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Distributed Kalman Filtering Using Weighted Averaging

Peter Alriksson1 and Anders Rantzer1

Abstract—This paper addresses the problem of distributed
Kalman filtering, with focus on limiting the required com-
munication bandwidth. By distributed we refer to a scenario
when all nodes in the network desire an estimate of the
full state of the observed system and there is no centralized
computation center. Communication only takes place between
neighbors and only once each sample. To reduce band-
width requirements of individual nodes, estimates instead of
measurements are communicated. A new estimate is then
formed as a weighted average of the neighbouring estimates.
The weights are optimized to yield a small estimation error
covariance in stationarity. The minimization can be done off
line thus allowing only estimates to be communicated. The ad-
vantage of communicating estimates instead of measurements
becomes more evident when the number of nodes exceeds
the size of the state vector to be estimated. The algorithm is
applied to one simple second order system and temperature
sensing network.

I. INTRODUCTION

As battery and processing power of nodes in sen-

sor networks increases the possibility of more intelligent

estimation schemes become more and more important.

The use of sensor networks was first driven by military

applications, but with cheaper technology many other areas

could make use of sensor networks, see for example [1] and

[2]. Advantages with wireless sensor networks typically

include more robustness, because more than one unit is

performing the same task and increased flexibility.

However decentralized estimation is a far more complex

task than traditional centralized estimation. At least two big

questions arise, what to send and how to make use of the

received information. The first question has two obvious

candidates, measurements or estimates.

In the case when measurements are transmitted the main

problem is that all nodes usually do not have the possibility

to communicate with all other nodes, thus the measure-

ments have to be routed through other nodes. These nodes

might experience a very high communication load, thus

limiting the size of the network. This is especially evident

when the number of nodes exceed the size of the state

vector to be estimated. Once the routing problem is solved,

generating an estimate based on measurements is straight

forward, at least if the system is linear and subject to

Gaussian disturbances.

The case where estimates are communicated has been

given great attention in the literature. In for example [3]

a decentralized Kalman filter was proposed. However, this

algorithm requires every node to be able to communicate

with every other node, which might not be possible. An

alternative approach is to only allow nodes to communicate

with their neighbors. As opposed to the case where mea-

surements are communicated no routing is required when

estimates are used as information carriers.

Without direct communication between all nodes a new

problem is introduced, namely how to combine estimates

from just neighboring nodes. To optimally combine two

estimates one has to know the mutual information between

the estimates. Computing this quantity for a general com-

munication graph is a difficult task that requires global

knowledge of the topology. In the case of a loop-free

graph the problem was solved in [4] by introduction of

a channel filter. This approach was used in a coordinated

search strategy application, see [5].

If the state is assumed constant, the problem can be

viewed as a distributed average problem which has been

studied by for example [6]. The problem was generalized

to time varying states in [7] and [8] using consensus filters.

A closely related area is how to combine estimates

from a number of non-communicating estimators, so called

track-to-track fusion algorithms. This problem differs in

that the combined estimate is not used to compute a new

estimate in the individual nodes. The fused estimate is only

communicated to a central node to be used for some task.

This problem was studied in for example [9] and [10].

II. PROBLEM FORMULATION

Consider the following discrete-time linear system

x(k + 1) = Ax(k) + v(k) (1)

where x(k) ∈ R
n is the state of the system and v(k) ∈ R

n

is a stochastic disturbance. The disturbance is assumed to

be a white zero mean Gaussian process with covariance

defined below.

The process is observed by N agents each with some

processing and communication capability. The agents are

labeled i = 1, 2, . . . , N and form the set V . The communi-
cation topology is modeled as a graph G = (V, E), where
the edge (i, j) is in E if and only if node i and node
j can exchange messages. The nodes to which a node
communicates are called neighbors and are contained in

the set Ni. Note that node i is also included in the set Ni.

Each node observes the process (1) by a measurement

yi(k) ∈ R
pi of the following form

yi(k) = Cix(k) + ei(k) (2)

where ei(k) ∈ R
pi is a white zero mean Gaussian process.

The measurement- and process disturbances are correlated
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(3)

where δkl = 1 only if k = l. Note that this is a
heterogeneous setup where each agent is allowed to to take

measurements of arbitrary size and precision. Further the

disturbances acting on the measurements are allowed to be

correlated.

