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Abstract— We consider the problem of computing subop-
timal feedback switching controllers for discrete dynamical
systems. The paper shows how to combine convex optimization
techniques with relaxed dynamic programming. We apply the
method to several problems that have been considered recently
in the literature. A particularly interesting example is given
by a DC-DC converter. The proposed algorithm has several
interesting properties.
The main theoretical result of this paper is the introduction of
a new approximate policy iteration algorithm which is shown
to converge to the optimal cost function.

I. INTRODUCTION

This paper considers the optimal control problem for

switched discrete time systems. It is well known that the

optimal control problem for non-switched systems, i.e. the

computation of the optimal value function, is a very difficult

computational tasks in all instances with lack of special

structure. Important examples when a solution is readily

found includes the linear-quadratic regulator problem with

unbounded state and control space. Another example is when

the state and control space are finite sets, e.g. Dijkstras

algorithm. With this in mind it is not surprising that most

of the proposed solution approximations try to mimic these

cases. In particular, linearization of non-linear dynamics and

gridding are recurring methods in the literature. In recent

years, these methods have been extended to switched and

hybrid systems, see e.g. [2], [13], [6], [7]. For a recent survey

on computational approaches see [17].

A novel approach to overcome some of the difficulties

mentioned above was recently proposed in [4], [5], [3], see

also [14] for examples from switching systems. The authors

to these papers consider problems where the value function

can be well approximated by a finite number of linear or

quadratic functions. Moreover, bounds on suboptimality are

also included in the method. However, the parametrizations

used in these papers are restrictive since they can only be

applied to problems where the systems are modeled with

linear dynamics. Moreover, even in the linear case better

parametrizations exists, as we shall see below.This paper

presents a computational method and a parametrization so

that relaxed value iteration can be applied to large class

of problems, in particular non-linear systems. Similar ideas

were proposed for continuous-time non-linear regulation

problems in [15] and for constrained non-switched discrete-

time systems in [16]. It should be noticed that although the

underlying idea in the aformetioned references is to find

feedback controllers by means of dynamic programming the

approaches are quite different. This is due to the fact that the

choice of parametrization of the value function has several

implications for the resulting algorithms. In this paper, the

computations and examples will be performed using relaxed

value iteration, applied in a new setting.

This paper also contains theoretical contributions. Aside

from value iteration there is also another algorithm, the so

called policy-iteration algorithm, [1]. The main result of this

paper is the construction of an approximate policy-iteration

algorithm. It is shown that the algorithm converges to the

optimal value function at linear rate.

The paper is organized as follows. The problem we consider

is formulated in section II, where we also define value and

relaxed value iteration. The new policy-iteration algorithm

is given in section III. Since the choice of parametrization

will be polynomials, we give a brief review of some results

from the representation of positive polynomials in section

IV. We then formulate the approximation algorithm using

these results. In the last two sections we show how the pro-

posed algorithm can be applied to several switched control

problems.

II. DEFINITIONS AND KNOWN FACTS

Given f : X×U −→ X consider the controlled dynamical

system

x(k + 1) = f(x(k), u(k)), x(0) = x0, k ≥ 0 (1)

We denote the set of control sequences u : N −→ U by

U. For such a sequence u we denote the resulting trajectory

by xu(k), k ≥ 0. We use the following notation, for each

x ∈ X the subset U(x) ⊂ U denotes those controls such

that f(x, u) ∈ X . We assume that ∀x ∈ X, U(x) 6= ∅,

thus the system is assumed to be controlled invariant. We

also assume that f(0, 0) = 0. The total cost associated with

a given input sequence is defined by

V (x0, u) =

∞
∑

k=0

l(xu(k), u(k)))

were the step cost l : X ×U −→ R+ is positive definite, i.e.

l(0, 0) = 0 and l(x, u) > 0 if (x, u) 6= 0. Our main interest

in this paper is to compute approximations to the optimal

value function, defined by

V ∗(x0) = inf
u∈U(x)

