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Abstract

We present some general estimates of the scattered electromagnetic �elds for a

general bounded scattering domain Ω in the anisotropic materials setting. In

particular, it is shown that the ‖·‖L2(Ωs;C3)-norm and sup-norm of the scattered

�eld in an arbitrary �nite exterior domain Ωs are bounded by the H(curl,Ω)
norm of the incident �eld. Moreover, several estimates of the traces of the

scattered �eld on the boundary and a circumscribing sphere are presented.

1 Introduction

Estimates of the scattered �eld in terms of the excited (incident) �eld play a crucial
role in controlling how much energy an obstacle scatters. In some applications the
aim is to maximize this energy in some speci�ed directions or sectors. In other situa-
tions, the objective is to create a scatterer such that the scattered energy is as small
as possible � preferably zero. In particular, invisibility devices, so called cloaks,
which have attracted quite some attention lately, see e.g., [6, 7], is an application
where the goal is to enclose the scatterer such that the scattered �eld is as small
as possible. To be successful in this endeavor, the control of the scattered �eld is
needed.

In Section 2, the scattering problem is formulated in a variational setting and the
existence and uniqueness of the solution to the scattering problem for an anisotropic
scatterer is proved. Some of this technique is well known, see e.g., Refs [9, 12]. One
of the cornerstones in this approach is the coercivity and the a-priori estimates of
the solution to the problem. Existence and uniqueness of the scattering problem
are proved in Section 3, and the estimates of the scattered �eld are presented in
Section 4. The paper is closed with some conclusions in Section 5 followed by a few
appendices with de�nitions and more technical details.

2 Formulation of the scattering problem

In this section, we present the geometry of the problem, the scattered �eld, and its
solution in a weak setting.

2.1 The interior problem with anisotropic material

Let Ω be a bounded, open simply connected set in R3 with C1,1 boundary, ∂Ω.1

The outward pointing unit normal is denoted by ν̂. We denote the exterior of the
domain Ω by Ωe = R3 \ Ω, which is assumed to be vacuous and simply connected.
See Figure 1 for a typical geometry.

1Several of the results presented in this paper holds also for Lipschitz boundaries.
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Figure 1: Typical geometry of the scattering problem in this paper. The domain
Ω, its boundary ∂Ω, and the least circumscribing sphere ∂ΩR are shown.

The Maxwell equations in the anisotropic case are given by2 (we adopt the time
convention e−iωt) {

∇×E(x) = ik0µ(x) ·H(x)

∇×H(x) = −ik0ε(x) ·E(x)
x ∈ Ω (2.1)

The wave number in vacuum is k0 = ω/c0, where ω is the angular frequency of the
�elds, and c0 is the speed of light in vacuum. The dimensionless entries of ε(x) and
µ(x) are elements in L∞(Ω;C). Throughout this paper vectors in C3 are typed in
italic boldface, and linear transformations (dyadics) on C3 in roman boldface. Unit
vectors are denoted by a caret (ˆ).

We are looking for solutions E and H of (2.1) in the space H(curl,Ω), see
Appendix A for details and de�nitions of function spaces. A weak formulation of
this problem is given in Section 3. The boundary conditions on ∂Ω, that connect
the solutions in the domains Ω and Ωe, are introduced in the formulation of the
exterior problem, and the pertinent radiation conditions presented in Section 2.3.

The incident �eld, Ei or H i, is assumed to have its sources in a bounded re-
gion Ωi ⊂ Ωe, i.e., Ω ∩ Ωi = ∅. Outside this region, the �elds satisfy the time-
harmonic Maxwell equations in vacuum, and they are assumed to have traces on

2We use scaled electric and magnetic �elds in this paper, i.e., the SI-unit �elds ESI and HSI

are related to the �elds E and H used in this paper by

ESI(x) =
E(x)
√
ε0
, HSI(x) =

H(x)
√
µ0

where the permittivity and permeability of vacuum are denoted by ε0 and µ0, respectively.
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∂Ω belonging to H−1/2(div, ∂Ω), more precisely (γ(Ei),γ(H i)) ∈ H−1/2(div, ∂Ω)×
H−1/2(div, ∂Ω), see Appendix A. Otherwise, the incident �elds are arbitrary.

The material properties, for the given �xed frequency k0 > 0, are assumed to
be bounded and passive, i.e., ε,µ ∈ L∞(Ω;C3×3) and the material properties are
assumed to satisfy the coercivity condition(

a
b

)†
·
(
−ik0

(
ε− ε†

)
0

0 −ik0

(
µ− µ†

)) · (a
b

)
≥ cm

(
|a|2 + |b|2

)
(2.2)

almost everywhere for all �elds a, b ∈ C3 and a given constant cm > 0, which depends
on the frequency. The dagger † denotes the conjugate transpose. This condition is
equivalent to the assumption that the material is lossy almost everywhere in Ω.

2.2 The exterior problem

The presence of the material in the domain Ω distorts the incident �elds Ei and
H i. This distortion is denoted by the scattered �elds, Es and Hs, which belong to
Hloc(curl,Ωe).

In Ωe, the sum of the incident and the scattered �elds is de�ned as the total
�eld, i.e., {

Et(x) = Ei(x) +Es(x)

Ht(x) = H i(x) +Hs(x)
x ∈ Ωe

The boundary conditions on ∂Ω are{
γ+(Ei +Es) = γ−(E)

γ+(H i +Hs) = γ−(H)
(2.3)

where the trace operator from the outside (inside) of Ω is denoted by γ+ (γ−).
The trace operator is given as γ−(E) = ν̂ × E|∂Ω if E is in C(Ω;C3), and analo-
gous for the trace from the outside, γ+. The traces belong to H−1/2(div, ∂Ω), see
Theorem A.1.

The exterior Calderón operator or the admittance operator Ce is de�ned as the
mapping of the tangential component of the scattered electric �eld to the tangential
component of the scattered magnetic �eld on the boundary of Ω. We use the solution
of a speci�c exterior problem to make the de�nition precise. This solution is found
in the following section.
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2.3 An auxiliary exterior problem (R)

Consider the following exterior problem where the tangential component of the scat-
tered electric �eld on the boundary is given by a �xed vector m ∈ H−1/2(div, ∂Ω),3

1) (Es,Hs) ∈ Hloc(curl,Ωe)×Hloc(curl,Ωe)

2)

{
∇×Es(x) = ik0Hs(x)

∇×Hs(x) = −ik0Es(x)
x ∈ Ωe

3)


x̂×Es(x)−Hs(x) = o(1/x)

or

x̂×Hs(x) +Es(x) = o(1/x)

as x→∞

4) γ+(Es) = m ∈ H−1/2(div, ∂Ω)

(Problem(R)) (2.4)

This problem has a unique solution [1, 3].

De�nition 2.1. The exterior Calderón operator Ce is de�ned as

Ce : m 7→ γ+(Hs), H−1/2(div, ∂Ω) 7→ H−1/2(div, ∂Ω),

where m = γ+(Es) and the �elds Es and Hs satisfy Problem (R) in (2.4).

We notice that the exterior Calderón operator Ce is uniquely de�ned for all
m ∈ H−1/2(div, ∂Ω), since Problem (R) has a unique solution in Hloc(curl,Ωe) ×
Hloc(curl,Ωe) for any m ∈ H−1/2(div, ∂Ω) and γ+(Hs) ∈ H−1/2(div, ∂Ω). If we
want to emphasize dependence on the bounding surface of the scatterer, we adopt the
notation Ce

∂Ω. Details on the spaceH
−1/2(div, ∂Ω) and its dual spaceH−1/2(curl, ∂Ω)

are given in Monk [9].

