

LUND UNIVERSITY

Evaluation of some integrals relevant to multiple scattering by randomly distributed obstacles

Kristensson, Gerhard

2014

Link to publication

Citation for published version (APA):

Kristensson, G. (2014). *Evaluation of some integrals relevant to multiple scattering by randomly distributed obstacles.* (Technical Report LUTEDX/(TEAT-7228)/1-16/(2014); Vol. TEAT-7228). The Department of Electrical and Information Technology.

Total number of authors: 1

General rights

Unless other specific re-use rights are stated the following general rights apply: Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study

or research.

- You may not further distribute the material or use it for any profit-making activity or commercial gain
 You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/

Take down policy

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

LUND UNIVERSITY

PO Box 117 221 00 Lund +46 46-222 00 00 CODEN:LUTEDX/(TEAT-7228)/1-16/(2014) Revision No. 2: November 2014

Evaluation of some integrals relevant to multiple scattering by randomly distributed obstacles

Gerhard Kristensson

Electromagnetic Theory Department of Electrical and Information Technology Lund University Sweden

Gerhard Kristensson Gerhard.Kristensson@eit.lth.se

Department of Electrical and Information Technology Electromagnetic Theory Lund University P.O. Box 118 SE-221 00 Lund Sweden

Abstract

This paper analyzes and solves an integral and its indefinite Fourier transform of importance in multiple scattering problems of randomly distributed scatterers. The integrand contains a radiating spherical wave, and the twodimensional domain of integration excludes a circular region of varying size. A solution of the integral in terms of radiating spherical waves is demonstrated. The method employs the Erdélyi operators, which leads to a recursion relation. This recursion relation is solved in terms of a finite sum of radiating spherical waves. The solution of the indefinite Fourier transform of the integral contains the indefinite Fourier transforms of the Legendre polynomials, which are solved by a closed formula.

1 Introduction

In recent years, the electromagnetic scattering problem by randomly distributed objects has been successfully formulated and solved. Some important contributions in the field are found in *e.g.*, [3-8, 10, 11, 13, 16-19, 21-25]. These references refer to various aspects of the topic, and more references can be found in these papers. The topic is also treated in several textbooks, see *e.g.*, [12, 14, 20], which can be consulted for a comprehensive treatment of the various multiple scattering theories.

Of critical importance for the solution of a specific scattering problem with holecorrections (HC) is an integral of the form [9, 18, 20]

$$I_l(z) = \frac{k^2}{2\pi} \iint_{\mathbb{R}^2} H(r-a)h_l^{(1)}(kr)P_l(\cos\theta) \, \mathrm{d}x \, \mathrm{d}y, \quad z \in \mathbb{R}$$
(1.1)

where H(x) denotes the Heaviside function, $h_l^{(1)}(kr)$ the spherical Hankel function, and $P_l(x)$ the Legendre polynomial of order l, respectively. We have also adopted the spherical coordinates, $r = \sqrt{x^2 + y^2 + z^2}$ and θ ($\cos \theta = z/r$), and the wave number k. The domain of integration is the plane z = constant, excluding the sphere of radius a > 0 at the center, see Figure 1. For a given value of $|z| \le a$, the radius of the excluded circle is $\sqrt{a^2 - z^2}$. For $|z| \ge a$ the integration is the entire x-y plane. This integral, for a given a > 0, is a non-trivial function of $z \in \mathbb{R}$. To ensure convergence of the integral at infinity, we assume the wave number k has an arbitrarily small imaginary part. The explicit solution of this integral, as a function of z and the index $l = 0, 1, 2, \ldots$, is the aim of this paper, and the goal is to express the solutions in a form that is attractive from a numerical computation point of view.

The solution of the integral $I_l(z)$ is developed in Sections 2 and 3. The indefinite Fourier transform of $I_l(z)$ is also essential for a successful solution of the multiple scattering problem with hole-corrections, and this analysis is found in Sections 4 and 5. The paper is concluded with a short summary in Section 6.

Figure 1: The geometry of the integration domain — the plane z = constant (dotted line), and the exclusion volume — the sphere of radius a located at the origin (in gray).

2 The integral $I_l(z)$

Rewrite the integral $I_l(z)$ in (1.1) in cylindrical coordinates and perform the integration in the azimuthal angle. We get from (1.1)

$$I_{l}(z) = k^{2} \int_{h(z)}^{\infty} h_{l}^{(1)} \left(k \sqrt{\rho^{2} + z^{2}} \right) P_{l} \left(z / \sqrt{\rho^{2} + z^{2}} \right) \rho \, \mathrm{d}\rho, \quad z \in \mathbb{R}$$
(2.1)

where

$$h(z) = \begin{cases} \sqrt{a^2 - z^2}, & -a \le z \le a \\ 0, & |z| > a \end{cases}$$

From the parity of the Legendre polynomials, $P_l(-x) = (-1)^l P_l(x)$, we see that also $I_l(-z) = (-1)^l I_l(z)$. Thus, it suffices to evaluate the integral for z > 0. In particular, $I_l(0) = 0$, if l is an odd integer. From (2.1) we also easily compute the integral for l = 0, viz.,

$$I_{0}(z) = \begin{cases} e^{-ikz}, & z \leq -a \\ ikah_{0}^{(1)}(ka) = e^{ika}, & -a \leq z \leq a \\ e^{ikz}, & z \geq a \end{cases}$$

2.1 Solution outside the interval [-a, a]

In the interval z > a, the integral is evaluated with the use of the transformation of the outgoing scalar spherical wave in terms of planar waves [2, p. 180], *i.e.*, for a general value of $z \neq 0$

$$h_l^{(1)}\left(k\sqrt{\rho^2 + z^2}\right) P_l\left(\pm |z|/\sqrt{\rho^2 + z^2}\right)$$
$$= \frac{\mathrm{i}^{-l}}{2\pi} \iint_{\mathbb{R}^2} P_l\left(\pm k_z/k\right) \mathrm{e}^{\mathrm{i}\mathbf{k}_t \cdot \mathbf{\rho} + \mathrm{i}k_z|z|} \frac{k}{k_z} \frac{\mathrm{d}k_x \,\mathrm{d}k_y}{k^2}, \quad z \ge 0$$

where $\boldsymbol{\rho} = x\hat{\boldsymbol{x}} + y\hat{\boldsymbol{y}}, \, \boldsymbol{k}_{t} = k_{x}\hat{\boldsymbol{x}} + k_{y}\hat{\boldsymbol{y}}, \, k_{t} = |\boldsymbol{k}_{t}|, \text{ and } k_{z} \text{ is defined by}$

$$k_z = \left(k^2 - k_t^2\right)^{1/2} = \begin{cases} \sqrt{k^2 - k_t^2} \text{ for } k_t < k \\ i\sqrt{k_t^2 - k^2} \text{ for } k_t > k \end{cases}$$