V (x0, u)
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The optimal value function can be characterized as the

solution to Bellman’s equation

V ∗(x) = inf
u∈U(x)

{V ∗(f(x, u)) + l(x, u)} (2)

If we know V ∗, the optimal feedback controller is given by

µ∗(x) = argminu∈U(x){V
∗(f(x, u)) + l(x, u)}

A. Exact value iteration

Value iteration derives from Bellman’s famous principle

of optimality. Consider the cost of controlling system (1) in

a finite number of, say N , steps. Doing so in an optimal way

would result in a cost

VN (x0) = inf
u∈U(x)

N−1
∑

k=0

l(xu(k), u(k))

This is the same as

VN (x) = inf
u∈U(x)

{VN−1(f(x, u)) + l(x, u)} (3)

Together with an initial function V0, this iterative functional

equation defines value iteration. Under suitable conditions

the limit limN→∞ VN (x) exists and coincides with V ∗(x).
In practice the iteration must, of course, be terminated after

a finite number of iterations. Usually one then approximates

the optimal controller with µN (x) and then uses this to

control the system indefinitely, resulting in cost

VµN
(x) =

∞
∑

k=0

l(xµN
(k), µN (xµN

(k)))

We directly see that

VN (x) ≤ V ∗(x) ≤ VµN
(x)

Thus, it is in principle possible to check convergence using

this simple inequality. The iteration, however, is not easy to

perform in practice. In fact, it inherits the difficulties already

present in equation (2). It is almost always necessary to

make approximations. One particular way of formulating an

approximation algorithm is presented next.

B. Relaxed value iteration

The following two statements are slight reformulations

from [4], [5]. Let V ∗
N be the N ’th function obtained using

exact value iteration (3). Suppose that VN : X −→ R

satisfies the following inequalities

inf
u∈U(x)

{VN−1(f(x, u)) + βl(x, u)} ≤ VN (x)

VN (x) ≤ inf
u∈U(x)

{VN−1(f(x, u)) + αl(x, u)}
(4)

Where β ≤ 1 ≤ α ∈ R.

Proposition 1: Suppose that V0 = V ∗
0 , then

βV ∗
N ≤ VN ≤ αV ∗

N , ∀N ∈ N (5)

We call the iteration (4) relaxed value iteration. It turns out

that for some problems it is much easier to find a sequence

{VN} that satisfies inequalities (4), compared to the exact

iteration. The inequality form also has several other useful

properties. The relative bounds obtained can also be used to

quantify computation errors made when the exact solution is

sought. Convergence can be checked using

Proposition 2: Let X̃ ⊂ X with 0 ∈ X̃ be any invariant

subset. If V ≥ 0 satisfy

inf
u∈U(x)

{V (f(x, u)) + βl(x, u)} ≤ V (x)

V (x) ≤ inf
u∈U(x)

{V (f(x, u)) + αl(x, u)}
(6)

Where β ≤ 1 ≤ α ∈ R. then

βV ∗ ≤ V ≤ αV ∗, ∀x ∈ X̃ (7)

III. APPROXIMATE POLICY ITERATION

This section contains the main theoretical result in this

paper. Let (µ0, V0) be given. The policy iteration algorithm

generates a sequence {(µj , Vj)}j≥1 satisfying

Vj(x) = Vj(f(x, µj(x))) + l(x, µj(x)) (8)

µj+1(x) = arg min
u

{Vj(f(x, u)) + l(x, u)} (9)

For some problems this algorithm is more attractive since

it can be shown to converge faster then value iteration.

Note that relaxed value iteration converges to something

that is close to the optimal cost but in general not equal

to. The iteration we propose below also solves a sequence

of approximate problems but converges to the exact optimal

cost.

