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Abstract

Accurate and e�cient numerical evaluations of the modal Green's functions

are essential in radar cross section, scattering, and antenna problems involving

bodies of revolution. It is shown that a combination between the trapezoidal

rule and Gauss-Hermite quadrature along the steepest-decent contours pro-

duce 10 digits of accuracy for a low computational cost in non-singular cases.

The near singular cases are of similar accuracy for a slightly higher computa-

tional cost.

1 Introduction

The integral equations in electromagnetics and acoustics for bodies of revolution
require evaluation of modal Green's functions. This is useful in radar cross section
computations where the scattered �eld is decomposed into Fourier modes [2, 8, 9]. It
is particular e�cient for the extinction cross section in the axial direction where only
the �rst order modes are needed [12]. The approach is also used in inverse source
problems where the integral equation and integral representation are inverted [10,
11].

Modal Green's functions simplify the solution of integral equations for bodies of
revolution by reducing the integral equation one spatial dimension [2, 8, 9]. Surface
integral equations (two dimensional) are hence reduced to line integral equations
(one dimensional). This improves speed, reduce memory requirements, and sim-
plify meshing. The drawback is that the original simple free-space Green's function,
exp(−ikR)/R, is replaced by the modal Green's functions that involve weighted
integrals of the free-space Green's function. This integration increases the compu-
tational cost and reduces the accuracy of the integral equation unless the modal
Green's functions are evaluated with high accuracy at a low computational cost.
Note, that the number of evaluations of the modal Green's function scale as k2 for
large wavenumbers k when used in the solution of integral equations. It is hence
essential that the computational cost to evaluate them does not increase with k.

Various approaches can be used to compute the modal Green's functions. The
fast Fourier transform (FFT) is used for simultaneous evaluation of all order of the
modal Green's functions [6]. Series expansions are considered in [1]. In [13], an
approximation using Bessel functions is suggested for near axial points.

In this paper, it is shown that the modal Green's functions can be evaluated
accurately for a �xed computational cost. The computational challenges are due
to oscillatory and/or singular integrals. The computation of the modal Green's
functions are divided into four cases depending on their arguments; 1) weakly os-
cillatory integrals, 2) weakly oscillatory singular integrals, 3) oscillatory integrals,
4) oscillatory singular integrals. The �rst case is accurately evaluated with the
trapezoidal rule, e.g., 10 digits with 10 evaluations, due to the periodicity [5]. The
second singular case is computed with subtraction of the static term using elliptic
integrals [4]. The third case is the most common case on many objects and it is eval-
uated using Gauss-Hermite quadrature [5, 7] along the steepest-decent contours [3]
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with e.g., 10 digits for between 6 and 20 evaluation points. Finally, the fourth case
is evaluated using Gauss-Hermite quadrature along one steepest-decent contour and
Gauss-Laguerre quadrature after subtraction of analytically integrated parts.

2 The modal Green's functions

The modal Green's functions are commonly used in integral equations for scattering
and antenna problems involving bodies of revolution. They are de�ned in a cylin-
drical coordinate system with the axis of revolution z, radius ρ =

√
x2 + y2, and

azimuthal angle φ de�ned such that x = ρ cosφ, see Fig. 1.
Three modal Green's functions are used in electromagnetics [13]. They are

gm =

∫ π

0

e−ikR

R
cosmφ dφ (2.1)

gc,m =

∫ π

0

e−ikR

R
cosmφ cosφ dφ (2.2)

gs,m =

∫ π

0

e−ikR

R
sinmφ sinφ dφ (2.3)

where R =
√
ρ2 + ρ′2 − 2ρρ′ cosφ+ (z − z′)2, k denotes the wavenumber, and m is

a non-negative integer. Introduce the parameters R0 = (ρ2 + ρ′2 + (z− z′)2)1/2 ≥ 0,
0 ≤ α = ρ2

