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Abstract

In this paper a fully automated segmentation sys-
tem for the femur in the knee in Magnetic Reso-
nance Images and the brain in Single Photon Emis-
sion Computed Tomography images is presented.
To do this several data sets were segmented man-
ually. The resulting structures were first repre-
sented by unorganised point clouds. With level set
methods surfaces were fitted to these point clouds.
The iterated closest point algorithm was then ap-
plied to establish correspondences between different
surfaces. Both surfaces and correspondences were
used to build a three dimensional statistical shape
model of the major bones in the knee. The result-
ing model is then used to automatically segment
structures in subsequent data sets through three di-
mensional Active Shape Models. The result of the
segmentation is promising, but the quality of the
segmentation is dependent on the initial guess.

1 Introduction

Hospitals today produce numerous diagnostic im-
ages such as Magnetic Resonance Imaging (MRI),
Single Photon Emission Computed Tomography
(SPECT) and Computed Tomography (CT). These
images are often noisy and thus hard to segment.

Active Shape Models (ASM) is a segmentation
algorithm that can handle noisy data. Cootes et al.
have in [2] used ASM to segment out cartilage from
two dimensional MR images of the knee. But the
MR images are produced in three dimensions and
it would be of interest to get a three dimensional
representation of the structures.

To do this several problems have been solved.
First surfaces have been fitted to unorganised point
clouds through a level set method. After that cor-
responding parametrisations are established over
the training set with the Iterated Closest Point
(ICP) algorithm. The next step is to build the

shape model with Principal Component Analysis
(PCA). Finally the model is used to segment new
images.

2 Shape Reconstruction

Point clouds of the structures are constructed by
manual segmentation. This generates noisy point
clouds. To handle the noisy point cloud represen-
tation of the structures a level set approach is used
to reconstruct the surface. In [5] Zhao et al. devel-
oped a method which reconstructs a surface that
is minimal to the distance transform to the data
set. This approach is problematic when the point
clouds are noisy. Later Shi and Karl [3] proposed
a data-driven, Partial Differential equation (PDE)
based, level set method that handles noisy data.
This method is used to fit a surfaces to the noisy
point clouds.

3 Finding Correspondences

In shape modeling it is of great importance that
during the training a dense correspondence is es-
tablished over the training set. This part of the
process is the most difficult and the most impor-
tant for a good result of the upcoming segmenta-
tion.

The traditionally way to solve this is to place
landmarks at the surface. Another approach to
find correspondence between shapes is to have cor-
responding parametrisation of the shapes. If the
shapes later are sampled according to the parametri-
sation it is possible to find corresponding points of
two shapes. In the remaining part of this paper
these points are refried to as landmarks.

3.1 Iterative Closest Point

In this paper the correspondence of points over the
training set is established by the ICP algorithm [1].



The ICP algorithm gives corresponding triangula-
tions of the surfaces over the training set.

The ICP algorithm matches two surfaces. It
uses one as source surface and one as target. The
triangulation of the source is kept and the aim is
to get a corresponding triangulation on the target
surface. This is done bye the following iterative
process:

1. For each vertex at the source surface find the
closest point at the target surface.

2. Compute and apply the transformation from
the source to the new points that minimise
the mean square error between the two point
clouds with translation and rotation.

3. Return to 1 until the improvement is less
than a threshold value τ > 0.

If the same source surface is always used and
the target surface is switched it is possible to find
corresponding landmarks in a larger training set.

4 Aligning the Training Set

When the corresponding landmarks are found the
next step is to align the landmarks under simi-
larity transformations. This is done because only
the shape should be considered in the shape model
and the translation, scale and rotation should be
filtered out.

Alignment of two shapes in three dimensions
can be calculated explicitly. Umeyama presents a
way to do this in [4].

In this paper not only two data sets but the
whole training set is to be aligned. Therefore an
iterative approach proposed by Cootes et al. [2]
has been used.

When the corresponding points are aligned it
is possible to move forward and calculate a shape
model of the knee.

5 Building the Shape Model

With n landmarks, Xi = (x1, . . . ,xn)T where xi

are m-dimensional points, at the surface. The seg-
mentation problem is nm dimensional. It is there-
fore of great interest to reduce the dimension and
in an accurate way be able to decide whether a
new shape is reasonable.

The aim is to find a model so that new shapes
can be expressed by the linear model x = x̄ +
Φb, where x̄ is the mean shape, Φ is the shape
modes and b is a vector of parameters for the shape

modes. With this approach it is possible to con-
strain the parameters in b so the new shape always
will be reasonable.

To generate the model Φ and constrains for
the parameters b from N training shapes PCA is
applied [2].

5.1 Constructing New Shapes

From the model new shapes can be constructed.
Let Φ = [Φ1, . . . ,ΦN ], where Φi are the eigen-
vectors of the covariance matrix used in the PCA.
New shapes can now be calculated as

x̃ = x̄ + Φb = x̄ +

N∑

i=1

Φibi. (1)

Cootes et al. propose in [2] a constraint of the
bi parameters of ±3λi, where λi is the square root
of the eigenvalues of the covariance matrix σi, to
ensure that any new shape is similar to the shapes
in the training set. This method is used in this
paper.

It is not necessary to choose all Φi, but if not all
are used those corresponding to the largest eigen-
values are to be chosen. The numbers of shape
modes to be used in the shape reconstruction can
be chosen to represent a proportion of the varia-
tion in the training set. The proportion of varia-
tion that the first t shape modes cover are given
by,

Vt =

∑t

i=1
σi∑

σi

. (2)

6 Segmentation with ASM

The segmentation with active shape models is based
on an iterative approach. After an initial guess the
four steps below are iterated.