A. Main result

Assume that there is a feedback controller µ0 and a

function V0 such that

V0(x) ≥ V0(f(x, µ0(x)) + l(x, µ0(x)), ∀x ∈ X

Define

Tj(x) = Vj−1(x) − Vj−1(f(x, µj(x)) − l(x, µj(x))

Theorem 1 (Approximate policy iteration): Let 1 ≥ α ≥
0. Suppose that the sequence {(µj , Vj)}j≥1 satisfies

Vj(x) ≥ Vj(f(x, µj(x))) + l(x, µj(x)) (10)

Vj(x) ≤ Vj(f(x, µj(x))) + l(x, µj(x)) + αTj(x) (11)

Then for every j ≥ 1 it holds

Tj(x) ≥ 0

Vj−1 ≥ Vj ≥ Vµj

Proof: The two inequalities would be inconsistent if

αTj < 0, since α ≥ 0 also Tj ≥ 0. Now let xµj
(k)

denote the trajectory as a result of applying µj and consider

inequality (10)

Vj(xµj
(0)) − Vj(xµj

(t))

=

t
∑

k=0

(Vj(xµj
(k)) − Vj(xµj

(k + 1)))

≥
t

∑

k=0

l(xµj
(k), µj(k))
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Thus

Vj(xµj
(0)) ≥ Vj(xµj

(t)) +
t

∑

k=0

l(xµj
(k), µj(k))

note that Vj ≥ 0 and l(x, u) > 0 if (x, u) 6= 0, hence

xµj
(t) → 0 as t → ∞ and Vj ≥ Vµj

. Put w = 1 − α, then

Vj(x) ≤ Vj(f(x, µj(x))) + l(x, µj(x))

+ α(Vj−1(x) − Vj−1(f(x, µj(x)) − l(x, µj(x)))

= Vj(f(x, µj(x))) + Vj−1(x) − Vj−1(f(x, µj(x))

− w(Vj−1(x) − Vj−1(f(x, µj(x))) − l(x, µj(x)))

≤ Vj(f(x, µj(x))) + Vj−1(x) − Vj−1(f(x, µj(x))

the last inequality implies that

Vj−1(xµj
(0)) − Vj−1(xµj

(t))

=

t
∑

k=0

(Vj−1(xµj
(k)) − Vj−1(xµj

(k + 1))

≥
t

∑

k=0

(Vj(xµj
(k)) − Vj(xµj

(k + 1))

= Vj(xµj
(0)) − Vj(xµj

(t))

by sending t → ∞ we conclude Vj−1 ≥ Vj .

The result shows that Vj is bounded from below, for by

definition Vµj
≥ V ∗. Moreover {Vj}j≥0 is monotonically

non-increasing. To prove global convergence it is necessary

to impose, at least, one more condition on the sequence

{Vj , µj}. In the next result we provide such a condition

Theorem 2: Select {µj}j≥0 according to

µj+1(x) = arg min
u

{Vj(f(x, u)) + l(x, u)} (12)

suppose that {Vj}j≥1 satisfies inequalities (10) and (11).

If Vj = Vj−1 then

Vj = Vj−1 = V ∗ and µj = µ∗

Proof: Consider the proof of Vj−1 ≥ Vj . If Vj = Vj−1

we have

0 = Tj

= Vj−1(x) − Vj−1(f(x, µj)) − l(x, µj(x))

= Vj−1(x) − min
u

{Vj−1(f(x, u)) + l(x, u)}

Moreover, if {µj}j≥0 is selected as in the last theorem we

can establish a linear convergence rate

Theorem 3 (Speed of convergence): Suppose that there is

a parameter γ > 0 such that V ∗(f(x, u)) ≤ γl(x, u) for all

(x, u) and that V0 ≤ δV ∗ then for every j

Vj ≤ (1 + (δ − 1)
[

γ+α
γ+1

]j

)V ∗

Proof: Fix j ≥ 1 and assume that Vj−1 ≤ δj−1V
∗ for

all x. First observe that for any numbers a and b

δj−1a + b + (γb − a)
δj−1 − 1

γ + 1
=

δj−1γ + 1

γ + 1
(a + b)