0/R
2
0 ≤ 1, and ρ0 =

√
2ρρ′ ≥ 0 to rewrite (2.1) as

gm =
1

R0

∫ π

0

e−ikR0
√

1−α cosφ

√
1− α cosφ

cosmφ dφ. (2.4)

and similarly for gc,m and gs,m. The major di�culties in the numerical integration
of (2.4) are due to the singularity of the integrand at φ = 0 if α ≈ 1 and the rapid
oscillations of the integrand for large values of kR0. The following presentation is
focused on g1, but the results are also valid for gm as well as gc,m and gs,m. Integration
of gs,m is in general simpler as the sinφ term cancels the singularity. It is convenient

to introduce the parameters ∆ =
√

(ρ− ρ′)2 + (z − z′)2 and β∓ =
√

1/α∓ 1 to
quantify the distance to the singularity, note that β− = ∆/ρ0, see also Fig. 1c.

3 Trapezoidal rule

The trapezoidal rule is very e�cient for smooth periodic functions [5]. Although,
the integrand in (2.4) is not periodic in [0, π] it is observed that it is half of the
corresponding extended periodic function in [0, 2π]. The trapezoidal rule is hence
suitable if the derivatives of the integrand are bounded. This excludes the singular
point α = 1 as well as near singular points α ≈ 1. The accuracy depends on the
number of sample points. As seen in Fig 2, where 10 equidistant samples are used,
the accuracy is good for values such that kR0α < 8. The increasing errors for
large kR0α are due to the insu�cient sampling of the integrand that oscillates as
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Figure 1: Geometry of a body of revolution. a) object. b) distance R between two
points with coordinates r and r′. c) object as function of the radius ρ and height z
with distance ∆.

kR0α/2 +m. Larger kR0α require additional sample points in the trapezoidal rule
with an associated increased computational cost.

Integration of the near terms β− = ∆/ρ0 � 1 improves by subtraction of the
static contribution, i.e., analytic integration of the integral∫ π

0

dφ√
1− α cosφ

=
2√

1 + α
K
(√ 2α

1 + α

)
, (3.1)

where K denotes the complete elliptic integral [4]. The relative error of the trape-
zoidal rule using 200 equidistant sample points together with subtraction of the
static term (3.1) is depicted in Fig. 2b. Here, it is observed that the accuracy is
improved for large kR0 due to the dense sampling as well as for the near singular
points or small values for kR0 due to the extraction of the singularity. The relative
error is easily decreased by even denser sampling. This is of no practical problem
for small kR0 but it is not feasible for large kR0.

4 Steepest decent contours

The integrand (2.4) is analytic in φ for 0 < Reφ < π so the Cauchy integral
theorem [3] can be used to deformation the integration contour to complex valued
φ. Consider a deformation of the integration interval [0, π] to γ1 + γ2 as depicted in
Fig. 3a. The integral is then divided into the two parts

gmR0 =

∫
γ1

e−ikR

R/R0

cosmφ dφ+

∫
γ2

e−ikR

R/R0

cosmφ dφ, (4.1)

where the Green's function is scaled with R0 for notational simplicity. Use that
e−ikR decays exponentially if ImR < 0. This requires Im{cosφ} > 0 or equivalently
Imφ < 0 for 0 ≤ Reφ ≤ π. It is preferable to use the steepest decent contours
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Figure 2: Contour plots depicting the relative error of g1 for a) the 10 point trape-
zoidal quadrature rule and b) 200 point trapezoidal quadrature rule with extraction
of the static term. The dashed curves, de�ned by kR0α = 8, 16, 37, illustrate the
regions of approximation due to the oscillations of the integrand. The dashed dotted
lines, de�ned by k∆ = 20, 10, 4, 1, 0.1, 0.01, illustrate the regions of approximation
due to the singularity.

where the integrands do not oscillate. These contours are de�ned by

ReR/R0 = Re
√

1− α(x+ iy) =
√

1∓ α, (4.2)

where cosφ = x+iy and the ∓ signs correspond to the contours γ1 and γ2 as depicted
in Fig. 3a.