Theorem 2.1. The exterior Calderón operator de�ned in De�nition 2.1 has the
following properties [3, 15]:

1. The exterior Calderón operator satis�es the positivity condition

Re

∫
∂Ω

Ce(m) · (ν̂ ×m) dS ≥ 0 for allm ∈ H−1/2(div, ∂Ω). (2.5)

where dS denotes the surface measure of ∂Ω, and the bar denotes the complex
conjugate.

2. The exterior Calderón operator satis�es

(Ce)2 = −I on H−1/2(div, ∂Ω),

3. The exterior Calderón operator is an isomorphism in H−1/2(div, ∂Ω), and con-
sequently there exist constants 0 < cC ≤ CC, such that

cC‖m‖H−1/2(div,∂Ω) ≤ ‖Ce(m)‖H−1/2(div,∂Ω) ≤ CC‖m‖H−1/2(div,∂Ω)

3The source m can be interpreted as a magnetic current density.
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4. The exterior Calderón operator is independent of the material properties inside
the domain Ω.

From item 2 we conclude that the norm of the exterior Calderón operator satis�es
‖Ce‖H−1/2(div,∂Ω) ≥ 1, and also that the constants in item 3 can be chosen as cC =
1/‖Ce‖H−1/2(div,∂Ω) and CC = ‖Ce‖H−1/2(div,∂Ω).

2.4 Sesquilinear form and weak formulation

The sesquilinear form for an anisotropic obstacle is [3, 15] de�ned next.

De�nition 2.2.

A(u,v) =

∫
Ω

{
i

k0

(
∇× v

)
· µ−1 · (∇× u)− ik0v · ε · u

}
dv

−
∫
∂Ω

π−(v) · Ce(γ−(u)) dS, u,v ∈ H(curl,Ω)

(2.6)

where the trace operators π− and γ− on H(curl,Ω) are de�ned in Theorem A.1, and
where dS denotes the surface measure on the bounding surface ∂Ω, and dv denotes
the volume measure in R3.

Substituting m = γ−(u) in the inequality (2.5) gives

−Re

∫
∂Ω

π−(u) · Ce(γ−(u)) dS ≥ 0

The sesquilinear form is continuous, bounded and coercive on H(curl,Ω). The con-
tinuity and boundedness follows immediately from the properties of the material in
Ω, and from (for the de�nition of the space H−1/2(curl, ∂Ω), see Appendix A)∣∣∣∫

∂Ω

π−(v) · Ce(γ−(u)) dS
∣∣∣ ≤ CC‖π−(v)‖H−1/2(curl,∂Ω)‖γ−(u)‖H−1/2(div,∂Ω)

≤ CCCπCγ‖v‖H(curl,Ω)‖u‖H(curl,Ω)

where we have used the continuity properties of the trace operators π− and γ− on
H(curl,Ω) in Theorem A.1. The coercivity is proved in [15], but will be restated in
the next section in a slightly more distinct formulation. We note that the sesquilinear
form couples the interior problem with the solution to the exterior problem through
the exterior Calderón operator Ce.

The scattering problem can now be written in a weak form, i.e., the interior
problem (2.1) supplied with the boundary conditions (2.3), which couples the interior
problem with the exterior problem (2.4), supplied with its radiation conditions.

A(E,v) = f(v), ∀v ∈ H(curl,Ω) (2.7)
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where

f(v) =

∫
∂Ω

(
γ+(H i)− Ce(γ+(Ei))

)
· π−(v) dS, ∀v ∈ H(curl,Ω)

Note that the given incident �elds Ei, H i act as a bounded linear functional on
H(curl,Ω).

3 Existence and uniqueness of solution

In this section, we characterize the sesquilinear form, which yields existence and
uniqueness of solution due to Lax-Milgram's theorem (for proofs see [15]).

3.1 Coercivity

We have the following coercivity properties for the sesquilinear form (2.6):

Proposition 3.1. For �xed frequency k0, the sesquilinear form A in (2.6) is coercive
on H(curl,Ω) in the following sense

ReA(u,u) ≥ C1‖u‖2
L2(Ω;C3) + C2‖∇ × u‖2

L2(Ω;C3) ≥ CA‖u‖2
H(curl,Ω) (3.1)

where the constants

C1 = inf
Ω

min
(
Eig

(
−ik0

(
ε(x̂)− ε†(x̂)

)))
≥ cm

and

C2 = sup
Ω

max
(
Eig

(
−ik0

(
µ(x̂)− µ†(x̂)

)))
= inf

Ω
min

(
Eig

(
ik−1

0

(
µ−1(x̂)− µ−1†(x̂)

)))
and CA = min(C1, C2).

The following Corollary follows at once, since |A(u,u)| dominates ReA(u,u).

Corollary 3.1.

|A(u,u)| ≥ C1‖u‖2
L2(Ω;C3) + C2‖∇ × u‖2

L2(Ω;C3) ≥ CA‖u‖2
H(curl,Ω)

3.2 Existence of solution

The weak formulation (2.7) has, for given material properties in the domain Ω, a
unique solution due to Lax-Milgram's theorem, see Theorem A.2 in Appendix A
and [5].
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Theorem 3.1. Equation (2.7) has a unique solution E in H(curl,Ω) satisfying

‖E‖H(curl,Ω) ≤ C
(
‖γ+(H i)‖H−1/2(div,∂Ω) + ‖γ+(Ei)‖H−1/2(div,∂Ω)

)
where the constant C depends on the material parameters in Ω, the geometry (the
shape of Ω), and the frequency. In fact, C = CCCπ/CA, where CA is given in
Proposition 3.1.

Proof. The right-hand side of (2.7) is bounded by

‖f‖H′(curl,Ω) = sup
‖v‖H(curl,Ω)=1

∣∣∣∣∣∣
∫
∂Ω

(
γ+(H i)− Ce(γ+(Ei))

)
· π−(v) dS

∣∣∣∣∣∣
≤ max(1, CC)Cπ

(
‖γ+(H i)‖H−1/2(div,∂Ω) + ‖γ+(Ei)‖H−1/2(div,∂Ω)

)
which immediately implies the result of the theorem by the use of Proposition 3.1
and Lax-Milgram's theorem, see Theorem A.2. Notice that max(1, CC) = CC by
Theorem 2.1.

The right-hand side of (2.7), and consequently the bound in Theorem 3.1, is
bounded by the energy of the incident �eld in the scattering domain. We state this
in a Corollary.

Corollary 3.2. Equation (2.7) has a unique solution E in H(curl,Ω) satisfying

‖E‖H(curl,Ω) ≤ C
(
‖Ei‖H(curl,Ω) + ‖H i‖H(curl,Ω)

)
where C = CCCπCγ/CA.

Proof. The statement follows at once, since the trace norm is bounded by the norm,
see Theorem A.1.

If the incident �eld is the plane wave, i.e.,{
Ei(x) = E0eik0k̂i·x

H i(x) = k̂i ×E0eik0k̂i·x
x ∈ R3

where E0 · k̂i = 0, then we have the following corollary:

Corollary 3.3. If the incident �eld is a plane wave, then equation (2.7) has a unique
solution E in H(curl,Ω) satisfying

‖E‖H(curl,Ω) ≤ C |E0| |Ω|1/2

where C = 2CC (1 + k2
0)

1/2
CπCγ/CA. The volume of Ω is denoted by |Ω|.

Proof. The proof follows from Corollary 3.2, and the following bound on the terms
in the right-hand side of the result in Corollary 3.2, i.e.,

‖Ei‖2
H(curl,Ω) = ‖H i‖2

H(curl,Ω) ≤
(
1 + k2

0

)
|E0|2 |Ω|
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From the existence of the interior electric �eld, we construct the corresponding
magnetic �eld H(x) as4H(x) =

1

ik0

µ−1(x) · (∇×E(x))

∇×H(x) = −ik0ε(x) ·E(x)
x ∈ Ω

With the internal �elds E(x) and H(x), we apply the trace operator from the
inside, γ−, and construct the tangential scattered electric �eld from the outside,
γ+(Es) = γ−(E − Ei). An application of the Calderón operator on γ+(Es) then
gives the proper exterior solution.

