The EFIE and Magnetic Field Integral Equation (MFIE) for the inner region
Ω2 is writtenÑ Z2,11 Z2,12 K2,12

Z2,21 Z2,22 K0 + K2,22
−K2,21 K0 −K2,22

1
η2

2
Z2,22

éÑ
I1
I2

M2

é
=

Ñ
V1
0
0

é
, (42)

where Zp,oq denotes the EFIE impedance matrix (12) connecting the surfaces
o and q through their respective currents, evaluated using materials εp and µp.
Kp,oq is the corresponding MFIE operator with elements

Kp,oq,mn =
∫
∂Ωo

∫
∂Ωq

ψm(r1) ·ψn(r2)×∇1G12 dS1 dS2 (43)

and K0 is the free term of the MFIE. Since region 1 is a PEC, there exists no
magnetic surface current M1. The EFIE and MFIE for the exterior region Ω3 is
similarly Ç

Z3,22 −K0 + K3,22
−K0 −K3,22

1
η2

3
Z3,22

åÅ
I2

M2

ã
=
Å

0
0

ã
. (44)

The EFIE and MFIE in (42) and (44) can be combined in different ways to
mitigate internal resonance problems of the MoM solution, e.g., the PMCHWT
and Müller integral equations [9,35]. Here, we choose the PMCHWT formulation
and add the equations (42) and (44) together to getÑ Z2,11 Z2,12 K2,12

Z2,21 Z2,22 + Z3,22 K2,22 + K3,22
−K2,21 −K2,22 −K3,22

1
η2

2
Z2,22 + 1

η2
3
Z3,22

éÑ
I1
I2

M2

é
=

Ñ
V1
0
0

é
, (45)

where the K0 term cancels out. This can be considered as a second order state-
space model for the input impedance with the decomposition (12). Because the
material parameters are different in the two regions it is, however, advantageous
to first divide (45) as a sum of its inner and outer parts. This creates two parts
that are formally identical and can be written asÅ

Z K
−K Z

ãÅ
I

M

ã
=
Ç
sµL + Ci

sε K
−K sεL + Ci

sµ

åÅ
I

M

ã
, (46)
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where the material parameters εp and µp are used in region Ωp. The second
order system (46) is rewritten as a first order system, in analogy with (16), by
the introduction of a magnetic voltage state Um = 1

sµCiM,Ü
sµL 1 K 0
−1 sεC 0 0
−K 0 sεL 1
0 0 −1 sµC

êÜ
I
U
M
Um

ê
. (47)

This system can determine the stored energy of each region with the same ap-
proximation used in (18). For simplicity, we consider first non-dispersive material
models. It is sufficient to use differentiation with respect to the Laplace param-
eter s for the non-dispersive cases to illustrate the method, givingÜ

µL + ωµL′ 0 −jK′ 0
0 εC + ωεC′ 0 0

jK′ 0 εL + ωεL′ 0
0 0 0 µC + ωµC′

ê
(48)

with L′ as in (19), C′ = −CC′iC as in (20), and

K ′p,mn = κ′κ

∫
∂Ωp

∫
∂Ωp

ψn(r1) ·ψm(r2)× (r1 − r2)GdS1 dS2, (49)

where we used

∂

∂κ
∇2G = ∇2

∂

∂κ
G = −∇2

e−κR

4π = −κe−κR(r1 − r2)
4πR = −κ(r1 − r2)G. (50)

The K′ term in vacuum is recognized as being proportional to the K2 term used
in [36], see also [38]. The terms that contribute to the stored energy are expanded
in the wavenumber k in [37] and it is shown that the K1-term and the potentially
coordinate dependent terms K3 and K4 used in [36] are one order smaller than
the K2-term. These terms are not present in the state-space based approach
presented here. The contribution to the stored energy from the region Ωp is
finally given by the real part of the quadratic formÜ

I
U
M
Um

êHÜ
µL + ωµL′ 0 −jK′ 0

0 εC + ωεC′ 0 0
jK′ 0 εL + ωεL′ 0
0 0 0 µC + ωµC′

êÜ
I
U
M
Um

ê
(51)

and the total stored energy by summation over all regions. This can be expressed
as a quadratic form in the electric and magnetic current by substituting back the
voltage states.

