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Abstract

Time-domain Green dyadics for linear, homogeneous, temporally dispersive
bi-isotropic media are presented. Complex time-dependent electromagnetic
field is introduced. Approximation to the complex field from an electric point
dipole in an unbounded bi-isotropic medium with respect to the slowly vary-
ing components (second forerunner approximation) is obtained. Numerical
examples are presented. Surface integral equations for the tangential com-
ponents of the electromagnetic fields are derived for two standard scattering
problems.

1 Introduction

Green functions and Green dyadics for simple media are well-known notions in time-
harmonic field analysis [5, 8, 17]. They are defined as the solutions to the scalar and
the dyadic Helmholtz equations, respectively, with impulsive source terms. The
knowledge of the Green function (Green dyadic) gives a possibility to obtain the
solution of the scalar (vector) Helmholtz equation with an arbitrary source term.
Time-harmonic Green functions and Green dyadics are often used to obtain surface
integral representations of the electromagnetic fields [16]. These representations
together with the boundary conditions lead to integral equations for the tangential
components of the electric and magnetic fields on the boundary (equivalent magnetic
and electric surface current densities, respectively).

During the last decade, time-harmonic Green functions and Green dyadics for
various homogeneous, linear, complex (e.g., bi-isotropic [11] or uniaxial [12]) mate-
rials, have been obtained as well. Recently, results for a large class of bi-gyrotropic
materials, which involve at most twelve independent parameters, have been pre-
sented [13].

The majority of materials are dispersive, i.e., the parameters depend on fre-
quency. This dependence does not play any role in the analysis of time-harmonic
fields. However, in order to study pulse propagation, it has to be taken into ac-
count. Time-dependent Green functions and Green dyadics offer a natural tool to
investigate pulse propagation in dispersive media. They are defined as the solutions
of the scalar and the dyadic wave equations (or dispersive wave equations), respec-
tively, with impulsive source terms. The free-space time-dependent Green dyadic is
introduced in Ref. 10. In Ref. 4, time-dependent Green dyadics for homogeneous,
dispersive, isotropic media are derived. In the present article, the theory is gen-
eralized to the case of temporally dispersive, bi-isotropic materials. The complex
time-dependent electromagnetic field introduced in Ref. 14 is utilized to simplify the
analysis.

The outline of the present paper is as follows. In Section 2, the notation and the
basic equations are introduced as well as the constitutive relations relevant to the
problem in question. In Section 3, the complex time-dependent electromagnetic field
is defined. The Green dyadic for the complex field is derived and given in explicit
form in Section 4. In Section 5, the fields from an electric point dipole in an un-
bounded, temporally dispersive, bi-isotropic medium are obtained and approximated
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with respect to the slowly varying components (second forerunner approximation),
and the numerical results are presented. Surface integral representations of the com-
plex field are obtained in Section 6 and these are used in Section 7 to obtain surface
integral equations for the tangential components of the electromagnetic fields. Some
conclusions are drawn in Section 8.

2 Basics

In this paper, scalars are typed in italic style, vectors in italic boldface style, and
dyadics in Roman boldface style. The three-dimensional identity dyadic is denoted
by I, the dyadic differential operators in Cartesian coordinates are given by [8]

∇∇ = (∂xux + ∂yuy + ∂zuz) (∂xux + ∂yuy + ∂zuz) ,

∇× I = (∂xux + ∂yuy + ∂zuz) × (uxux + uyuy + uzuz) .

Standard notation is used for all electromagnetic fields as well as charge and cur-
rent densities. The speed of light in vacuum is c0 and the intrinsic impedance of
vacuum η0. The permittivity and permeability of vacuum are denoted by ε0 and µ0,
respectively.

The Maxwell equations,{
∇× E(r, t) = −∂tB(r, t),

∇× H(r, t) = J(r, t) + ∂tD(r, t),
(2.1)

and the equation of continuity,

∇ · J(r, t) + ∂tρ(r, t) = 0, (2.2)

describe the dynamics of the electromagnetic fields and charges in macroscopic me-
dia. All fields and source terms are assumed to be initially quiescent. This means
that all these quantities are zero before a certain time t, say t = 0.

The constitutive relations of a homogeneous, temporally dispersive, bi-isotropic
medium in the absence of an optical response are [6, 14]


c0η0D(r, t)=E(r, t)+(χee∗E)(r, t)+(χem∗η0H)(r, t)

=[εE] (r, t)+[ξη0H ] (r, t),

c0B(r, t)=(χme∗E)(r, t)+η0H(r, t)+(χmm∗η0H)(r, t)

=[ζE] (r, t)+[µη0H ] (r, t),

where χij(t), i, j = e,m, are the susceptibility kernels of the medium. The relative
permittivity and permeability operators, ε = (1+χee∗) and µ = (1+χmm∗), as well
as the relative cross-coupling terms, ξ = χem∗ and ζ = χme∗, are temporal integral
operators. The asterisk (∗) denotes temporal convolution:

(χ ∗ E)(r, t) =

∫
χ(t− t′)E(r, t′) dt′.
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Here and in the rest of the paper the integration limits −∞ and ∞ are omitted in
time integrals, i.e.,

∫
. . . dt′ :=

∫ ∞
−∞ . . . dt′. Causality implies that all susceptibility

kernels are identically zero for time t < 0 which means that the upper limit in the
integral above can be set to t. All kernels are supposed to be smooth and bounded
for t > 0. Bi-isotropic medium is Pasteur if χme(t) = −χem(t), it is Tellegen if
χme(t) = χem(t) [9].