For z > a, we get from (1.1)

$$I_{l}(z) = \frac{k^{2}}{2\pi} \iint_{\mathbb{R}^{2}} \frac{\mathrm{i}^{-l}}{2\pi} \left(\iint_{\mathbb{R}^{2}} P_{l}\left(k_{z}/k\right) \mathrm{e}^{\mathrm{i}\boldsymbol{k}_{\mathrm{t}}\cdot\boldsymbol{\rho}+\mathrm{i}\boldsymbol{k}_{z}|\boldsymbol{z}|} \frac{k}{k_{z}} \frac{\mathrm{d}\boldsymbol{k}_{x} \,\mathrm{d}\boldsymbol{k}_{y}}{k^{2}} \right) \,\mathrm{d}\boldsymbol{x} \,\mathrm{d}\boldsymbol{y}$$
$$= \mathrm{i}^{-l} \iint_{\mathbb{R}^{2}} P_{l}\left(k_{z}/k\right) \mathrm{e}^{\mathrm{i}\boldsymbol{k}_{z}|\boldsymbol{z}|} \delta(\boldsymbol{k}_{\mathrm{t}}) \frac{k}{k_{z}} \,\mathrm{d}\boldsymbol{k}_{x} \,\mathrm{d}\boldsymbol{k}_{y} = \mathrm{i}^{-l} \mathrm{e}^{\mathrm{i}\boldsymbol{k}\boldsymbol{z}}$$

by orthogonality or completeness of the planar waves.¹ This implies that the integral for z > a is

$$I_l(z) = i^{-l} e^{ikz}, \quad z > a$$

and consequently, by parity, or analogous calculations

$$I_l(z) = i^l e^{-ikz}, \quad z < -a$$

We observe that the integral outside the interval [-a, a] is not singular as $a \to 0$. In fact, the module is constant 1.

3 Solution of the integral $I_l(\eta), -a \le z \le a$

We have already obtained a solution of the integral in the interval |z| > a, and we now concentrate on finding a solution of the integral in the interval $-a \le z \le a$.

The Erdélyi operators \mathcal{Y}_n^m in Ref. 12 are instrumental in finding a closed formula for the integral $I_l(z)$. From [12, Th. 3.13], we have the following very useful result:

$$D\left(h_{l}^{(1)}(kr)P_{l}(\cos\theta)\right) = \frac{l+1}{2l+1}h_{l+1}^{(1)}(kr)P_{l+1}(\cos\theta) - \frac{l}{2l+1}h_{l-1}^{(1)}(kr)P_{l-1}(\cos\theta)$$

where $D = -k^{-1}(\partial/\partial z)$. The *D* operator and the Erdélyi operators are related by $\mathcal{Y}_1^0 = \sqrt{\frac{3}{4\pi}} D_1^0 = \sqrt{\frac{3}{4\pi}} D.$

¹To ensure convergence of the integral at infinity, assume the wave number k has an arbitrary small, positive imaginary part.

Apply the differential operator D to the integral $I_l(z)$ in (2.1), and use the relation above. We obtain, since h'(z)h(z) = -z, the following recursion relation:²

$$DI_{l}(z) = -kzh_{l}^{(1)}(ka)P_{l}(z/a) + \frac{l+1}{2l+1}I_{l+1}(z) - \frac{l}{2l+1}I_{l-1}(z), \quad -a \le z \le a$$

with initial condition $I_0(z) = ikah_0^{(1)}(ka)$.

In the dimensionless variables $\eta = kz$ and $\xi = ka > 0$, this leads to the recursion relation, l = 0, 1, 2, ... (note the mild change in notation)

$$I_{l+1}(\eta) = \frac{2l+1}{l+1} \xi h_l^{(1)}(\xi) \frac{\eta}{\xi} P_l(\eta/\xi) - \frac{2l+1}{l+1} \frac{\mathrm{d}}{\mathrm{d}\eta} I_l(\eta) + \frac{l}{l+1} I_{l-1}(\eta), \quad -\xi \le \eta \le \xi$$

The recursion relation is conveniently put in a more generic form by introducing the variable $x = \eta/\xi \in [-1, 1]$. The dependent variable is now x, and ξ is a parameter. Retaining the same notation for the integral, but with a change of the independent variable, we get

$$I_{l+1}(x) = \frac{2l+1}{l+1} \xi h_l^{(1)}(\xi) x P_l(x) - \frac{2l+1}{\xi(l+1)} I_l'(x) + \frac{l}{l+1} I_{l-1}(x), \quad -1 \le x \le 1$$

The following proposition states the surprisingly simple and elegant solution of this recursion relation.

Proposition 3.1. The recursion relation

$$I_{l+1}(x) = \frac{2l+1}{l+1} \xi h_l^{(1)}(\xi) x P_l(x) - \frac{2l+1}{\xi(l+1)} I_l'(x) + \frac{l}{l+1} I_{l-1}(x), \quad l = 0, 1, 2, \dots$$
(3.1)

with initial condition

$$I_0(z) = \mathrm{i}\xi h_0^{(1)}(\xi)$$

has the solution

$$I_{l}(x) = -\xi h_{l+1}^{(1)}(\xi) P_{l}(x) + \sum_{k=0}^{[l/2]} (-1)^{k} \left(\xi h_{l+1-2k}^{(1)}(\xi) + \xi h_{l-1-2k}^{(1)}(\xi) \right) P_{l-2k}(x), \quad l = 0, 1, 2, \dots$$
(3.2)

²Outside the interval $z \in [-a, a]$ the recursion relation reads

$$I_{l+1}(z) = \frac{2l+1}{l+1}DI_l(z) + \frac{l}{l+1}I_{l-1}(z), \quad I_0(z) = e^{ikz} \quad z \ge a$$

which is easily solved by induction over the integer l. The result is

$$I_l(z) = \mathrm{i}^{-l} \mathrm{e}^{\mathrm{i}kz}, \quad z \ge a$$

in agreement with the result above.