The expression (51) resembles the stored energy from electric and magnetic
current densities [36–38]. The stored energies in [36–38] are derived from the
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Figure 7: Q-factors for a cylindrical dipole with length `, width `/100, fed at the
center, and placed in a dielectric cylinder with permittivity ε1 and background
permittivity ε2. The cylinder has height 1.1` and diameter 0.4`. The Q-factors
are computed using (51), Brune synthesized circuits [21], and (66) for the two
cases {ε1, ε2} = {1, 10} and {ε1, ε2} = {10, 1}.

subtraction of the far-field in a non-dispersive homogeneous background as in (2).
The equivalence principle states that the fields generated by currents at ∂Ωn
vanish outside Ωn and for that reason produces the total energy in Ωn. The
exterior region is an exception for which the energy produced is similar to the
case of far-field subtraction. Consequently, the stored energy (51) resembles (2)
with spatially dependent permittivity and permeability in the energy density
terms, and the exterior permittivity in the subtracted far-field energy term, for
small structures. The expressions differ for larger structures, where K1 together
with the coordinate dependent terms in [37] contribute.

Figs. 7 and 8 depicts Q-factors Q‹X′ based on the energy expressions (51) for
multilayer structures. Fig. 7 shows Q-factors for a cylindrical dipole embedded
in a dielectric cylinder. The figure contains two cases, when the permittivity of
the cylinder is higher than the background, and when the permittivity of the
background is higher than the cylinder. For both cases Q‹X′ agrees very well
with QZB

in
and QZ′

in
. However, QZB

in
and QZ′

in
have slightly lower values than Q‹X′

for {ε1, ε2} = {10, 1} at higher frequencies. Fig. 8 instead shows what occurs
when the dielectric cylinder encasing the dipole is much larger, for the two cases.
The Q-factors agree well except for higher frequencies when the cylinder is large.
There is also a dip in QZ′

in
at 0.2`/λ for cylinder size 2.6`× 1.6`.

The piecewise inhomogeneous case can be expanded to temporally dispersive
permittivity and permeability as was done for homogeneous media in Sec. 4.1.
The system matrix (47) is expanded to a first order state-space model for the
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Figure 8: Q-factors for a cylindrical dipole with length `, width `/100, fed at the
center, and placed in a dielectric cylinder with permittivity ε1 and background
permittivity ε2. The cylinder has heights 5` and diameters 4`. The Q-factors are
computed using (51), Brune synthesized circuits [21], and (66) for the two cases
{ε1, ε2} = {1, 2} and {ε1, ε2} = {2, 1}.

Lorentz model (21) in analog with (24). However, the magnetic currents give rise
to the states Um,Pm, Ṗm in addition to the voltage U and polarization states P
and Ṗ used in (24). The resulting system matrix is



sµL 1 K 0 0 0 0 0
−1 sε∞C 0 0 0 1α 0 0
−K 0 sε∞L 1 0 0 0 1α
0 0 −1 sµC 0 0 0 0
0 0 0 0 sCi −βCi 0 0
0 −1α 0 0 βCi (sδ + γ)Ci 0 0
0 0 0 0 0 0 sLi −βLi
0 0 −1α 0 0 0 βLi (sδ + γ)Li







I
U
M
Um
P
Ṗ

Pm
Ṗm




,

(52)
where we used

(sεL + Ci

sµ
)M = (sε∞L + Ci

sµ
+ sα2

χ
L)M = sε∞LM + Um + αṖm, (53)

and sαLM = χṖm = χsPmβ
−1 with LMα = χPmβ

−1 to get

αLM = (β2 + sγ + s2δ)Pmβ
−1 = βPm + (γ + sδ)Ṗm. (54)

From here the electric and magnetic terms are analyzed as in 4.2.
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Figure 9: Q-factors for a cylindrical dipole with length `, width `/100, fed at the
center, and placed in a dielectric cylinder with permittivity ε1 and background
permittivity ε2. The cylinder has height 1.1` and diameter 0.4`. The Q-factors
are computed using (51), Brune synthesized circuits [21], and (66) for the two
cases {ε1, ε2} = {1, εr} and {ε1, ε2} = {εr, 1}, εr = 1 + 9/(1 + 0.5s+ s2).