3.3 Alternative existence proof

Theorem 3.2. Equation (2.7) has a unique solution E in H(curl,Ω) satisfying

‖E‖H(curl,Ω) ≤ C‖Ei‖H(curl,Ω)

where the constants C = 1 + C3/CA, and where

C3 = max
(
k0‖ε− I3‖L∞(Ω;C3×3), k

−1
0 ‖µ−1 − I3‖L∞(Ω;C3×3)

)
and CA is given in Proposition 3.1.

Notice that the constant C in this estimate does not contain the constants CC ,
Cπ and Cγ as in Corollary 3.2.

Proof. Apply the disturbance of the interior �eld due to the scatterer, i.e., the
di�erence between the internal solution and the incident �eld, u′ = u − Ei to the
sesquilinear form (2.6). We get

A(u′,v) =

∫
∂Ω

π−(v) · Ce(γ−(Ei)) dS

−
∫
Ω

{
i

k0

∇× v · µ−1 · ∇ ×Ei − ik0v · ε ·Ei

}
dv, ∀v ∈ H(curl,Ω)

The weak formulation of the di�erence between the internal solution and the incident
�eld, E′ = E −Ei then is

A(E′,v) = h(v), ∀v ∈ H(curl,Ω)

4This construction is consistent, since −ik0ε(x) ·E(x) is the weak curl of H(x) = 1
ik0
µ−1(x) ·

∇ ×E(x). In fact, we have

(H,∇× φ)L2(Ω;C3) + ik0 (ε(x) ·E(x),φ)L2(Ω;C3) = 0 ∀φ ∈ D(Ω;C3)

since A(E,φ) = 0, ∀φ ∈ D(Ω;C3).
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where the right-hand side is a linear, bounded functional on H(curl,Ω). In fact,

h(v) =

∫
∂Ω

π−(v) · Ce(γ−(Ei)) dS

−
∫
Ω

{
i

k0

∇× v · µ−1 · ∇ ×Ei − ik0v · ε ·Ei

}
dv

+

∫
∂Ω

(
γ+(H i)− Ce(γ+(Ei))

)
· π−(v) dS

or since γ−(Ei) = γ+(Ei)

h(v) = ik0

∫
Ω

v · (ε− I3) ·Ei dv − i

k0

∫
Ω

(∇× v) ·
(
µ−1 − I3

)
· (∇×Ei) dv

+ ik0

∫
Ω

v ·Ei dv − i

k0

∫
Ω

(∇× v) · (∇×Ei) dv +

∫
∂Ω

γ+(H i) · π−(v) dS

which we rewrite as

h(v) = ik0

∫
Ω

v · (ε− I3) ·Ei dv − i

k0

∫
Ω

(∇× v) ·
(
µ−1 − I3

)
· (∇×Ei) dv

We have here used the properties of the incident electric �eld, viz., ∇× (∇×Ei) =
k2

0Ei, and

ik0

∫
Ω

v ·Ei dv − i

k0

∫
Ω

(∇× v) · (∇×Ei) dv +

∫
∂Ω

γ+(H i) · π−(v) dS

=− i

k0

∫
Ω

∇ · {v × (∇×Ei)} dv +

∫
∂Ω

γ+(H i) · π−(v) dS

=

∫
∂Ω

ν̂ · {v ×H i} dS +

∫
∂Ω

γ+(H i) · π−(v) dS = 0

This leads to the estimate

|h(v)| ≤ k0‖v‖L2(Ω;C3)‖ε− I3‖L∞(Ω;C3×3)‖Ei‖L2(Ω;C3)

+ k−1
0 ‖∇ × v‖L2(Ω;C3)‖µ−1 − I3‖L∞(Ω;C3×3)‖∇ ×Ei‖L2(Ω;C3)

and due to the assumptions made on the material parameters, we get

|h(v)| ≤ C3‖v‖H(curl,Ω)‖Ei‖H(curl,Ω)

where the constant

C3 = max
(
k0‖ε− I3‖L∞(Ω;C3×3), k

−1
0 ‖µ−1 − I3‖L∞(Ω;C3×3)

)
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Consequently, the norm of h in the dual space of H(curl,Ω) is

‖h‖H′(curl,Ω) = sup
‖v‖H(curl,Ω)=1

|h(v)| ≤ C3‖Ei‖H(curl,Ω)

Therefore, by Lax-Milgram's theorem, we can estimate the disturbance as

‖E′‖H(curl,Ω) ≤ C‖Ei‖H(curl,Ω) (3.2)

where C = C3/CA, where CA is given in Proposition 3.1, and the proposition is
proved by the use of E = E′ +Ei.

We have also proved

Corollary 3.4. The solution E′ = E −Ei satis�es

‖E′‖H(curl,Ω) ≤ C‖Ei‖H(curl,Ω)

where the constants C = C3/CA, where C3 is given in Theorem 3.2, and CA is given
in Proposition 3.1.

Corollary 3.5. If the incident �eld is a plane wave, then equation (2.7) has a unique
solution E in H(curl,Ω) satisfying

‖E‖H(curl,Ω) ≤ C |E0| |Ω|1/2

where C = (1 + C3/CA) (1 + k2
0)

1/2
. The volume of Ω is denoted by |Ω|.

Proof. The proof follows from Theorem 3.2, and

‖Ei‖2
H(curl,Ω) ≤

(
1 + k2

0

)
|E0|2 |Ω|

4 Representation of the scattered �elds

Outside any circumscribing sphere of the domain Ω, i.e., any sphere with radius
x ≥ R, the scattered �eld can be represented in an in�nite series of spherical vector
waves uτn(k0x). The spherical vector waves are de�ned in Appendix B, see also [15].

We start with some general expressions and representations of the scattered �eld
in Ωe. The scattered �eld Es(x), i.e., the general solution to Problem (R) in (2.4),
has an integral representation [4, 13]

Es(x) =
i

k0

∇×
{
∇×

∫
∂Ω

I3g(|x− x′|) · Ce(γ+(Es))(x
′) dS ′

}

+∇×
∫
∂Ω

I3g(|x− x′|) · γ+(Es)(x
′) dS ′, x ∈ R3 \ Ω

(4.1)
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where we have used the notation

g(y) =
eik0y

4πy

Moreover, outside the least circumscribing sphere (radius R) of Ω, the solution
can be represented in terms of outgoing spherical vector waves [13].