Proof. We prove the proposition by induction over the integer l. The recursion relation (3.2) is true for l = 0, due to the properties of the spherical Hankel functions [15, 10.16.1]. We have from (3.2)

$$I_0(x) = \xi h_{-1}^{(1)}(\xi) = \xi \left(\frac{\pi}{2\xi}\right)^{1/2} H_{-1/2}^{(1)}(\xi) = i\xi \left(\frac{\pi}{2\xi}\right)^{1/2} H_{1/2}^{(1)}(\xi) = i\xi h_0^{(1)}(\xi)$$

Now assume the solution (3.2) holds for all integers less than or equal to l, and we want to prove that it holds for l + 1. We have from (3.1) and the induction assumption

$$I_{l+1}(x) = \frac{2l+1}{l+1} \xi h_l^{(1)}(\xi) x P_l(x) - \frac{2l+1}{\xi(l+1)} I_l'(x) + \frac{l}{l+1} I_{l-1}(x)$$

$$= \xi h_l^{(1)}(\xi) P_{l+1}(x) + \frac{2l+1}{\xi(l+1)} \xi h_{l+1}^{(1)}(\xi) P_l'(x)$$

$$- \frac{2l+1}{\xi(l+1)} \sum_{k=0}^{[l/2]} (-1)^k \left(\xi h_{l+1-2k}^{(1)}(\xi) + \xi h_{l-1-2k}^{(1)}(\xi) \right) P_{l-2k}'(x)$$

$$+ \frac{l}{l+1} \sum_{k=0}^{[(l-1)/2]} (-1)^k \left(\xi h_{l-2k}^{(1)}(\xi) + \xi h_{l-2-2k}^{(1)}(\xi) \right) P_{l-1-2k}(x)$$

where we used the following recursion relation for the Legendre polynomials:

$$(2l+1)xP_l(x) = (l+1)P_{l+1}(x) + lP_{l-1}(x)$$

We conclude that $I_{l+1}(x)$ is a polynomial in x of the order l+1, and therefore can be expanded in a series of Legendre polynomials. The form is

$$I_{l+1}(x) = \sum_{n=0}^{[(l+1)/2]} a_n P_{l+1-2n}(x)$$

where a_n depends on l and ξ . The coefficients a_n are determined by orthogonality of the Legendre polynomials.

$$a_n = \frac{2l+3-4n}{2} \int_{-1}^{1} I_{l+1}(x) P_{l+1-2n}(x) \, \mathrm{d}x$$

The first coefficient is special.

$$a_0 = \xi h_l^{(1)}(\xi) = -\xi h_{l+2}^{(1)}(\xi) + \left(\xi h_{l+2}^{(1)}(\xi) + \xi h_l^{(1)}(\xi)\right)$$

Proceed in the same way with the remaining coefficients, $n = 1, 2, \ldots, [(l+1)/2]$.

$$a_{n} = \frac{2l+1}{l+1} \frac{2l+3-4n}{2} h_{l+1}^{(1)}(\xi) I_{l,l+1-2n}$$

$$- \frac{2l+1}{l+1} \frac{2l+3-4n}{2} \sum_{k=0}^{[l/2]} (-1)^{k} \left(h_{l+1-2k}^{(1)}(\xi) + h_{l-1-2k}^{(1)}(\xi) \right) I_{l-2k,l+1-2n}$$

$$+ \frac{l}{l+1} \sum_{k=0}^{[(l-1)/2]} (-1)^{k} \left(\xi h_{l-2k}^{(1)}(\xi) + \xi h_{l-2-2k}^{(1)}(\xi) \right) \delta_{k,n-1}$$

where we used the notion

$$I_{k,n} = \int_{-1}^{1} P'_k(x) P_n(x) \, \mathrm{d}x = \begin{cases} 0, & 0 \le k \le n \\ 1 - (-1)^{k+n}, & 0 \le n < k \end{cases}$$

Use this result, and the following recursion relation for the spherical Hankel functions:

$$(2l+1)h_l^{(1)}(\xi) = \xi h_{l+1}^{(1)}(\xi) + \xi h_{l-1}^{(1)}(\xi)$$
(3.3)

We get

$$a_{n} = \frac{2l+1}{l+1}(2l+3-4n)\left(h_{l+1}^{(1)}(\xi) - \sum_{k=0}^{n-1}(-1)^{k}\left(h_{l+1-2k}^{(1)}(\xi) + h_{l-1-2k}^{(1)}(\xi)\right)\right)$$
$$= h_{l+1}^{(1)}(\xi) + (-1)^{n-1}h_{l+1-2n}^{(1)}(\xi)$$
$$+ \frac{l}{l+1}(-1)^{n-1}\left(\xi h_{l+2-2n}^{(1)}(\xi) + \xi h_{l-2n}^{(1)}(\xi)\right)$$
$$= \frac{2l+1}{l+1}(-1)^{n}(2l+3-4n)h_{l+1-2n}^{(1)}(\xi) - \frac{l}{l+1}(-1)^{n}\left(\xi h_{l+2-2n}^{(1)}(\xi) + \xi h_{l-2n}^{(1)}(\xi)\right)$$
$$= (-1)^{n}\left(\xi h_{l+2-2n}^{(1)}(\xi) + \xi h_{l-2n}^{(1)}(\xi)\right)$$

Collecting the results gives

$$I_{l+1}(x) = \sum_{n=0}^{[(l+1)/2]} a_n P_{l+1-2n}(x)$$

= $-\xi h_{l+2}^{(1)}(\xi) P_{l+1}(x) + \sum_{n=0}^{[(l+1)/2]} (-1)^n \left(\xi h_{l+2-2n}^{(1)}(\xi) + \xi h_{l-2n}^{(1)}(\xi)\right) P_{l+1-2n}(x)$

which is the statement (3.2) for l + 1, and the proposition is proved.

Alternative expressions of the integral I(z) in the interval $z \in [-a, a]$ can be found. The following corollary shows some.

Corollary 3.1. The integral I(z) in Proposition 3.1 has the following alternative expressions:

$$I_{l}(x) = -\xi h_{l+1}^{(1)}(\xi) P_{l}(x) + \sum_{k=0}^{[l/2]} (-1)^{k} (2l - 4k + 1) h_{l-2k}^{(1)}(\xi) P_{l-2k}(x), \quad l = 0, 1, 2, \dots$$
(3.4)

and

$$I_{l}(x) = i^{1-l} \xi h_{0}^{(1)}(\xi) P_{l-2[l/2]}(x) + \sum_{k=0}^{[l/2]-1} (-1)^{k} \xi h_{l-2k-1}^{(1)}(\xi) \left(P_{l-2k}(x) - P_{l-2k-2}(x) \right), \quad l = 0, 1, 2, \dots \quad (3.5)$$

and

$$I_{l}(x) = i^{1-l} \xi h_{0}^{(1)}(\xi) P_{l-2[l/2]}(x) - \sum_{k=0}^{[l/2]-1} (-1)^{k} \xi h_{l-2k-1}^{(1)}(\xi) \frac{2l-4k-1}{(l-2k-1)(l-2k)} P_{l-2k-1}'(x), \quad l = 0, 1, 2, \dots$$
(3.6)

where the two last sums are zero for l = 0, 1.