Each node is only allowed to communicate with its

neighbors and only once between each measurement. Fur-

ther the only assumption made on the graph structure is

that it has to be connected, other assumptions such as

requiring it to be loop free is not necessary. No node is

superior to any other and thus no central processing is

allowed. This setup is somewhat different from the setup

used in for example distributed control problems where

each node in the graph also has dynamics associated with

it. The reader should think of the problem studied here as

for example a network of sensors trying to estimate the

position of an external object they observe.

The goal is to make sure the every node in the network

has a good estimate x̂i(n) of the state x(n).

III. SHARING MEASUREMENTS

Taking the Bayesian point of view, the best possible

estimate of the state at time k can be computed from
the conditional probability distribution of x given all past
measurements up to time k.
In the case of the communication restrictions imposed

above, this has to be restricted to all available past mea-

surements. Which past measurements that are available

depends on the diameter of the graph, that is the maximum

distance between two nodes. One way to provide all nodes

with all measurements would be to tag all measurements

with time and origin and then flood the network. However,

as the number of nodes grows, the bandwidth requirement

will make this approach practically unattractive.

Even if the optimal scheme is practically unattractive

it still serves as a good comparison to other approaches.

Therefore we will show one way to compute the estimation

error covariance for this case using a simple example.

Now let Yi(k) denote the information available to node
i at time k. For example, node 1 in in Figure 1 has access
to Y1(k) = {y1(k), y2(k), y3(k − 1), y4(k − 2)}, whereas
Y3(k) = {y1(k−1), y2(k), y3(k), y4(k)} (note that Yi(k−
1), Yi(k − 2) and so on has already been incorporated in
the estimate as a normal Kalman filter will be used). If the

state of the system is augmented with delayed versions of

the original state, the new system in node 3 for example
becomes

[

x(k + 1)
x(k)

]

=

[

A 0
I 0

] [

x(k)
x(k − 1)

]

+

[

I
0

]

v(k). (4)

Fig. 1. Simple graph.

The corresponding augmented measurement equation is
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(5)

If the augmented system is detectable the optimal estimator

is the normal Kalman filter, and the optimal estimation

error covariance is the solution to the associated Riccati

equation.

IV. SHARING ESTIMATES

The approach described above requires every node in

the graph to send its measurements to every other node.

For a graph of moderate size this might be feasible,

however as the size of the graph increases some nodes

might experience very high communication load. If the

dimension of the state vector is small compared to the

number of nodes in the network, a much more bandwidth

saving approach is to share estimates with the neighbouring

nodes.

Having removed the potential congestion problem, a new

difficulty is introduced, namely how to combine estimates

in an optimal way. The problem is that estimates are

not independent, as they contain the same process noise,

and possibly also the same measurement information. To

optimally combine two estimates the mutual information

must be subtracted.

In the case of a graph without loops the problem was

solved in [4] by the use of an on-line channel filter.

The channel filter basically keeps track of the mutual

information between the nodes by looking at what they

send to each other and thus allows for the estimates to be

merged in an optimal way.

For a graph with loops, two nodes can not compute

the mutual information by just using local information.

Information can for example travel from node A to node

C and then to node B. When node A and B are to

compute their mutual information they do not know about

the information that was sent through C.

To solve the problem for a general communication

topology a global off-line method will be used. Instead

of subtracting the mutual information, the estimates are

weighed so that the covariance of the merged estimate

is minimized. This approach will not give the optimal

solution, but is is applicable to graphs with loops. Weighted

averaging can be seen as a generalization of the two-

sensor track-fusion algorithm presented in [11]. To evaluate

performance the resulting estimation error covariance can

easily be compared to the optimal as computed in section

III.



A. On-line computations

The algorithm consists of the two traditional estimation

steps, measurement update and prediction together with an

additional step where the nodes communicate and merge

estimates. We will refer to an estimate after measurement

update as local and after the communication step as re-

gional.

1) Measurement update

The local estimate x̂local
i (k|k) is formed by the

predicted regional estimate x̂reg
i (k|k − 1) and the

local measurement yi(k)

x̂local
i (k|k) = x̂reg

i (k|k − 1)+

Ki[yi(k) − Cix̂
reg
i (k|k − 1)]. (6)

where Ki is computed off-line. The predicted esti-

mate at time zero is defined as x̂reg
i (0| − 1) = x̂0

where x̂0 is the initial estimate of x(0).
2) Merging

First the agents exchange their estimates over the

communication channel. This communication is as-

sumed to be error and delay free. The merged

estimate x̂reg
i (k|k) in node i is defined as a linear

combination of the estimates in the neighboring

nodes Ni.

x̂reg
i (k|k) =

∑

j∈Ni

Wij x̂
local
j (k|k) (7)

The weighting matrices Wij are computed off-line

by the procedure described in section IV-B.