Use that the real-valued part of the square root (4.2), see (A.1), can be rewritten

2(ReR/R0)
2 =

√
(1− αx)2 + α2y2 + 1− αx = 2(1∓ α). (4.3)

This is further simpli�ed in several steps as (1− αx)2 + α2y2 = (1− α(2∓ x))2 and
α2y2 = (1− α(2∓ x))2 − (1− αx)2 that �nally gives the steepest decent contours

x =
y2

4(1/α∓ 1)
± 1 =

y2

4β2
∓
± 1. (4.4)

It observed that x > 1 and x > −1 in the �rst and second cases, respectively, see
Fig.3b. The decay along the steepest decent path is given by the corresponding
imaginary part of R/R0, that is written

(ImR/R0)
2 = (

√
(1− αx)2 + α2y2 − 1 + αx)/2

= (1∓ α(2∓ x)− 1 + αx)/2 =
α

4β2
∓
y2. (4.5)

The normalized distance R/R0 is hence simply

R/R0 =
(√

1∓ α− i
√
α(x∓ 1)

)
=
√
α(β∓ − i

y

2β∓
) (4.6)
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Figure 3: Integration contours γ1 and γ2 for α = 1/2. a) in the complex valued φ
plane. b) in the x+ iy = cosφ plane as given by (4.4).

along γ12, where it is observed that the integrand decays exponentially in y. In-
tegration along γ12 require the change of variables z = x + iy = cosφ that gives
− sinφ dφ = dz and it is parameterized in y as

dz = dx+ i dy = (
dx

dy
+ i) dy = (

y

2β2
∓

+ i) dy. (4.7)

The trigonometric functions in the modal Green's functions (2.1) and variable
substitution above are evaluated on the γ12 contours as

cosφ = x+ iy = x+ i2
√
x∓ 1β∓ =

y2

4β2
∓
± 1 + iy (4.8)

and

sinφ =
√

1− (x+ iy)2 =
√

1− x2 + y2 − 2ixy

=

√
− y2

4β2
∓

(2± y2

4β2
∓

) + y2 − 2iy(
y2

4β2
∓
± 1). (4.9)

The integrand is �nally simpli�ed with the substitution τ 2 = y/2β∓, that gives

R/R0 =
√
α(β∓ − iτ 2) = −i

√
α(τ 2 + iβ∓) (4.10)

dz = (1 + iβ∓/τ
2) dx = 4(τ 2 + iβ∓)τ dτ (4.11)

cosφ = τ 4 ± 1 + i2τ 2β∓ (4.12)

sinφ = τ
√
−τ 6 + (4β2

∓ ∓ 2)τ 2 − i4β∓(τ 4 ± 1), (4.13)

where it is noted that the variable substitution cancels the 1/R term.
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The integrals (4.1) are

− e−ikR0
√

1∓α
∫
γ

e−kR0
√
ατ2

R/R0

cosφ

sinφ
dz

= 4
e−ikρ0β∓

√
α

∫ ∞
0

e−kρ0τ
2(
τ 4 ± 1 + i2τ 2β∓

)√
−τ 6 + (4β2

∓ ∓ 2)τ 2 − i4β∓(τ 4 ± 1)
dτ. (4.14)

These integrals are well de�ned. However, the convergence deteriorates for small
kρ0 and it has a 1/τ singularity in the β− → 0 limit. Note, that β+ ≥ 1 on γ2

but β− = ∆/ρ0 → 0 as ∆ → 0 on γ1, where ∆ denotes the distance between the
evaluation points, see Fig. 1c.

4.1 Gauss-Hermite quadrature

Evaluate the integrals (4.14) using Gauss-Hermite quadrature [5], where the normal
form

I∓ =

∫ ∞
0

e−kρ0τ
2

f∓(τ) dτ =

∫ ∞
0

e−τ
2
f∓(τ/

√
kρ0)√

kρ0

dτ, (4.15)

is used and where

f∓(τ) =
τ 4 ± 1 + i2τ 2β∓√

−τ 6 + (4β2
∓ ∓ 2)τ 2 − i4β∓(τ 4 ± 1)

. (4.16)