Proof. The solution in (3.4) is equivalent to (3.2), which is easily seen since the spherical Hankel functions $h_l^{(1)}(\xi)$ satisfy the recursion relation (3.3). The representation in (3.5) is simply a rearrangement of the sum in (3.2). We obtain from (3.2) (l = 0, 1, 2, ...)

$$I_{l}(x) = \sum_{k=0}^{[l/2]-1} (-1)^{k} \xi h_{l-1-2k}^{(1)}(\xi) \left(P_{l-2k}(x) - P_{l-2-2k}(x) \right) + (-1)^{[l/2]} \xi h_{l-1-2[l/2]}^{(1)}(\xi) P_{l-2[l/2]}(x) = \sum_{k=0}^{[l/2]-1} (-1)^{k} \xi h_{l-1-2k}^{(1)}(\xi) \left(P_{l-2k}(x) - P_{l-2-2k}(x) \right) + i^{1-l} \xi h_{0}^{(1)}(\xi) P_{l-2[l/2]}(x)$$

where we used [15, 10.16.1]

$$h_{-1}^{(1)}(\xi) = \mathrm{i}h_0^{(1)}(\xi)$$

Finally, the relation (3.6) from (3.5) with the use of the recursion relation

$$l(l+1) \left(P_{l+1}(x) - P_{l-1}(x) \right) = -(2l+1)(1-x^2)P_l'(x)$$

In the original variables z and a, we have

$$I_{l}(z) = i^{1-l} kah_{0}^{(1)}(ka) P_{l-2[l/2]}(z/a) + \sum_{n=0}^{[l/2]-1} (-1)^{n} kah_{l-2n-1}^{(1)}(ka) \left(P_{l-2n}(z/a) - P_{l-2n-2}(z/a) \right), \quad l = 0, 1, 2, \dots$$

or

$$I_{l}(z) = -kah_{l+1}^{(1)}(ka)P_{l}(z/a) + \sum_{k=0}^{[l/2]} (-1)^{k}(2l - 4k + 1)h_{l-2k}^{(1)}(ka)P_{l-2k}(z/a), \quad l = 0, 1, 2, \dots$$

and we see that the integral $I_l(z)$ can be written as a finite sum of spherical waves (except the first term). The most singular term in powers of ka is of the order $(ka)^{1-l}$ (order O(1) if l = 0), which is most easily seen from the representation in (3.5).

4 Fourier transform of $I_l(z)$

The indefinite Fourier transform of the function $I_l(z)$ has also importance in the analysis of [9]. More specifically, our goal in this section is to compute

$$\widehat{I}_{l}^{\pm}(z) = k \int_{z_{0}}^{z} I_{l}(t) \mathrm{e}^{\pm \mathrm{i}kt} \, \mathrm{d}t, \quad z \ge z_{0}, \quad l = 0, 1, 2, \dots$$
(4.1)

where z_0 is a fixed number such that $z_0 < -a$.

The function $I_l(t)$ has explicit forms in the three intervals $[z_0, -a]$, (-a, a), and $[a, \infty)$. The explicit forms are:

$$I_l(t) = \mathbf{i}^l \mathbf{e}^{-\mathbf{i}kt}, \quad t \le -a$$

and in the interval $t \in (-a, a)$ as a finite sum of spherical waves

$$I_{l}(t) = i^{1-l} ka h_{0}^{(1)}(ka) P_{l-2[l/2]}(t/a) + \sum_{n=0}^{[l/2]-1} (-1)^{n} ka h_{l-2n-1}^{(1)}(ka) \left(P_{l-2n}(t/a) - P_{l-2n-2}(t/a) \right)$$

In the interval $t \ge a$

$$I_l(t) = i^{-l} e^{ikt}$$

To compute the indefinite Fourier transform we need to calculate the function

$$h_l^{\pm}(z) = k \int_{-a}^{z} P_l(t/a) \mathrm{e}^{\pm \mathrm{i}kt} \, \mathrm{d}t = ka \int_{-1}^{z/a} P_l(t) \mathrm{e}^{\pm \mathrm{i}kat} \, \mathrm{d}t, \quad |z| \le a$$
(4.2)

For z = a the integral is a spherical Bessel function, *viz.*,

$$h_l^{\pm}(a) = k \int_{-a}^{a} P_l(t/a) e^{\pm ikt} dt = ka \int_{-1}^{1} P_l(t) e^{\pm ikat} dt = 2ka(\pm i)^l j_l(ka)$$

We divide the interval $[z_0, z]$ in three parts. In the interval $z_0 \leq z < -a$, we have

$$\widehat{I}_{l}^{\pm}(z) = \mathbf{i}^{l} k \int_{z_{0}}^{z} e^{\mathbf{i}(\pm 1-1)kt} \, \mathrm{d}t = \mathbf{i}^{l} \begin{cases} k(z-z_{0}) \\ \frac{1}{2\mathbf{i}} \left(e^{-2\mathbf{i}kz_{0}} - e^{-2\mathbf{i}kz} \right) \end{cases}$$

and in the interval -a < z < a, we have

$$\widehat{I}_{l}^{\pm}(z) = \mathrm{i}^{l} \begin{cases} k(-a-z_{0}) \\ \frac{1}{2\mathrm{i}} \left(\mathrm{e}^{-2\mathrm{i}kz_{0}} - \mathrm{e}^{2\mathrm{i}ka} \right) \\ + \sum_{n=0}^{[l/2]-1} (-1)^{n} kah_{l-2n-1}^{(1)}(ka) \left(h_{l-2n}^{\pm}(z) - h_{l-2n-2}^{\pm}(z) \right) \end{cases}$$

and in the interval a < z, we have

$$\begin{split} \widehat{I}_{l}^{\pm}(z) &= \mathrm{i}^{l} \begin{cases} k(-a-z_{0}) \\ \frac{1}{2\mathrm{i}} \left(\mathrm{e}^{-2\mathrm{i}kz_{0}} - \mathrm{e}^{2\mathrm{i}ka}\right) \\ &+ 2(ka)^{2} (\pm \mathrm{i})^{l} \sum_{n=0}^{[l/2]-1} h_{l-2n-1}^{(1)}(ka) \left(j_{l-2n}(ka) + j_{l-2n-2}(ka)\right) \\ &+ \mathrm{i}^{-l} \begin{cases} \frac{1}{2\mathrm{i}} \left(\mathrm{e}^{2\mathrm{i}kz} - \mathrm{e}^{2\mathrm{i}ka}\right) \\ k(z-a) \end{cases} \end{split}$$