Set α = 1 − α̂ and consider inequality (11)

Vj(x) ≤ Vj(f(x, µj(x))) + l(x, µj(x))

+ α(Vj−1(x) − Vj−1(f(x, µj)) − l(x, µj(x)))

≤ αVj−1(x) + α̂(Vj−1(f(x, µj)) + l(x, µj(x)))

= αVj−1(x) + α̂ min
u

{Vj−1(f(x, u)) + l(x, u)}

≤ αδj−1V
∗

+ α̂ min
u

{δj−1V
∗(f(x, u)) + l(x, u)

+ (γl(x, u) − V ∗(f(x, u)))
δj−1 − 1

γ + 1
}

= αδj−1V
∗ + (1 − α)

δj−1γ + 1

γ + 1
V ∗

Hence

δj =
δj−1(γ + α) + 1 − α

γ + 1

if we apply this recursion j times, starting at δ0 = δ, we get

δj = 1 + (δ − 1)
[

γ+α
γ+1

]j

Observe that the case with α = 0 corresponds to exact

policy-iteration.

IV. PARAMETRIZATION OF THE VALUE FUNCTION

To perform the iteration we must parametrize the

value functions in suitable way. Judging the merits of a

parametrization several important questions come to mind,

e.g. implementation issues and memory requirement. First,

however, it must be feasible to computationally verify the

inequalities in (4). In this respect multivariate polynomials in

combination with recent results in algebraic geometry will be

very useful. In particular, positivity on compact sets is easy to

formulate and to verify using convex optimization. To state

the algorithm in the next section we need to recall some

results about the representation of positive polynomials.

We provide a very brief review of these ideas, for further

information see the references [9], [11].

A. Positive polynomials

R[x] is the vector space of polynomials in variables x ∈
R

n. By Rd[x] we denote the subspace of polynomials of

degree at most d. We write Zd(x) for the column vector

consisting of the elements of the canonical basis for Rd[x].
The first simple observation is that if p ∈ R2d[x] is a

sum of squares p =
∑m

k=1 p2
k for some pk ∈ Rd[x] then

p ≥ 0 for all x ∈ R
n. We denote the set of all sum of

squares of polynomials by Σ[x]. The following proposition

characterizes all such polynomials

Proposition 3: p ∈ Σ2d[x] if and only if

p = Zd(x)T QZd(x) (13)

for some positive semidefinite (psd) matrix Q.

This result is important since it allows us to check in an

easy way if a given polynomial is a sum of squares, which

was noted in [9]. Given a polynomial p, checking if p is
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sum of squares can be done using semidefinite programming

as follows: Identify coefficients in (13), this gives an affine

constraint on Q, taking the intersection with the convex cone

of psd matrices results in a convex constraint. Even more

useful perhaps, if the coefficients in p are not predetermined

but depend on a parametervector via an affine function, i.e.

if pj is the j’th coefficient of p and t ∈ R
w is w-dimensional

parameter vector we have the relation

t 7→ pj(t) = c0 +

w
∑

j=1

cjtj (14)

where c0...cw are fixed. In this case we can look for the best

p(t;x), as measured using a linear function of the parameter

vector, such that p(t;x) ≥ 0 by solving a semidefinite

programming problem.

The other implication is false; if p ≥ 0 then p is not

necessarily a sum of squares. Thus the above procedure gives

sufficient conditions for positivity on R
n. This fact shows

that checking global positivity of a polynomial using the

outlined method can be conservative.

In this paper we focus on positivity on compact sets, this

case is less conservative. Consider a set

X = {x : hk(x) ≥ 0, k = 1..m} (15)

with hk ∈ R[x]. We associate with X a set of polynomials

GX = {p : p = σ0 +

m
∑

k=1

σkhk, σk ∈ Σ[x]} (16)

Similar to the global case we clearly have

Lemma 1: If p ∈ GX then p ≥ 0 on X .