3 The complex time-dependent electromagnetic

field

The complex time-dependent electromagnetic field Q(r, t) is introduced through the
relations [14] {

E = Q + Q∗,

η0H = iYQ − iY∗Q∗,
(3.1)

where i is the imaginary unit and the relative intrinsic admittance Y = (1 + Y ∗)
is a complex-valued temporal integral operator. Q∗(r, t) and Y∗ denote complex
conjugates of Q(r, t) and Y , respectively. Explicitly,

Q =
1

2
Z(Y∗E − iη0H),

where the relative intrinsic impedance Z = (1+Z∗) is a real-valued temporal integral
operator defined by

(Y + Y∗)Z/2 = 1.

Demanding decoupling of the Maxwell equations for the complex fields Q(r, t) and
Q∗(r, t) gives the following condition on the operator Y :

Yζ − iε+ iY2µ+ Yξ = 0. (3.2)

The Maxwell equations then reduce to

∇× Q = − i

c0
∂tNQ − i

2
η0ZJ , (3.3)

where the index of refraction N = (1 + N∗) is a complex-valued temporal integral
operator defined by

N = µY∗ + iξ = µY − iζ. (3.4)

Equations (3.2) and (3.4) can be combined to get the following expressions for the
operators N and Y in terms of the known data:


N = i

ξ − ζ

2
+

√
µε− (ξ + ζ)2

4
,

µY = i
ξ + ζ

2
+

√
µε− (ξ + ζ)2

4
,
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where the square-root operator is√
µε− (ξ + ζ)2

4
= 1 +Nco(t) ∗ .

Here, the real-valued integral kernel Nco(t) satisfies the nonlinear Volterra integral
equation of the second kind

2Nco(t) + (Nco ∗Nco)(t) = χee(t) + χmm(t) + (χee ∗ χmm)(t) − (χ ∗ χ)(t),

where

χ(t) = χem(t)/2 + χme(t)/2

is the nonreciprocity kernel. For a Pasteur medium χ ≡ 0.
The wave number operator K is defined by

K = c−1
0 ∂tN = c−1

0 ∂t(1 +N∗).

The inverses of all the operators above exist and are well-defined temporal inte-
gral operators, cf. Ref. 4.

4 Green dyadic for the complex field

The Green dyadic GQ for the complex electromagnetic field Q(r, t) is defined by [4]

Q(r, t) =

∫
R3

∫
GQ(r − r′; t− t′) · µ0∂t′ [µJ ] (r′, t′) dt′ dv′. (4.1)

Using (3.3), the following equation for the dyadic GQ is obtained

(∇× I + iIK)GQ = − i

2
Ic0∂

−1
t Zµ−1 [δ0 ⊗ δ0] , (4.2)

where δ0 = δ(r) and δ0 = δ(t) are the Dirac delta functions in space and in time,
respectively. Operating with ∇· on (4.2) gives

∇ · GQ = −c0
2
∇ · I∂−1

t ZK−1µ−1 [δ0 ⊗ δ0] .

Operating with ∇× on (4.2) and using the equation above leads to the following
dispersive wave equation for the Green dyadic

[
∆ −K2

]
GQ =

1

2

[
I −∇∇K−2 + iK−1∇× I

]
ZNµ−1 [δ0 ⊗ δ0] ,

where ∆ is the Laplace operator. The solution to the equation above can be written
in the following form:

GQ = −1

2

[
I −∇∇K−2 + iK−1∇× I

]
ZNµ−1E , (4.3)
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where E=E(r; t) is the retarded fundamental solution of the dispersive wave operator
(−∆ + K2). The fundamental solution E(r; t) is given by [3, 4]

E(r; t) = q(r)
1

4πr

(
δ

(
t− r

c0

)
+ P

(
r; t− r

c0

))
, (4.4)

where

q(r) = exp

(
− r

c0
N(+0)

)
(4.5)

and

P (r; t) =
∞∑

m=1

1

m!

