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COMPARISON OF STANDARD RESAMPLING METHODS FOR PERFORMANCE ESTIMATION OF
ARTIFICIAL NEURAL NETWORK ENSEMBLES

Michael Green1 and Mattias Ohlsson1

1Computational Biology and Biological Physics Group, Department of Theoretical Physics, Lund University, Sweden
michael@thep.lu.se

Abstract: Estimation of the generalization performance
for classification within the medical applications domain
is always an important task. In this study we focus on
artificial neural network ensembles as the machine learn-
ing technique. We present a numerical comparison be-
tween five common resampling techniques: k-fold cross
validation (CV), holdout, using three cutoffs, and boot-
strap using five different data sets. The results show that
CV together with holdout0.25 and0.50 are the best re-
sampling strategies for estimating the true performance
of ANN ensembles. The bootstrap, using the .632+ rule,
is too optimistic, while the holdout0.75 underestimates
the true performance.

Keywords: artificial neural networks, performance esti-
mation, k-fold cross validation, bootstrap

INTRODUCTION

Machine learning applications for classification in
medicine is developing rapidly today and the question of
how to best evaluate them has been addressed by many
scientists. In the machine learning community it is well
known that when training a classifier one should set aside
a portion of the data for testing. Preferably this procedure
should be repeated a number of times to collect statis-
tics. Methods such as K-fold cross validation (CV), boot-
strap [4] and holdout methods have been developed for
dividing data into a training and test set. Rigorous resam-
pling procedures are especially important when dealing
with unstable learners such as Artificial Neural Networks
(ANN) [1]. This machine learning concept has been used
extensively over the years in many different areas of pat-
tern recognition.

It is common knowledge that CV gives a nearly unbi-
ased estimate of the performance of a classifier. However,
this only applies if all aspects of model training is car-
ried out within the CV loop [14]. Also CV often pay for
this low bias in terms of large variance. In the late 90’s
Efron et. al. [4] introduced the .632+ bootstrap method
as an improvement over CV. This method maintained low
variance. There are, however, also reports that the .632+
rule can give large bias. Molinaro et. al. [10] found the
.632+ method to be severely biased when dealing with
high dimensional genomic data, and that CV, despite its
large variance, was better at estimating the true perfor-
mance of a classifier. Few comparisons of standard re-
sampling methods for performance estimation has been
conducted as of today [10, 8] and there is currently, to
our knowledge, no study focusing on ANN ensembles.

Furthermore, when using ANN ensembles it is important
to incorporate all model training and model selection pro-
cedures within the performance estimation loop to avoid
information leakage that would otherwise bias the esti-
mation.

The aim of this study was to compare five common re-
sampling methods for estimating the generalization per-
formance of an ANN ensemble on five datasets. All of
them were binary classification problems. First we tried
to numerically establish which of the resampling meth-
ods that came closest to the true performance. Second
we investigated whether the choice of resampling method
for model selection had any influence on the true perfor-
mance as estimated by the outer resampling method. Two
common ensemble creation techniques were used, bag-
ging [3] and the cross validation ensemble [6].

METHODS

Datasets

Five datasets were used in this study. Three real
world and two simulated datasets. The first real world
dataset contained 12-lead electrocardiogram (ECG) data
extracted from chest pain patients suspected of having
transmural infarction (TMI) [11]. We used 18 features
from the ECG and the training and test set consisted of
1000 and 3000 data points respectively. The second real
world dataset was the Wisconsin Breast Cancer Database
[9]. This breast cancer database was obtained from the
University of Wisconsin Hospitals, Madison from Dr.
William H. Wolberg. The database contained 699 pa-
tients of which 458 was diagnosed benign and 241 as
malignant. In total 10 features was collected from each
patient. Real world dataset number three was collected in
1997 and comes from 862 consecutive patients attending
the Lund University emergency department with a princi-
pal complaint of chest pain [5, 2]. The diagnosis was ei-
ther Acute Coronary Syndrome (ACS) or non-ACS. We
used 16 PCA components extracted from 12-lead ECG
recordings. Simulated dataset 1 contained data drawn
from two multivariate Gaussian distributions with equal
mean but with different covariance matrices. Specifically
the two classes were generated from

p(x|Ck) = N (x|µ, σ2

kI)

whereI is the identity matrix, andσ2

k the variance for
classCk. The input vectorx is eight dimensional and
the size of the training and test set was 600 and 10000
respectively.



The second simulated dataset was acquired from
two overlapping multivariate Gaussian distributions with
equal covariance matrices but differing mean, as

p(x|Ck) = N (x|µk, σ2I)

whereI is the identity matrix, andµk the mean vector
for classCk. The number of dimensions and the number
of samples in the training and test set was the same as the
first simulated dataset.