The integrals are approximated as∫ ∞
0

e−kρ0τ
2

f∓(τ) dτ ≈ 1√
kρ0

N∑
n=1

wnf∓(xn/
√
kρ0), (4.17)

where xn and wn are the zeros and weighting coe�cients in the Gauss-Hermite
quadrature with xn ≥ 0. Here, the 10, 5, 3 point approximations are considered.
The relative error of g1 is depicted in Fig. 4a for the 10 point case as function of kR0

and β− = ∆/ρ0. It is observed that the errors are small for large kR0 and ∆/ρ0 ≈ 1.
More speci�cally, the errors increase for small kR0α. This corresponds to slowly
oscillating integrands and they are instead easily integrated by the trapezoidal rule
as seen in Sec. 3. The relative error of the 10 point Gauss-Hermite quadrature is less
than 10−10 for kR0α > 8. The corresponding results for the 5 and 3 point approx-
imations are given by kR0α > 16 and kR0α > 37, respectively. It is also required
that the k∆ is su�ciently large, i.e., the evaluation points should be separated of
the order of a wavelength, λ = 2π/k. In the �gure it is seen that k∆ ≥ 4, 10, 20 are
su�cient for the 10, 5, 3 point approximations, respectively.

4.2 Near singular terms

The Gauss-Hermite quadrature is not e�cient for the integral along γ1 in the small
β− limit, i.e., the singular case where α ≈ 1 as seen in Fig. 4a. The problems are
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Figure 4: Contour plots of the relative errors for the Gauss quadrature of g1. The
dashed curves de�ned by kR0α = 8, 16, 37 illustrate the regions of approximation
due to the oscillations of the integrand. The dashed dotted lines de�ned by k∆ =
20, 10, 4, 1, 0.1, 0.01 illustrate the regions of approximation due to the singularity. a)
10 point Gauss-Hermite quadrature. b) 10 point Gauss-Hermite quadrature together
with the near-singular corrections (4.22) and (4.23).

due to the increasing di�culties to approximate the square root with polynomials
for small values of β−. This requires more involved quadrature methods.

Divide the integration interval [0,∞], into [0, τ1] and [τ1,∞], where the parameter
τ1 is determined below. The term −4β− − (2 − 4β2

−)τ 2 dominates the square root
in (4.16) as τ → 0. This part is extracted and integrated analytically. That is

I−0,[0,τ1] =

∫ τ1

0

e−kρ0τ
2√

−(2− 4β2
−)τ 2 − i4β−

dτ

=
−i√

(2− 4β2
−)
√
kρ0

∫ τ1
√
kρ0

0

e−τ
2√

τ 2 + i2β−kρ0
1−2β2

−

dτ, (4.18)

where the integration variable is scaled with
√
kρ0. The singularity dominates if

2β−kρ0/(1− 2β2
−) ≈ 2k∆� 1. Use the Taylor series expansion

e−kρ0τ
2

=
∞∑
n=0

(−1)n
knρn0τ

2n

n!
(4.19)

together with the identity∫
1√

aτ 2 + b
dτ =

1√
a

ln(τ
√
a+
√
aτ 2 + b) (4.20)

and the recursions∫
τn√
aτ 2 + b

dτ =
τn−1
√
aτ 2 + b

na
− (n− 1)b

na

∫
τn−2

√
aτ 2 + b

dτ (4.21)
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to integrate (4.18). This quadrature rule is simple and e�cient if |b| < |a|. The
total integral over [0, τ1] is then

I−,[0,τ1] =

∫ τ1

0

e−kρ0τ
2

(
f−(τ)− 1√

(4β2
− − 2)τ 2 − i4β−

)
dτ + I−0,[0,τ1]. (4.22)

Here, I−0,[0,τ1] is computed with the recursions (4.21) together with (4.20). The
reminding integrand is smooth and Gauss quadrature [5] is used below. The rest of
the integral is

I−,[τ1,∞] =

∫ ∞
τ1

e−kρ0τ
2

f−(τ) dτ =

∫ ∞
τ2
1

e−kρ0tf−(
√
t)