(
− r

c0

)m

((N ′∗)m−1N ′)(t). (4.6)

The kernel P (r; t) satisfies the Volterra temporal integral equation of the second
kind [3, 4]


tP (r; t) = F (r; t) +

(
F (r; ·) ∗ P (r; ·)

)
(t), F (r; t) = −t r

c0
N ′(t),

P (r; t) = 0 for t < 0.
(4.7)

An alternative representation of the retarded fundamental solution, which is used
below to obtain the second forerunner approximations, is [3, 4]

E(r; ·)∗ =
1

4πr
exp

(
− r

c0
∂t

(
δ(·) +N(·)

)
∗
)
, (4.8)

where the exponential function is understood in terms of its Maclaurin expansion.
Notice that (cf. Ref. 4)

GQ(r − r′; t− t′) = GT
Q(r′ − r; t− t′), (4.9)

where GT
Q is the transpose of the dyadic GQ. (Recall that a dyadic AT is the

transpose of a dyadic A if A · F = F · AT for all vectors F .)
The operator combination ZNµ−1 in (4.3) can be expressed in terms of the

constitutive operators as

ZNµ−1 = 1 +
i

2
(ξ − ζ)

(
µε− (ξ + ζ)2

4

)−1/2

·

Notice that if the medium is isotropic, then ZNµ−1 = 1 and (4.3) reduces to the
result in Ref. 4.

With the help of Schwartz’ pseudo-functions [15], the expression (4.3) can be
written explicitly as, cf. Ref. 4,

2GQ = −1

3
IK−2ZNµ−1 [δ0 ⊗ δ0] + (urur−I)ZNµ−1E

(3urur−I)

(
Pf.

(
1

r3

)
K−2+

1

r2
K−1

)
ZNµ−1rE

+ i

(
1

r2
K−1 +

1

r

)
ZNµ−1 (rE × I) .

(4.10)
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5 Example

5.1 Electric point dipole in a dispersive bi-isotropic medium

Suppose that an electric point dipole, placed in an unbounded bi-isotropic medium,
flashes on and off at time t = 0. Its electric dipole moment is pδ(t), where p is a
constant vector. The charge and current densities of this source are given by

ρ = −(p · ∇) (δ0 ⊗ δ0) , J = p∂t (δ0 ⊗ δ0) , (5.1)

respectively. Using equations (4.1) and (4.10) gives the following expression for the
complex time-dependent electromagnetic field generated by an electric point dipole:

2ε0Q = −1

3
pN−1Z [δ0 ⊗ δ0] + (urur − I) · p c−2

0 ∂2
t ZNE

+ (3urur − I) · p
(
Pf.

(
1

r3

)
N−1 +

1

r2
c−1
0 ∂t

)
Z (rE)

+ i

(
1

r2
+

1

r
K

)
c−1
0 ∂tZ (rE × p) .

(5.2)

Recall that the operators N and K as well as the retarded fundamental solution E
are complex quantities.

The field Q(r, t) can be obtained numerically by solving the equation (4.7),
substituting (4.4) into (5.2), and performing all the convolutions. This procedure is
very time- and memory-consuming.

In analogy with the analysis in Ref. 4, asymptotic methods developed in Refs. 3,7
can be used to get an approximation to the dipole fields with respect to the slowly
varying components (the second forerunner approximation). First, write [3]

E(r; ·)∗ =
1

4πr
exp

(
− r

c0
∂t (1+N(·)∗)

)

≈ 1

4πr
exp

(
− r

c0

(
(1+n1)∂t+n2∂

2
t +n3∂

3
t

))
= Ẽ(r; ·)∗,

(5.3)

where

Ẽ(r; t) =
1

4πr
exp

(
n3

2

27n2
3

r

c0
− n2

3n3

(t− t1(r))

)
Ai (sign(Re(n3))(t− t1(r))/t3(r))

t3(r)
,

n1 =

∫ ∞

0

N(t) dt, n2 =−
∫ ∞

0

tN(t) dt, n3 =
1

2

∫ ∞

0

t2N(t) dt,

t1(r)=

(
n1+1− n2

2

3n3

)
r

c0
, t3(r)=

(
3n3sign(Re(n3))r

c0

) 1
3

·

Now, to get asymptotic expressions for the dipole fields, approximate convolutions
in (5.2) by the first three terms in their series representations [3, 7], e.g.,

Z = (1 + Z∗) ≈ (1 + z1) + z2∂t + z3∂
2
t ,
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Figure 1: The field Eθ from a dipole uz10−17δ(t) C m in a chiral medium at a
distance r = 4 · 10−6 m from the dipole at an angle of observation θ = π/4. The
medium is characterized by the parameters α= 3.33 ·10−18 s, ωp = ω0 = 3 ·1016 s−1,
ν=6·1015 s−1.

where the moments are

z1 =

∫ ∞

0

Z(t) dt, z2 =−
∫ ∞

0

tZ(t) dt, z3 =
1

2

∫ ∞

0

t2Z(t) dt.

Using these approximations and (5.3) in (5.2) give an approximate expression for
the complex field Q(r, t) due to an electric point dipole. The main advantage of
this method is that the resulting expression contains only algebraic combinations of
the exponential function, Airy function and its derivative. No convolutions or other
time-consuming operations are involved. An explicit formula for this approximation
for the case of an isotropic, nonmagnetic medium is presented in Ref. 4. The general
expression is too long to be presented in this paper.

Notice that this technique cannot be used to obtain the wave-front behavior (the
first precursor) of the complex field Q(r, t).

5.2 Numerical calculations

In this subsection, the methods described above are used to calculate the dipole
fields in a chiral medium. Both the numerical and the asymptotic solutions are
obtained and the results are compared with each other.