Artificial neural networks ensembles

We used ANN in the context of bagging [3] or CV en-
sembles [6] of size 25 and 24, respectively, which has
been found to be sufficient in numerical studies [12].
The individual ensemble member ANNs were imple-
mented as fully connected feedforward multilayer per-
ceptrons (MLP) with no direct input-output connections.
Only one hidden layer with five hidden units was used
for all datasets. Each individual ANN in the ensemble
was trained using a Quasi-Newton algorithm with the
kullback-leibler error function for two classes

E =
∑

n

(tn ln yn + (1 − tn) ln(1 − yn)) + αEreg

featuring a weight-elimination term

Ereg =
∑

i

ω2

i

ω2

0
+ ω2

i

to possibly regularize the network. The sum runs over all
the weights in the network except the biases. The rea-
son for excluding the biases from the penalty term is that
we do not wish to force the decision boundary to pass
through the origin in input space.

The CV ensemble method was used as follows: The
training set was randomly divided into two parts of equal
size. Two ensemble members were created by training
one MLP on each of the two parts. This procedure was
repeated 12 times, with a new random division each time.
The resulting CV ensemble consisted of 24 MLPs.

Performance estimation

We used the area under the receiver operating character-
istic curve (AUC) as a performance measure for a given
ANN ensemble. The AUC can be interpreted as the prob-
ability that a randomly chosen data point from classC1

has a higher output value than a randomly chosen data
point from classC2 [7]. The choice of AUC as the per-
formance measure was mostly governed by its popularity,
but also because it is independent of any cut on the output
value.

In every dataset used in this study we put aside a large
fraction (approximately 70%) to be used as an indepen-
dent test set. The remaining data was used to estimate the
performance of the ANN ensemble using five different
resampling methods. Thetrue performance of the ANN

Fig. 1: Illustration of the performance estimation proce-
dure. The data set is split into an independent test set and
a training set. The latter is further divided into aTstP
and aTrnP set used for the performance evaluation. The
TrnP is finally split into aValM and aTrnM set for the
model selection. The methods used to split the data sets
are indicated in the balloons.

ensemble was evaluated by training an optimal ANN en-
semble on the remaining data and testing on many boot-
strap samples of the test set. The optimal model was cho-
sen by a model selection procedure described later. In
other words we used the performance of the ANN en-
semble on the test set as a baseline for comparing the ca-
pability of the different resampling methods for correctly
estimating the true performance. The whole procedure is
illustrated in Figure 1.

Five resampling methods was investigated; 5x5 fold
CV, 25 fold bootstrap and 25 fold holdout using three cut-
offs (0.25, 0.50 and0.75). Thus, each method produced
25 new test and training data sets, labeledTstPandTrnP
in Figure 1, from the original training data. We built an
optimized ANN ensemble for every training set (TrnP)
using a model selection procedure described in the next
section. The best model was then tested on the corre-
sponding test data (TstP). This resulted in 25 training and
test results that we used to estimate the performance of
the ANN ensemble for each method. We used the mean
of the 25 test AUCs for the CV and the holdout tech-
niques, meanwhile the .632+ rule was used when evalu-
ating the bootstrap method. This rule is less biased than
its predecessor since it corrects, to some extent, for over-
fitting.

Model selection

The model selection consisted of a grid search for the op-
timal weight elimination parameterα. For each value of
α an inner resampling session using bootstrap or CV was
carried out on the training data. This process is also il-
lustrated in Figure 1. We used 25 resamples for the inner
loop, i.e., a 5x5 fold CV or a 25 fold bootstrap. A full



ANN ensemble was built from each resample (TrnM) us-
ing bagging [3] or the CV ensemble [6]. Theα receiving
the best AUC from the inner loop was used to construct an
ANN bagging ensemble on the whole training set (TrnP).

Optimal Bayes classifier for simulated data

The two artificial datasets were generated from variants
of the multivariate Gaussian distribution. Knowing the
generating distribution allows us to derive the optimal
Bayes classifier, that is, we can evaluate the posterior
probability for classC1 given the data using Bayes’ theo-
rem. Following Bishop [1] and taking the functional form
of the posterior to be sigmoid we set

p(C1|x) =
p(x|C1)p(C1)

p(x|C1)p(C1) + p(x|C2)p(C2)
=

1

1 + e−a

so that

a = ln
p(x|C1)p(C1)

p(x|C2)p(C2)
= ln

p(x|C1)

p(x|C2)

using the fact that we havep(C1) = p(C2). Settinga = 0
gives us the decision boundary for our problem, corre-
sponding to a cut of0.5. For simulated data 1 this can be
interpreted as a hypersphere with radius

r2 =
2

1/σ2

1
− 1/σ2

2

· ln
σ2

σ1

.

The corresponding interpretation for simulated data 2 is
a hyperplane defined by

(

µ
1
− µ

2

σ2

)T

x +
µ

2

2
− µ

2

1

2σ2
= 0.