1. Search in the direction of the normal from
every landmark to find a suitable point to
place the landmark in.

2. Update the parameters for translation, rota-
tion, scale and shape modes to make the best
fit to the new points.

3. Apply constrains on the parameters.

4. Repeat until convergence.

6.1 Multi-Resolution Approach

for Active Shape Models

To improve the robustness and the speed of the al-
gorithm a multi-resolution approach is used. The



idea of multi-resolution is to first search in a coarser
image and then change to a more high resolution
image when the search in the first image is not ex-
pected to improve. This improves the robustness
because the amount of noise is less in the coarse
level. The high resolution images are then used to
find small structures. The speed accelerates be-
cause there is less data in the coarse levels.

6.2 Getting the Initial Guess

In order to obtain a fast and robust segmentation
it is important to have a good initial estimation of
the position and orientation. In the initial guess
the shape is assumed to have the mean shape. This
makes it necessary to find values of seven param-
eters to make a suitable initial guess in three di-
mensions (three for translation, one for scale and
three for the rotation).

6.3 Finding Suitable Points

To find the new point to place a landmark, while
searching in the directions of the normal, models
of the variations of appearance for a specific land-
mark l is build. Sample points in the normal di-
rection of the surface are evaluated. These values
usually have a big variation of intensity over the
training set. To minimise this effect the deriva-
tive of the intensity is used. The sampled deriva-
tives are put in a vector gi. These values are then
normalised by dividing with the sum of absolute
values of the vector.

This is repeated for all surfaces in the train-
ing set and gives a set of samples {gi} for each
landmark. These are assumed to be Gaussian dis-
tributed and the mean ḡ and the covariance Sg

are calculated. This results in a statistical model
of the grey level profile at each landmark.

Through the process from marking the inter-
esting parts of the knee to building the triangula-
tion with corresponding landmarks of the object
small errors in the surface will probably be intro-
duced. This will make the modeled surface to not
be exactly suited to the real surface. Thus the
profiles will be translated a bit and the benefit of
model will be small. To reduce these problems an
edge detection in a short distance along the normal
to the surface is performed. If the edge detection
finds a suitable edge the landmarks are moved to
that position.

6.3.1 Getting New Points

When a new point is to be located, while search-
ing in the direction of the normal during segmen-

tation, the quality of the fit is measured by the
Mahalanobis distances given by

f(gs) = (gs − ḡ)T S−1

g (gs − ḡ), (3)

where gs is the sample made around the new point
candidate. This value is linearly related to the
probability that gs is drawn from the model. Thus
minimising f(gs) is the same as maximising the
probability that gs comes from the distribution
and therefore that the point is at the sought-after
edge.

To speed up the algorithm only a few of the
landmarks are used in the coarse levels. 1/4 of the
landmarks were kept for every step to a coarser
level.

6.4 Updating Parameters

When new landmark positions are located the next
step is to update the parameters for translation,
scale, rotation and shape modes to best fit the new
points. This is done by an iterative process. The
aim is to minimise

‖Y − Tt,s,θ(x̄ + Φb)‖2, (4)

where Y is the new points and T is a similarity
transformation. The iterative approach follows the
one presented by Cootes et al. in [2].

In the segmentation only shapes relatively sim-
ilar to the shapes in the training set are of interest.
Therefore constraints are applied to the b param-
eters. The used constraints are ±3

√
σi where σi is

the eigenvalue corresponding to shape mode i.

7 Experiments

The algorithm were used on two data set, MR im-
ages of the knee and SPECT images of the brain.

7.1 Finding Corresponding Points

If the left or the right knees were mirrored in the
left-right direction of the patient it was possible to
use both left and right knees at the same time to
build the model.

A source to make the result worse was that the
images did not cover exactly the same area in the
top. That made the surfaces sometimes cover a
larger part of the femur in the knee images and in
the brain images the whole brain was not always
covered. This means that there are no true corre-
sponding point on the surfaces. Because of this it
arise strange artifacts, on the top of the femur and
in the lower part of the brain, on some shapes.



7.2 Segmentation

The result of the segmentation showed big differ-
ence between the MR images and the SPECT im-
ages. The result was significantly better on the
SPECT images.

7.2.1 Results for MR Images of the Knee

When the initial guess was not good enough the
model was not able to find the way to the femur.
Instead other edges were located that were of no
interest (often the edge of the image).

If the initial guess was good enough the search
algorithm found the right edges almost every time.
But in some parts of the images the result was not
as good. During the segmentation only the sagittal
images were used and if the result were visually
examined the result looked better in the sagittal
view. In Figure 1 the result is viewed.

Figure 1: The result of the segmentation when the
model of the gray level structure were used. The
segmentation was applied in sagittal images and
the result looks better in the sagittal view.

7.2.2 Results for SPECT Images

of the Brain

When the segmentation was done on the SPECT
images a better result was obtained, see Figure 2.
When the algorithm was used on a number of brains
and the result was compared to the points marked
on the surface it was hard to tell which were the
choice of the computer and which were chosen by
the expert.
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Figure 2: The result of the segmentation on
SPECT images of the brain.

8 Summary and Conclusions

In this paper we present a fully automated way to
segment three dimensional medical images with ac-
tive shape models. The algorithm has been tested
at MR images of knees and SPECT images of the
brain. The results are promising especially in the
SPECT images. In the MR images it is harder to
find a good initial guess which makes the result not
so good as in the SPECT images. But if the initial
guess is good the segmentation algorithm usually
gives a satisfying result.
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