In terms of the susceptibility kernels, Drude’s model for reciprocal, nonmagnetic,



8

-10x10
24

 

-5

0

5

10
H

  
 (

A
/m

)

8x10
-15

 6420

 Time t from the arrival of the wave front  (s)

  numerical result
  asymptotic approximation

 

θ

Figure 2: The field Hθ from a dipole in a chiral medium. For details see caption
of Figure 1.

isotropic chiral materials (also known as Condon’s model) can be described as [3]


G(t) = H(t)
ω2

p

ν0

sin (ν0t) exp

(
−νt

2

)
,

χem(t) = −χme(t) = κ(t) = α∂tG(t),

χee(t) = χ(t) = G(t) − (κ ∗ κ) (t),

χmm = 0,

(5.4)

where H(t) is the Heaviside step function, ω0, ωp, and ν are the harmonic, plasma,

and collision frequencies, respectively, ν0 =
√
ω2

0 − ν2/4, and α is a constant de-
pending on the microstructure of the medium. For this model, the susceptibility
moments are [3]


χ1 =
ω2

p

ω2
0

, χ2 = −
νω2

p

ω4
0

, χ3 = −
(w2

0 − ν2)w2
p

w6
0

− α2
w4

p

w4
0

,

n1 =
√

1 + χ1 − 1, n2 =
χ2

2(1 + n1)
+ iαχ1, n3 =

χ3 − (Ren2)
2

2(1 + n1)
+ iαχ2,

nres1 = − n1

1 + n1

, nres2 = −n2(1 + nres1)

1 + n1

, nres3 = −(1 + nres1)n3 + nres2n2

1 + n1

,

z1 = − n1

1 + n1

, z2 = −Ren2(1 + z1)

1 + n1

, z3 = −(1 + z1)Ren3 + z2Ren2

1 + n1

.

In Figures 1–6, the components of the electric and magnetic fields due to an elec-
tric point dipole (5.1) with p = uz10−17 C m s in an unbounded chiral medium
are presented. The medium is characterized by the parameters α = 3.33 ·10−18 s,
ωp =ω0 = 3·1016 s−1, ν=6·1015 s−1. The distance from the dipole to the observation
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Figure 3: The field Eφ from a dipole in a chiral medium. For details see caption
of Figure 1.

point is 4 · 10−6 m and the angle of observation is θ = π/4. Both the numerical
solution (solid line) and the asymptotic approximation (dashed line) are presented.
The agreement between these two solutions is quite good. A quick look at Figures 1
and 7, where the latter presents the θ-component of the electric field at the dis-
tance r = 10−6 m, reveals that the developed method gives better approximation
for larger propagation depths which is intuitively clear from the representation in
equation (4.8).

Figure 8 illustrates how the θ-component of the electric field changes with the
distance. The left curve represents the field at r = 4 · 10−6 m from the dipole while
the right one — at a 10 times larger distance. Note that different scales are used for
different curves. Only asymptotic results are available for large propagation depths.
Other field components change with the distance in a similar way.

Note that t in all figures denotes the time after the arrival of the wave front (i.e.,
t is “the wave-front time”).

6 Surface integral representations

The derivation of the surface integral representations and the surface integral equa-
tions for the complex electromagnetic field Q(r, t) in Ref. 4 is now generalized to
the case of bi-isotropic materials.

Let V− and V+ be two disjoint open domains in R
3 such that V− ∪ V+ = R

3.
Furthermore, suppose that S = R

3 \ (V− ∪ V+) is a regular surface. Let un = un(r)
denote the outward, with respect to V−, unit normal vector to S. Furthermore, let

Q±(r, t) = lim
V±�r′→r

Q(r′, t), r ∈ S.
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Figure 4: The field Hφ from a dipole in a chiral medium. For details see caption
of Figure 1.

If the domain V− is filled with a known temporally dispersive, bi-isotropic me-
dium, it is possible to express the complex field Q(r, t), r ∈ V−, in terms of its
tangential components at the boundary, un×Q−(r, t), r∈S, and the current density
J(r, t), r ∈ V−. No information about the material in the domain V+ is needed.
Using equations (3.3) and (4.2) and the general differentiation rule

∇′ · (Q(r′, t′) × GQ(r′ − r; t− t′))

= (∇′ × Q(r′, t′)) · GQ(r′ − r; t− t′) − Q(r′, t′) · (∇′ × GQ(r′ − r; t− t′))

give for r ∈ V−

∇′ · (Q(r′, t′) × GQ(r′ − r; t− t′)) =
ic0
2
δ(r − r′) δ(t− t′) ∂−1

t

[
Zµ−1Q

]
(r, t)

− iη0

2
[ZJ ] (r′, t′)·GQ(r′−r; t−t′) − i [KQ] (r′, t′)·GQ(r′−r; t−t′) (6.1)

+ iQ(r′, t′) · [KGQ] (r′ − r; t− t′).