The performance of these classifiers was estimated,
using AUC, by evaluating them on one hundred thousand
samples from each class. Their performance should serve
as an upper bound for the ANN ensemble since the ANN
is known to estimate the Bayesian posterior probability
[13].

RESULTS

The results for the five data sets using bagging ensembles
and CV in the model selection are presented in Table 1
and 2. The CV and holdout using cuts0.25 and0.50 had
similar performance for all datasets. They differed with
at most three percent from each other. See Figure 3 and
2. These three methods also did a good job estimating
the true performance with differences ranging from one
to three percent. The holdout0.75 and bootstrap methods
were strongly biased for the majority of the datasets, and
rarely performed well. The bootstrap constantly overesti-
mated the true performance meanwhile the holdout0.75
remained rather pessimistic in its estimation.

The true validation result was defined as the largest
AUC during the model selection procedure on the whole
training set. A closer look at the validation results re-
vealed a bias for the holdout0.75 method. It underesti-
mated the validation performance with 4 to 12 percent.

Training Validation Test
Simulation 1

CV 0.97 0.87 0.86
Bootstrap 0.99 0.94 0.89
HO 0.25 0.97 0.86 0.86
HO 0.50 0.99 0.85 0.85
HO 0.75 1.00 0.79 0.80

True 0.96 0.88 0.88
Simulation 2

CV 0.97 0.87 0.87
Bootstrap 0.99 0.94 0.90
HO 0.25 0.98 0.86 0.86
HO 0.50 0.99 0.84 0.86
HO 0.75 1.00 0.79 0.80

True 0.88 0.86 0.84
ACS

CV 0.91 0.76 0.73
Bootstrap 1.00 0.90 0.79
HO 0.25 0.93 0.76 0.75
HO 0.50 0.96 0.75 0.73
HO 0.75 0.99 0.71 0.70

True 0.86 0.77 0.76

Table 1: Results for all five resampling methods on ACS
and both simulated datasets using bagging ensembles
and CV for the model selection. The results are presented
as mean AUC, except for the bootstrap method where the
.632+ estimator was used.
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Fig. 2: Boxplots for ACS data and for Simulated data
1 and 2 using bagging ensembles and CV for the model
selection.

The opposite was true for the bootstrap method. It over-
shot the true validation performance by magnitudes rang-
ing from 1 to 14 percent. The CV, holdout0.50 and0.25
methods only differed slightly from the true validation
performance.

Turning our eyes to the CV ensembles in Table 3 and 4
we see that the results closely resembles the results for the
bagging ensembles. Comparing the box plots in Figure 5
and 4 with Figure 3 and 2, no obvious differences could
be found between CV and bagging ensembles for any of



Training Validation Test
Breast cancer

CV 1.00 0.99 0.99
Bootstrap 1.00 1.00 0.99
HO 0.25 1.00 0.99 0.99
HO 0.50 1.00 1.00 0.99
HO 0.75 1.00 0.87 0.99

True 1.00 0.99 0.99
TMI

CV 0.99 0.94 0.93
Bootstrap 1.00 0.97 0.95
HO 0.25 0.99 0.92 0.94
HO 0.50 0.99 0.91 0.92
HO 0.75 0.99 0.87 0.88

True 0.99 0.94 0.93

Table 2: Results for all five resampling methods on
Breast cancer and TMI data using bagging ensembles
and CV for the model selection. The results are presented
as mean AUC, except for the bootstrap method where the
.632+ estimator was used.
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Fig. 3: Boxplots for the Breast cancer data and the TMI
data using bagging ensembles and CV for the model se-
lection.

the data sets.
Training a single MLP instead of an entire ensemble

resulted in a downward bias for all datasets. All meth-
ods underestimated the true performance to a larger ex-
tent than when using ensembles indicating that the sin-
gle MLP was not able to generalize as well from the
data. Boxplots for the single MLP are shown in Fig-
ures 6 and 7.

Using the .632+ bootstrap estimator during the model
selection produced the same estimation of the true per-
formance as the CV. However, the models selected by the
two different strategies differed as well as the correspond-
ing AUCs. Looking closer into the values of the regular-
ization parameterα selected by the two different model
selection methods we found that mostα’s were small, in-
dicating that no or very little regularization were optimal
for the ensembles.