3) Prediction

Because the measurement- and process noises are

independent the prediction step only includes

x̂reg
i (k + 1|k) = Ax̂reg

i (k|k) (8)

B. Off-line computations

To be able to execute the steps described above the

parametersKi ∈ R
n×pi andWij ∈ R

n×n must be chosen.

In this section an iterative algorithm will be developed for

this purpose. First let the estimation error in node i be
defined as

x̃i(k) = x(k) − x̂i(k) (9)

with covariance

Pij(k) = Ex̃i(k)x̃j(k)T . (10)

Now note that the estimation error covariance (10) after

step 1) above can be written as

P local
ij (k|k) = (I−Ki(k)Ci)P

reg
ij (k|k−1)(I−Kj(k)Cj)

T

+ KiReijK
T
j . (11)

with P reg
ij (0| − 1) = P0 where P0 is the initial estimation

error covariance. Minimizing P local
ii with respect to Ki(k)

gives

Ki(k) = P reg
ii (k|k−1)CT

i (Reii+CiP
reg
ii (k|k−1)CT

i )−1.
(12)

Next the choice of Wij will be addressed. To keep the

estimates unbiased the following constraint is introduced.
∑

j∈Ni

Wij(k) = In×n (13)

Using (13) we can write the merged estimation error as

x̃reg
i (k|k) = x(k) − x̂reg(k|k)

=
∑

j∈Ni

Wij(k)x(k) −
∑

j∈Ni

Wij(k)x̂local
j (k|k)

=
∑

j∈Ni

Wij(k)x̃local
j (k|k).

(14)

The estimation error covariance matrices can thus be

computed as

P reg
ij (k|k) =

∑

l∈Ni

∑

m∈Nj

Wil(k)P local
lm (k|k)Wjm(k)T

(15)

Equation (15) can be written in matrix form as

P reg(k|k) = W (k)P local(k|k)W (k)T (16)

by requiring that

Wij(k) = 0 if (i, j) /∈ E. (17)

The goal of the weight selection is to minimize the

estimation error covariance matrix in each node in steady

state. That is to minimize P reg
ii (k|k) for all i given the

constraints (13) and (17) as k approaches infinity.
To simplify notation the time indexes will be dropped

in the following part. The optimization problem for each

node can thus be posed as

minWi·
P reg

ii

subject to (13) and (17)
(18)

whereWi· =
[

Wi1 . . . WiN

]

. This minimization prob-

lem will be solved in a number of steps next. As (18) is

a minimization of a quadratic matrix expression it will

be minimized by completing the squares. First write the

estimation error covariance in node i as

P reg
ii =

[

Wi1 . . . WiN

]

P local







WT
i1

...

WT
iN






. (19)

Introducing the sparsity constraint (17) is equivalent to

removing the rows and columns corresponding to the

weights that are required to be zero. Thus (19) can be

written as

P reg
ii = W̄ P̄W̄T . (20)

where W̄ is of size n × (nmi) and P̄ is of size nmi ×
(nmi). Here mi denotes the cardinality of Ni, that is the

number of neighbors of node i.
Next the constraint (13) is introduced and (20) can be

written as

P reg
ii =

[

In×n W̄12 . . . W̄1mi

]

Q











In×n

W̄T
12

...

W̄T
1mi











(21)



The matrix Q is defined as

Q = P̄ − R − S (22)

where

R =











0 P̄11 . . . P̄11

P̄11 −P̄11 . . . −P̄11

...
...

. . .
...

P̄11 −P̄11 . . . −P̄11











(23)

and

S =











0 . . . 0
0 P̄12 + P̄21 . . . P̄1mi

+ P̄21

0
...

. . .
...