Es(x) =
∑
τn

fτnuτn(k0x)

Hs(x) = − i

k0

∑
τn

fτn∇× uτn(k0x) = −i
∑
τn

fτnuτ̄n(k0x)
x > R (4.2)

where n is a multi-index, and where the index τ̄ is the dual index of τ , de�ned by
1̄ = 2 and 2̄ = 1. The explicit expressions of the electric and magnetic �elds in (4.2)
for x > R are, see Appendix B

Es(x) =
∑
n

(
f1n

ξl(k0x)

k0x
A1n(x̂)

+ f2n

(
ξ′l(k0x)

k0x
A2n(x̂) +

√
l(l + 1)

ξl(k0x)

k2
0x

2
A3n(x̂)

))

Hs(x) = −i
∑
n

(
f1n

(
ξ′l(k0x)

k0x
A2n(x̂) +

√
l(l + 1)

ξl(k0x)

k2
0x

2
A3n(x̂)

)

+ f2n
ξl(k0x)

k0x
A1n(x̂)

)
(4.3)

and

γ+(Es)(x) = x̂×Es(x) =
∑
n

(
f1n

ξl(k0x)

k0x
A2n(x̂)− f2n

ξ′l(k0x)

k0x
A1n(x̂)

)
Ce(γ+(Es))(x) = γ+(Hs)(x) = x̂×Hs(x)

= i
∑
n

(
f1n

ξ′l(k0x)

k0x
A1n(x̂)− f2n

ξl(k0x)

k0x
A2n(x̂)

) (4.4)

and 
π+(Es)(x) =

∑
n

(
f1n

ξl(k0x)

k0x
A1n(x̂) + f2n

ξ′l(k0x)

k0x
A2n(x̂)

)
π+(Hs)(x) = −i

∑
n

(
f1n

ξ′l(k0x)

k0x
A2n(x̂) + f2n

ξl(k0x)

k0x
A1n(x̂)

)
Here, Aτn are vector spherical harmonics, see Appendix B and [15]. The coe�cients
fτn are determined by [13], i.e.,

fτn = −k2
0

∫
∂Ω

vτn(k0x) ·Ce(γ+(Es))(x) dS + ik2
0

∫
∂Ω

vτ̄n(k0x) · γ+(Es)(x) dS (4.5)
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ν̂

∂Ω

ν̂

∂Ω1

ν̂

∂Ω2

Figure 2: Typical geometry of the geometry in Lemm 4.1.

where vτn(k0x) denotes the regular spherical vector waves, see [15]. In fact, the
representations in (4.2) and (4.5) are direct consequences of the expansion [2]

I3g(R) = ik0

∑
n

τ=1,2,3

uτn(k0x>)vτn(k0x<) = ik0

∑
n

τ=1,2,3

vτn(k0x<)uτn(k0x>)

where R = |x− x′|, and where the argument x> (x<) denotes the vector with the
larger (smaller) magnitude of x and x′. The coe�cients fτn do not dependent on
which surface ∂Ω they are evaluated on in the following respect:

Lemma 4.1. Let Ω ⊆ Ω1 ⊆ Ω2 be two open sets in R3, and assume that ∂Ω1 and
∂Ω2 are C1,1 surfaces, see Figure 2 for a typical geometry. Then

fτn =− k2
0

∫
∂Ω1

vτn(k0x) · Ce(γ+(Es))(x) dS + ik2
0

∫
∂Ω1

vτ̄n(k0x) · γ+(Es)(x) dS

= −k2
0

∫
∂Ω2

vτn(k0x) · Ce(γ+(Es))(x) dS + ik2
0

∫
∂Ω2

vτ̄n(k0x) · γ+(Es)(x) dS

Note that the Calderón operators and the trace operators on the surfaces ∂Ω1 and
∂Ω2 are di�erent, but, to avoid cumbersome notation, we adopt the same symbols
on the two surfaces.

Proof. We start by noting that for x ∈ Ωe, we have{
ik0Hs(x) = ∇×Es(x)

k0vτ̄n(k0x) = ∇× vτn(k0x)

{
∇× (∇×Es(x)) = k2

0Es(x)

∇× (∇× vτn(k0x)) = k2
0vτn(k0x)
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By the divergence theorem (Gauss' theorem), the di�erence between the integrals
in the lemma are

− k2
0

∫
∂Ω2−∂Ω1

vτn(k0x) · Ce(γ+(Es))(x) dS + ik2
0

∫
∂Ω2−∂Ω1

vτ̄n(k0x) · γ+(Es)(x) dS

= −ik0

∫
∂Ω2−∂Ω1

ν̂(x) · (vτn(k0x)× (∇×Es(x)) + (∇× vτn(k0x))×Es(x)) dS

= −ik0

∫
Ω2\Ω1

∇ · (vτn(k0x)× (∇×Es(x)) + (∇× vτn(k0x))×Es(x)) dv

However, the integrand in the last integral is zero, since for x ∈ Ω2 \ Ω1 ⊆ Ωe, we
have

∇ · (vτn(k0x)× (∇×Es(x)) + (∇× vτn(k0x))×Es(x))

= (∇× vτn(k0x))× (∇×Es(x))− k2
0vτn(k0x) ·Es(x)

+ k2
0vτn(k0x) ·Es(x)− (∇× vτn(k0x))× (∇×Es(x)) = 0

and the lemma is proved.

From this lemma, we see that the coe�cients fτn only depend on the bounding
surface ∂Ω, the material inside Ω, and the incident �eld (due to the dependence on
Ce(γ+(Es)) and γ+(Es)).

4.1 Surface �eld estimates

Proposition 4.1. The scattered �eld on the surface ∂Ω satis�es

‖γ+(Es)‖H−1/2(div,∂Ω) ≤ C‖Ei‖H(curl,Ω)

and
‖Ce(γ+(Es))‖H−1/2(div,∂Ω) ≤ CCC‖Ei‖H(curl,Ω)

where the constants C = CγC3/CA, and where

C3 = max
(
k0‖ε− I3‖L∞(Ω;C3×3), k

−1
0 ‖µ−1 − I3‖L∞(Ω;C3×3)

)
CA is given in Proposition 3.1, and CC is the operator norm of the exterior Calderón
operator, which depend only of the shape of Ω, and the frequency k0.

Proof. We apply the result of Corollary 3.4, i.e.,

‖E′‖H(curl,Ω) ≤ C‖Ei‖H(curl,Ω)

where C = C3/CA, and where the disturbance of the interior �eld due to the scatterer
is E′ = E−Ei. The trace space norm dependence on the volume norm, H(curl,Ω),
and the boundary conditions imply

‖γ+(Es)‖H−1/2(div,∂Ω) = ‖γ−(E′)‖H−1/2(div,∂Ω) ≤ Cγ‖E′‖H(curl,Ω) ≤ CγC‖Ei‖H(curl,Ω)
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The bound on the exterior Calderón operator gives

‖Ce(γ+(Es))‖H−1/2(div,∂Ω) = ‖Ce(γ−(E′))‖H−1/2(div,∂Ω) ≤ CCCγ‖E′‖H(curl,Ω)

≤ CCCγC‖Ei‖H(curl,Ω)

and the proposition is proved.

If the incident �eld is a plane wave, the following corollary holds:

Corollary 4.1. For an incident plane wave, the scattered �eld on the surface ∂Ω
satis�es

‖γ+(Es)‖H−1/2(div,∂Ω) ≤ C
(
1 + k2

0

)1/2 |E0| |Ω|1/2

and
‖Ce(γ+(Es))‖H−1/2(div,∂Ω) ≤ CCC

(
1 + k2

0

)1/2 |E0| |Ω|1/2

where the constants C is given in Proposition 4.1. The volume of Ω is denoted by
|Ω|.

Proof. The result follows immediately from the proof of Corollary 3.3.