The following remarkable partial converse will be useful

Theorem 4 (Putinar[11]): Let X be as in (15).

Suppose that there is a real number r > 0 such that

r2 −
∑n

k=1 x2
k ∈ GX , then p ∈ R[x] is positive on X only

if p ∈ GX .

There is a gap between lemma 1 and theorem 4. If p is non-

negative on X then it is not necessary that p ∈ GX . For the

applications in this paper this gap is not a problem in the

following meaning. Suppose that there exists a parameter

vector t such that p(t;x) ≥ 0 on X but p(t;x) 6∈ GX . Then

we know that there is another parameter vector t̂ such that

p(t̂;x) > 0 on X and hence p(t̂;x) ∈ GX .

B. Application to relaxed inequalities

In the rest of this paper we assume that f and l are

polynomials and that X = {x : h1(x) ≥ 0, . . . , hp(x) ≥ 0}
with hk’s polynomials. Let VN−1 be given and consider the

upper inequality

VN (x) ≤ inf
u∈U

{VN−1(f(x, u)) + αl(x, u)} (17)

this inequality holds if and only if

VN (x) ≤ {VN−1(f(x, u)) + αl(x, u)}, ∀u ∈ U (18)

Here we may consider the right hand side as polynomial in

(x, u), and thus we may directly apply the results from the

previous section to obtain a finite dimensional constraint on

VN . However, as we are interested in switched problems in

this paper we now consider the case with a finite control set

U , say |U | = m. Application of theorem 4 gives m finite

dimensional constraints on VN

− VN (x) + VN−1(f(x, uk)) + αl(x, uk) (19)

= σk0 +

p
∑

j=1

hjσkj (20)

with σkj’s sum of squares in x.

The lower inequality is more difficult

VN (x) ≥ inf
u∈U(x)

{VN−1(f(x, u)) + l(x, u)} =: g(x)

Typically we need to approximate g from above. In the case

of a continuous control set a solution to this problem was

proposed in [16]. In the case of finite U we may consider

a simpler approach. To this end, consider the set of all

polynomial partitions of unity

W = {(w1, .., wm) :

m
∑

k=1

wk(x) = 1,

0 ≤ wk(x) ∀x ∈ X , wk ∈ R[x]}

We obviously have

Proposition 4: Let (w1, .., wm) ∈ W then ∀x ∈ X

g(x) ≤
m

∑

k=1

wk(x)[VN−1(f(x, uk)) + l(x, uk)]

We can now replace the lower bound with

m
∑

k=1

wk(x)[VN−1(f(x, uk)) + l(x, uk)] ≤ VN (x), ∀x ∈ X

And just as for the upper bound we can write this as

VN (x) −
m

∑

k=1

wk(x)[VN−1(f(x, uk)) + l(x, uk)]

=σ0 +

p
∑

j=1

hjσj

with σj’s sum of squares in x. This constraint on VN together

with equations (19) defines the constraints that the sequence

{VN} in the relaxed value iteration must satisfy.

V. EXAMPLES

The following two examples are both application of re-

laxed value iteration.

A. Example 1

The following example is taken from Lincoln [5], where

the synthesis was done using relaxed dynamic program-

ming with a very different parametrization of the value

function. We shall see that the resulting control law is

much simpler using the method proposed in this paper.