Note that, due to causality, Q(r′, t′)×GQ(r′ − r; t − t′) has bounded support for
every fixed r and t. Let Vr,t be a bounded open domain containing this support and
such that the boundary Sr,t of Vr,t ∩ V− is regular. Then, using the Gauss theorem
for dyadics, identity (4.9), and the equality(

u′
n × Q−(r′, t′)

)
· GQ(r′ − r; t− t′) = u′

n ·
(
Q−(r′, t′) × GQ(r′ − r; t− t′)

)
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Figure 5: The field Er from a dipole in a chiral medium. For details see caption
of Figure 1.

give∫
V−

∇′ · (Q(r′, t′)×GQ(r′ − r; t− t′))=

∫
Vr,t∩V−

∇′ · (Q(r′, t′)×GQ(r′ − r; t− t′))

=

∮
Sr,t

GQ(r−r′; t−t′)·
(
u′

n×Q−(r′, t′)
)
dS ′=

∫
S

GQ(r−r′; t−t′)·
(
u′

n×Q−(r′, t′)
)
dS ′,

(6.2)

where u′
n = un(r′). Now integrate (6.1) over (r′, t′) ∈ V−⊗(−∞ ,∞). Integration

with respect to t′ results in a cancellation of the last two terms on the right-hand side
due to the commutative property of temporal convolutions. Finally, integrating with
respect to r′ gives the following expression, which can be referred to as Huygens’
principle:

ic0
2
∂−1

t

[
Zµ−1Q

]
(r, t)

0

}
=
ic0
2
∂−1

t

[
Zµ−1Qi−

]
(r, t)

+

∫
S

∫
GQ(r−r′; t−t′)·

(
u′

n×Q−(r′, t′)
)
dt′dS ′,

{
r∈V−

r∈V+,

(6.3)

where the source term is given by

Qi−(r, t) =

∫
V−

∫
GQ(r−r′; t−t′)·µ0∂t′ [µJ ] (r′, t′) dt′ dv′.

Obviously, the case when the medium in the domain V+ is known and the one
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Figure 6: The field Hr from a dipole in a chiral medium. For details see caption
of Figure 1.

in V− is not, can be handled in the same way. The result is

ic0
2
∂−1

t

[
Zµ−1Q

]
(r, t)

0

}
=
ic0
2
∂−1

t

[
Zµ−1Qi+

]
(r, t)

−
∫

S

∫
GQ(r−r′; t−t′)·

(
u′

n×Q+(r′, t′)
)
dt′dS ′,

{
r∈V+

r∈V−,

(6.4)

where

Qi+(r, t) =

∫
V+

∫
GQ(r−r′; t−t′)·µ0∂t′ [µJ ] (r′, t′) dt′ dv′.

7 Surface integral equations

In this section, surface integral equations for the tangential components of the field
Q(r, t) are obtained. The materials in both domains, V+ and V−, are supposed to
be known. Furthermore, it is assumed that J(r, t) = 0 when r ∈ S. The analysis
follows the guidelines of the discussion in Ref. 4 (see also Ref. 16).

From the Gauss surface divergence theorem it follows that∫
S

(∇∇E(r−r′; t−t′))·
(
u′

n×Q−(r′, t′)
)
dS ′

=

∫
S

(∇∇SE(r−r′; t−t′))·
(
u′

n×Q−(r′, t′)
)
dS ′

= ∇
∫

S

(E(r−r′; t−t′))∇′
S ·

(
u′

n×Q−(r′, t′)
)
dS ′, r /∈ S,

(7.1)



13

-80x10
27

 

-60

-40

-20

0

20

40

60

80
E

  
 (

V
/m

)

6x10
-15

 543210

 Time t from the arrival of the wave front  (s)

  numerical result
  asymptotic approximation

θ

Figure 7: The field Eθ from a dipole in a chiral medium at a distance r = 10−6 m
from the dipole at the observation angle θ = π/4. For material parameters see
caption of Figure 1.

where ∇S· is the surface divergence [1, 9]. The surface S does not need to be closed
due to the bounded support of the integrand. Equation (7.1) together with (4.3)
lead to the following form of the surface integral on the right-hand side of (6.3):∫

S

∫
GQ(r−r′; t−t′)·

(
u′

n×Q−(r′, t′)
)
dt′dS ′

=ZNµ−1
{
− 1

2

∫
S

∫
E(r−r′; t−t′)u′

n×Q−(r′, t′)dt′dS ′

+
1

2
∇

∫
S

∫ [
K−2E

]
(r−r′; t−t′)∇′

S ·
(
u′

n×Q−(r′, t′)
)
dt′dS ′

− i

2
∇×

∫
S

∫ [
K−1E

]
(r−r′; t−t′)

(
u′

n×Q−(r′, t′)
)
dt′dS ′

}
, r /∈S.