0 P̄12 + P̄mi1 . . . P̄1mi
+ P̄mi1











(24)

In the above equations all blocks of the P̄ and W̄ matrices

are of size n × n. Writing (21) as

P reg
ii =

[

In×n W̄i·

]

[

Q11 Q12

Q21 Q22

] [

In×n

W̄T
i·

]

(25)

and completing the squares it can be seen that a W̄i·

satisfying

W̄i·Q22 = −Q12 (26)

minimizes P reg
ii . The matrix Q22 is in general not positive

definite but positive semidefinite. This corresponds to that

the solution of (26), if it exists, is not unique. To avoid

that the magnitude of any weight becomes too large

trace W̄W̄T is minimized subject to (26).

Next note that the estimation error covariance after the

prediction step can be written as

P reg
ij (k + 1|k) = AP reg

ij (k|k)AT + Rv (27)

Now all pieces are there to formulate an iterative algorithm

for computing the stationary values of Ki and Wij .

1) Measurement update

Update the covariance matrices P local
ij according to

(11) and (12).

2) Merging

Solve the N minimization problems (18).
Update the covariance matrices P reg according to

(16).

3) Prediction

Update the covariance P reg according to (27).

The three steps; measurement update, merging and pre-

diction are then iterated until a steady state value of the

estimation error covariance matrix is achieved.

V. EXAMPLES

A. Simple Second Order System

Next a simple example with 11 nodes estimating the

state of a second order system will be studied. The

dynamics are given by

x(k + 1) =

[

0.8 0
0 0.8

]

x(k) + v(k). (28)
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Fig. 2. Sensor network in in the second order example. Nodes in category
x1 measures the first state, relay nothing and x2 the second state.

There are three different types of nodes, one that measures

x1, one that measures x2 and one type that does not

measure any of the states. The third category of nodes

simply acts as relay stations to increase the range of the

network. This setup results in the following measurement

equations.

y1,3,8,10(k) =
[

1 0
]

x + e1,3,8,10(k)

y5,6,7(k) =
[

0 0
]

x + e5,6,7(k)

y2,4,9,11(k) =
[

0 1
]

x + e2,4,9,11(k)

(29)

The process noise v(k) and measurement noise e(k) has
covariance matrices Rv = I2×2 and Re = I11×11 respec-

tively. This implies that the measurement noise in different

nodes is uncorrelated. The network topology is given by

the bi-directional graph in Figure 2.

Next the weights Wij and Kalman gains Ki were

calculated using the algorithm described in section IV-

B. The trace of the estimation error covariance Pii is

plotted in Figure 3. As a comparison the covariance when

measurements are shared was also calculated, as described

in section III. The communication constraints introduces a

larger estimation error covariance as compared to the case

when all nodes has access to all measurements without

delay, this is apparent when these two cases are compared

with the global information case in Figure 3.

From Figure 3 the conclusion can be drawn that the

estimation error covariance is smaller when the graph is

more connected as in the case with node 7 to 11. Nodes

1 to 4 have to communicate their estimates through node

5 which increases the variance in these nodes. Node 5 on

the other hand has information from all four nodes and

thus has a smaller estimation error covariance despite the

fact that this node does not take any measurements itself.

It is also worth noticing that the optimal solution is very

close to the weighted average solution for this particular

example.

Because of the size of this problem all 42, 2 × 2
weight matrices will not be explicitly given, but only a

few examples. Node 1 for example has the following two
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Fig. 3. Estimation error covariance in different nodes for the second
order example. Global refers to a scenario where all node have instanta-
neous access to all measurements.

weights

W11 =

[

0.9235 0
0 0

]

W15 =

[

0.0765 0
0 1

]

(30)

Node 1 only measures state 1 and thus all information

concerning state 2 is collected from node 5, making the

fourth element of W15 equal to 1. The estimate in node 5

contains some information about state 1 and thus the first

element in W15 is non zero.

B. Temperature Sensing Network

Here a small temperature sensor network will be

used as an example to demonstrate the algorithm. The

sensor network is simulated in TrueTime which is a

Matlab/Simulink-based simulator for real-time control sys-

tems. For a detailed description of TrueTime see for

example [12].

The network communication was simulated using a

IEEE802.11b TrueTime Wireless LAN module [13]. All

nodes are transmitting with an output power of 100 mW

and assumes that the network is active if the received

power exceeds 1 µW. A node is allowed to retransmit lost

packages 5 times before the packet is dropped. A packet is
assumed to be OK if the expected raw bit error rate does

not exceed 10 parts per million. The physical topology is
represented by the graph in Figure 4.