5 Indefinite integral of Legendre polynomials

It remains to find an effective method to compute the functions $h_l^{\pm}(z)$ in (4.2). To this end, define

$$h_l(\eta,\zeta) = \int_{-1}^{\eta} P_l(t) \mathrm{e}^{\mathrm{i}\zeta t} \,\mathrm{d}t, \quad |\eta| \le 1$$
 (5.1)

We see that $h_l(1,\zeta) = 2i^l j_l(\zeta)$. In terms of the functions $h_l(\eta,\zeta)$, the functions $h_l^{\pm}(z)$ are

$$h_l^{\pm}(z) = kah_l(z/a, \pm ka)$$

Our ambition in this section is to find an efficient method to compute the integrals in (5.1). We express the function $h_l(\eta, \zeta)$ as a recursion relation.

5.1 Solution by recursion

The following recursion relation of Legendre polynomials is useful:

$$P_{l}(t) = \frac{1}{2l+1} \left(P_{l+1}'(t) - P_{l-1}'(t) \right)$$

Integration by parts then implies $(P_l(-1) = (-1)^l)$

$$h_{l}(\eta,\zeta) = \int_{-1}^{\eta} P_{l}(t) e^{i\zeta t} dt = \frac{1}{2l+1} \int_{-1}^{\eta} \left(P_{l+1}'(t) - P_{l-1}'(t) \right) e^{i\zeta t} dt$$
$$= \frac{1}{2l+1} \left(P_{l+1}(\eta) - P_{l-1}(\eta) \right) e^{i\zeta \eta} - \frac{i\zeta}{2l+1} \left(h_{l+1}(\eta,\zeta) - h_{l-1}(\eta,\zeta) \right)$$

or solving for $h_{l+1}(\eta, \zeta)$

$$h_{l+1}(\eta,\zeta) = \frac{1}{i\zeta} \left(P_{l+1}(\eta) - P_{l-1}(\eta) \right) e^{i\zeta\eta} - \frac{2l+1}{i\zeta} h_l(\eta,\zeta) + h_{l-1}(\eta,\zeta), \quad l = 1, 2, 3, \dots$$

The functions $h_l(\eta, \zeta)$ can therefore be found by iteration with starting values

$$h_0(\eta,\zeta) = \frac{1}{i\zeta} \left(e^{i\zeta\eta} - e^{-i\zeta} \right) = \frac{1}{i\zeta} P_0(\eta) e^{i\zeta\eta} + h_0^{(2)}(\zeta) = \eta h_0^{(1)}(\zeta\eta) + h_0^{(2)}(\zeta)$$

10

$$h_{1}(\eta,\zeta) = \frac{1}{i\zeta} \left(\eta e^{i\zeta\eta} + e^{-i\zeta} \right) + \frac{1}{\zeta^{2}} \left(e^{i\zeta\eta} - e^{-i\zeta} \right)$$
$$= \frac{1}{i\zeta} \left(P_{1}(\eta) - \frac{1}{i\zeta} P_{0}(\eta) \right) e^{i\zeta\eta} + ih_{1}^{(2)}(\zeta) = i\eta^{2}h_{1}^{(1)}(\zeta\eta) + ih_{1}^{(2)}(\zeta)$$

To find the general solution to this recursion scheme, we start by solving the homogeneous difference equation.

Lemma 5.1. The solution to the homogeneous difference equation

$$a_{l+1} + \frac{2l+1}{i\zeta}a_l - a_{l-1} = 0, \quad l = 1, 2, 3, \dots$$

given the initial values a_0 and a_1 is

$$a_{l} = -\frac{\zeta^{2}}{2i} \left(a_{0} h_{0}^{(2)'}(\zeta) - i a_{1} h_{0}^{(2)}(\zeta) \right) i^{l} h_{l}^{(1)}(\zeta) + \frac{\zeta^{2}}{2i} \left(a_{0} h_{0}^{(1)'}(\zeta) - i a_{1} h_{0}^{(1)}(\zeta) \right) i^{l} h_{l}^{(2)}(\zeta), \quad l = 2, 3, 4, \dots$$

Proof. Two linearly independent solutions to the homogeneous difference equation in the lemma are $i^l h_l^{(1)}(\zeta)$ and $i^l h_l^{(2)}(\zeta)$, which is easily proved by the recursion relation $f_{l+1}(z) - (2l+1)f_l(z)/z + f_{l-1}(z) = 0$, where $f_l(z)$ is any spherical Bessel or Hankel function. The general solution therefore is

$$a_l = c_1 \mathbf{i}^l h_l^{(1)}(\zeta) + c_2 \mathbf{i}^l h_l^{(2)}(\zeta), \quad l = 2, 3, 4, \dots$$

where c_1 and c_2 are constants determined by the starting values a_0 and a_1 . Explicitly, we get

$$\begin{cases} c_1 h_0^{(1)}(\zeta) + c_2 h_0^{(2)}(\zeta) = a_0 \\ c_1 i h_1^{(1)}(\zeta) + c_2 i h_1^{(2)}(\zeta) = a_1 \end{cases}$$

with solution

$$\begin{cases} c_1 = -\frac{\zeta^2}{2i} \left(a_0 h_0^{(2)'}(\zeta) - ia_1 h_0^{(2)}(\zeta) \right) \\ c_2 = \frac{\zeta^2}{2i} \left(a_0 h_0^{(1)'}(\zeta) - ia_1 h_0^{(1)}(\zeta) \right) \end{cases}$$

where we used the Wronskian of the spherical Hankel functions.

$$h_n^{(2)}(z)h_n^{(1)'}(z) - h_n^{(2)'}(z)h_n^{(1)}(z) = \frac{2i}{z^2}$$

and $h_0^{(1,2)'}(z) = -h_1^{(1,2)}(z)$. This completes the proof of the lemma.

We are now ready for the solution to the inhomogeneous difference equation in $h_l(\eta, \zeta)$ above. We formulate this as a lemma.