(7.2)

In the limit r → S± (i.e., V± � r → S), the representation (6.3) transforms into the
surface integral relation for the complex field Q−(r, t). Using (7.2), (6.3), and the
jump relations [4]

∇
∫

S

∫
E(r−r′; t−t′)f(r′, t′)dt′ dS ′

=

∫
S

∫
∇E(r−r′; t−t′)f(r′, t′)dt′ dS ′ ± 1

2
unf(r, t), r → S±,

∇×
∫

S

∫
E(r−r′; t−t′)F (r′, t′)dt′ dS ′

=

∫
S

∫
(∇E(r−r′; t−t′))×F (r′, t′)dt′ dS ′ ± 1

2
un×F (r, t), r → S±,
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Figure 8: The θ-component of the field E from a dipole uz10−17δ(t) C m in a
chiral medium at distances r = 4 · 10−6 m and r = 4 · 10−5 m from the source. For
material parameters see caption of Figure 1.

which are valid for any sufficiently regular scalar field f(r, t) and vector field F (r, t),
give for r ∈ S

ic0
2
∂−1

t

[
Zµ−1Q−

]
(r, t)

0

}
=
ic0
2
∂−1

t

[
Zµ−1Qi−

]
(r, t)

+

∫
S

∫
GQ(r−r′; t−t′)·

(
u′

n×Q−(r′, t′)
)
dt′ dS ′

±ZNµ−1
{1

4
un∇S · (un×

[
K−2Q−

]
(r, t)) − i

4
un×(un×

[
K−1Q−

]
(r, t))

}
·

(7.3)

The surface integral on the right-hand side of (7.3) is interpreted as∫
S

∫
GQ(r−r′; t−t′)·

(
u′

n×Q−(r′, t′)
)
dt′dS ′

=ZNµ−1
{
− 1

2

∫
S

∫
E(r−r′; t−t′)u′

n×Q−(r′, t′)dt′dS ′

+
1

2

∫
S

∫
∇(

[
K−2E

]
(r−r′; t−t′))∇′

S ·
(
u′

n×Q−(r′, t′)
)
dt′dS ′

− i

2

∫
S

∫
∇(

[
K−1E

]
(r−r′; t−t′))×

(
u′

n×Q−(r′, t′)
)
dt′dS ′

}
, r ∈ S,

(7.4)

where the integrals exist as principal value integrals. Using the Maxwell equa-
tions (3.3) and the fact that ∇S · (un×Q−) = −un · (∇×Q−), both equations (7.3)
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reduce to

ic0
4
∂−1

t

[
Zµ−1Q−

]
(r, t)=

ic0
2
∂−1

t

[
Zµ−1Qi−

]
(r, t)

+

∫
S

∫
GQ(r−r′; t−t′)·

(
u′

n×Q−(r′, t′)
)
dt′ dS ′, r ∈ S,

(7.5)

where the surface integral term is given by (7.4).
The integral relation based on the equation (6.4) can be derived in the same way.

The result is

ic0
4
∂−1

t

[
Zµ−1Q+

]
(r, t)=

ic0
2
∂−1

t

[
Zµ−1Qi+

]
(r, t)

−
∫

S

∫
GQ(r−r′; t−t′)·

(
u′

n×Q+(r′, t′)
)
dt′ dS ′, r ∈ S.

(7.6)

To get further in solving the scattering problem, boundary conditions on the
surface S (i.e., the connection between Q+(r, t) and Q−(r, t), for r ∈ S) have to
be specified. In the next two subsections, two standard scattering problems are
discussed.

7.1 Perfectly conducting scatterer

In this subsection, V− is a perfect conductor and V+ a temporally dispersive bi-
isotropic medium. The boundary condition on the surface S is un×E = 0. In terms
of the complex field Q(r, t), it becomes un × [Q+Q∗] (r, t) = 0, r ∈ S. Taking the
cross product of both members in (7.6) with un and using the boundary condition
give the following integral equation for the surface current density J e

S(r, t) :=un×
H(r, t)=un×[iYQ−iY∗Q∗] (r, t)/η0, r∈S:

J e
S(r, t)=

i4

η0

Z−1
(
un×Qi+(r, t)+un×

∫
S

∫
GQ(r−r′; t−t′)·µ0∂t′ [µJ e

S] (r′, t′)dt′ dS ′
)
.

(7.7)

Note that the equation above has exactly the same form as the one in the isotropic
case [4]. The difference is in a more complicated structure of the Green dyadic
GQ. (Recall that the refractive index N , the wave number K, and the fundamental
solution E in (4.3) are all complex.) Separating (7.7) into its real and imaginary
parts gives two alternative integral equations for the surface current density, the first
being of the second kind and the second of the first kind. Unfortunately, both of
them contain the surface divergence ∇S ·J e

S of the unknown field J e
S (cf. (7.4)). This

makes numerical treatment of these equations unattractive. Moving the derivative
from the surface field to the ∇E-term (integration by parts) does not reduce this
inconvenience because then the highly singular second space derivatives of the kernel
E(r − r′; t − t′) have to be dealt with. However, it is possible to combine these
equations to obtain an integral equation which does not possess the mentioned
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shortcomings. Applying the operator K to the both sides of (7.7) and using (4.3)
gives

KJ e
S(r, t) =

i4

η0

Z−1K(un×Qi+(r, t)) +i2un×
∫

S

∫
∇E(r−r′; t−t′)∇′ ·J e

S(r′, t′)dt′ dS ′

−i2un×
∫

S

∫
(IK2 + i∇×IK)E(r−r′; t−t′)·J e

S(r′, t′)dt′ dS ′. (7.8)