Training Validation Test
Simulation 1

CV 0.97 0.87 0.87
Bootstrap 0.99 0.94 0.90
HO 0.25 0.97 0.87 0.87
HO 0.50 0.98 0.84 0.85
HO 0.75 0.99 0.78 0.80

True 0.95 0.88 0.88
Simulation 2

CV 0.97 0.87 0.87
Bootstrap 0.99 0.94 0.90
HO 0.25 0.98 0.87 0.87
HO 0.50 0.99 0.84 0.85
HO 0.75 0.99 0.79 0.80

True 0.88 0.86 0.83
ACS

CV 0.92 0.76 0.72
Bootstrap 0.99 0.90 0.79
HO 0.25 0.94 0.76 0.75
HO 0.50 0.97 0.76 0.73
HO 0.75 0.99 0.72 0.70

True 0.92 0.76 0.76

Table 3: Results for all five resampling methods on ACS
and both simulated datasets using CV ensembles and
CV for the model selection. The results are presented as
mean AUC, except for the bootstrap method where the
.632+ estimator was used.

DISCUSSION AND CONCLUSION

In this paper we examine five common resampling meth-
ods for the purpose of estimating the generalization per-
formance using ANN classification ensembles. The pro-
cess of training an ANN ensemble also includes resam-
pling methods for creating the ensemble and resampling
methods for the model selection part. To limit the num-
ber of combinations of resampling methods to test, the
ensemble creation was limited to the bagging and cross
validation ensemble. Furthermore, in the model selec-
tion part only two resampling methods were tested, CV
and bootstrap. Although CV and bootstrap gave differ-
ent estimations of the true test performance, no differ-
ence was found when using them in the model selection
part. The reason for this is probably because the purpose
of the model selection is to determine the regularization
parameterα. Now for ANN ensembles in general one
expects little or no regularization at all, and this was con-
firmed in our results since the selected models had overall
smallα’s. The model selection part is therefore not cru-
cial, hence no difference between CV and bootstrap. In
this study no feature selection was performed since the
input variables were predefined. When including feature
selection in the model selection process it may turn out
that different resampling methods for the model selection
will give different results.

Turning to the true performance estimation results
we found that CV, holdout0.25 and 0.50 performed



Training Validation Test
Breast cancer

CV 1.00 0.99 0.99
Bootstrap 1.00 1.00 0.99
HO 0.25 1.00 0.99 0.99
HO 0.50 1.00 1.00 0.99
HO 0.75 1.00 0.95 0.99

True 1.00 0.99 0.99
TMI

CV 0.99 0.92 0.93
Bootstrap 1.00 0.97 0.95
HO 0.25 0.99 0.92 0.92
HO 0.50 0.99 0.91 0.92
HO 0.75 0.98 0.87 0.87

True 0.98 0.94 0.92

Table 4: Results for all five resampling methods on
Breast cancer and TMI data using CV ensembles and
CV for the model selection. The results are presented as
mean AUC, except for the bootstrap method where the
.632+ estimator was used.
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Fig. 4: Boxplots for ACS data and for Simulated data 1
and 2 using CV ensembles and CV for the model selec-
tion.

equally well. The bootstrap method, using the .632+
rule, was constantly overestimating the test performance.
Although the .632+ rule should compensate for possible
overfitting, which is the case for the individual members
of the ensemble, it is still biased. The holdout0.75 resam-
pling method was on the other hand constantly underesti-
mating the true performance. This is probably due to the
low fraction of data used to construct the ANN ensemble,
hence a very inaccurate model.

Lingering on the true performance we found that the
ANN ensemble succeeded to reach the optimal Bayes es-
timate using the second artificial data set. The first arti-
ficial problem was much more difficult and the true per-
formance of the ANN ensemble did not match the Bayes
estimate of0.93. However, this was mainly an effect of
undersampling since only 600 data points were used to
construct the ANN ensemble. Increasing the flexibility of
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Fig. 5: Boxplots for the Breast cancer data and the TMI
data using CV ensembles and CV for the model selection.
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Fig. 6: Boxplots for ACS data and for Simulated data 1
and 2 using a single MLP and CV for the model selection.

the networks as well as the amount of data available to the
construction of the ANN ensemble alleviated this prob-
lem, indicating that our definition oftruth made sense.

In this study we tested five different data sets, orig-
inating from three medical classification problems and
two artificial ones. The medical applications ranged from
being difficult to very easy. For the simulated data sets,
one was linear and the second one required nonlinearity
for the optimal solution. The advantage of using simu-
lated data is of course the unlimited amount of test data.
Although only a small number of data sets were used we
believe that they represents suitable mix of different clas-
sification problems.

In conclusion we found, for our choice of data sets
and training procedures, the best resampling strategies
for estimating the true performance of an ANN ensem-
ble to be the CV and holdout, using cutoff0.25 and0.50,
methods. The .632+ bootstrap did not match this per-
formance but still gave a much more accurate estimation
than holdout0.75. The choice of resampling technique in
the model selection did not influence the final estimation.
We can also confirm the well known advantage of using
ANN ensembles compared to single ANNs.
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Fig. 7: Boxplots for the Breast cancer data and the TMI
data using a single MLP and CV for the model selection.
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