2
√
t

dt

= e−kρ0τ
2
1

∫ ∞
0

e−kρ0tf−(
√
t+ τ 2

1 )

2
√
t+ τ 2

1

dt. (4.23)

Numerical quadrature of this integral can be performed by Gauss-Laguerre quadra-
ture [5]. It is observed that an appropriate choice of the parameter τ1 is essential.
Quadrature of (4.22) simpli�es for small τ1 as the e�ects of the neglected higher
order terms in (4.18) reduce. On the contrary, the square root dominates (4.23) for
small τ1 with increasing di�culty to use Gauss-Laguerre quadrature. It is found
that τ1 ≈ 1.5/

√
kρ0 o�ers a good compromise. The resulting relative error is de-

picted in Fig. 4b where 20 and 16 quadrature points are used in (4.22) and (4.23),
respectively.

5 Conclusions

An approach for accurate and e�cient evaluation of the modal Green's functions is
presented. The non-singular oscillatory case is transformed to its steepest decent
paths and integrated using Gauss-Hermite quadrature. This is the most common
situation for electrically large objects and reduces the computational cost to between
6 and 20 function evaluations. The singular oscillatory case is more involved. Here,
the integral is divided into an analytically integrated part and two parts that are
integrated with Gauss quadrature. This requires approximately 40 function evalu-
ations. The modal Green's functions for m = 1 are used to illustrate the results.
This is particular useful for evaluation of the extinction cross section [12].
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Appendix A Square root of a complex number

The square root of a complex number, a+ ib, with negative imaginary part (b < 0)
is

√
a+ ib =

√√
a2 + b2 + a

2
− i

√√
a2 + b2 − a

2
(A.1)

References

[1] A. K. Abdelmageed. E�cient evaluation of modal Green's functions arising in
EM scattering by bodies of revolution. Progress In Electromagnetics Research,
27, 337�356, 2000.

[2] M. Andreasen. Scattering from bodies of revolution. IEEE Trans. Antennas
Propagat., 13(2), 303�310, 1965.

[3] G. Arfken. Mathematical Methods for Physicists. Academic Press, Orlando,
third edition, 1985.

[4] A. Bondeson, T. Rylander, and P. Ingelström. Computational Electromagnetics.
Springer-Verlag, Berlin, 2005.

[5] P. J. Davis and P. Rabinowitz. Methods of numerical integration. Academic
Press, New York, 1975.

[6] S. D. Gedney and R. Mittra. The use of the FFT for the e�cient solution of the
problem of electromagnetic scattering by a body of revolution. IEEE Trans.
Antennas Propagat., 38(3), 313�322, 1990.

[7] D. Huybrechs and S. Vandewalle. On the evaluation of highly oscillatory inte-
grals by analytic continuation. SIAM Journal on Numerical Analysis, 44(3),
1026�1048, 2007.

[8] J. R. Mautz and R. F. Harrington. Radiation and scattering from bodies of
revolution. Appl. Scienti�c Research, 20(1), 405�435, 1969.

[9] J. R. Mautz and R. F. Harrington. Electromagnetic scattering from a homo-
geneous material body of revolution. Archiv für Elektronik und Übertragung-
stechnik (AEÜ), 33, 71�80, 1979.

[10] S. Nordebo, M. Gustafsson, and K. Persson. Sensitivity analysis for antenna
near-�eld imaging. IEEE Trans. Signal Process., 55(1), 94�101, January 2007.

[11] K. Persson and M. Gustafsson. Reconstruction of equivalent currents using a
near-�eld data transformation � with radome applications. Progress in Electro-
magnetics Research, 54, 179�198, 2005.



10

[12] C. Sohl, M. Gustafsson, and G. Kristensson. Physical limitations on broadband
scattering by heterogeneous obstacles. J. Phys. A: Math. Theor., 40, 11165�
11182, 2007.

[13] W. M. Yu, D. G. Fang, and T. J. Cui. Closed form modal Green's functions
for accelerated computation of bodies of revolution. IEEE Trans. Antennas
Propagat., 56(11), 3452�3461, 2008.