Fig. 9 displays Q-factors calculated for a cylindrical dipole encased in both a
dielectric cylinder with dispersive permittivity in a normal background and a vac-
uum cylinder in a dispersive background. The dispersive permittivity is modeled
by the Lorentz model (21). For the case when the background is dispersive and
the cylinder is vacuum, the Q-factors agree well. For the second case, when the
cylinder is dispersive, Q‹X′ and QZB

in
agree for the whole interval. However, QZ′

in
has a dip around 0.2 to 0.35`. This is most likely caused by multiple resonances
in the input impedance.

5.2 Inhomogeneous Media
To handle fully inhomogeneous background media we use volume integral equa-
tions [9], the implementation of which is much more arduous than surface based
integral equations. However, the method for constructing the state-space sys-
tem and calculating the stored energy is principally the same. For completeness,
we present here the analysis needed to calculate the stored energy with volume
integral equations.

Consider a dielectric body with relative permittivity εr(r). The volume EFIE
is

E(r1) = E(i)(r1)− k2
∫
Ω

G(r1 − r2) · (1− εr(r2))E(r2) dV2, (55)
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where G = (1 + k−2∇∇)G is the Green dyadic, k the free-space wavenumber,
and E(i) the incident electric field. Introduce the contrast current density J =
κ(1− εr)E to reformulate (55) to an integral equation in that quantity

J(r1)
κ(1− εr(r1)) = E(i)(r1) + κ

∫
Ω

G(r1 − r2) · J(r2) dV2. (56)

Multiply both sides with test functions Ψ and integrate over the volume∫
Ω

Ψ(r) · J(r)
κ(1− εr(r)) dV =

∫
Ω

Ψ(r) ·E(i)(r) dV

+
∫
Ω

∫
Ω

κG(r1−r2)Ψ(r1) ·J(r2)+ 1
κ
G(r1−r2)∇1 ·Ψ(r1)∇2 ·J(r2) dV1 dV2,

(57)

where we split the Green’s dyadic G into two parts. The differentiated term is
partially integrated to reduce the singularity of the Green’s function∫

Ω

∫
Ω

J(r1) · ∇∇G · J(r2) dV1 dV2

= −
∫
Ω

∫
Ω

∇1 · J(r1)G∇2 · J(r2) dV1 dV2. (58)

To obtain the MoM formulation we expand the contrast current density J in
basis functions Ψn as

In =
∫
Ω

Ψn(r) · J(r) dV =
∫

Ψn(r) · κ
(
1− εr(r)

)
E(r) dV. (59)

This enables the introduction of matrix quantities similar to those used in (12),
and thus, the construction of the state-space system. The inductance matrix is
defined as

Lmn =
∫
Ω

∫
Ω

G(r1 − r2)Ψm(r1) ·Ψn(r2) dV1 dV2, (60)

the capacitance matrix as

Cimn =
∫
Ω

∫
Ω

G(r1 − r2)∇1 ·Ψm(r1)∇2 ·Ψn(r2) dV1 dV2, (61)

and the material matrix as

Mmn =
∫
Ω

Ψm(r) ·Ψn(r)
1− εr(r) dV. (62)

With these three matrices equation (57) can be written as the second order
system

(
sµ0L + Ci + M

sε0

)
I = V. (63)
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Similarly to previous sections it can be transformed to the first order state-space
model by the introduction of a voltage state U = 1

sε0
(Ci + M)IÅ

sµ0L 1
−1 sε0(Ci + M)−1

ãÅ
I
U

ã
=
Å

V
0

ã
. (64)

Finally, the stored energy is given by the quadratic form of the frequency differ-
entiation of the state-space matrix

Re
4

Å
I
U

ãH Å
µ0(L + ωL′) 0

0 ε0(Ci + M)−1 − ε0ω(Ci + M)−1C′i(Ci + M)−1

ãÅ
I
U

ã
= Re

4 IH(µ0(L + ωL′) + 1
ω2ε0

(Ci + M− ωC′i)
)
I = 1

4IH ∂X
∂ω

I. (65)

6 Conclusions
State-space models for the input impedance based on the integral equations EFIE
and MFIE have been used to determine the stored electromagnetic energy for
small antennas. These expressions have been calculated by synthesizing first
order state-space models. The stored energy is expressed as a quadratic form of
the frequency differentiated system matrix and the states. This quadratic form
is advantageous because it enables us to utilize these stored energy expressions
in fast and efficient optimization techniques [6, 11,23,24].