The problem involves a DC-DC converter, these circuits are
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Iload

C

LR

LoadSwitchVin V
+

I

Fig. 1. Circuit in example 1

typical examples of hybrid systems in applications. Consider

the continuous-time model

ẋ1 =
1

C
(x2 − Iload)

ẋ2 =
1

L
(−x1 − Rx2 + s(t)Vin)

where x2 denotes current, x1 denotes voltage and s(t) ∈
{−1, 1} is the sign of the switch. The primary control

objective is to find a feedback switching sequence so that

the load voltage is constant despite changes in load current

and input load variations. To make it robust, integral action

is added to the model

ẋ3 = Vref − x1

Switching can only occur at a fixed sampling frequency, so

the control problem is to select between to autonomous linear

system. After sampling, the system can be written as

xe(k + 1) = Φixe(k)

with xe = [xT 1]T

A reasonable step cost is given by

l(x) = qP (x1 − V ref)2 + qIx
2
3 + qD(x2 − Iload)

2

with positive weighting constants qP , qI and qD. Giving a

total cost

V (x) =

∞
∑

k=0

l(xk)

We solve the problem for states in {x : 15− |x|2 ≥ 0}. The

constraints take the form

−VN (x) + VN−1(Φ1xe) + αl(x) = σ10 + σ11(15 − |x|2)

−VN (x) + VN−1(Φ2xe) + αl(x) = σ20 + σ21(15 − |x|2)

And the lower inequality becomes

VN (x) − σ32VN−1(Φ1xe) − (1 − σ32)VN−1(Φ2xe) − l(x)

= σ30 + σ31(15 − |x|2)

with

1 − σ32 = σ40 + σ41(15 − |x|2)

all σ’s being sum of squares in x. After 50 iterations with

α = 4.1 and deg(Vk) = 4 we have VN ≈ VN−1. The

controller which is given by

s(x) = argmin1,2{V50(Φ1xe), V50(Φ2xe)}

is almost a switch-plane, see figure 2. The performance of

the closed loop is very similar to that in Lincoln [5], but the

controller appears much simpler.

−2

−1

0

1

2

−2

−1

0

1

2

−10

−5

0

5

10

15

Fig. 2. Each side of the plane corresponds to one switch position

0 100 200 300 400 500 600 700 800 900 1000
0.2

0.4

0.6

0 100 200 300 400 500 600 700 800 900 1000
−1

0

1

0 100 200 300 400 500 600 700 800 900 1000
0.2

0.4

0.6

0.8

0 100 200 300 400 500 600 700 800 900 1000
1

1.5

2

Fig. 3. Top: output voltage. Next to top: current. Next to bottom: integral
state. Bottom: Switch position. Reference voltage was Vref = .5. At k =
200 the load current changes from its nominal value 0.3A to 0.1A, at k =
300 it changes to -0.2A and at k = 600 it changes back to its nominal
value 0.3A

B. Example 2

The following example is from [8]. We consider the

following switched discrete-time system

x(k + 1) = Aqx(k), q ∈ {1, 2} (21)

where

A1 =

[

1.7 4

−0.8 −1.5

]

, A2 =

[

0.95 −1.5

0.75 −0.55

]

We now consider the problem of computing a switching

feedback controller for this system. We define the cost as

V (x) =

∞
∑

k=0

x(k)T x(k)

Applying the proposed algorithm the equations are similar

to those in the previous example. In this example X = {x :
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−3 −2 −1 0 1 2 3 4 5
−1.5

−1

−0.5

0

0.5

1

1.5

2

Fig. 4. Closed loop starting from x = (−1.75, 1.75)

10− |x|2 ≥ 0}. After 6 iterations VN satisfy proposition (2)

with α = 1.7 and deg(Vk) = 4. The controller is given by

q(x) = argmin1,2{V6(A1x), V6(A2x)}

A closed loop trajectory are shown in figure 4.

Remark 1: When doing the required computations on test

problems it might be useful to introduce a forgetting factor

0 < λ < 1 in the cost function,

∞
∑

k=0

λkl(x(k), u(k))

This can be done to ensure a bounded V . In fact, the

introduction of λ simplifies the computation of V a lot

because the operator V 7→ minu{λV (f(x, u)) + l(x, u)}
will have a contraction property. This, of course, comes at

price: it is not necessary that V is a Lyapunov function.