Lemma 5.2. Define an iteration scheme by

$$h_{l+1}(\eta,\zeta) = \frac{1}{i\zeta} \left(P_{l+1}(\eta) - P_{l-1}(\eta) \right) e^{i\zeta\eta} - \frac{2l+1}{i\zeta} h_l(\eta,\zeta) + h_{l-1}(\eta,\zeta), \quad l = 1, 2, 3, \dots$$

with starting values

$$h_0(\eta,\zeta) = \eta h_0^{(1)}(\zeta\eta) + h_0^{(2)}(\zeta)$$

and

$$h_1(\eta,\zeta) = i\left(\eta^2 h_1^{(1)}(\zeta\eta) + h_1^{(2)}(\zeta)\right)$$

The solution is

$$h_l(\eta,\zeta) = f_l(\eta,\zeta) e^{i\zeta\eta} + i^l h_l^{(2)}(\zeta), \quad l = 0, 1, 2, 3, \dots$$

where

$$f_{l}(\eta,\zeta) = i^{l}h_{l}^{(1)}(\zeta) \left\{ \sum_{k=1}^{l} \frac{1}{\zeta h_{k-1}^{(1)}(\zeta) h_{k}^{(1)}(\zeta)} \left(-\sum_{n=0}^{k} i^{-n+1}(2n+1) \frac{h_{n}^{(1)}(\zeta)}{\zeta} P_{n}(\eta) + i^{-k+2}h_{k}^{(1)}(\zeta) P_{k-1}(\eta) + i^{-k+1}h_{k+1}^{(1)}(\zeta) P_{k}(\eta) \right) - i \frac{P_{0}(\eta)}{\zeta h_{0}^{(1)}(\zeta)} \right\}, \quad l = 0, 1, 2, \dots$$

Proof. We first subtract the part of the solution that contains the spherical Hankel function of the second kind $h_l^{(2)}(\zeta)$ and the exponential function $e^{i\zeta\eta}$. To this end, let $h_l(\eta,\zeta) = f_l(\eta,\zeta)e^{i\zeta\eta} + i^l h_l^{(2)}(\zeta)$. The recursion relation for $f_l(\eta,\zeta)$ is easily found by the use of the recursion relation $h_{l+1}^{(2)}(z) = (2l+1)h_l^{(2)}(z)/z - h_{l-1}^{(2)}(z)$. We get the new difference equation

$$f_{l+1}(\eta,\zeta) = \frac{1}{i\zeta} \left(P_{l+1}(\eta) - P_{l-1}(\eta) \right) - \frac{2l+1}{i\zeta} f_l(\eta,\zeta) + f_{l-1}(\eta,\zeta), \quad l = 1, 2, 3, \dots$$

with starting values

$$f_0(\eta,\zeta) = \frac{1}{\mathrm{i}\zeta} P_0(\eta)$$

and

$$f_1(\eta,\zeta) = \frac{1}{\mathrm{i}\zeta} \left(P_1(\eta) - \frac{1}{\mathrm{i}\zeta} P_0(\eta) \right)$$

To simplify the notation, we put the difference equation in a standard form [1].

J

$$a_{n+2} + p_1(n)a_{n+1} + p_0(n)a_n = q(n), \quad n = 1, 2, \dots$$

where

$$\begin{cases} a_n = f_{n-1}(\eta, \zeta) \\ p_1(n) = \frac{2n+1}{i\zeta} \\ p_0(n) = -1 \\ q(n) = \frac{1}{i\zeta} \left(P_{n+1}(\eta) - P_{n-1}(\eta) \right) \end{cases}$$

with initial values

$$\begin{cases} a_1 = \frac{1}{i\zeta} P_0(\eta) \\ a_2 = \frac{1}{i\zeta} \left(P_1(\eta) - \frac{1}{i\zeta} P_0(\eta) \right) \end{cases}$$

A solution to the homogeneous difference equation is (see Lemma 5.1)

$$y_l = \mathbf{i}^{l-1} h_{l-1}^{(1)}(\zeta)$$

The final solution then is [1], $(n = 3, 4, \ldots)$

$$a_n = \left(\sum_{k=1}^{n-1} \prod_{j=1}^{k-1} \frac{p_0(j)y_j}{y_{j+2}} \left(\sum_{l=1}^{k-1} \frac{q(l)}{y_{l+2}} \left[\prod_{m=1}^l \frac{p_0(m)y_m}{y_{m+2}}\right]^{-1} + \frac{a_2}{y_2} - \frac{a_1}{y_1}\right) + \frac{a_1}{y_1}\right) y_n$$

Insert the explicit values, and we obtain

$$f_{l}(\eta,\zeta) = \left\{ \sum_{k=1}^{l} \frac{1}{\zeta h_{k-1}^{(1)}(\zeta) h_{k}^{(1)}(\zeta)} \left(-\sum_{n=1}^{k-1} h_{n}^{(1)}(\zeta) \frac{P_{n+1}(\eta) - P_{n-1}(\eta)}{\mathbf{i}^{n}} + \mathbf{i} h_{1}^{(1)}(\zeta) P_{0}(\eta) - h_{0}^{(1)}(\zeta) \left(P_{1}(\eta) + \mathbf{i} \frac{1}{\zeta} P_{0}(\eta) \right) \right) - \mathbf{i} \frac{P_{0}(\eta)}{\zeta h_{0}^{(1)}(\zeta)} \right\} \mathbf{i}^{l} h_{l}^{(1)}(\zeta), \quad l = 2, 3, 4, \dots$$

This relation holds also for l = 0, 1, provided the sums with upper limit smaller than the lower limit are interpreted as zero.