For the free-space case it is shown in Sec. 3 that the proposed expression is
identical to the stored energy introduced by [53], see also [31]. This energy expres-
sion has been verified for several antennas with good results [11,12,21,32]. In [25],
it is, however, shown that the quadratic form can be indefinite for sufficiently large
structures. This partly questions the validity of the energy expression, although
the same problem appears in the commonly used stored energy in [63] defined
by subtraction of the far-field [22]. The energy expressions presented here are re-
stricted to electrically small antennas where they are positive definite. The open
question of defining and efficiently evaluating the stored energy for electrically
large structures remains, as of yet, unsolved, see also [46].

In Sec. 4 the state-space models are generalized to temporally dispersive back-
ground media. The results produced by the state-space method seem to be reli-
able and produce similar values as Brune circuit synthesis [21] and differentiation
of the input impedance QZ′

in
for single resonance cases. However, the main ad-

vantage over other contemporary methods is that the state-space model is written
as a quadratic form in the current, and hence enables fast and effective use in
antenna current optimization to determine physical bounds [7, 11,20,23,24,34].

The state-space model was further generalized to piecewise inhomogeneous
media in Sec. 5. Here it was shown that the method is stable for cases where
there are lossy media present but radiation still exists. These cases are of special
interest since they have similarities with applications such as implanted antenna
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system. By offering a stable method of calculating the Q-factor for inhomoge-
neous media the state-space method opens up avenues of research for calculating
optimal Q values for application based cases. This suggests the possibility to con-
struct Q-factor bounds for more applications than free space [23,24] and infinite
ground planes [50].

Appendix A Q-factors QZ′in and QΓ0

By taking the frequency derivative of the input impedance, the stored energy can
be approximated through the Q-factor [43,63],

QZ′
in

= ω

2Rin(ω) |Z
′
in0(ω)|, (66)

where Zin0 is the input impedance tuned to resonance. This simple expres-
sion (66) gives an accurate measure of the fractional bandwidth, but can overes-
timate the bandwidth for multiple resonance cases [26,49].

The corresponding fractional bandwidth, B, is

B ≈ 2
Q

Γ0√
1− Γ 2

0
, (67)

for single resonance antennas [63], where Γ0 denotes the threshold for the re-
flection coefficient. The relationship between the fractional bandwidth and Q-
factor (67) for the RLC resonance circuit can also be used to define an equivalent
Q-factor for a given threshold level Γ0 i.e.,

QΓ0 = 2
BΓ0

Γ0√
1− Γ 2

0
, (68)

where BΓ0 denotes the fractional bandwidth for the threshold Γ0.

Appendix B MoM Impedance Matrix
The MoM impedance matrix is divided into two parts in (12). This decomposition
is non-unique and Z can alternatively be divided as

Z = jωµ0L + 1
jωε0

Ci + η0R (69)

for the free space case, where

Lmn =
∫
∂Ω

∫
∂Ω

ψm1 ·ψn2
cos(kR12)

4πR12
dS1 dS2, (70)

Cimn =
∫
∂Ω

∫
∂Ω

∇1 ·ψm1∇2 ·ψn2
cos(kR12)

4πR12
dS1 dS2, (71)
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and

Rmn =
∫
∂Ω

∫
∂Ω

(kψm1 ·ψn2 −
1
k
∇1 ·ψm1∇2 ·ψn2) sin(kR12)

4πR12
dS1 dS2, (72)

Here, ψni is a short hand notation for basis functions ψn(ri) with n = 1, ..., N ,
i = 1, 2, ri denotes the position vector, and R12 = |r1 − r2|.
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