4.2 Scattered �eld estimates

Proposition 4.2. We have for any bounded domain Ωs ⊂ Ωe

‖Es‖L2(Ωs;C3) ≤ C4‖Ei‖H(curl,Ω)

and
sup
x∈Ωs

|Es(x)| ≤ C5‖Ei‖H(curl,Ω)

where

C4 = C
∥∥(CC‖F1(x, ·)‖H−1/2(curl,∂Ω) + ‖F2(x, ·)‖H−1/2(curl,∂Ω)

)∥∥
L2(Ωs;C3)

C5 = C sup
x∈Ωs

(
CC‖F1(x, ·)‖H−1/2(curl,∂Ω) + ‖F2(x, ·)‖H−1/2(curl,∂Ω)

)
C is given in Proposition 4.1, andF1(x,x′) =

i

k0

∇× {∇× I3g(|x− x′|)}

F2(x,x′) = ∇× I3g(|x− x′|)

Proof. The integral representation of the scattered �eld in (4.1) reads

Es(x) =

∫
∂Ω

F1(x,x′) · Ce(γ+(Es))(x
′) dS ′

+

∫
∂Ω

F2(x,x′) · γ+(Es)(x
′) dS ′, x ∈ Ωe
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where F1(x,x′) =
i

k0

∇× {∇× I3g(|x− x′|)}

F2(x,x′) = ∇× I3g(|x− x′|)

Since γ+(Es) and C
e(γ+(Es)) are bounded inH

−1/2(div, ∂Ω), we only have to verify
that Fi(x,x

′), i = 1, 2, are bounded in the dual space H−1/2(curl, ∂Ω), see e.g., [3, p.
38], for all x ∈ Ωs. In fact, the kernels are in�nitely di�erentiable whenever x /∈ ∂Ω,
which implies

|Es(x)| ≤ ‖F1(x, ·)‖H−1/2(curl,∂Ω)‖Ce(γ+(Es))‖H−1/2(div,∂Ω)

+ ‖F2(x, ·)‖H−1/2(curl,∂Ω)‖γ+(Es))‖H−1/2(div,∂Ω)

≤ C ′(x)‖γ+(Es)‖H−1/2(div,∂Ω)

where
C ′(x) = CC‖F1(x, ·)‖H−1/2(curl,∂Ω) + ‖F2(x, ·)‖H−1/2(curl,∂Ω)

Taking sup over all x ∈ Ωs yields

sup
x∈Ωs

|Es(x)| ≤ sup
x∈Ωs

C ′(x)‖γ+(Es)‖H−1/2(div,∂Ω) ≤ C ′′C‖Ei‖H(curl,Ω)

where
C ′′ = sup

x∈Ωs

C ′(x)

and where we have employed the result in Proposition 4.1. This ends the second
estimate in the proposition.

The �rst estimate also follows immediately. We have

‖Es‖2
L2(Ωs;C3) =

∫
Ωs

|Es(x)|2 dv ≤ C2‖C ′‖2
L2(Ωs;C3)‖Ei‖2

H(curl,Ω)

where we have employed the result in Proposition 4.1, and the proposition follows.

Corollary 4.2. Plane incident �elds yield

‖Es‖L2(Ωs;C3) ≤ C4

(
1 + k2

0

)1/2 |E0| |Ω|1/2 |Ωs|1/2

and
sup
x∈Ωs

|Es(x)| ≤ C5

(
1 + k2

0

)1/2 |E0| |Ω|1/2

where constants C4, C5 are given in Proposition 4.2.

Proof. The result follows immediately from Proposition 4.2 and the proof of Corol-
lary 3.3.
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4.3 Far �eld amplitude

The far �eld amplitude, F (x̂), de�ned by [4]

F (x̂) = lim
x→∞

xe−ik0xEs(x)

is generally given in terms of the traces on the enclosing surface by

F (x̂) = i
k

4π
x̂×

∫
∂Ω

{
γ+(Es)− x̂× γ+(Hs)

}
e−ikx̂·x′ dS ′

From the expansion of the scattered electric �eld outside the least circumscribing
sphere, (4.2), we also have

F (x̂) =
1

k0

∑
τn

fτne−i(l+2−τ)π/2Aτn(x̂) (4.6)

where the coe�cients f1n and f2n are determined by the orthonormal properties of
the vector spherical harmonics, i.e.,

fτn = k0ei(l+2−τ)π/2

∫
Γ

Aτn(x̂) · F (x̂) dΓ

where Γ is the unit sphere in R3.
From (4.3) and (4.4), we get by orthogonality of the vector spherical harmonics,

and the de�nition of the trace norm ‖·‖2
H−1/2(div,∂Bx)

, see (B.2) in Appendix B and

Ref. 8.

Lemma 4.2. The norm of the far �eld amplitude is

‖F ‖2
Γ =

1

k2
0

∑
n

{
|f1n|2 + |f2n|2

}
where the norm on the unit sphere Γ is de�ned in (B.1) in Appendix B. Outside
the least circumscribing sphere, x ≥ R, the norms of the tangential �elds are (Bx =
B(0, x) denotes the ball of radius x, centered at the origin, and κ = k0x)
‖γ(Es)‖2

L2(∂Bx;C3) =
1

k2
0

∑
n

{
|ξl(κ)|2 |f1n|2 + |ξ′l(κ)|2 |f2n|2

}
‖γ(Es)‖2

H−1/2(div,∂Bx) =
1

k2
0

∑
n

{√
1 + l(l + 1) |ξl(κ)|2 |f1n|2 +

|ξ′l(κ)|2 |f2n|2√
1 + l(l + 1)

}
(4.7)

and
‖γ(Hs)‖2

L2(∂Bx;C3) =
1

k2
0

∑
n

{
|ξ′l(κ)|2 |f1n|2 + |ξl(κ)|2 |f2n|2

}
‖γ(Hs)‖2

H−1/2(div,∂Bx) =
1

k2
0

∑
n

{
|ξ′l(κ)|2 |f1n|2√

1 + l(l + 1)
+
√

1 + l(l + 1) |ξl(κ)|2 |f2n|2
}
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and the full �elds have the norms
‖Es‖2

L2(∂Bx;C3) =
1

k2
0

∑
n

{
|ξl(κ)|2 |f1n|2 +

(
|ξ′l(κ)|2 + l(l + 1)

|ξl(κ)|2

κ2

)
|f2n|2

}

‖Hs‖2
L2(∂Bx;C3) =

1

k2
0

∑
n

{(
|ξ′l(κ)|2 + l(l + 1)

|ξl(κ)|2

κ2

)
|f1n|2 + |ξl(κ)|2 |f2n|2

}

The result of this lemma can also be rewritten in a more symmetric form that is
more useful in the analysis. We have

‖γ(Hs)‖2
H−1/2(div,∂Bx) =

1

k2
0

∑
n

{√
1 + l(l + 1) |tl(κ)|2 |ξl(κ)|2 |f1n|2

+
|ξ′l(κ)|2 |f2n|2

|tl(κ)|2
√

1 + l(l + 1)

} (4.8)

where

tl(κ) =
1√

1 + l(l + 1)

ξ′l(κ)

ξl(κ)

In Ref. 8 the following lemma is proved, and for convenience the proof is repeated:

Lemma 4.3. For each �xed κ, the sequence tl(κ), l = 1, 2, 3, . . . satis�es

c(κ) ≤ |tl(κ)| ≤ C(κ)

where the constants 0 < c(κ) ≤ C(κ) are independent l, but they depend on κ.
Moreover, for �xed κ0 > 0, κc(κ) and κC(κ) are uniformly bounded from above and
below for all κ > κ0.

Proof. Since neither ξl(z) nor ξ′l(z) have any real zeroes z = x, tl(κ) stay away from
zero and in�nity for all �nite l, and it su�ces to check if the limit as l →∞ is not
zero or in�nite to prove the lemma. The Riccati-Bessel function ξl(z) is an entire
function of z, and it has a �nite series representation [11]

ξl(z) = eiz−i(l+1)π/2

l∑
k=0

(l + k)!

k!(l − k)!

1

(−2iz)k

and it satis�es the recursion relation

ξ′l(z) = ξl−1(z)− l

z
ξl(z), ξl+1(z) =

2l + 1

z
ξl(z)− ξl−1(z)

which implies
ξ′l(κ)

ξl(κ)
= − l

κ
+
ξl−1(κ)

ξl(κ)



18

We now focus on how the quotient fl(κ) = ξl+1(κ)/ξl(κ) grows as l→∞. From the
recursion formula we have

fl(κ) =
2l + 1

κ
− 1

fl−1(κ)
, f0(κ) = −i +

1

κ

Repeated use of this recursion formula leads to (continued fraction)

fl(κ) =
2l + 1

κ
(1 +O(1/l))

which implies ∣∣∣∣ξ′l(κ)

ξl(κ)

∣∣∣∣ =
l

κ

(
1 +O(1/l2)

)
and

|tl(κ)| = l

κ
√

1 + l(l + 1)

(
1 +O(1/l2)

)
→ 1

κ
as l→∞

and the lemma is proved.