Now, taking the real part of the both sides leads to the following integral equation
of the second kind for the surface current density:

KcoJ
e
S(r, t) = − 4

η0

Z−1Im
{
K(un × Qi+(r, t))

}
− 2un×

∫
S

∫
∇Ecr(r−r′; t−t′)∇′ ·J e

S(r′, t′)dt′ dS ′

+2un×
∫

S

∫
Im

{
(IK2 + i∇×IK)E(r−r′; t−t′)

}
·J e

S(r′, t′)dt′ dS ′,

(7.9)

where K = Kco + iKcr, with the similar notation for the other complex quantities.
All integrals in the equation above exist as principle value integrals. From (4.4) it
follows that

Ecr(r; t) =
1

4πr

(
qcr(r)δ

(
t− r

c0

)
+ Im

{
q(r)P

(
r; t− r

c0

)})
.

Representation (4.6) and the equality (cf. (4.5))

qcr(r) = exp

(
− r

c0
Nco(0+)

)
sin

(
− r

c0
Ncr(0+)

)
,

show that Ecr has no singularity and ∇∇Ecr(r; t) has at most 1/r singularity at the
origin. Now, performing integration by parts in the second term on the right-hand
side of (7.9) gives

KcoJ
e
S(r, t) = − 4

η0

Z−1Im
{
K(un × Qi+(r, t))

}
− 2un×

∫
S

∫
∇∇Ecr(r−r′; t−t′)·J e

S(r′, t′)dt′ dS ′

+2un×
∫

S

∫
Im

{
(IK2 + i∇×IK)E(r−r′; t−t′)

}
·J e

S(r′, t′)dt′ dS ′.

(7.10)

This equation can be used in numerical calculations.

7.2 Permeable scatterer

In this subsection, the surface S is supposed to be an interface between two different
temporally dispersive materials. To distinguish the two sets of parameters, the
intrinsic integral operators N , Z, ε, and µ as well as the dispersive fundamental
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solutions E(r; t) and the Green dyadics GQ(r; t) in the domains V± are endowed
with the subscripts ±, respectively. The boundary conditions on the surface S are

un×(Q+(r, t)+Q∗
+(r, t)) = un×(Q−(r, t)+Q∗

−(r, t)) =: Jm
S (r, t)

un×(i
[
Y+Q+

]
(r, t)−i

[
Y∗

+(r, t)Q∗
+

]
(r, t))/η0

= un×(i
[
Y−Q−

]
(r, t)−i

[
Y∗

−(r, t)Q∗
−
]
(r, t))/η0 =: J e

S(r, t).

Taking the cross product of the left- and right-hand sides of equations (7.5)–(7.6)
with un and using the boundary conditions give the following integral equations for
the surface fields

ic0
8
∂−1

t

[
Z2

±µ
−1
± (Y∗

±Jm
S −iη0J

e
S)

]
(r, t)=

ic0
2
∂−1

t

[
Z±µ

−1
± (un×Qi±)

]
(r, t)

∓ 1

2
un×

∫
S

∫
GQ±(r−r′; t−t′)·

[
Z±(Y∗

±Jm
S −iη0J

e
S)

]
(r′, t′) dt′ dS ′,

or, equivalently,[
K±(Y∗

±Jm
S −iη0J

e
S)

]
(r, t)=4

[
K±Z−1

± (un×Qi±)
]
(r, t)

±2iun×
∫

S

∫
∇E±(r−r′; t−t′)∇′ ·

[
(Y∗

±Jm
S−iη0J

e
S)

]
(r′, t′) dt′ dS ′ (7.11)

∓2iun×
∫

S

∫ [
(IK2

±+i∇×IK±)E±
]
(r−r′; t−t′)·

[
(Y∗

±Jm
S−iη0J

e
S)

]
(r′, t′) dt′ dS ′.

The equations above can be used to calculate the unknown surface fields J e
S(r, t) and

Jm
S (r, t). Unfortunately, they suffer from the same problem as the equation (7.7) —

the integral kernel ∇∇E (or, to be more exact, its real part ∇∇Eco), which appears
in the second term on the right-hand side after integrating by parts, is too singular.
However, in case when the materials in the domains V− and V+ have the same value
of N(0+) (N+(0+) = N−(0+)), the equations above can be combined to obtain a
system of integral equations for J e

S(r, t) and Jm
S (r, t) which does not contain highly

singular kernels. (Observe that a similar condition was needed in Refs. 2, 4.) To
achieve this, apply the operator Y−1

co± to the imaginary parts of the equations (7.11)
and add the results to get[

Im
{
K+Y∗

+Y−1
co+ + K−Y∗

−Y−1
co−

}
Jm

S − Re
{
K+Y−1

co+ + K−Y−1
co−

}
η0J

e
S

]
(r, t)

= 4Im
{[

K+Z−1
+ Y−1

co+(un×Qi+) + K−Z−1
− Y−1

co−(un×Qi−)
]
(r, t)