VI. CONCLUSIONS

A. Conclusions

We proposed an algorithm for feedback synthesis of

switching systems, the method gives bounds on optimality.

For systems modeled with polynomials the required compu-

tations can be done in a tractable way via convex optimiza-

tion. We have shown, by example, that it can be advantageous

to use polynomials as parametrization of the value function

for switched control problems. Future work will include case

studies of applications to non-linear systems. Application of

the policy iteration algorithm on switched control problems

will be investigated in the future.

ACKNOWLEDGMENT

The author would like to thank Anders Rantzer for useful

comments on this work.

This research was partially sponsored by the HYCON Net-

work of Excellence.

REFERENCES

[1] R. Bellman, Dynamic Programming, Princeton University Press, 1957
[2] M.S. Branicky, V.S. Borkar and S.K. Mitter, A unified framework for

hybrid control: model and optimal control theory, IEEE Trans. on AC,
43(1):31-45, January 1998

[3] B. Lincoln, A. Rantzer, Relaxing Dynamic Programming, IEEE Trans-

actions on Automatic Control, 51(8):1249-1260, Aug. 2006
[4] B. Lincoln, A. Rantzer, Suboptimal dynamic programming with er-

ror bounds, Proc. 41st IEEE Conference on Decision and Control,
December 2002

[5] B. Lincoln, Dynamic Programming and Time-Varying Delay Systems,
PhD thesis ISRN LUTFD2/TFRT–1067–SE, Department of Automatic
Control, Lund Institute of Technology, Sweden, May 2003

[6] S. Hedlund and A. Rantzer, Optimal control of hybrid systems, Proc.

38th IEEE CDC, 3973-3977, 1999
[7] S. Hedlund and A. Rantzer Convex dynamic programming for hybrid

systems, IEEE Trans. on AC, 47(9):1536-1540, September 2002
[8] X. D. Koutsoukos and P. J. Antsaklis, Design of Stabilizing Switching

Control Laws for Discrete and Continuous-Time Linear Systems
Using Piecewise-Linear Lyapunov Functions, International Journal of

Control, Vol. 75, No. 12, pp. 932-945, 2002.
[9] P.A. Parrilo, Semidefinite programming relaxations for semialgebraic

problems.Mathematical Programming Ser. B, Vol. 96, No.2, pp. 293-
320, 2003

[10] V. Powers and T. Wormann, An algorithm for sums of squares of real
polynomials, J. Pure and Applied Algebra 127 (1998) 99-104

[11] M. Putinar, Positive polynomials on compact semi-algebraic sets,
Indiana Univ. Math. J. 42, No. 3,pp. 969-984, 1993

[12] S. Prajna, A. Papachristodoulou and P. Parrilo, Introducing SOS-
TOOLS: A general purpose sum of squares programming solver, Proc.

IEEE Conf. on Decision and Control 2002
[13] H.J. Sussmann, A maximum principle for hybrid optimal control

problems, Proc. 38th IEEE CDC, 425-430, 1999
[14] A. Rantzer, Relaxed Dynamic Programming in Switching Systems,

IEE Proceedings - Control Theory and Applications, 153(5):567-574,
2006

[15] A. Wernrud and A. Rantzer, On approximate policy iteration in
continuous-time, Proc. of 44th Conference on Decision and Control

and European Control Conference, Seville, December 2005
[16] A. Wernrud, Computation of approximate value functions for con-

strained control problems, Proc. of the 17th International Symposium

on Mathematical Theory of Networks and Systems, Kyoto, Japan, July
2006

[17] Xuping Xu and Panos J.Antsaklis, Results and Perspectives on Com-
putational Methods for Optimal Control of Switched Systems Sixth

International Workshop on Hybrid Systems: Computation and Control

(HSCC 2003), Prague, The Czech Republic, April 3-5, 2003

WeB20.4

1394