Lemma 4.4. The norm of the exterior Calderón operator is ‖Ce‖H−1/2(div,∂Ω) =
supl max{|tl(κ)|, 1/|tl(κ)|}. The norm depends on κ = k0x.

Proof. We have

‖Ce‖H−1/2(div,∂Bx) = sup
‖γ(Es)‖H−1/2(div,∂Bx)

6=0

‖Ce(γ(Es))‖H−1/2(div,∂Bx)

‖γ(Es)‖H−1/2(div,∂Bx)

= sup
‖γ(Es)‖H−1/2(div,∂Bx)

6=0

‖γ(Hs)‖H−1/2(div,∂Bx)

‖γ(Es)‖H−1/2(div,∂Bx)

The result of the lemma follows by comparing coe�cients in (4.7) and (4.8) applying
Lemma 4.3, which certi�es the boundedness of the expression.

In Figure 3, we depict the norm ‖Ce‖H−1/2(div,∂Bx) as a function of the radius,
or the frequency of the applied �eld. The shape of the plot is due to the coupling
between the di�erent modes in the expansions in the norms in (4.7) and (4.8). Each
local minima at the cusps correspond to a shift from one mode the the next one.
Larger radius and higher frequencies correspond to higher order modes at which the
mapping between the tangential electric and magnetic �elds is the strongest. The
minimum at k0x ≈ 0.6490 is the root of

1

κ
= |t∞| =

1

|t1|
=

√
3κ
√

1 + κ2

√
1− κ2 + κ4

⇒ 3κ6 + 2κ4 + κ2 − 1 = 0

Lemma 4.5. Outside the least circumscribing sphere, x ≥ R, we have for any
spherical surface R ≤ x1 ≤ x2

2‖F ‖2
Γ ≤ ‖γ+(Es)‖2

L2
t (∂B(0,x2);C3) + ‖γ+(Hs)‖2

L2
t (∂B(0,x2);C3)

≤ ‖γ+(Es)‖2
L2

t (∂B(0,x1);C3) + ‖γ+(Hs)‖2
L2

t (∂B(0,x1);C3)
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‖Ce‖H−1/2(div,∂Bx)

Figure 3: The norm of the exterior Calderón operator ‖Ce‖H−1/2(div,∂Bx) for a sphere
of radius x is depicted. The minimum of ‖Ce‖H−1/2(div,∂Bx)(k0x) ≈ 1.541 is obtained
at k0x ≈ 0.6490. Below the minimum point |tl| gives the maximum, and above this
value 1/|tl| gives the maximum. The dashed lines depict the function 1/|tl(k0x)| for
l = 1, 2, 3, . . . , 10.

and {
‖Es‖L2(∂B(0,x2);C3) ≤ ‖Es‖L2(∂B(0,x1);C3)

‖Hs‖L2(∂B(0,x2);C3) ≤ ‖Hs‖L2(∂B(0,x1);C3)

The limits
lim
x→∞
‖γ+(Es)‖L2

t (∂Ωx;C3) = lim
x→∞
‖γ+(Hs)‖L2

t (∂Ωx;C3)

= lim
x→∞
‖Es‖L2(∂Ωx;C3) = lim

x→∞
‖Hs‖L2(∂Ωx;C3) = ‖F ‖Γ

hold.

Proof. The lemma follows immediately from Lemma 4.2 and Lemma C.1 in Ap-
pendix C.

Similarly, for the H−1/2(div, ∂Ω) norm, we have

Lemma 4.6. Outside the least circumscribing sphere, x ≥ R, we have for any
spherical surface R ≤ x1 ≤ x2

‖F ‖2
H−1/2(div,Γ)+‖F ‖

2
H−1/2(curl,Γ)

≤ ‖γ+(Es)‖2
H−1/2(div,∂Bx2 ) + ‖γ+(Hs)‖2

H−1/2(div,∂Bx2 )

≤ ‖γ+(Es)‖2
H−1/2(div,∂Bx1 ) + ‖γ+(Hs)‖2

H−1/2(div,∂Bx1 )
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The limit

‖F ‖2
H−1/2(div,Γ)+‖F ‖

2
H−1/2(curl,Γ)

= lim
κ→∞
‖γ(Es)‖2

H−1/2(div,∂Bx) + ‖γ(Hs)‖2
H−1/2(div,∂Bx)

holds.

Proof. From Lemmas 4.2, we have

‖γ(Es)‖2
H−1/2(div,∂Bx) + ‖γ(Hs)‖2

H−1/2(div,∂Bx)

=
1

k2
0

∑
n

{
|ξ′l(κ)|2 |f2n|2√

1 + l(l + 1)
+
√

1 + l(l + 1) |ξl(κ)|2 |f1n|2
}

+
1

k2
0

∑
n

{
|ξ′l(κ)|2 |f1n|2√

1 + l(l + 1)
+
√

1 + l(l + 1) |ξl(κ)|2 |f2n|2
}

=
1

k2
0

∑
n

|ξ′l(κ)|2 + (1 + l(l + 1)) |ξl(κ)|2√
1 + l(l + 1)

(
|f1n|2 + |f2n|2

)
≥ 1

k2
0

∑
n

2 + l(l + 1)√
1 + l(l + 1)

(
|f1n|2 + |f2n|2

)
=

‖F ‖2
H−1/2(div,Γ) + ‖F ‖2

H−1/2(curl,Γ)

Since, by Lemma C.1, the functions |ξ′l(κ)|2 + |ξl(κ)|2 and |ξl(κ)|2 are decreasing
functions of κ, the lemma follows. Moreover, in the limit κ→∞, we obtain

lim
κ→∞
‖γ(Es)‖2

H−1/2(div,∂Bx) + ‖γ(Hs)‖2
H−1/2(div,∂Bx)

= ‖F ‖2
H−1/2(div,Γ) + ‖F ‖2

H−1/2(curl,Γ)

by Lemma C.1, once again.

5 Conclusions

In this paper, we present some general estimates of the total and scattered �elds in a
general anisotropic setting. The exterior Calderón operator is employed to solve the
exterior scattering problem. The estimates of the �elds are expressed in the natural
normsH(curl,Ω) andH−1/2(div, ∂Ω), for volume and surface estimates, respectively.
Estimates on an enclosing spherical surface are treated in detail. Moreover, pointwise
estimates of the scattered �eld in the supremum norm and the L2 norm on an exterior
volume are given.

Appendix A Function spaces

In this appendix, we list the various function spaces used in this paper. Let Ω be a
bounded, open, simply connected set in R3 with Lipschitz and connected boundary
∂Ω.
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The space C(Ω) is the space of continuous functions in Ω. We also use C0(Ω)
which consists of all uniformly continuous functions, which are zero at the boundary.
The space C∞(Ω) is the space of in�nitely continuously di�erentiable functions in
Ω, and C∞0 (Ω) are the functions in this space with compact support in Ω, which we
also denote D(Ω).