}
+2un×

∫
S

∫
∇∇[Eco+ − Eco−](r−r′; t−t′)·Jm

S (r′, t′) dt′ dS ′ (7.12)

+2un×
∫

S

∫
∇∇

[
Y−1

co+Ycr+Ecr+ − Y−1
co−Ycr−Ecr−

]
(r−r′; t−t′)·Jm

S (r′, t′) dt′ dS ′

+2un×
∫

S

∫
∇∇

[
Y−1

co+Ecr+ − Y−1
co−Ecr−

]
(r−r′; t−t′)·η0J

e
S(r′, t′) dt′ dS ′

−2un×
∫

S

∫
Re

{ [
(IK2

++i∇×IK+)Y−1
co+E+

]
(r−r′; t−t′)·

[
(Y∗

+Jm
S−iη0J

e
S)

]
(r′, t′)

−
[
(IK2

−+i∇×IK−)Y−1
co−E−

]
(r−r′; t−t′)·

[
(Y∗

−Jm
S−iη0J

e
S)

]
(r′, t′)

}
dt′ dS ′,



18

where the integration by parts has been performed. Similarly, applying the operator
((Y−1

± )co)
−1(Y−1

± )∗ to the real parts of the equations (7.11) and adding the results
give[
Re

{
K+((Y−1

+ )co)
−1 + K−((Y−1

− )co)
−1

}
Jm

S

+ Im
{
K+(Y−1

+ )∗((Y−1
+ )co)

−1 + K−(Y−1
− )∗((Y−1

− )co)
−1

}
η0J

e
S

]
(r, t)

= 4Re
{[

K+Z−1
+ (Y−1

+ )∗((Y−1
+ )co)

−1(un×Qi+)

+ K−Z−1
− (Y−1

− )∗((Y−1
− )co)

−1(un×Qi−)
]
(r, t)

}
+2un×

∫
S

∫
∇∇[Eco+ − Eco−](r−r′; t−t′)·η0J

e
S(r′, t′) dt′ dS ′

+2un×
∫

S

∫
∇∇

[
((Y−1

+ )co)
−1(Y−1

+ )crEcr+ (7.13)

− ((Y−1
− )co)

−1(Y−1
− )crEcr−

]
(r−r′; t−t′)·η0J

e
S(r′, t′) dt′ dS ′

−2un×
∫

S

∫
∇∇

[
((Y−1

+ )co)
−1Ecr+ − ((Y−1

− )co)
−1Ecr−

]
(r−r′; t−t′)·Jm

S (r′, t′) dt′ dS ′

+2un×
∫

S

∫
Im

{ [
(IK2

++i∇×IK+)((Y−1
+ )co)

−1E+

]
(r−r′; t−t′)·[

(Jm
S−i(Y−1

+ )∗η0J
e
S)

]
(r′, t′)

−
[
(IK2

−+i∇×IK−)((Y−1
− )co)

−1E−
]
(r−r′; t−t′)·[

(Jm
S−i(Y−1

− )∗η0J
e
S)

]
(r′, t′)

}
dt′ dS ′.

From the results in the previous subsection it follows that the integral kernels
∇∇Ecr± have at most 1/r singularity at the origin. Furthermore, due to the as-
sumption that N+(0+) = N−(0+), the singularity of the kernel ∇∇(Eco+ − Eco−)
can be estimated by 1/r as well (cf. Ref. 4). Thus, equations (7.12)–(7.13) build a
system of integral equation for the fields J e

S(r, t) and Jm
S (r, t) which can be used in

numerical calculations.

8 Conclusion

In this paper, the Green dyadics for temporally dispersive bi-isotropic media are
analyzed using time-domain techniques.

The use of the complex time-dependent electromagnetic field simplifies the analy-
sis significantly. Advantages are more evident here then in the case of isotropic
materials [4]. This depends on the fact that the electric and the magnetic fields in
bi-isotropic media are coupled in a more intricate way.

The Green dyadics for bi-isotropic materials are introduced and given in an
explicit form using Schwartz’ pseudo-functions. The derivation of the equation for
the Green dyadics differs slightly from the one used in Ref. 4. No electromagnetic
potentials are needed in the present work.

The example of Section 5 shows that the second forerunner approximation to
the dipole fields in an unbounded, temporally dispersive, bi-isotropic medium gives
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reasonably good results. It is also seen that the agreement between the numerical
result and the approximation becomes better with increasing distance from the
source. The main advantage of the proposed technique is that no time- or memory-
consuming computations are involved. If it takes hours to compute the numerical
values of the fields, it takes only seconds to obtain the approximation. Obviously,
the introduced method can be used to obtain fields due to other time-dependent
sources (antennas, etc).

The surface integral equations derived in Section 7 have reasonably regular in-
tegral kernels, and it is conjectured that they can be solved numerically with the
help of the standard techniques (e.g., the method of moments). Note that after the
surface fields are obtained, all quantities on the right-hand sides of (6.3)–(6.4) are
known and these integral relations can be used to calculate the fields at any point.
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