We now simplify the sum in this expression.

$$\begin{split} S &= -\sum_{n=1}^{k-1} \mathrm{i}^{-n} h_n^{(1)}(\zeta) \left(P_{n+1}(\eta) - P_{n-1}(\eta) \right) + \mathrm{i} h_1^{(1)}(\zeta) P_0(\eta) - h_0^{(1)}(\zeta) P_1(\eta) \\ &= \mathrm{i} h_1^{(1)}(\zeta) \left(P_2(\eta) - P_0(\eta) \right) + h_2^{(1)}(\zeta) \left(P_3(\eta) - P_1(\eta) \right) - \mathrm{i} h_3^{(1)}(\zeta) \left(P_4(\eta) - P_2(\eta) \right) \\ &+ \ldots - \mathrm{i}^{-k+2} h_{k-2}^{(1)}(\zeta) \left(P_{k-1}(\eta) - P_{k-3}(\eta) \right) - \mathrm{i}^{-k+1} h_{k-1}^{(1)}(\zeta) \left(P_k(\eta) - P_{k-2}(\eta) \right) \\ &+ \mathrm{i} h_1^{(1)}(\zeta) P_0(\eta) - h_0^{(1)}(\zeta) P_1(\eta) \\ &= - \left(h_0^{(1)}(\zeta) + h_2^{(1)}(\zeta) \right) P_1(\eta) + \mathrm{i} \left(h_1^{(1)}(\zeta) + h_3^{(1)}(\zeta) \right) P_2(\eta) \\ &+ \left(h_2^{(1)}(\zeta) + h_4^{(1)}(\zeta) \right) P_3(\eta) - \mathrm{i} \left(h_3^{(1)}(\zeta) + h_5^{(1)}(\zeta) \right) P_4(\eta) + \ldots \\ &- \mathrm{i}^{-k+2} \left(h_{k-2}^{(1)}(\zeta) + h_k^{(1)}(\zeta) \right) P_{k-1}(\eta) - \mathrm{i}^{-k+1} \left(h_{k-1}^{(1)}(\zeta) + h_{k+1}^{(1)}(\zeta) \right) P_k(\eta) \\ &+ \mathrm{i}^{-k+2} h_k^{(1)}(\zeta) P_{k-1}(\eta) + \mathrm{i}^{-k+1} h_{k+1}^{(1)}(\zeta) P_k(\eta) \end{split}$$

The recursion relation $h_{l+1}^{(1)}(z) + h_{l-1}^{(1)}(z) = (2l+1)h_l^{(1)}(z)/z$ implies

$$S = -3\frac{h_1^{(1)}(\zeta)}{\zeta}P_1(\eta) + 5i\frac{h_2^{(1)}(\zeta)}{\zeta}P_2(\eta) + 7\frac{h_3^{(1)}(\zeta)}{\zeta}P_3(\eta) - 9i\frac{h_4^{(1)}(\zeta)}{\zeta}P_4(\eta) + \dots$$
$$-i^{-k+1}(2k+1)\frac{h_k^{(1)}(\zeta)}{\zeta}P_k(\eta) + i^{-k+2}h_k^{(1)}(\zeta)P_{k-1}(\eta) + i^{-k+1}h_{k+1}^{(1)}(\zeta)P_k(\eta)$$
$$= -\sum_{n=1}^k i^{-n+1}(2n+1)\frac{h_n^{(1)}(\zeta)}{\zeta}P_n(\eta) + i^{-k+2}h_k^{(1)}(\zeta)P_{k-1}(\eta) + i^{-k+1}h_{k+1}^{(1)}(\zeta)P_k(\eta)$$

which gives

$$f_{l}(\eta,\zeta) = \left\{ \sum_{k=1}^{l} \frac{1}{\zeta h_{k-1}^{(1)}(\zeta) h_{k}^{(1)}(\zeta)} \left(-\sum_{n=1}^{k} i^{-n+1} (2n+1) \frac{h_{n}^{(1)}(\zeta)}{\zeta} P_{n}(\eta) + i^{-k+2} h_{k}^{(1)}(\zeta) P_{k-1}(\eta) + i^{-k+1} h_{k+1}^{(1)}(\zeta) P_{k}(\eta) - i \frac{h_{0}^{(1)}(\zeta)}{\zeta} P_{0}(\eta) \right) - i \frac{P_{0}(\eta)}{\zeta h_{0}^{(1)}(\zeta)} \right\} i^{l} h_{l}^{(1)}(\zeta)$$

or

$$f_{l}(\eta,\zeta) = \left\{ \sum_{k=1}^{l} \frac{1}{\zeta h_{k-1}^{(1)}(\zeta) h_{k}^{(1)}(\zeta)} \left(-\sum_{n=0}^{k} i^{-n+1} (2n+1) \frac{h_{n}^{(1)}(\zeta)}{\zeta} P_{n}(\eta) + i^{-k+2} h_{k}^{(1)}(\zeta) P_{k-1}(\eta) + i^{-k+1} h_{k+1}^{(1)}(\zeta) P_{k}(\eta) \right) - i \frac{P_{0}(\eta)}{\zeta h_{0}^{(1)}(\zeta)} \right\} i^{l} h_{l}^{(1)}(\zeta)$$

This completes the lemma.

In conclusion, the functions $h_l^{\pm}(z)$ defined in (4.2) can be expressed in the function $h(\eta, \zeta)$ in (5.1). Specifically, we have

$$h_l^{\pm}(z) = kah_l(z/a, \pm ka)$$

6 Summary and explicit terms

This paper contains an evaluation of a non-trivial integral that occurs in the formulation of scattering by randomly distributed obstacles.

To summarize, the integral $I_l(z)$ in (1.1) has been solved and the solution outside the interval [-a, a] is a simple exponential function in kz, while inside the interval [-a, a], the solution can be found in a finite series of spherical waves. The finite sum of spherical waves depends on the two parameters kz and ka, or, more precisely, the parameter ka and a polynomial of the order l in the parameter z/a. Several equivalent solutions are presented in the paper, one of them is (l = 0, 1, 2, ...)

$$I_{l}(z) = \begin{cases} i^{l}e^{-ikz}, & z \leq -a \\ i^{l-l}kah_{0}^{(1)}(ka)P_{l-2[l/2]}(z/a) \\ &+ \sum_{n=0}^{[l/2]-1} (-1)^{n}kah_{l-2n-1}^{(1)}(ka) \left(P_{l-2n}(z/a) - P_{l-2n-2}(z/a)\right), & z \in [-a,a] \\ &i^{-l}e^{ikz}, & z \geq a \end{cases}$$

The first integrals, l = 0, 1, 2, are of interest for low-frequency expansions. For l = 0 the integral is

$$I_0(z) = \begin{cases} e^{-ikz}, & z \le -a \\ e^{ika}, & z \in [-a, a] \\ e^{ikz}, & z \ge a \end{cases}$$

and for l = 1 the result is

$$I_1(z) = \begin{cases} ie^{-ikz}, & z \le -a \\ -ie^{ika}\frac{z}{a}, & z \in [-a,a] \\ -ie^{ikz}, & z \ge a \end{cases}$$

For l = 2 the result is

$$I_{2}(z) = \begin{cases} -e^{-ikz}, & z \leq -a \\ e^{ika} \frac{(ka)^{2}(3i+ka) - 3(i+ka)(kz)^{2}}{2(ka)^{3}}, & z \in [-a,a] \\ -e^{ikz}, & z \geq a \end{cases}$$

and we notice that the integral contains a polynomial in z/a of order l.