Several function spaces with square integrable functions are used in this paper.
The basic space is (u : Ω ⊂ R3 7→ C)

L2(Ω)
def
=

{
u(x) : u Lebesgue integrable in Ω,

∫
Ω

|u(x)|2 dv <∞

}
with scalar product and norm

(u, v)L2(Ω) =

∫
Ω

u(x)v(x) dv, ‖u‖L2(Ω) =

{∫
Ω

|u(x)|2 dv

}1/2

= (u, u)
1/2

L2(Ω)

where bar denotes the complex conjugate. Similarly for vector-valued spaces we
have the scalar product

(u,v)L2(Ω;C3) =

∫
Ω

u(x) · v(x) dv

and the norm

‖u‖L2(Ω;C3) =

{∫
Ω

|u(x)|2 dv

}1/2

= (u,u)
1/2

L2(Ω;C3)

where · and | · | denotes the Euclidean scalar product and norm in C3, respectively.
We also de�ne the function spaces{

H(div,Ω)
def
=
{
u ∈ L2(Ω;C3) : ∇ · u ∈ L2(Ω)

}
H(curl,Ω)

def
=
{
u ∈ L2(Ω;C3) : ∇× u ∈ L2(Ω;C3)

}
which are Hilbert spaces with norms

‖u‖H(div,Ω) =
(
‖u‖2

L2(Ω;C3) + ‖∇ · u‖2
L2(Ω)

)1/2

‖u‖H(curl,Ω) =
(
‖u‖2

L2(Ω;C3) + ‖∇ × u‖2
L2(Ω;C3)

)1/2

The curl and the divergence are de�ned in the weak sense as{
(∇× u,φ)L2(Ω;C3) = (u,∇× φ)L2(Ω;C3), ∀φ ∈ D(Ω;C3)

(∇ · u, φ)L2(Ω) = −(u,∇φ)L2(Ω;C3), ∀φ ∈ D(Ω)

In the exterior region, we de�ne spaces of locally integrable functions as{
Hloc(div,Ωe)

def
=
{
u ∈ D′(Ωe;C3) : ξu ∈ H(div,Ωe),∀ ξ ∈ D(R3)

}
Hloc(curl,Ωe)

def
=
{
u ∈ D′(Ωe;C3) : ξ∇× u ∈ H(curl,Ωe),∀ ξ ∈ D(R3)

}
where Ωe = R3 \ Ω and D′(Ωe) is the space of distributions.
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A.1 Trace and lifting operators

On the boundary, we have the L2 spaces

L2(∂Ω) =

{
u :

∫
∂Ω

|u(x)|2 dS <∞

}

where dS denotes the surface measure of ∂Ω. For the vector-valued functions, we
have 

L2(∂Ω;C3) =

{
u :

∫
∂Ω

|u(x)|2 dS <∞

}

L2
t (∂Ω;C3) =

{
u : u · ν̂ = 0 and

∫
∂Ω

|u(x)|2 dS <∞

}
The scalar products and norms are

(u, v)L2(∂Ω) =

∫
∂Ω

u(x)v(x) dS, ‖u‖L2(∂Ω) =

{∫
∂Ω

|u(x)|2 dS

}1/2

and

(u,v)L2(∂Ω;C3) =

∫
∂Ω

u(x) · v(x) dS, ‖u‖L2(∂Ω;C3) =

{∫
∂Ω

|u(x)|2 dS

}1/2

The appropriate trace spaces which we use in this paper are H−1/2(div, ∂Ω) and
H−1/2(curl, ∂Ω) de�ned byH−1/2(div, ∂Ω)

def
=
{
u ∈ H−

1
2 (∂Ω;C3), ν̂ · u = 0, div∂Ωu ∈ H−

1
2 (∂Ω)

}
H−1/2(curl, ∂Ω)

def
=
{
u ∈ H−

1
2 (∂Ω;C3), ν̂ · u = 0, curl∂Ωu ∈ H−

1
2 (∂Ω)

}
where the surface divergence, div∂Ω, and the surface rotation, curl∂Ω, are de�ned by
duality and restriction{

(div∂Ωu, φ)L2(∂Ω) = −(u, grad∂Ωφ)L2(∂Ω;C3), ∀φ ∈ D(∂Ω)

curl∂Ωu = ν̂ · (∇× u)|∂Ω

and the surface gradient, grad∂Ω, is de�ned by the orthogonal projection of ∇ on
the surface ∂Ω, i.e., grad∂Ωφ = π(∇φ), where π is de�ned in Theorem A.1 below.
With the assumptions made on the boundary ∂Ω, H−1/2(curl, ∂Ω) is the dual of
H−1/2(div, ∂Ω), i.e.,

(
H−1/2(div, ∂Ω)

)′
= H−1/2(curl, ∂Ω).

The following theorem is proved in [10]:
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Theorem A.1. 1. The trace mapping π : H(curl,Ω) 7→ H−1/2(curl, ∂Ω), that
assigns to any u ∈ H(curl,Ω) its tangential component ν̂ × (u × ν̂), is con-
tinuous and surjective from H(curl,Ω) onto H−1/2(curl, ∂Ω). That is

‖π(u)‖H−1/2(curl,∂Ω) ≤ Cπ‖u‖H(curl,Ω), ∀u ∈ H(curl,Ω)

2. The trace mapping γ : H(curl,Ω) 7→ H−1/2(div, ∂Ω), that takes u ∈ H(curl,Ω)
to its (rotated) tangential component ν̂ ×u, is continuous and surjective from
H(curl,Ω) onto H−1/2(div, ∂Ω). That is

‖γ(u)‖H−1/2(div,∂Ω) ≤ Cγ‖u‖H(curl,Ω), ∀u ∈ H(curl,Ω)

3. In both cases, a continuous lifting with zero divergence for these trace op-
erators in H(curl,Ω) exists. More precisely, there exists an operator R :
H−1/2(div, ∂Ω) 7→ H(curl,Ω) such that for every m ∈ H−1/2(div, ∂Ω) there
exists a u ∈ H(curl,Ω) satisfying γ(u) = m, and

‖R(m)‖H(curl,Ω) ≤ C‖m‖H−1/2(div,∂Ω), ∀m ∈ H−1/2(div, ∂Ω)

Moreover, for any u,v ∈ H(curl,Ω), the following Stokes' formula holds:

(∇× u,v)L2(Ω;C3) − (u,∇× v)L2(Ω;C3) = (γ(u),π(v))L2(∂Ω;C3)

A.2 Lax-Milgram's theorem

We conclude this appendix by stating the Lax-Milgram theorem [5].

Theorem A.2 (Lax-Milgram). Assume that H is a Hilbert space, with norm ‖·‖H .
Moreover, assume

B : H ×H 7→ C

is a sesquilinear functional on H, for which there exists constants a, b > 0, such that

|B[u, v]| ≤ a‖u‖H‖v‖H , ∀ u, v ∈ H

and
b‖u‖2

H ≤ |B[u, u]| , ∀ u ∈ H

Finally, let f : H 7→ C be a bounded linear functional on H.
Then there exists a unique u ∈ H such that

B[u, v] = f(v), ∀ v ∈ H.

satisfying

‖u‖H ≤
1

b
‖f‖H′

where H ′ denotes the dual space of H with norm ‖·‖H′.
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Appendix B Vector spherical harmonics and spher-

ical vector waves

The vector spherical harmonics are de�ned as [2]
A1n(x̂) =

1√
l(l + 1)

∇× (xYn(x̂)) =
1√

l(l + 1)
∇Yn(x̂)× x

A2n(x̂) =
1√

l(l + 1)
x∇Yn(x̂)

A3n(x̂) = x̂Yn(x̂)

where the spherical harmonics are denoted by Yn(x̂). The index n is a multi-index
for the integer indices l = 1, 2, 3, . . ., m = 0, 1, . . . , l, and σ = e,o (even and odd
in the azimuthal angle). From these de�nitions we see that the �rst two vector
spherical harmonics, A1n(x̂) and A2n(x̂), are tangential to the unit sphere Γ in R3

and they are related as {
x̂×A1n(x̂) = A2n(x̂)

x̂×A2n(x̂) = −A1n(x̂)

The vector spherical harmonics form an orthonormal set over the unit sphere Γ
in R3, i.e., ∫