Each network node is implemented in a TrueTime kernel

block, which simulates a real-time kernel. The sensor task

is run as a periodic task with period 0.05 s. This allows for

accurate simulation of timing problems due to for example

network collisions. Each node executes the following cycle

each sample:

1) Analog to digital conversion of measurement.

2) Update local estimate.

3) Make estimate available for use.

4) Send local estimate to neighbors.

5) Wait for estimate from neighbors for a pre-specified

time.

6) Merge estimates from neighbors.

10 20 30 40 50 60 70

0

10

20

30

40

50

60

70

80
1

2

3

4

5

67

8

Fig. 4. Physical topology of the temperature sensing network.

7) Predict.

If step 5 fails within the required timeout the estimate

from the last successful communication is used.

As the task is only to estimate the temperature in

those points in space where the sensor nodes are located

a very simple temperature diffusion model is used. The

emphasis here is not to model temperature diffusion, but

to investigate the impact of packet loss.

The sensor network consists of 8 nodes thus the temper-

ature is model as a 8th order discrete time linear model.

Each state i represents the temperature in the proximity of
node i. The state is updated according to

xi(k + 1) = xi(k) +
∑

j∈V

1

Rij

(xj(k) − xi(k)) (31)

where Rij is a weight depending on the distance between

node i and j and V is the set of all nodes. In this example
Rij is the euclidean distance between node i and j. For the
off-line computations of Ki and Wij the noise covariance

matrices where chosen as Rw = I8×8 and Re = I8×8.

To investigate the degradation in estimation perfor-

mance introduced by the distributed scheme, estimates

from node 1,4 and 8 of state 1 was compared to

the actual value of state 1. The system was sim-

ulated for 2 seconds with initial condition x(0) =
[

40 20 20 20 20 20 20 20
]T
. All nodes were

initiated with a zero initial estimate.

A time plot of the three estimates together with the

actual state is given in Figure 5. To be able to evaluate the

impact of packet loss the number of packets received by

node 2 and 3 is plotted in Figure 6. These two nodes are the

only ones that experienced packet loss in this simulation.

As both these nodes have 2 neighbors, the nominal number

of received packets for both nodes is 2.

As expected the influence of initial conditions is greater

in node 8, as all information has to travel through 4 nodes

to get there. This can be observed through the slower

convergence of that estimate in Figure 5.

Because there are two parallel paths from node 1 to 4,

the effects of dropped packets will be most evident if both
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Fig. 5. Time plot of the estimates from node 1,4 and 8 of state 1 in the
temperature sensor network together with the actual state.

node 2 and 3 drops packets at the same time. This happens

approximately in the time intervals [0.2 0.4] and [0.7 0.9].
As can be seen in Figure 5 the estimate in node 4 levels

out in this interval, due to the fact that the old estimate

from node 1 is used. This effect can also be seen in the

estimate from node 8 but 0.15 s later. This corresponds to 3

sampling intervals which is the effective distance between

node 4 and 8. The same effect can be seen in the time

interval [0.7 0.9].

VI. CONCLUSIONS AND FUTURE WORK

In this paper an optimization based algorithm for dis-

tributed estimation was developed. The algorithm is based

on standard Kalman filtering results and then extended

with one step where nodes merge their estimates. The

estimates are merged by a weighted average approach.

The performance is then compared to a scenario where

nodes share measurements. As the measurement sharing

solution is computable, but practically unattractive due to

a potentially high bandwidth requirement, it is possible to

verify how close the weighed average solution is. For the

examples presented here the maximum difference between

measurement sharing and weighted averaging is less than

0.5% for all nodes.
Also the algorithm applies to a broad category of

graphs, including graphs with loops. The weights are

optimized off-line allowing only estimates to be commu-

nicated among the nodes. All communication is restricted

to neighboring nodes, which allows the algorithm to scale.

The algorithm was applied to one second order system

with 11 nodes and one temperature sensing network with
8 nodes. Simulations of the temperature sensing network
made in TrueTime indicate that the algorithm is quite

robust to dropped packages. The algorithm has also been

tried on a larger example with 100 nodes estimating a
second order system.
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and 3 in the temperature sensor network (The nominal number of received
packages is 2).
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“How does control timing affect performance?” IEEE Control
Systems Magazine, vol. 23, no. 3, pp. 16–30, June 2003.

[13] M. Andersson, D. Henriksson, A. Cervin, and K.-E. Årzén, “Sim-
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