Moreover, the indefinite Fourier transform of $I_l(z)$ has also been investigated. More precisely, the integral, see (4.1)

$$\widehat{I}_{l}^{\pm}(z) = k \int_{z_{0}}^{z} I_{l}(t) \mathrm{e}^{\pm \mathrm{i}kt} \mathrm{d}t, \quad z \ge z_{0}, \quad l = 0, 1, 2, \dots$$

is shown to have a solution expressed in spherical waves.

Acknowledgement

The author is grateful to an anonymous reviewer for pointing out the possibility to use the Erdélyi operators \mathcal{Y}_n^m in Ref. 12 in the solution of the integral $I_l(z)$. These operators systemized the solution considerably.

References

- C. M. Bender and S. A. Orszag. Advanced Mathematical Methods for Scientists and Engineers. McGraw-Hill, New York, 1978.
- [2] A. Boström, G. Kristensson, and S. Ström. Transformation properties of plane, spherical and cylindrical scalar and vector wave functions. In V. V. Varadan, A. Lakhtakia, and V. K. Varadan, editors, *Field Representations and Introduction to Scattering*, Acoustic, Electromagnetic and Elastic Wave Scattering, chapter 4, pages 165–210. Elsevier Science Publishers, Amsterdam, 1991.
- [3] V. Bringi, T. Seliga, V. Varadan, and V. Varadan. Bulk propagation characteristics of discrete random media. In *Multiple scattering and waves in random media; Proceedings of the Workshop, Blacksburg, VA, March 24-26, 1980.(A82-27720 12-70) Amsterdam, North-Holland Publishing Co.*, volume 1, pages 43– 75, 1981.

- [4] V. Bringi, V. Varadan, and V. Varadan. Coherent wave attenuation by a random distribution of particles. *Radio Science*, 17(5), 946–952, 1982.
- [5] W. C. Chew, J. A. Friedrich, and R. Geiger. A multiple scattering solution for the effective permittivity of a sphere mixture. *Geoscience and Remote Sensing*, *IEEE Transactions on*, 28(2), 207–214, 1990.
- [6] K. Ding and L. Tsang. Effective propagation constants in media with densely distributed dielectric particles of multiple sizes and permittivities. *Progress in Electromagnetics Research*, 1(3), 241–295, 1989.
- [7] J. Fikioris and P. Waterman. Multiple scattering of waves. III. The electromagnetic case. J. Quant. Spectrosc. Radiat. Transfer, 123, 8–16, 2013.
- [8] A. Ishimaru and Y. Kuga. Attenuation constant of a coherent field in a dense distribution of particles. JOSA, 72(10), 1317–1320, 1982.
- [9] G. Kristensson. Coherent scattering by a collection of randomly located obstacles — An alternative integral equation formulation. J. Quant. Spectrosc. Radiat. Transfer, 164(0), 97–108, 2015.
- [10] P. Lloyd and M. Berry. Wave propagation through an assembly of spheres: IV. Relations between different multiple scattering theories. *Proceedings of the Physical Society*, **91**(3), 678, 1967.
- [11] C. Mandt, Y. Kuga, L. Tsang, and A. Ishimaru. Microwave propagation and scattering in a dense distribution of non-tenuous spheres: experiment and theory. Waves in Random Media, 2(3), 225-234, 1992.
- [12] P. A. Martin. Multiple Scattering: Interaction of Time-Harmonic Waves with N Obstacles, volume 107 of Encyclopedia of Mathematics and its Applications. Cambridge University Press, Cambridge, U.K., 2006.
- [13] M. I. Mishchenko, L. Liu, D. W. Mackowski, B. Cairns, and G. Videen. Multiple scattering by random particulate media: exact 3D results. *Opt. Express*, 15(6), 2822–2836, 2007.
- [14] M. I. Mishchenko, L. D. Travis, and A. A. Lacis. Multiple scattering of light by particles: radiative transfer and coherent backscattering. Cambridge University Press, Cambridge, U.K., 2006.
- [15] F. W. J. Olver, D. W. Lozier, R. F. Boisvert, and C. W. Clark. NIST Handbook of mathematical functions. Cambridge University Press, New York, 2010.
- [16] B. Peterson and S. Ström. T-matrix for electromagnetic scattering from an arbitrary number of scatterers and representations of E(3). *Phys. Rev. D*, 8, 3661–3678, 1973.
- [17] W. Ren. Multiple-scattering formalism for general discrete random composites. *Phys. Rev. E*, 49, 2362–2367, Mar 1994.

- [18] V. Tishkovets, E. Petrova, and M. Mishchenko. Scattering of electromagnetic waves by ensembles of particles and discrete random media. *Journal of Quantitative Spectroscopy and Radiative Transfer*, **112**, 2095–2127, 2011.
- [19] L. Tsang and J. Kong. Effective propagation constants for coherent electromagnetic wave propagation in media embedded with dielectric scatters. *Journal of Applied Physics*, 53(11), 7162–7173, 1982.
- [20] L. Tsang and J. A. Kong. Scattering of Electromagnetic Waves: Advanced Topics. John Wiley & Sons, New York, 2001.
- [21] V. Varadan, V. Bringi, and V. Varadan. Frequency dependent dielectric constants of discrete random media. In R. Burridge, S. Childress, and G. Papanicolaou, editors, *Macroscopic Properties of Disordered Media*, volume 154 of *Lecture Notes in Physics*, pages 272–284. Springer Berlin / Heidelberg, 1982.
- [22] V. K. Varadan, V. N. Bringi, and V. V. Varadan. Coherent electromagnetic wave propagation through randomly distributed dielectric scatterers. *Phys. Rev. D*, **19**(8), 2480–2489, April 1979.
- [23] V. Varadan, V. Bringi, V. Varadan, and A. Ishimaru. Multiple scattering theory for waves in discrete random media and comparison with experiments. *Radio* science, 18(3), 321–327, 1983.
- [24] V. Varadan, Y. Ma, and V. Varadan. Propagator model including multipole fields for discrete random media. JOSA A, 2(12), 2195–2201, 1985.
- [25] R. West, D. Gibbs, L. Tsang, and A. Fung. Comparison of optical scattering experiments and the quasi-crystalline approximation for dense media. JOSA A, 11(6), 1854–1858, 1994.