Γ

Aτn(x̂) ·Aτ ′n′(x̂) dΓ = δnn′δττ ′

where dΓ is the surface measure on the unit sphere.
The L2-norm and the scalar product on the unit sphere Γ in R3, ‖·‖Γ and < ·, · >Γ

are

‖u‖2
Γ =

∫
Γ

|u(x̂)|2 dΓ < u,v >Γ=

∫
Γ

u(x̂) · v(x̂) dΓ (B.1)

Any u(x̂) ∈ L2(Γ) has the expansion

u(x̂) =
∑
n

τ=1,2,3

bτnAτn(x̂)

with norm
‖u‖2

Γ =
∑
n

τ=1,2,3

|bτn|2

For a tangential �eld, u(x̂) · x̂ = 0, the summation is only over τ = 1, 2.
Moreover, any u(x̂) ∈ H−1/2(div, ∂Bx) has the expansion [8, 9]

u(x̂) =
∑
n

τ=1,2

bτnAτn(x̂)
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with norm

‖u‖2
H−1/2(div,∂Bx) = x2

∑
n

τ=1,2

(1 + l(l + 1))τ−3/2 |bτn|2

= x2
∑
n

{
1√

1 + l(l + 1)
|b1n|2 +

√
1 + l(l + 1) |b2n|2

} (B.2)

The radiating solutions to the Maxwell equations in vacuum are de�ned as (out-
going spherical vector waves)

u1n(k0x) =
ξl(k0x)

k0x
A1n(x̂)

u2n(k0x) =
1

k0

∇×
(
ξl(k0x)

k0x
A1n(x̂)

)
Here, we use the Riccati-Bessel functions ξl(x) = xh

(1)
l (x) where h

(1)
l (k0x) is the

spherical Hankel function of the �rst kind [11]. These vector waves satisfy

∇× (∇× uτn(k0x))− k2
0uτn(k0x) = 0, τ = 1, 2

and they also satisfy the radiation condition in (2.4). Another representation of the
de�nition of the vector waves is

u1n(k0x) =
ξl(k0x)

k0x
A1n(x̂)

u2n(k0x) =
ξ′l(k0x)

k0x
A2n(x̂) +

√
l(l + 1)

ξl(k0x)

(k0x)2
A3n(x̂)

A simple consequence of these de�nitions is
u1n(k0x) =

1

k0

∇× u2n(k0x)

u2n(k0x) =
1

k0

∇× u1n(k0x).

In a similar way, the regular spherical vector waves vτn(k0x) are de�ned [2].
v1n(k0x) = jl(k0x)A1n(x̂)

v2n(k0x) =
1

k0

∇× (jl(k0x)A1n(x̂))

where jl(k0x) is the spherical Bessel function of the �rst kind [11].

Appendix C Modulus of the spherical Hankel func-

tions

Some useful monotonicity properties of the modulus of the spherical Hankel func-
tions are derived in this appendix.
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Lemma C.1. De�ne ξn(x) = xh
(1,2)
n (x) for x > 0. Then for each �xed positive

integer n, the function5

|ξn(x)|2

and the combinations 
|ξ′n(x)|2 + |ξn(x)|2

|ξ′n(x)|2 + n(n+ 1)
|ξn(x)|2

x2

are decreasing functions on the positive real axis. The limits as x→∞ are

lim
x→∞
|ξn(x)|2 = lim

x→∞
|ξ′n(x)|2 = lim

x→∞

{
|ξ′n(x)|2 + n(n+ 1)

|ξn(x)|2

x2

}
= 1

Proof. This non-trivial result is most conveniently proved with Nicholson's inte-
gral [14, (1) on p. 444]

∣∣h(1,2)
n (x)

∣∣2 = j2
n(x) + n2

n(x) =
4

πx

∫ ∞
0

K0(2x sinh t) cosh[(2n+ 1)t] dt, x > 0

where K0(x) is the modi�ed Bessel function [11]. Since K0(x) is real-valued and

decreasing on the positive real axis,6 |h(1,2)
n (x)|2 is a decreasing function on the

positive real axis,7 i.e.,
d

dx

∣∣h(1,2)
n (x)

∣∣2 < 0, x > 0

To prove that |xh(1,2)
n (x)|2 are decreasing functions, again use Nicholson's integral

and integrate by parts. We get

d

dx

(
x2j2

n(x) + x2n2
n(x)

)
=

d

dx

4x

π

∫ ∞
0

K0(2x sinh t) cosh[(2n+ 1)t] dt

=
4

π

∫ ∞
0

{K0(2x sinh t) + 2x sinh tK ′0(2x sinh t)} cosh[(2n+ 1)t] dt

=
4

π

{
tanh t cosh[(2n+ 1)t]K0(2x sinh t)|t=∞t=0

+
4

π

∫ ∞
0

K0(2x sinh t)

{
cosh[(2n+ 1)t]− d

dt
(tanh t cosh[(2n+ 1)t])

}
dt

}
5|xh(j)

n (x)|, j = 1, 2, are identical functions on the real axis.
6This is obvious from the integral representation

K0(x) =

∫ ∞
0

e−x cosh t dt

7In fact, |h(1,2)
n (x)|2 and x|h(1,2)

n (x)|2 are decreasing for all real n.
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The �rst term on the right-hand side vanishes, and we obtain

d

dx

(
x2j2

n(x) + x2n2
n(x)

)
=

4

π

∫ ∞
0

K0(2x sinh t) cosh[(2n+ 1)t] tanh t {tanh t− (2n+ 1) tanh[(2n+ 1)t]} dt

The integrand is negative, since

(2n+ 1) tanh[(2n+ 1)t]− tanh t

is positive for t ≥ 0 and n a positive integer, and we conclude that

d

dx

∣∣xh(1,2)
n (x)

∣∣2 =
d

dx

(
x2j2

n(x) + x2n2
n(x)

)
< 0, x > 0

and the �rst part of the lemma is proved.
Using the di�erential equations, we obtain

d

dx

∣∣(xh(1)
n (x))′

∣∣2 = (xh(1)
n (x))′′(xh(2)

n (x))′ + (xh(1)
n (x))′(xh(2)

n (x))′′

=

(
n(n+ 1)

x2
− 1

){
xh(1)

n (x)(xh(2)
n (x))′ + (xh(1)

n (x))′xh(2)
n (x)

}
=

(
n(n+ 1)

x2
− 1

)
d

dx

∣∣xh(1)
n (x)

∣∣2
From this identity we see that |(xh(1)

n (x))′|2 is not monotonic,8 but, on the other
hand for n = 1, 2, . . .

d

dx

{∣∣(xh(1)
n (x))′

∣∣2 +
∣∣xh(1)

n (x)
∣∣2} =

n(n+ 1)

x2

d

dx

∣∣xh(1)
n (x)

∣∣2 < 0, x > 0

and

d

dx

{∣∣(xh(1)
n (x))′

∣∣2 + n(n+ 1)
∣∣h(1)
n (x)

∣∣2}
=

(
n(n+ 1)

x2
− 1

)
d

dx

∣∣xh(1)
n (x)

∣∣2 + n(n+ 1)
d

dx

∣∣xh(1)
n (x)

∣∣2 − n(n+ 1)2x
∣∣h(1)
n (x)

∣∣2
=

(
n(n+ 1)

x2
− 1 + n(n+ 1)

)
d

dx

∣∣xh(1)
n (x)

∣∣2 − n(n+ 1)2x
∣∣h(1)
n (x)

∣∣2 < 0, x > 0

and the remaining two parts of the monotonicity are proved. The limit values
are easily proved by the properties of the spherical Hankel functions for large real
arguments.

8In fact, it has a minimum at x =
√
n(n+ 1).
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